1
|
Xue C, Peng H, Hou J, Qu K. Pore space partition on a sulfonate-rich metal-organic framework for purification of methane from natural gas. Chem Commun (Camb) 2025; 61:8244-8247. [PMID: 40337889 DOI: 10.1039/d5cc01014d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
By implementing the pore space partition (PSP) strategy on a sulfonate-rich acs-type metal-organic framework (MOF), we developed a new pacs structure, which features segmented pores with abundant O/N interacting sites. This structure selectively uptakes C2H6 and C3H8 from the ternary mixture of C2H6/C3H8/CH4 with high selectivity and capacity, enabling effective purification of CH4 from natural gas through a single adsorption process.
Collapse
Affiliation(s)
- Chaozhuang Xue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Hui Peng
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Jinle Hou
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Konggang Qu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
2
|
Xia L, Zhou C, Liu X, Yu Y, Xie Q, Lin H, Xiong X, Zhang S, Liang W, Shao H. Transforming bone cancer treatment: a comprehensive review of green-synthesized metal nanoparticles. Cancer Cell Int 2025; 25:193. [PMID: 40414832 DOI: 10.1186/s12935-025-03827-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 05/10/2025] [Indexed: 05/27/2025] Open
Abstract
Osteosarcoma (OS), chondrosarcoma (CHS), and Ewing sarcoma (EWS) are the main types of bone cancer (BC). OS is the most common BC in this group. It is most common in children and older people, especially in their long bones. Treatments for bone sarcomas and tumors have slowly improved, so researchers began looking into additional and alternative approaches to standard therapies. Therefore, the ability to precisely manipulate metallic nanoparticles (MNPs)' form, size, charge, and surface modification makes them very useful in treating bone cancer. However, due to the biocompatibility and possible toxicity of MNPs, MNP has limits for clinical use in treating BC. Therefore, the green synthesis of MNPs is achieved by bio-reducing metallic ions, which results in the creation of NPs, using living entities or their extracts. Green MNPs derived from natural sources provide a secure and environmentally responsible solution. Benefits of green MNPs include tailored medicine delivery and biocompatibility. Green MNPs reduce damage to healthy cells while improving the targeting of bone cancer cells. In this study, we reviewed how different MNPs synthesized using green methods can help treat various types of BC. This work reviewed the usual way of making MNPs for treating BC, the problems with this standard way of making MNPs, and the benefits and possible future uses of green synthetic MNPs for treating BC.
Collapse
Affiliation(s)
- Linying Xia
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, ZhoushanZhejiang, 316000, China
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Chao Zhou
- Department of Orthopedics, Daishan Guanghua Hospital, Zhoushan, 316000, China
| | - Xiankun Liu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Yijun Yu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, ZhoushanZhejiang, 316000, China
| | - Qiong Xie
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, ZhoushanZhejiang, 316000, China
| | - Hongming Lin
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, ZhoushanZhejiang, 316000, China
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Xiaochun Xiong
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, ZhoushanZhejiang, 316000, China
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Songou Zhang
- School of Medicine, Ningbo University, Ningbo, 315000, China
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, ZhoushanZhejiang, 316000, China.
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China.
| | - Haiyan Shao
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China.
| |
Collapse
|
3
|
Li YL, Wang HL, Ai JF, Zhang GH, Zou HH, Liang FP, Zhu ZH. Respiration Drives Dynamic Metal-Organic Framework for Smart Photoresponse to Volatile Toxic Vapors and Their Photodynamic Sterilization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501824. [PMID: 40390517 DOI: 10.1002/advs.202501824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/20/2025] [Indexed: 05/21/2025]
Abstract
Using aggregation-induced emission luminous (AIEgens) containing dynamic molecular rotor structures as linkers to construct flexible smart luminescent metal-organic frameworks (MOFs) has become a transformative approach to constructing artificial intelligence color-changing materials. Herein, 4',4″,4'″,4″″-(ethene-1,1,2,2-tetrayl)tetrabiphenyl-4-carboxylic acid (H4TPPE) is selected as a linker, and octahedral Zr6O4(OH)8(H2O)4 cluster are used as secondary building unit (SBU) to construct the first smart luminescent MOF (Zr-TPE-MOF) that can be driven by CH2Cl2 or CH3COOH vapor for respiration. It is worth noting that Zr-TPE-MOF can absorb trace amounts of CH2Cl2 or CH3COOH vapor into the pores through respiration and shows a blue shift of the emission wavelength up to 479 nm and an increase of emission intensity by nearly three times. In addition, the thermochromic behavior of Zr-TPE-MOF is not obvious in the temperature range of 80-350 K, but it has obvious thermofluorochromics behavior in the temperature range of 350-470 K. Zr-TPE-MOF showed highly sensitive and visualized smart photoresponse to the highly toxic Cr2O7 2-, with a detection limit as low as 7.49 µm. Benefiting from the porous framework structure and organic-inorganic hybrid characteristics of Zr-TPE-MOF, it has excellent ROS generation ability and has excellent application prospects in photodynamic sterilization and rapid degradation of colored dyes.
Collapse
Affiliation(s)
- Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hai-Ling Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Ju-Fen Ai
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Guan-Huang Zhang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Fu-Pei Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Zhong-Hong Zhu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
4
|
Babaei M, Abrishami A, Iranpour S, Saljooghi AS, Matin MM. Harnessing curcumin in a multifunctional biodegradable metal-organic framework (bio-MOF) for targeted colorectal cancer theranostics. Drug Deliv Transl Res 2025; 15:1719-1738. [PMID: 39302530 DOI: 10.1007/s13346-024-01707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
Despite significant advancements in managing colorectal cancer (CRC), the issues of efficient diagnosis and targeted therapy remain demanding. To address these challenges and improve treatment outcomes while reducing the cost and side effects, there is a need for more effective theranostic systems that combine diagnostic techniques with therapeutic modalities. This study introduces a pioneering approach for the synthesis of a porous bio-MOF (biodegradable metal-organic framework) using iron as the metal component and curcumin as the pharmaceutical ingredient. Subsequently, the developed drug delivery system was equipped with the anticancer drug doxorubicin (DOX), coated with biocompatible polyethylene glycol (PEG), and targeted with a CRC-specific aptamer (EpCAM). The physicochemical characterization confirmed the successful synthesis of the bio-MOF, demonstrating high encapsulation efficiency and pH-dependent release of DOX. In vitro studies for anticancer activity, cellular uptake, and mechanism of cell death demonstrated that in the case of positive EpCAM HT-29 cells, Apt-PEG-MOF@DOX had enhanced internalization that resulted in massive apoptosis. In vivo studies of the nanoparticles were then conducted in immunocompromised C57BL/6 mice bearing HT-29 tumors. These studies showed that the targeted platform could induce efficient tumor regression with reduced systemic toxicity. The targeted bio-MOF also exhibited MRI imaging properties useful for monitoring tumors. Significantly, the biocompatibility of the introduced bio-MOF was enhanced by pursuing the green synthesis method, which does not engage toxic solvents and strong acids. Overall, this multimodal system acts diversely as a tumor imaging agent and a therapeutic delivery platform suitable for CRC theranostics.
Collapse
Affiliation(s)
- Maryam Babaei
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Abrishami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sonia Iranpour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
5
|
Cañadillas-Delgado L, Mazzuca L, Ling S, Cliffe MJ, Fabelo O. Influence of Magnetic Anisotropy on the Ground State of [CH 3NH 3]Fe(HCOO) 3: Insights into the Improper Modulated Magnetic Structure. Inorg Chem 2025; 64:7348-7363. [PMID: 40202387 PMCID: PMC12015817 DOI: 10.1021/acs.inorgchem.4c05404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
The hybrid perovskites [CH3NH3]CoxNix-1(HCOO)3 with x = 0, 0.25, 0.5, 0.75, and 1.0 possess multiple phase transitions, including incommensurate structures. Notably, [CH3NH3]Ni(HCOO)3 features a proper magnetically incommensurate structure ground state. To explore similar behavior, we investigated the isomorphous [CH3NH3]Fe(HCOO)3 (1). A combination of magnetometry measurements, single crystal and powder neutron diffraction, and density functional theory calculations have been used to accurately determine and understand the sequence of nuclear and magnetic phases present in compound 1. At room temperature, it crystallizes in the Pnma space group with a perovskite structure. Below 170 K, new satellite reflections indicate a transition to a modulated structure, refined in the Pnma(00γ)0s0 with q1 = 0.1662(2)c*. At 75 K, the satellite reflections become closer to the main reflections, indicating a second transition, which maintains the superspace group symmetry but decreases the modulation wave vector to q2 = 0.1425(2)c*, i.e., with a longer modulation period. This modulation persists to 2 K, overlapping with the onset of 3D antiferromagnetic order at 17 K, offering a unique opportunity to study magneto-structural coupling. Our results point to an improper magnetic modulated structure where, interestingly, the spins are perpendicular to those of previously reported compounds.
Collapse
Affiliation(s)
| | - Lidia Mazzuca
- Institut
Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Sanliang Ling
- Advanced
Materials Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Matthew J. Cliffe
- School
of Chemistry, University of Nottingham,
University Park, Nottingham NG7 2RD, U.K.
| | - Oscar Fabelo
- Institut
Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| |
Collapse
|
6
|
Ahlawat D, Pachisia S, Aashish, Gupta R. Lanthanide-Based Metal-Organic Frameworks Offering Hydrogen Bonding Cavities: Luminescent Characteristics and Sensing Applications. Chem Asian J 2025; 20:e202401213. [PMID: 39749415 DOI: 10.1002/asia.202401213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
This work presents the synthesis and characterization of three isomorphous lanthanide-based metal-organic frameworks (Ln-MOFs) (Ln3+=Eu (1), Tb (2), and Sm (3)) supported by a pyridine-2,6-dicarboxamide-based linker offering appended arylcarboxylate groups. Single crystal X-ray diffraction studies highlight that these Ln-MOFs present three-dimensional porous architectures offering large cavities decorated with hydrogen bonding (H-bonding) groups. These Ln-MOFs display noteworthy luminescent characteristics. The mixed-metal strategy affords a series of Ln-MOFs exhibiting color-tunable emissions. The Eu-MOF was utilized for the nanomolar sensing of both nitrobenzene and 4-nitrophenol. The critical role of H-bonding in detecting these analytes is validated through multiple spectroscopic, ξ potential, and molecular docking studies. The Eu-MOF illustrated notable anticounterfeiting as well as practical sensing applications.
Collapse
Affiliation(s)
- Deepti Ahlawat
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India
| | - Sanya Pachisia
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India
| | - Aashish
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India
| |
Collapse
|
7
|
Wang Q, Hu Y, Gu Y. Molecular Mechanism Behind the Capture of Fluorinated Gases by Metal-Organic Frameworks. NANO-MICRO LETTERS 2025; 17:118. [PMID: 39869273 PMCID: PMC11772676 DOI: 10.1007/s40820-024-01584-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/01/2024] [Indexed: 01/28/2025]
Abstract
Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired. Recently, as a highly designable porous adsorbents, metal-organic frameworks (MOFs) exhibit excellent selective sorption performance toward F-gases, especially for the recognition and separation of different F-gases with highly similar properties, showing their great potential in F-gases control and recovery. In this review, we discuss the capture and separation of F-gases and their azeotropic, near-azeotropic, and isomeric mixtures in various application scenarios by MOFs, specifically classify and analyze molecular interaction between F-gases and MOFs, and interpret the mechanisms underlying their high performance regarding both adsorption capacity and selectivity, providing a repertoire for future materials design. Challenges faced in the transformation research roadmap of MOFs adsorbent separation technologies toward F-gases are also discussed, and areas for future research endeavors are highlighted.
Collapse
Affiliation(s)
- Qian Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai, 201804, People's Republic of China
| | - Yifan Gu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
- Key Laboratory of Cities' Mitigation and Adaptation to Climate Change, China Meteorological Administration (CMA), Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
8
|
Li QJ, Xing F, Wu WT, Zhe M, Zhang WQ, Qin L, Huang LP, Zhao LM, Wang R, Fan MH, Zou CY, Duan WQ, Li-Ling J, Xie HQ. Multifunctional metal-organic frameworks as promising nanomaterials for antimicrobial strategies. BURNS & TRAUMA 2025; 13:tkaf008. [PMID: 40276581 PMCID: PMC12018305 DOI: 10.1093/burnst/tkaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 04/26/2025]
Abstract
Bacterial infections pose a serious threat to human health. While antibiotics have been effective in treating bacterial infectious diseases, antibiotic resistance significantly reduces their effectiveness. Therefore, it is crucial to develop new and effective antimicrobial strategies. Metal-organic frameworks (MOFs) have become ideal nanomaterials for various antimicrobial applications due to their crystalline porous structure, tunable size, good mechanical stability, large surface area, and chemical stability. Importantly, the performance of MOFs can be adjusted by changing the synthesis steps and conditions. Pure MOFs can release metal ions to modulate cellular behaviors and kill various microorganisms. Additionally, MOFs can act as carriers for delivering antimicrobial agents in a desired manner. Importantly, the performance of MOFs can be adjusted by changing the synthesis steps and conditions. Furthermore, certain types of MOFs can be combined with traditional photothermal or other physical stimuli to achieve broad-spectrum antimicrobial activity. Recently an increasing number of researchers have conducted many studies on applying various MOFs for diseases caused by bacterial infections. Based on this, we perform this study to report the current status of MOF-based antimicrobial strategy. In addition, we also discussed some challenges that MOFs currently face in biomedical applications, such as biocompatibility and controlled release capabilities. Although these challenges currently limit their widespread use, we believe that with further research and development, new MOFs with higher biocompatibility and targeting capabilities can provide diversified treatment strategies for various diseases caused by bacterial infections.
Collapse
Affiliation(s)
- Qian-Jin Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Xing
- Department of Pediatric Surgery, Division of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China School of Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China
| | - Wen-Ting Wu
- Department of Pediatric Surgery, Division of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China School of Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, Sichuan, China
| | - Wen-Qian Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Qin
- Integrated Care Management Center, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, Sichuan, China
| | - Li-Ping Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Long-Mei Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Qiang Duan
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, Sichuan, China
| | - Jesse Li-Ling
- Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Tianfu Jincheng Laboratory, Chengdu, 610093, China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Tianfu Jincheng Laboratory, Chengdu, 610093, China
| |
Collapse
|
9
|
Andrade E, Almeida Paz FA, Figueira F. Advances in metal-organic frameworks for optically selective alkaline phosphatase activity monitoring: a perspective. Dalton Trans 2024; 53:17742-17755. [PMID: 39351601 DOI: 10.1039/d4dt01727g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
The study of Metal-Organic Frameworks (MOFs) has gained significant momentum due to their remarkable properties, including adjustable pore sizes, extensive surface area, and customizable compositions, which have urged scientists to investigate their applicability in pertinent societal issues such as water absorption, environmental remediation, and sensor technology. MOFs have the ability to transport and detect specific biomolecules, including proteins. One such biomolecule is alkaline phosphatase (ALP) that can be influenced by various diseases and can lead to severe consequences when its regulation is disrupted. The porous nature of MOFs and their tunable nature allows them to selectively adsorb, interact directly or indirectly with ALP. This ultimately influences the electronic and optical properties of the MOF, leading to measurable changes. Early detection and continuous monitoring of ALP play a crucial role in the use of an effective treatment, and recent studies have shown that MOFs are effective in detecting alkaline phosphatases. This manuscript offers a thorough examination of the potential biomedical applications of MOFs for monitoring alkaline phosphatase and envisions possible future trends in this field.
Collapse
Affiliation(s)
- Eduarda Andrade
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal. ffigueiraatua.pt
| | - Filipe A Almeida Paz
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal. ffigueiraatua.pt
| | - Flávio Figueira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal. ffigueiraatua.pt
| |
Collapse
|
10
|
Yin C, Wang X, Ding JG, Li BL, Wu B, Hu CJ. Syntheses, Structures, and Photocatalytic and Sonocatalytic Degradations of Methyl Blue of Cu(II) and Mn(II) Coordination Polymers Based on Tri(triazole) and Dicarboxylate Ligands. Molecules 2024; 29:5289. [PMID: 39598678 PMCID: PMC11596611 DOI: 10.3390/molecules29225289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Cu(II) and Mn(II) coordination polymers [Cu(ttpa)(sub)]n (Cuttpa or 1) and {[Mn2(ttpa)2(nip)2(H2O)2]·3H2O}n (Mnttpa or 2) (ttpa = tris(4-(1,2,4-triazol-1-yl)phenyl)amine, H2sub = suberic acid, nip = 5-nitroisophthalicate) were hydrothermally prepared and the structures were characterized. Cuttpa exhibited a 2D (4,4) network based on [Cu2(COO)4] dimers with upper and lower dangled ttpa ligands and a 2D → 3D polythreaded network. Mnttpa showed a 2D (4,4) network with dangled uncoordinated triazole rings from ttpa ligands and nitro groups from nip2- ligands and a 2D → 3D polythreaded network. Eg data of Cuttpa and Mnttpa were 1.88 eV and 2.11 eV. Cuttpa and Mnttpa exhibited good catalytic activity for the decomposition of methyl blue (MB) under visible light and supersound irradiation. The decomposition mechanism using Cuttpa was explored. The holes (h+) and •OH hydroxyl radicals played the main roles, and the •O2- superoxide radicals played certain auxiliary roles in the decomposition of MB within the Cuttpa catalyst.
Collapse
Affiliation(s)
| | | | | | - Bao-Long Li
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China; (C.Y.); (X.W.); (J.-G.D.); (B.W.); (C.-J.H.)
| | | | | |
Collapse
|
11
|
Geers M, Fabelo O, Cliffe MJ, Cañadillas-Delgado L. Tuning structural modulation and magnetic properties in metal-organic coordination polymers [CH 3NH 3]Co xNi 1-x(HCOO) 3. IUCRJ 2024; 11:910-920. [PMID: 39315728 PMCID: PMC11533998 DOI: 10.1107/s2052252524008583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
Three solid solutions of [CH3NH3]CoxNi1-x(HCOO)3, with x = 0.25 (1), x = 0.50 (2) and x = 0.75 (3), were synthesized and their nuclear structures and magnetic properties were characterized using single-crystal neutron diffraction and magnetization measurements. At room temperature, all three compounds crystallize in the Pnma orthorhombic space group, akin to the cobalt and nickel end series members. On cooling, each compound undergoes a distinct series of structural transitions to modulated structures. Compound 1 exhibits a phase transition to a modulated structure analogous to the pure Ni compound [Cañadillas-Delgado, L., Mazzuca, L., Fabelo, O., Rodríguez-Carvajal, J. & Petricek, V. (2020). Inorg. Chem. 59, 17896-17905], whereas compound 3 maintains the behaviour observed in the pure Co compound reported previously [Canadillas-Delgado, L., Mazzuca, L., Fabelo, O., Rodriguez-Velamazan, J. A. & Rodriguez-Carvajal, J. (2019). IUCrJ, 6, 105-115], although in both cases the temperatures at which the phase transitions occur differ slightly from the pure phases. Monochromatic neutron diffraction measurements showed that the structural evolution of 2 diverges from that of either parent compound, with competing hydrogen bond interactions that drive the modulation throughout the series, producing a unique sequence of phases. It involves two modulated phases below 96 (3) and 59 (3) K, with different q vectors, similar to the pure Co compound (with modulated phases below 128 and 96 K); however, it maintains the modulated phase below magnetic order [at 22.5 (7) K], resembling the pure Ni compound (which presents magnetic order below 34 K), resulting in an improper modulated magnetic structure. Despite these large-scale structural changes, magnetometry data reveal that the bulk magnetic properties of these solid solutions form a linear continuum between the end members. Notably, doping of the metal site in these solid solutions allows for tuning of bulk magnetic properties, including magnetic ordering temperature, transition temperatures and the nature of nuclear phase transitions, through adjustment of metal ratios.
Collapse
Affiliation(s)
- Madeleine Geers
- Diffraction GroupInstitut Laue Langevin71 avenue des MartyrsGrenoble38042France
- School of Chemistry, University Park, NottinghamNG7 2RD, United Kingdom
| | - Oscar Fabelo
- Diffraction GroupInstitut Laue Langevin71 avenue des MartyrsGrenoble38042France
| | - Matthew J. Cliffe
- School of Chemistry, University Park, NottinghamNG7 2RD, United Kingdom
| | | |
Collapse
|
12
|
Cheng PM, Jia T, Li CY, Qi MQ, Du MH, Su HF, Sun QF, Long LS, Zheng LS, Kong XJ. Bottom-up construction of chiral metal-peptide assemblies from metal cluster motifs. Nat Commun 2024; 15:9034. [PMID: 39426962 PMCID: PMC11490616 DOI: 10.1038/s41467-024-53320-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
The exploration of artificial metal-peptide assemblies (MPAs) is one of the most exciting fields because of their great potential for simulating the dynamics and functionality of natural proteins. However, unfavorable enthalpy changes make forming discrete complexes with large and adaptable cavities from flexible peptide ligands challenging. Here, we present a strategy integrating metal-cluster building blocks and peptides to create chiral metal-peptide assemblies and get a family of enantiopure [R-/S-Ni3L2]n (n = 2, 3, 6) MPAs, including the R-/S-Ni6L4 capsule, the S-Ni9L6 trigonal prism, and the R-/S-Ni18L12 octahedron cage. X-ray crystallography shows MPA formation reactions are highly solvent-condition-dependent, resulting in significant changes in ligand conformation and discrete cavity sizes. Moreover, we demonstrate that a structure transformation from Ni18L12 to Ni9L6 in the presence of benzopyrone molecules depends on the peptide conformational selection in crystallization. This work reveals that a metal-cluster building block approach enables facile bottom-up construction of artificial metal-peptide assemblies.
Collapse
Affiliation(s)
- Pei-Ming Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Tao Jia
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Chong-Yang Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Ming-Qiang Qi
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Ming-Hao Du
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hai-Feng Su
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
| |
Collapse
|
13
|
Wang CC, Liao PJ, Chung YC, Shin CY, Wu YC, Lee GH, Chien SY, Chen BH, Chuang YC. Structural Diversity and Dimensionality of Three Cu(II)-dpds-C 5O 5 2- Coordination Polymers Controlled by the Coordination Sphere of Cu(II) Centers and the Coordination Modes of C 5O 5 2- (dpds = 4,4'-Dipyridyldisulfide). ACS OMEGA 2024; 9:40920-40931. [PMID: 39371971 PMCID: PMC11447864 DOI: 10.1021/acsomega.4c06176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024]
Abstract
Three supramolecular architectures, [Cu2(dpds)2(C5O5)2(H2O)4]·3H2O (1), [Cu(dpds)(C5O5)]·3H2O (2), and [Cu2(dpds)2(C5O5)2]·9H2O·C2H5OH (3) (dpds = 4,4'-dipyridyldisulfide and C5O5 2- (croconate) = dianion of 4,5-dihydroxycyclopent-4-ene-1,2,3-trione), have been synthesized and structurally characterized. Compound 1 contains two crystallographically independent Cu(II) ions, which are both distorted octahedral geometry with elongation along the croconate- and H2O-bound axial positions and bonded with two N atoms of two dpds, two O atoms of one C5O5 2-, and two H2O molecules. Two crystallographically independent dpds ligands, both adopting the bis-monodentate bridging mode, connect two Cu(II) ions to form a one-dimensional zigzag chain-like coordination polymer. In 2 and 3, there are two and three crystallographically independent Cu(II) ions, respectively, which are all distorted octahedral geometries with elongation along the croconate-bound axial positions six-coordinated and bonded with two N atoms of two dpds ligands in cis- or/and trans-forms and four O atoms of two C5O5 2- ligands. The dpds ligands in 2 and 3 all adopt the bis-monodentate bridging mode, and the C5O5 2- ligands act as bridging ligands with bridging bis-bidentate through three C5O5 2- oxygen atoms in 2 and bridging bis-bidentate through four adjacent C5O5 2- oxygen atoms in 3, respectively, linking the Cu(II) ions to generate a two-dimensional layered and a three-dimensional metal-organic framework, respectively. The structural diversity and dimensionality observed in 1-3 may be attributed to the cis- or/and trans-coordination sphere of Cu(II) centers with two dpds ligands and the coordination modes of croconate ligands. Thermal stability and in situ temperature-dependent structural variations of 1-3 have been verified by thermogravimetric analysis and powder X-ray diffraction measurements. Compounds 1 and 3 both exhibit water vapor capture behaviors with hysteresis isotherms.
Collapse
Affiliation(s)
- Chih-Chieh Wang
- Department
of Chemistry, Soochow University, 11102 Taipei, Taiwan
| | - Pei-Juan Liao
- Department
of Chemistry, Soochow University, 11102 Taipei, Taiwan
| | - Yu-Chen Chung
- Department
of Chemistry, Soochow University, 11102 Taipei, Taiwan
| | - Chi-Yang Shin
- Department
of Chemistry, Soochow University, 11102 Taipei, Taiwan
| | - Yi-Chen Wu
- Department
of Chemistry, Soochow University, 11102 Taipei, Taiwan
| | - Gene-Hsiang Lee
- Instrumentation
Center, National Taiwan University, 10617 Taipei, Taiwan
| | - Su-Ying Chien
- Instrumentation
Center, National Taiwan University, 10617 Taipei, Taiwan
| | - Bo-Hao Chen
- National
Synchrotron Radiation Research Center, 30076 Hsinchu, Taiwan
| | - Yu-Chun Chuang
- National
Synchrotron Radiation Research Center, 30076 Hsinchu, Taiwan
| |
Collapse
|
14
|
Boidachenko K, Liberka M, Wang J, Tokoro H, Ohkoshi SI, Chorazy S. Chiral cadmium-amine complexes for stimulating non-linear optical activity and photoluminescence in solids based on aurophilic stacks. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:14964-14977. [PMID: 39184233 PMCID: PMC11343038 DOI: 10.1039/d4tc01042f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
The design of high-performance optical materials can be realized using coordination polymers (CPs) often supported by non-covalent interactions, such as metallophilicity. The challenge is to control two or more optical effects, e.g., non-linear optics (NLO) and photoluminescence (PL). We present a new strategy for the combination of the NLO effect of second-harmonic generation (SHG) and the visible PL achieved by linking dicyanidoaurate(i) ions, which form luminescent metallophilic stacks, with cadmium(ii) complexes bearing chiral amine ligands, used to break the crystal's symmetry. We report a family of NLO- and PL-active materials based on heterometallic Cd(ii)-Au(i) coordination systems incorporating enantiopure propane-1,2-diamine (pda) ligands (1-S, 1-R), their racemate (2), and enantiopure trans-cyclopentane-1,2-diamine (cpda) ligands (3-S, 3-R). Due to acentric space groups, they exhibit the SHG signal, tunable within the range of 11-24% of the KDP reference, which was correlated with the dipole moments of Cd(ii) units. They show efficient blue PL whose energy and quantum yield, the latter ranging from 0.40 to 0.83, are controlled by Cd(ii) complexes affecting the Au-Au distances and vibrational modes. We prove that chiral Cd(ii)-amine complexes play the role of molecular agents for the stimulation of both the NLO and PL of the materials based on aurophilic stacks.
Collapse
Affiliation(s)
- Kseniia Boidachenko
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 30-387 Krakow Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11 30-348 Kraków Poland
| | - Michal Liberka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 30-387 Krakow Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11 30-348 Kraków Poland
| | - Junhao Wang
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Ibaraki 305-8573 Japan
| | - Hiroko Tokoro
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Ibaraki 305-8573 Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 30-387 Krakow Poland
| |
Collapse
|
15
|
Li J, Chen B. Flexible hydrogen-bonded organic frameworks (HOFs): opportunities and challenges. Chem Sci 2024; 15:9874-9892. [PMID: 38966355 PMCID: PMC11220619 DOI: 10.1039/d4sc02628d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Flexible behavior is one of the most fascinating features of hydrogen-bonded organic frameworks (HOFs), which represent an emerging class of porous materials that are self-assembled via H-bonding between organic building units. Due to their unique flexibility, HOFs can undergo structural changes or transformations in response to various stimuli (physical or chemical). Taking advantage of this unique structural feature, flexible HOFs show potential in multifunctional applications such as gas storage/separation, molecular recognition, sensing, proton conductivity, biomedicine, etc. While some other flexible porous materials have been extensively studied, the dynamic behavior of HOFs remains relatively less explored. This perspective highlights the inherent flexible properties of HOFs, discusses their different flexible behaviors, including pore size/shape changes, interpenetration/stacking manner, H-bond breaking/reconstruction, and local dynamic behavior, and highlights their potential applications. We believe that this perspective will not only contribute to HOF chemistry and materials science, but will also facilitate the ongoing extensive research on dynamic porous materials.
Collapse
Affiliation(s)
- Jiantang Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University Jinhua 321004 P. R. China
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University Jinhua 321004 P. R. China
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Sciences, Fujian Normal University Fujian 350007 P. R. China
| |
Collapse
|
16
|
Liu X, Liu G, Fu T, Ding K, Guo J, Wang Z, Xia W, Shangguan H. Structural Design and Energy and Environmental Applications of Hydrogen-Bonded Organic Frameworks: A Systematic Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400101. [PMID: 38647267 PMCID: PMC11165539 DOI: 10.1002/advs.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/14/2024] [Indexed: 04/25/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are emerging porous materials that show high structural flexibility, mild synthetic conditions, good solution processability, easy healing and regeneration, and good recyclability. Although these properties give them many potential multifunctional applications, their frameworks are unstable due to the presence of only weak and reversible hydrogen bonds. In this work, the development history and synthesis methods of HOFs are reviewed, and categorize their structural design concepts and strategies to improve their stability. More importantly, due to the significant potential of the latest HOF-related research for addressing energy and environmental issues, this work discusses the latest advances in the methods of energy storage and conversion, energy substance generation and isolation, environmental detection and isolation, degradation and transformation, and biological applications. Furthermore, a discussion of the coupling orientation of HOF in the cross-cutting fields of energy and environment is presented for the first time. Finally, current challenges, opportunities, and strategies for the development of HOFs to advance their energy and environmental applications are discussed.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Resources and EnvironmentMoutai InstituteRenhuai564507China
| | - Guangli Liu
- College of Environmental Sciences and EngineeringPeking UniversityBeijing100871China
| | - Tao Fu
- College of Environmental Sciences and EngineeringPeking UniversityBeijing100871China
| | - Keren Ding
- AgResearchRuakura Research CentreHamilton3240New Zealand
| | - Jinrui Guo
- College of Environmental Science and EngineeringTongji UniversityShanghai200092China
| | - Zhenran Wang
- School of Environmental Science and EngineeringSouthwest Jiaotong UniversityChengdu611756China
| | - Wei Xia
- Department of Resources and EnvironmentMoutai InstituteRenhuai564507China
| | - Huayuan Shangguan
- Key Laboratory of Urban Environment and HealthInstitute of Urban EnvironmentChinese Academy of SciencesXiamen361021China
| |
Collapse
|
17
|
Baweja R, Verma M, Gautam S, Upreti S, Goyal N. Enhanced electrochemical performance of Ce-MOF/h-CeO 2 composites for high-capacitance energy storage applications. RSC Adv 2024; 14:17855-17865. [PMID: 38832244 PMCID: PMC11146288 DOI: 10.1039/d4ra00523f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
The escalating demand for energy storage underscores the significance of supercapacitors as devices with extended lifespans, high energy densities, and rapid charge-discharge capabilities. Ceria (CeO2), known for its exceptional properties and dual oxidation states, emerges as a potent material for supercapacitor electrodes. This study enhances its capacitance by integrating it with Metal-Organic Frameworks (MOFs), carbon-rich compounds noted for their good conductivity. In our research, hollow ceria (h-ceria) is synthesized via hydrothermal methods and amalgamated with Ce-MOF, employing 2,6-dinaphthalene dicarboxylic acid as a ligand, to fabricate Ce-MOF@h-CeO2 composites. The structural and morphological characteristics of the composite are methodically examined using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), and Fourier-Transform Infrared (FT-IR) spectroscopy. The band gap of the materials is ascertained through UV-Diffuse Reflectance Spectroscopy (UV-DRS). Electrochemical behavior and redox properties of the Ce-MOF composites are explored using Cyclic Voltammetry (CV), Galvanostatic Charge and Discharge (GCD), and Electrochemical Impedance Spectroscopy (EIS), providing insights into the material's stability. Electrochemical characterization of the composite reveals maximum specific capacitance, energy density and power density are 2643.78 F g-1 at a scan rate of 10 mV s-1, 249.22 W h kg-1, and 7.9 kW kg-1, respectively. Additionally, the specific capacitance of Ce-MOF synthesized with a 2,6-dinaphthalene dicarboxylic acid (NDC) ligand reaches 995.59 F g-1, surpassing that of Ce-MOF synthesized using a 1,3,5-tricarboxylic acid (H3BTC) ligand. These findings highlight the promising economic potential of high-performance, environmentally sustainable, and cost-effective energy storage devices. The innovative Ce-MOF@h-CeO2 composite materials at the core of this research pave the way for advancing the field of energy storage solutions.
Collapse
Affiliation(s)
- Ruhani Baweja
- Department of Physics, Panjab University Chandigarh 160014 India
| | - Monika Verma
- Advanced Functional Materials Lab, Dr S. S. B. University Institute of Chemical Engineering & Technology, Panjab University Chandigarh 160014 India +91 97797 13212
- Energy Research Centre, Panjab University Chandigarh 160014 India
| | - Sanjeev Gautam
- Advanced Functional Materials Lab, Dr S. S. B. University Institute of Chemical Engineering & Technology, Panjab University Chandigarh 160014 India +91 97797 13212
| | - Shailesh Upreti
- Charge CCCV (C4V), Center of Excellence, Binghamton University 45 Murray Hill Road Vestal NY 13850 USA
| | - Navdeep Goyal
- Department of Physics, Panjab University Chandigarh 160014 India
| |
Collapse
|
18
|
Makowski W, Gryta P, Jajko G, Rodlamul P, Jędrzejowski D, Roztocki K, Matoga D. Co-Adsorption of Alcohols and Water in JUK-8 Studied Using Quasi-Equilibrated Thermodesorption. Molecules 2024; 29:2309. [PMID: 38792170 PMCID: PMC11124276 DOI: 10.3390/molecules29102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
JUK-8 ([Zn(oba)(pip)]n, oba2- = 4,4'-oxybis(benzenedicarboxylate), pip = 4-pyridyl-functionalized benzene-1,3-dicarbohydrazide) is a hydrolytically stable flexible metal-organic framework. Owing to its unusual adsorptive properties, JUK-8 can be considered as a promising sensing material for construction of detectors of volatile organic compounds (VOCs) in air. Quasi-equilibrated temperature-programmed desorption and adsorption (QE-TPDA) is a versatile method dedicated to characterization of porous materials. In this work, QE-TPDA was employed to study co-adsorption of water and selected alcohols in JUK-8. For the first time an infrared detector sensitive to organic compounds was used in the QE-TPDA measurements, allowing the study of the influence of water vapor on sorption of VOCs. The QE-TPDA profiles of the studied alcohols, exhibiting two desorption maxima and two adsorption minima, are consistent with the standard sorption isotherms, revealing a two-step adsorption-desorption mechanism. The profiles recorded in the presence of water are noticeably changed in different ways for different alcohols. While at low relative humidity (RH) (ca. 20%) the low temperature adsorption states of ethanol and 1-propanol were only slightly destabilized, for 2-propanol almost complete suppression of adsorption was observed. The results found for moderate RH levels (ca. 50%) indicated that the opening of the JUK-8 structure, responsible for its breathing behavior, was followed by the filling of the just generated pores with a water-alcohol mixture.
Collapse
Affiliation(s)
- Wacław Makowski
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland (G.J.); (P.R.); (D.J.)
| | - Patrycja Gryta
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland (G.J.); (P.R.); (D.J.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Gabriela Jajko
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland (G.J.); (P.R.); (D.J.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Pattaraphon Rodlamul
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland (G.J.); (P.R.); (D.J.)
| | - Damian Jędrzejowski
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland (G.J.); (P.R.); (D.J.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Kornel Roztocki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Dariusz Matoga
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland (G.J.); (P.R.); (D.J.)
| |
Collapse
|
19
|
Tao T, Rehman SU, Xu S, Zhang J, Xia H, Guo Z, Li Z, Ma K, Wang J. A biomimetic camouflaged metal organic framework for enhanced siRNA delivery in the tumor environment. J Mater Chem B 2024; 12:4080-4096. [PMID: 38577851 DOI: 10.1039/d3tb02827e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Gene silencing through RNA interference (RNAi), particularly using small double-stranded RNA (siRNA), has been identified as a potent strategy for targeted cancer treatment. Yet, its application faces challenges such as nuclease degradation, inefficient cellular uptake, endosomal entrapment, off-target effects, and immune responses, which have hindered its effective delivery. In the past few years, these challenges have been addressed significantly by using camouflaged metal-organic framework (MOF) nanocarriers. These nanocarriers protect siRNA from degradation, enhance cellular uptake, and reduce unintended side effects by effectively targeting desired cells while evading immune detection. By combining the properties of biomimetic membranes and MOFs, these nanocarriers offer superior benefits such as extended circulation times, enhanced stability, and reduced immune responses. Moreover, through ligand-receptor interactions, biomimetic membrane-coated MOFs achieve homologous targeting, minimizing off-target adverse effects. The MOFs, acting as the core, efficiently encapsulate and protect siRNA molecules, while the biomimetic membrane-coated surface provides homologous targeting, further increasing the precision of siRNA delivery to cancer cells. In particular, the biomimetic membranes help to shield the MOFs from the immune system, avoiding unwanted immune responses and improving their biocompatibility. The combination of siRNA with innovative nanocarriers, such as camouflaged-MOFs, presents a significant advancement in cancer therapy. The ability to deliver siRNA with precision and effectiveness using these camouflaged nanocarriers holds great promise for achieving more personalized and efficient cancer treatments in the future. This review article discusses the significant progress made in the development of siRNA therapeutics for cancer, focusing on their effective delivery through novel nanocarriers, with a particular emphasis on the role of metal-organic frameworks (MOFs) as camouflaged nanocarriers.
Collapse
Affiliation(s)
- Tongxiang Tao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- University of Science and Technology of China, Hefei 230036, Anhui, P. R. China
| | - Sajid Ur Rehman
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
| | - Shuai Xu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Jing Zhang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Haining Xia
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Zeyong Guo
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Zehua Li
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Kun Ma
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
| | - Junfeng Wang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- University of Science and Technology of China, Hefei 230036, Anhui, P. R. China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, P. R. China
| |
Collapse
|
20
|
Gurbanov AV, Firoozbakht F, Pourshirband N, Sharafi-Badr P, Hayati P, Souri B, Eshghi F, Kaminsky W, Mahmoudi G, Verpoort F, Mehrabadi Z. A new 1D Mn(II) coordination polymer: Synthesis, crystal structure, hirshfeld surface analysis and molecular docking studies. Heliyon 2024; 10:e29565. [PMID: 38699722 PMCID: PMC11063412 DOI: 10.1016/j.heliyon.2024.e29565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
The synthesis of novel metal-organic coordination polymers (MOCP) with the chemical formula [Mn2L (SCN)2(OH)2]3·CH3OH [L = 1,5-bis(pyridine-4-ylmethylene) carbonohydrazide] {1} was accomplished using two different techniques: solvothermal and sonochemical ultrasonic-assisted. An investigation was carried out to examine the impact of various factors such as reaction time, sonication power, temperature, and reactant concentration on the morphology and size of the crystals. Interestingly, it was found that sonication power and temperature did not affect the crystals' morphology and size. To further analyze the prepared microcrystals of MOCPs, SEM was utilized to examine their surface morphology, and XRD, elemental evaluation composition. The identification of the functional groups present in the prepared Mn-MOCPs was accomplished through the utilization of FT-IR spectroscopy. Subsequently, the calcination of 1 in an air atmosphere at 650 °C led to the formation of Mn3O4 nanoparticles. The geometric and electronic structure of the MOCPs was evaluated using density functional theory (DFT). The utilization of molecular docking methodologies demonstrated that the best cavity of the human androgen receptor possessed an interaction energy of -116.3 kJ mol-1. This energy encompassed a combination of both bonding and non-bonding interactions. The Results showed that steric interaction and electrostatic potential are the main interactions in AR polymer and Mn(II). These interactions in the defined cavity indicated that this polymer could be an effective anti-prostate candidate, because AR is involved in the growth of prostate cancer cells, and these interactions indicated the inhibition of prostate cancer cell growth.
Collapse
Affiliation(s)
- Atash V. Gurbanov
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Excellence Center, Baku State University, Z. Khalilov Str. 23, AZ 1148 Baku, Azerbaijan
- Western Caspian University, Istiqlaliyyat Street 31, AZ 1001, Baku, Azerbaijan
| | - Fateme Firoozbakht
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Nafiseh Pourshirband
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Paria Sharafi-Badr
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Payam Hayati
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box 16846-13114, Tehran, Iran
| | - Bagher Souri
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran
| | - Fazlolah Eshghi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Werner Kaminsky
- X-ray Crystallography Laboratory, University of Washington, United States
| | - Ghodrat Mahmoudi
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55136-83111, Maragheh, Iran
- Chemistry Department, Faculty of Engineering and Natural Sciences, Istinye University, Sarıyer, Istanbul 34396, Turkey
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zohreh Mehrabadi
- Department of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran
| |
Collapse
|
21
|
Liu X, Wang Z, Zhang Y, Yang N, Gui B, Sun J, Wang C. Gas-Triggered Gate-Opening in a Flexible Three-Dimensional Covalent Organic Framework. J Am Chem Soc 2024. [PMID: 38615324 DOI: 10.1021/jacs.4c01331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The development of novel soft porous crystals (SPCs) that can be transformed from nonporous to porous crystals is significant because of their promising applications in gas storage and separation. Herein, we systematically investigated for the first time the gas-triggered gate-opening behavior of three-dimensional covalent organic frameworks (3D COFs) with flexible building blocks. FCOF-5, a 3D COF containing C-O single bonds in the backbone, exhibits a unique "S-shaped" isotherm for various gases, such as CO2, C2, and C3 hydrocarbons. According to in situ characterization, FCOF-5 undergoes a pressure-induced closed-to-open structural transition due to the rotation of flexible C-O single bonds in the framework. Furthermore, the gated hysteretic sorption property of FCOF-5 can enable its use as an absorbent for the efficient removal of C3H4 from C3H4/C3H6 mixtures. Therefore, 3D COFs synthesized from flexible building blocks represent a new type of SPC with gate-opening characteristics. This study will strongly inspire us to design other 3D COF-based SPCs for interesting applications in the future.
Collapse
Affiliation(s)
- Xiaoling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zhifang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ya Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Na Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Gui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Cheng Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
22
|
Jeevananthan V, Senadi GC, Muthu K, Arumugam A, Shanmugan S. Construction of Indium(III)-Organic Framework Based on a Flexible Cyclotriphosphazene-Derived Hexacarboxylate as a Reusable Green Catalyst for the Synthesis of Bioactive Aza-Heterocycles. Inorg Chem 2024; 63:5446-5463. [PMID: 38456408 DOI: 10.1021/acs.inorgchem.3c04117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The constant demand for eco-friendly methods of synthesizing complex organic compounds inspired researchers to design and develop modern, highly efficient heterogeneous catalytic systems. Herein, In-HCPCP metal-organic framework (SRMIST-1), a heterogeneous Lewis acid catalyst containing less toxic indium and eco-friendly robust cyclotriphosphazene and exhibiting notable chemical and thermal stability, durable catalytic activity, and exceptional reusability was produced through the reaction between indium(III) nitrate hydrate and hexakis(4-carboxylatophenoxy)-cyclotriphosphazene. In the SRMIST-1 structure, secondary building units {InO7} are assembled by a connection of η2- and η1-carboxylic oxo atoms from different HCPCP ligands, forming a three-dimensional network. The occurrence of regularly distributed In(III) sites in SRMIST-1 confers superior reactivity on the catalyst toward the synthesis of 2,3-dihydroquinazolin-4(1H)-ones and 3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxides by the cyclization reaction of 2-aminobenzamides and 2-aminobenzenesulphonamides with aldehydes under optimized reaction conditions, respectively. The notable features of this method include broad functional group compatibility, low catalyst loading (1-5 mol %), mild reaction conditions, easy workup procedures, good to excellent reaction yields, ethanol as a green solvent, reusability of the catalyst (five cycles), and economic attractiveness, which is mainly due to sustainability of SRMIST-1 as a reusable green catalyst. Our findings demonstrate that the highly reactive and reusable green catalyst finds widespread applications in medicinal chemistry.
Collapse
Affiliation(s)
- Velusamy Jeevananthan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Gopal Chandru Senadi
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kesavan Muthu
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ajithkumar Arumugam
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Swaminathan Shanmugan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
23
|
Li XG, Chen J, Wang X, Rao L, Zhou R, Yu F, Ma J. Perspective into ion storage of pristine metal-organic frameworks in capacitive deionization. Adv Colloid Interface Sci 2024; 324:103092. [PMID: 38325008 DOI: 10.1016/j.cis.2024.103092] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/05/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024]
Abstract
Metal-organic frameworks (MOFs), featuring tunable conductivity, tailored pore/structure and high surface area, have emerged as promising electrode nanomaterials for ion storage in capacitive deionization (CDI) and garnered tremendous attention in recent years. Despite the many advantages, the perspective from which MOFs should be designed and prepared for use as CDI electrode materials still faces various challenges that hinder their practical application. This summary proposes design principles for the pore size, pore environment, structure and dimensions of MOFs to precisely tailor the surface area, selectivity, conductivity, and Faradaic activity of electrode materials based on the ion storage mechanism in the CDI process. The account provides a new perspective to deepen the understanding of the fundamental issues of MOFs electrode materials to further meet the practical applications of CDI.
Collapse
Affiliation(s)
- Xin-Gui Li
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jinfeng Chen
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xinyu Wang
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Liangmei Rao
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Runhong Zhou
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jie Ma
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; School of Civil Engineering, Kashi University, Kashi 844008, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
24
|
Saddique Z, Imran M, Javaid A, Rizvi NB, Akhtar MN, Iqbal HMN, Bilal M. Enzyme-Linked Metal Organic Frameworks for Biocatalytic Degradation of Antibiotics. Catal Letters 2024; 154:81-93. [DOI: 10.1007/s10562-022-04261-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/21/2022] [Indexed: 02/13/2023]
Abstract
AbstractMetal organic frameworks (MOFs) are multi-dimensional network of crystalline material held together by bonding of metal atoms and organic ligands. Owing to unique structural, chemical, and physical properties, MOFs has been used for enzyme immobilization to be employed in different catalytic process, including catalytic degradation of antibiotics. Immobilization process other than providing large surface provides enzyme with enhanced stability, catalytic activity, reusability, and selectivity. There are various approaches of enzyme immobilization over MOFs including physical adsorption, chemical bonding, diffusion and in situ encapsulation. In situ encapsulation is one the best approach that provides extra stability from unfolding and denaturation in harsh industrial conditions. Presence of antibiotic in environment is highly damaging for human in particular and ecosystem in general. Different methods such as ozonation, oxidation, chlorination and catalysis are available for degradation or removal of antibiotics from environment, however these are associated with several issues. Contrary to these, enzyme immobilized MOFs are novel system to be used in catalytic degradation of antibiotics. Enzyme@MOFs are more stable, reusable and more efficient owing to additional support of MOFs to natural enzymes in well-established process of photocatalysis for degradation of antibiotics aimed at environmental remediation. Prime focus of this review is to present catalytic degradation of antibiotics by enzyme@MOFs while outlining their synthetics approaches, characterization, and mechanism of degradation. Furthermore, this review highlights the significance of enzyme@MOFs system for antibiotics degradation in particular and environmental remediation in general. Current challenges and future perspective of research in this field are also outlined along with concluding comments.
Graphical Abstract
Collapse
|
25
|
Ali A, Waris, Basree, Khan MZ, Dege N, Ahmad M, Shahid M. Bifunctional Cu(II)-based 2D coordination polymer and its composite for high-performance photocatalysis and electrochemical energy storage. Dalton Trans 2023; 52:15562-15575. [PMID: 37772316 DOI: 10.1039/d3dt01691a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Coordination polymers (CPs) have been widely proven as sacrificial electrode materials for energy storage applications because of their high porosity, specific surface area and tunable structural topology. In this work, a new 2D Cu(II)-based CP, formulated as [Cu2(btc)(μ-Cl)2(H2O)4]n (CP-1) (H3btc = benzene-1,3,5-tricarboxylic acid), fabrication of copper oxide nanoparticles (CuO NPs) and its composite (CuO@CP-1) were successfully synthesized using solvothermal, precipitation and mechanochemical grinding approaches. Single-crystal X-ray analysis authenticated a two-dimensional (2D) layered network of CP-1. Further, CP-1, CuO NPs and composite were characterized by diffraction (Powder-XRD), spectroscopic (FTIR), microscopic (SEM), and thermal (TGA) techniques. The porosity and surface behavior of CP-1 and the composite were demonstrated using BET analyzer. Topological simplification of CP-1 shows a 3-c connected hcb periodic net. The photocatalytic behavior of CP-1 was examined over methyl red (MR) dye in the presence of sunlight and showed a promising degradation efficiency of 96.80%. The electrochemical energy storage properties of CP-1, CuO NPs and composite were investigated using cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) analysis under aqueous 1 M H2SO4 electrolyte. The electrochemical results show better charge storage performance of CP-1 with a specific capacitance of 602.25 F g-1 at 1 A g-1 current density by maintaining a retention of up to 84.51% after 5000 cycles at 10 A g-1 current density. Comparative electrochemical studies reveal that CP-1 is a promising electrode material for energy storage.
Collapse
Affiliation(s)
- Arif Ali
- Department of Applied Chemistry, ZHCET, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, U.P., 202002, India.
| | - Waris
- Electrochemical Research Laboratory, Department of Industrial Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, U.P., 202002, India
| | - Basree
- Department of Applied Chemistry, ZHCET, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, U.P., 202002, India.
| | - Mohammad Zain Khan
- Electrochemical Research Laboratory, Department of Industrial Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, U.P., 202002, India
| | - Necmi Dege
- Ondokuz Mayis University, Arts and Sciences Faculty, Department of Physics, Atakum 55139, Samsun, Turkey
| | - Musheer Ahmad
- Department of Applied Chemistry, ZHCET, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, U.P., 202002, India.
| | - M Shahid
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
26
|
Navrotsky A, Leonel GJ. Thermochemistry of hybrid materials. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220334. [PMID: 37691468 DOI: 10.1098/rsta.2022.0334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/20/2023] [Indexed: 09/12/2023]
Abstract
This paper is based on a lecture Navrotsky gave honouring the memory of Paul McMillan. It summarizes our recent findings in the thermodynamics of hybrid materials including metal organic frameworks (MOFs), polymer-derived ceramics (PDCs) and ionic organic-inorganic compounds. This work describes the main structure types and their corresponding thermodynamic stability, obtained from calorimetric measurements in our laboratory. The effects of linker substituent and framework topology on the thermodynamic stability of isostructural zeolitic imidazolate frameworks and other MOFs are discussed. The paper documents the effects of interdomain interaction and bonding speciation on the thermodynamic stability of various PDC compositions, including SiC, SiOC and SiCN systems. The paper further describes effects of different cations on the thermodynamic stability of selected ionic organic-inorganic compounds. Similarities and differences among these materials are emphasized. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.
Collapse
Affiliation(s)
- Alexandra Navrotsky
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- Navrotsky Eyring Center for Materials of the Universe, Arizona State University, Tempe, AZ 85287, USA
- School of Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Gerson J Leonel
- Navrotsky Eyring Center for Materials of the Universe, Arizona State University, Tempe, AZ 85287, USA
- School of Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
27
|
Iqbal MZ, Shaheen M, Khizar A, Aftab S, Ahmad Z, Tawfeek AM, Sharif S. Redox active pyridine-3,5-di-carboxylate- and 1,2,3,4-cyclopentane tetra-carboxylate-based cobalt metal-organic frameworks for hybrid supercapacitors. RSC Adv 2023; 13:22936-22944. [PMID: 37520089 PMCID: PMC10377973 DOI: 10.1039/d3ra03889k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
In the pursuit of developing superior energy storage devices, an integrated approach has been advocated to harness the desirable features of both batteries and supercapacitors, particularly their high energy density, and high-power density. Consequently, the emergence of hybrid supercapacitors has become a subject of increasing interest, as they offer the potential to merge the complementary attributes of these two technologies into a single device, thereby surpassing the limitations of conventional energy storage systems. In this context the Metal-Organic Frameworks (MOFs), consisting of metal centers and organic linkers, have emerged as highly trending materials for energy storage by virtue of their high porosity. Here, we investigate the electrochemical performance of cobalt-pyridine-3,5-di-carboxylate-MOF (Co-PDC-MOF) and cobalt-1,2,3,4-cyclopentane tetra-carboxylate-MOF (Co-CPTC-MOF). In the setup involving the analysis of Co-PDC-MOF and Co-CPTC-MOF materials, a configuration comprising three electrodes was utilized. Drawing upon the promising initial properties of CPTC, a battery device was fabricated, comprising Co-CPTC-MOF, and activated carbon (AC) electrodes. Retaining a reversible capacity of 97% the device showcased impressive energy and power density of 20.7 W h g-1 and 2608.5 W kg-1, respectively. Dunn's model was employed, to gain deeper insights into the capacitive and diffusive contributions of the device.
Collapse
Affiliation(s)
- Muhammad Zahir Iqbal
- Nanotechnology Research Laboratory, Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
- ZENTECH Research Laboratory, Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Misbah Shaheen
- ZENTECH Research Laboratory, Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Asma Khizar
- ZENTECH Research Laboratory, Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University 209 Neungdong-ro Gwangjin-gu Seoul 05006 South Korea
| | - Zubair Ahmad
- School of Chemical Engineering, Yeungnam University 280 Daehak-ro Gyeongsan Gyeongbuk 38541 Republic of Korea
| | - Ahmed M Tawfeek
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Shahzad Sharif
- Department of Chemistry, Government College University Lahore Pakistan
| |
Collapse
|
28
|
Demakov PA. Properties of Aliphatic Ligand-Based Metal-Organic Frameworks. Polymers (Basel) 2023; 15:2891. [PMID: 37447535 DOI: 10.3390/polym15132891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Ligands with a purely aliphatic backbone are receiving rising attention in the chemistry of coordination polymers and metal-organic frameworks. Such unique features inherent to the aliphatic bridges as increased conformational freedom, non-polarizable core, and low light absorption provide rare and valuable properties for their derived MOFs. Applications of such compounds in stimuli-responsive materials, gas, and vapor adsorbents with high and unusual selectivity, light-emitting, and optical materials have extensively emerged in recent years. These properties, as well as other specific features of aliphatic-based metal-organic frameworks are summarized and analyzed in this short critical review. Advanced characterization techniques, which have been applied in the reported works to obtain important data on the crystal and molecular structures, dynamics, and functionalities, are also reviewed within a general discussion. In total, 132 references are included.
Collapse
Affiliation(s)
- Pavel A Demakov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Akad. Lavrentieva Ave., Novosibirsk 630090, Russia
| |
Collapse
|
29
|
Singh BK, Mahzan NS, Abdul Rashid NS, Isa SA, Hafeez MA, Saslow S, Wang G, Mo C, Um W. Design and Application of Materials for Sequestration and Immobilization of 99Tc. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6776-6798. [PMID: 37071722 DOI: 10.1021/acs.est.3c00129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
99Technetium (99Tc) is a hazardous radionuclide that poses a serious environmental threat. The wide variation and complex chemistries of liquid nuclear waste streams containing 99Tc often create unique, site specific challenges when sequestering and immobilizing the waste in a matrix suitable for long-term storage and disposal. Therefore, an effective management plan for 99Tc containing liquid radioactive wastes (such as storage (tanks) and decommissioned wastes) will likely require a variety of suitable materials/matrixes capable of adapting to and addressing these challenges. In this review, we discuss and highlight the key developments for effective removal and immobilization of 99Tc liquid waste in inorganic waste forms. Specifically, we review the synthesis, characterization, and application of materials for the targeted removal of 99Tc from (simulated) waste solutions under various experimental conditions. These materials include (i) layered double hydroxides (LDHs), (ii) metal-organic frameworks (MOFs), (iii) ion-exchange resins (IERs) as well as cationic organic polymers (COPs), (iv) surface modified natural clay materials (SMCMs), and (v) graphene-based materials (GBMs). Second, we discuss some of the major and recent developments toward 99Tc immobilization in (i) glass, (ii) cement, and (iii) iron mineral waste forms. Finally, we present future challenges that need to be addressed for the design, synthesis, and selection of suitable matrixes for the efficient sequestration and immobilization of 99Tc from targeted wastes. The purpose of this review is to inspire research on the design and application of various suitable materials/matrixes for selective removal of 99Tc present globally in different radioactive wastes and its immobilization in stable/durable waste forms.
Collapse
Affiliation(s)
- Bhupendra Kumar Singh
- Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
- Nuclear Environmental Technology Institute (NETI), Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Nurul Syiffa Mahzan
- Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Nur Shahidah Abdul Rashid
- Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Samiratu Atibun Isa
- Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Muhammad Aamir Hafeez
- Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Sarah Saslow
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Guohui Wang
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Changki Mo
- Washington State University Tri-Cities, Richland, Washington 99354, United States
| | - Wooyong Um
- Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
- Division of Environmental Sciences and Engineering (DESE), Pohang University of Science and Technology (POSTECH), 77 Chongam-ro, Nam-Gu, Pohang, Gyeongbuk 790-784, Republic of Korea
- Nuclear Environmental Technology Institute (NETI), Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 790-784, Republic of Korea
| |
Collapse
|
30
|
Structural characterization, thermal stability, and solvent de‐/ad‐sorption behavior of two d
10
M(
II
) (M = Cd and Zn) coordination polymers constructed by 1,3,5‐tris(4‐pyridylsulfanyl‐methyl)‐2,4,6‐trimethyl‐benzene (
L
1
). J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
31
|
Zhang Q, Mi SN, Xie YF, Yu H, Guo YH, Yao WR. Core-shell Au@MIL-100 (Fe) as an enhanced substrate for flunixin meglumine ultra-sensitive detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122018. [PMID: 36332394 DOI: 10.1016/j.saa.2022.122018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to develop and validate a simple and efficient surface-enhanced Raman spectroscopy (SERS) method to determine flunixin meglumine (FM) residues in animal tissues through using core-shell Au@MIL-100 (Fe) as enhanced substrate. Au@MIL-100 (Fe) composite material was synthesized by coating metal-organic framework materials (MOFs) on the surface of gold nanoparticles using the solvothermal method. Transmission electron microscopy (TEM), UV-vis spectrum, SERS spectrum, X-ray diffraction (XRD), Infrared spectrum (FT-IR), and EDX elemental mapping results revealed that the structural composition of the compound has good properties with localized surface plasmon resonance (LSPR) properties, high adsorption capacity, excellent SERS sensitivity and stability. When it was used as SERS substrate, the results of quantitative analysis of FM in pork showed a linear range of 0.10-50 mg·L-1 with a correlation coefficient (R2) of 0.9819, the limit of detection (LOD) of 0.15 mg·g-1, the recovery rate of 88.94%∼104.77%, the intra- and inter- batch relative standard deviation (RSD) of 3.57%∼14.22% and 0.18%∼3.44% respectively. Further verification results of the existing standard methods showed no significant difference between the SERS and UV methods (P < 0.05), as well as demonstrating that the SERS method has optimal precision, accuracy, and practicality. These results exposed that Au@MIL-100 (Fe) as a SERS substrate has great potential in rapid and on-site detection analysis.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Shu-Na Mi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Yun-Fei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Ya-Hui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Wei-Rong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
32
|
Copper(II) and zinc(II) complexes bridged by benzenoid aromatic oxocarbon and dicarboxylate dianions. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
33
|
Hui S, Daga P, Mahata P. Selective Luminescence Turn-On-Based Sensing of Phosphate in the Presence of Other Interfering Anions Using a Heterobimetallic (3d-4d) MOF with an Acidic Pocket. Inorg Chem 2023; 62:591-600. [PMID: 36542789 DOI: 10.1021/acs.inorgchem.2c03894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A luminescent metal-organic framework with the molecular formula [YMn1.5(C7N1H3O5)3(H2O)6]·11H2O, 1 {where C7N1H3O5 = chelidamate}, was synthesized by a hydrothermal method by employing chelidamic acid as an organic ligand and Y(III) and Mn(II) as metal ions. A two-dimensional heterobimetallic structure with phenolic hydroxyl-functionalized pockets was revealed by single-crystal X-ray diffraction analysis of compound 1. PXRD, TGA, IR, BET analysis, and UV-vis spectroscopy were used for the thorough characterization of compound 1. Upon excitation at 280 nm, compound 1 shows bright blue emission, which was utilized for the selective and sensitive turn-on detection of the PO43- ion. Based on Bronsted-Lowry acid-base interactions, the photoluminescence of compound 1 was enhanced in the presence of very low concentrations of the aforementioned anion. The mechanism behind the detection of the phosphate ion has been explored in detail. It was seen that the PO43- anion entered the hydroxyl-functionalized pockets of compound 1 and stabilized the aromatic portion of compound 1 via molecular-level interactions through acid-base interactions. These molecular-level interactions are responsible for the enhancement of the photoluminescence intensity of compound 1 after the incorporation of phosphate ions by reducing the nonradiative transitions. These phenomena were also confirmed by time-correlated single photon counting (TCSPC) measurement, which shows that the excited-state lifetime increased with the increase in addition of phosphate anions. The calculated limit of detection (LOD) of 1 was 19.55 ppb for phosphate (PO43-), which was significantly lesser than the recommended level for the PO43-anion toward the human body. The luminescence enhancement coefficient, KSV, value was also much higher than those of other reported metal-organic frameworks.
Collapse
Affiliation(s)
- Sayani Hui
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Pooja Daga
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan, 731235 Bolpur, India
| | - Partha Mahata
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
34
|
Deokar D, Tayade SB, Bhosle B, Dalvi S. Construction of 3D interpenetrated dual linker coordination polymers of Zn(II) by varying the length and flexibility of bis(pyridyl) linkers. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
35
|
A Manganese(II) 3D Metal–Organic Framework with Siloxane-Spaced Dicarboxylic Ligand: Synthesis, Structure, and Properties. INORGANICS 2023. [DOI: 10.3390/inorganics11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A new metal–organic framework {[Mn4(Cx)3(etdipy)5]·2ClO4}n (1) was prepared via the complexation of manganese ion from a Mn(ClO4)2 source with 1,3-bis(carboxypropyl)tetramethyldisiloxane (Cx) and 1,2-di(4-pyridyl)ethylene (etdipy) in the presence of 2,4-lutidine as a deprotonating agent. The single-crystal X-ray diffraction analysis revealed a dense 3D framework structure. The presence in the structure of flexible tetramethyldisiloxane moieties, which tend to orient themselves at the interface with the air, gives the compound a highly hydrophobic character, as indicated by the result of the water vapor sorption analysis in the dynamic regime, as well as the shape and stability of the water droplet on the crystalline mass of the compound. The compound is an electrical insulator, and due to its hydrophobicity, this characteristic is unaffected by environmental dampness. The thermal analysis indicated thermal stability up to about 300 °C and an unusual thermal transition for an MOF structure, more precisely a glass transition at 24 °C, the latter also being attributed to the flexible segments in the structure. The magnetic studies showed dominant antiferromagnetic interactions along the metal ion chain in compound 1.
Collapse
|
36
|
Guo FJ, Yang N, Li HX, Fang H, Xue DX. Adenine-mediated Amide-containing Metal-organic Framework toward One-step Ethylene Purification from a Ternary Mixture. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
37
|
Sohrabi H, Ghasemzadeh S, Shakib S, Majidi MR, Razmjou A, Yoon Y, Khataee A. Metal–Organic Framework-Based Biosensing Platforms for the Sensitive Determination of Trace Elements and Heavy Metals: A Comprehensive Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471Tabriz, Iran
| | - Shahin Ghasemzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471Tabriz, Iran
| | - Sama Shakib
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471Tabriz, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471Tabriz, Iran
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, Perth, WA6027, Australia
- Centre for Technology in Water and Wastewater, University of Technology Sydney, New South Wales2007, Australia
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju26493, Republic of Korea
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471Tabriz, Iran
- Department of Environmental Engineering, Gebze Technical University, 41400Gebze, Turkey
| |
Collapse
|
38
|
Li Y, Hao ZM, Chao MY, Zhang WH, Young DJ. Vacuum-Induced Guest N, N′-Diethylformamide Binding in a Metastable Cd 5-Based Metal–Organic Framework. Inorg Chem 2022; 61:20227-20231. [DOI: 10.1021/acs.inorgchem.2c03549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhi-Min Hao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Meng-Yao Chao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - David J. Young
- College of Engineering, Information Technology and Environment, Charles Darwin University, Darwin, Northern Territory 0909, Australia
| |
Collapse
|
39
|
Yang HK, Yu Y, Zhao ZH, Zhang HY, Zhang YM, Chen J, Wang L, He YC. Synthesis, structure, and electrochemical properties of a novel coordination polymer based on a nitrogen-rich ligand. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
40
|
Syntheses, crystal structures, luminescent and magnetic properties of six 5,5'-(1,2-phenylenebis(methoxy))diisophthalate coordination polymers. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Shi JW, Sun SN, Liu J, Niu Q, Dong LZ, Huang Q, Liu JJ, Wang R, Xin Z, Zhang D, Niu J, Lan YQ. Calixarene-Functionalized Stable Bismuth Oxygen Clusters for Specific CO 2-to-HCOOH Electroreduction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jing-Wen Shi
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng475004, P. R. China
| | - Sheng-Nan Sun
- School of Chemistry, South China Normal University, Guangzhou510006, P. R. China
| | - Jiang Liu
- School of Chemistry, South China Normal University, Guangzhou510006, P. R. China
| | - Qian Niu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing210023, P. R. China
| | - Long-Zhang Dong
- School of Chemistry, South China Normal University, Guangzhou510006, P. R. China
| | - Qing Huang
- School of Chemistry, South China Normal University, Guangzhou510006, P. R. China
| | - Jing-Jing Liu
- School of Chemistry, South China Normal University, Guangzhou510006, P. R. China
| | - Rui Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing210023, P. R. China
| | - Zhifeng Xin
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan, Anhui243002, P. R. China
| | - Dongdi Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng475004, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou510006, P. R. China
| |
Collapse
|
42
|
Ramathulasamma M, Bommakanti S, Das SK. Diverse coordination architectures based on a flexible multidentate carboxylate ligand and N-donor linkers: synthesis, structure, supramolecular chemistry and related properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Shen M, Ma H. Metal-organic frameworks (MOFs) and their derivative as electrode materials for lithium-ion batteries. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
44
|
|
45
|
Chen J, Abazari R, Adegoke KA, Maxakato NW, Bello OS, Tahir M, Tasleem S, Sanati S, Kirillov AM, Zhou Y. Metal–organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214664] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Tan TTY, Li X, Otake KI, Tan YC, Loh XJ, Kitagawa S, Lim JYC. UiO-66 metal organic frameworks with high contents of flexible adipic acid co-linkers. Chem Commun (Camb) 2022; 58:11402-11405. [PMID: 36129049 DOI: 10.1039/d2cc03285f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adipic acid, an industrially-important chemical that can be sustainably derived from biomass and post-consumer nylon, is traditionally overlooked as a linker for MOFs. Herein, we report the first direct one-pot method for synthesising UiO-66 MOFs with an unprecedented 69 mol% adipate content, as well as the feasibility of these materials for MOF defect engineering by rapid and selective adipate thermolysis.
Collapse
Affiliation(s)
- Tristan T Y Tan
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore.
| | - Xin Li
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore.
| | - Ken-Ichi Otake
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore. .,Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University (KUIAS), Yoshida Ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ying Chuan Tan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A*STAR, 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Xian Jun Loh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore. .,Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Susumu Kitagawa
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore. .,Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University (KUIAS), Yoshida Ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jason Y C Lim
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore. .,Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
47
|
Rezaee T, Fazel-Zarandi R, Karimi A, Ensafi AA. Metal-organic frameworks for pharmaceutical and biomedical applications. J Pharm Biomed Anal 2022; 221:115026. [PMID: 36113325 DOI: 10.1016/j.jpba.2022.115026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
Metal-organic framework (MOF) materials provide unprecedented opportunities for evaluating valuable compounds for various medical applications. MOFs merged with biomolecules, used as novel biomaterials, have become particularly useful in biological environments. Bio-MOFs can be promising materials in the global to avoid utilization above toxicological substances. Bio-MOFs with crystallin and porosity nature offer flexible structure via bio-linker and metal node variation, which improves their wide applicability in medical science.
Collapse
Affiliation(s)
- Tooba Rezaee
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - Afsaneh Karimi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran; Adjunct Professor, Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
48
|
Yang X, Castell-Perez ME, Moreira RG, Sevimli-Yurttas Z. trans-Cinnamaldehyde-encapsulated zeolitic imidazolate framework-8 nanoparticle complex solutions to inactivate Escherichia coli O157:H7 on fresh spinach leaves. J Food Sci 2022; 87:4649-4664. [PMID: 36045506 DOI: 10.1111/1750-3841.16294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
This study synthesized and characterized ZIF-8 nanoparticles encapsulated with trans-cinnamaldehyde oil (TC) and evaluated their antimicrobial effectiveness against Escherichia coli O157:H7 on fresh spinach leaves. The antimicrobial activity of different mass ratios of TC-encapsulated ZIF-8 against E. coli O157:H7 (ATCC 43895) strain was assessed and the best mass ratio of 1:2 TC to ZIF-8 identified. Spinach leaves were treated with (1) 0.5TC@ZIF-8_PL nanoparticle complexes solution, (2) 200 ppm chlorine, (3) free TC, and (4) sterilized distilled water (control). All sample groups were rinsed for 1 min, dried in a biosafety cabinet, weighted, and packed in sterilized Whirl-pkTM Stand-Up sampling bags, and stored at 4°C for 15 days for shelf life studies. Samples were dipped into a solution of nanoparticles and another group was sprayed. The quality of spinach samples was assessed by monitoring changes in moisture content (MC), water activity (Aw), color, pH, texture (firmness and work), vitamin C content, total carotenoid, and chlorophyll content. Spinach leaves treated with 0.5TC@ZIF-8_PL had less (p < 0.05) water, total chlorophyll, and total carotenoid losses, with minimal changes in pH. However, treatment did not prevent the color degradation (p > 0.05) and adversely affected spinach firmness. The spinach samples treated with 200 ppm chlorine and free TC had higher (p < 0.05) total chlorophyll degradation than the samples treated with the nanoparticles. The mass ratio of TC-encapsulated ZIF-8 must be readjusted to reduce potential toxicity issues while maintaining the antimicrobial properties. PRACTICAL APPLICATION: Zeolitic imidazolate framework-8 (ZIF-8) nanoparticle complex can be used to encapsulate natural antimicrobials to inhibit growth of pathogens on fresh produce. A 2-log reduction in populations of Escherichia coli O157:H7 on fresh spinach leaves was achieved using trans-cinnamaldehyde at low concentrations. The results can be used to embed the compounds into polymeric films for antimicrobial packaging applications.
Collapse
Affiliation(s)
- Xiaoying Yang
- Department of Food Science and Technology, Texas A&M University, College Station, Texas, USA
| | - Maria Elena Castell-Perez
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas, USA
| | - Rosana G Moreira
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas, USA
| | - Zeynep Sevimli-Yurttas
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
49
|
Li JJ, Yin L, Wang ZF, Jing YC, Jiang ZL, Ding Y, Wang HS. Enzyme-immobilized metal-organic frameworks: From preparation to application. Chem Asian J 2022; 17:e202200751. [PMID: 36029234 DOI: 10.1002/asia.202200751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/27/2022] [Indexed: 11/09/2022]
Abstract
As a class of widely used biocatalysts, enzymes possess advantages including high catalytic efficiency, strong specificity and mild reaction condition. However, most free enzymes have high requirements on the reaction environment and are easy to deactivate. Immobilization of enzymes on nanomaterial-based substrates is a good way to solve this problem. Metal-organic framework (MOFs), with ultra-high specific surface area and adjustable porosity, can provide a large space to carry enzymes. And the tightly surrounded protective layer of MOFs can stabilize the enzyme structure to a great extent. In addition, the unique porous network structure enables selective mass transfer of substrates and facilitates catalytic processes. Therefore, these enzyme-immobilized MOFs have been widely used in various research fields, such as molecule/biomolecule sensing and imaging, disease treatment, energy and environment protection. In this review, the preparation strategies and applications of enzymes-immobilized MOFs are illustrated and the prospects and current challenges are discussed.
Collapse
Affiliation(s)
- Jia-Jing Li
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Li Yin
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Zi-Fan Wang
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Yi-Chen Jing
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Zhuo-Lin Jiang
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Ya Ding
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Huai-Song Wang
- China Parmaceutical University, Pharmaceutical analysis, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing Jiangsu, CHINA
| |
Collapse
|
50
|
Martín-Fuentes C, Parreiras SO, Urgel JI, Rubio-Giménez V, Muñiz Cano B, Moreno D, Lauwaet K, Valvidares M, Valbuena MA, Gargiani P, Kuch W, Camarero J, Gallego JM, Miranda R, Martínez JI, Martí-Gastaldo C, Écija D. On-Surface Design of a 2D Cobalt-Organic Network Preserving Large Orbital Magnetic Moment. J Am Chem Soc 2022; 144:16034-16041. [PMID: 36007260 DOI: 10.1021/jacs.2c05894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design of antiferromagnetic nanomaterials preserving large orbital magnetic moments is important to protect their functionalities against magnetic perturbations. Here, we exploit an archetype H6HOTP species for conductive metal-organic frameworks to design a Co-HOTP one-atom-thick metal-organic architecture on a Au(111) surface. Our multidisciplinary scanning probe microscopy, X-ray absorption spectroscopy, X-ray linear dichroism, and X-ray magnetic circular dichroism study, combined with density functional theory simulations, reveals the formation of a unique network design based on threefold Co+2 coordination with deprotonated ligands, which displays a large orbital magnetic moment with an orbital to effective spin moment ratio of 0.8, an in-plane easy axis of magnetization, and large magnetic anisotropy. Our simulations suggest an antiferromagnetic ground state, which is compatible with the experimental findings. Such a Co-HOTP metal-organic network exemplifies how on-surface chemistry can enable the design of field-robust antiferromagnetic materials.
Collapse
Affiliation(s)
- Cristina Martín-Fuentes
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| | - Sofia O Parreiras
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| | - José I Urgel
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| | - Víctor Rubio-Giménez
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, Spain
| | - Beatriz Muñiz Cano
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| | - Daniel Moreno
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| | - Koen Lauwaet
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| | | | - Miguel A Valbuena
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| | | | - Wolfgang Kuch
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Julio Camarero
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain.,Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José M Gallego
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Cantoblanco, 28049 Madrid, Spain
| | - Rodolfo Miranda
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain.,Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José I Martínez
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Cantoblanco, 28049 Madrid, Spain
| | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, Spain
| | - David Écija
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| |
Collapse
|