1
|
Mierke CT. Softness or Stiffness What Contributes to Cancer and Cancer Metastasis? Cells 2025; 14:584. [PMID: 40277910 DOI: 10.3390/cells14080584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Beyond the genomic and proteomic analysis of bulk and single cancer cells, a new focus of cancer research is emerging that is based on the mechanical analysis of cancer cells. Therefore, several biophysical techniques have been developed and adapted. The characterization of cancer cells, like human cancer cell lines, started with their mechanical characterization at mostly a single timepoint. A universal hypothesis has been proposed that cancer cells need to be softer to migrate and invade tissues and subsequently metastasize in targeted organs. Thus, the softness of cancer cells has been suggested to serve as a universal physical marker for the malignancy of cancer types. However, it has turned out that there exists the opposite phenomenon, namely that stiffer cancer cells are more migratory and invasive and therefore lead to more metastases. These contradictory results question the universality of the role of softness of cancer cells in the malignant progression of cancers. Another problem is that the various biophysical techniques used can affect the mechanical properties of cancer cells, making it even more difficult to compare the results of different studies. Apart from the instrumentation, the culture and measurement conditions of the cancer cells can influence the mechanical measurements. The review highlights the main advances of the mechanical characterization of cancer cells, discusses the strength and weaknesses of the approaches, and questions whether the passive mechanical characterization of cancer cells is still state-of-the art. Besides the cell models, conditions and biophysical setups, the role of the microenvironment on the mechanical characteristics of cancer cells is presented and debated. Finally, combinatorial approaches to determine the malignant potential of tumors, such as the involvement of the ECM, the cells in a homogeneous or heterogeneous association, or biological multi-omics analyses, together with the dynamic-mechanical analysis of cancer cells, are highlighted as new frontiers of research.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Sciences, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Costa ADSD, Jeong H, Subbiah R, Park K, Choi IS, Shin JH. Intercellular junction-driven stromal cell stacking in a confined 3D microcavity. APL Bioeng 2024; 8:046109. [PMID: 39525363 PMCID: PMC11549968 DOI: 10.1063/5.0197187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding the detailed mechanisms driving fibroblast migration within native tissue settings during pathophysiological events presents a critical research challenge. In this study, we elucidate how stromal cells migrate and contribute to the development of three-dimensional (3D) cellular aggregates within confined microcavities. Integrin α5β1 and β-catenin (β-cat) are central in guiding this collective migration and achieving optimal filling of the microcavity. When β-cat is suppressed, cells tend to migrate more sporadically, leading to less efficient cellular organization. Furthermore, we also detail the pivotal roles of Cx43 and N-cadherin (N-cad) in orchestrating collective migration and in shaping efficient cellular stacking. Suppressing gap junctions, especially Cx43, significantly impacts the extracellular matrix expression, integrin α5 and β1, and other elements in the 3D construct, emphasizing the importance of physicochemical cell-cell interactions. The distribution patterns of N-cad and focal adhesion kinase (FAK) further corroborate the essential roles in forming cell-cell junctions and FAK in establishing the foundational layer that underpins the cell stacking within the microcavity. Interestingly, neither Rho-associated protein kinase (ROCK) nor RhoA significantly alter the cell migration pattern toward microcavity. These findings provide fresh perspectives on fibroblast activities in 3D space, enriching our understanding and offering implications for advancements in wound healing and tissue engineering.
Collapse
Affiliation(s)
| | - Hyuntae Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ramesh Subbiah
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University (OHSU), Portland, Oregon 97201, USA
| | | | - In-Suk Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jennifer H. Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Tagay Y, Kheirabadi S, Ataie Z, Singh RK, Prince O, Nguyen A, Zhovmer AS, Ma X, Sheikhi A, Tsygankov D, Tabdanov ED. Dynein-Powered Cell Locomotion Guides Metastasis of Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302229. [PMID: 37726225 PMCID: PMC10625109 DOI: 10.1002/advs.202302229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/20/2023] [Indexed: 09/21/2023]
Abstract
The principal cause of death in cancer patients is metastasis, which remains an unresolved problem. Conventionally, metastatic dissemination is linked to actomyosin-driven cell locomotion. However, the locomotion of cancer cells often does not strictly line up with the measured actomyosin forces. Here, a complementary mechanism of metastatic locomotion powered by dynein-generated forces is identified. These forces arise within a non-stretchable microtubule network and drive persistent contact guidance of migrating cancer cells along the biomimetic collagen fibers. It is also shown that the dynein-powered locomotion becomes indispensable during invasive 3D migration within a tissue-like luminal network formed by spatially confining granular hydrogel scaffolds (GHS) made up of microscale hydrogel particles (microgels). These results indicate that the complementary motricity mediated by dynein is always necessary and, in certain instances, sufficient for disseminating metastatic breast cancer cells. These findings advance the fundamental understanding of cell locomotion mechanisms and expand the spectrum of clinical targets against metastasis.
Collapse
Affiliation(s)
- Yerbol Tagay
- Department of PharmacologyPenn State College of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
| | - Sina Kheirabadi
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Zaman Ataie
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Rakesh K. Singh
- Department of Obstetrics & GynecologyGynecology OncologyUniversity of Rochester Medical CenterRochesterNY14642USA
| | - Olivia Prince
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Ashley Nguyen
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Alexander S. Zhovmer
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Xuefei Ma
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Amir Sheikhi
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Erdem D. Tabdanov
- Department of PharmacologyPenn State College of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
- Penn State Cancer InstitutePenn State College of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
| |
Collapse
|
4
|
Zhovmer AS, Manning A, Smith C, Wang J, Ma X, Tsygankov D, Dokholyan NV, Cartagena-Rivera AX, Singh RK, Tabdanov ED. Septins Enable T Cell Contact Guidance via Amoeboid-Mesenchymal Switch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559597. [PMID: 37808814 PMCID: PMC10557721 DOI: 10.1101/2023.09.26.559597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Lymphocytes exit circulation and enter in-tissue guided migration toward sites of tissue pathologies, damage, infection, or inflammation. By continuously sensing and adapting to the guiding chemo-mechano-structural properties of the tissues, lymphocytes dynamically alternate and combine their amoeboid (non-adhesive) and mesenchymal (adhesive) migration modes. However, which mechanisms guide and balance different migration modes are largely unclear. Here we report that suppression of septins GTPase activity induces an abrupt amoeboid-to-mesenchymal transition of T cell migration mode, characterized by a distinct, highly deformable integrin-dependent immune cell contact guidance. Surprisingly, the T cell actomyosin cortex contractility becomes diminished, dispensable and antagonistic to mesenchymal-like migration mode. Instead, mesenchymal-like T cells rely on microtubule stabilization and their non-canonical dynein motor activity for high fidelity contact guidance. Our results establish septin's GTPase activity as an important on/off switch for integrin-dependent migration of T lymphocytes, enabling their dynein-driven fluid-like mesenchymal propulsion along the complex adhesion cues.
Collapse
Affiliation(s)
- Alexander S Zhovmer
- Center for Biologics Evaluation & Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Alexis Manning
- Center for Biologics Evaluation & Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Chynna Smith
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Jian Wang
- Departments of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Xuefei Ma
- Center for Biologics Evaluation & Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nikolay V Dokholyan
- Departments of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, The Pennsylvania State University Hershey-Hummelstown, PA, USA
| | - Alexander X Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Rakesh K Singh
- Department of Obstetrics & Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Erdem D Tabdanov
- Departments of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
- Penn State Cancer Institute, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| |
Collapse
|
5
|
Tagay Y, Kheirabadi S, Ataie Z, Singh RK, Prince O, Nguyen A, Zhovmer AS, Ma X, Sheikhi A, Tsygankov D, Tabdanov ED. Dynein-Powered Cell Locomotion Guides Metastasis of Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535605. [PMID: 37066378 PMCID: PMC10104034 DOI: 10.1101/2023.04.04.535605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Metastasis is a principal cause of death in cancer patients, which remains an unresolved fundamental and clinical problem. Conventionally, metastatic dissemination is linked to the actomyosin-driven cell locomotion. However, locomotion of cancer cells often does not strictly line up with the measured actomyosin forces. Here, we identify a complementary mechanism of metastatic locomotion powered by the dynein-generated forces. These forces that arise within a non-stretchable microtubule network drive persistent contact guidance of migrating cancer cells along the biomimetic collagen fibers. We also show that dynein-powered locomotion becomes indispensable during invasive 3D migration within a tissue-like luminal network between spatially confining hydrogel microspheres. Our results indicate that the complementary contractile system of dynein motors and microtubules is always necessary and in certain instances completely sufficient for dissemination of metastatic breast cancer cells. These findings advance fundamental understanding of cell locomotion mechanisms and expand the spectrum of clinical targets against metastasis.
Collapse
Affiliation(s)
- Yerbol Tagay
- Department of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Sina Kheirabadi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zaman Ataie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Rakesh K. Singh
- Department of Obstetrics & Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Olivia Prince
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20903, USA
| | - Ashley Nguyen
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20903, USA
| | - Alexander S. Zhovmer
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20903, USA
| | - Xuefei Ma
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20903, USA
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Erdem D. Tabdanov
- Department of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
- Penn State Cancer Institute, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| |
Collapse
|
6
|
Heussner RK, Zhang H, Qian G, Baker MJ, Provenzano PP. Differential contractility regulates cancer stem cell migration. Biophys J 2023; 122:1198-1210. [PMID: 36772795 PMCID: PMC10111274 DOI: 10.1016/j.bpj.2023.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 10/22/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Cancer stem cells (CSCs) are known to have a high capacity for tumor initiation and the formation of metastases. We have previously shown that in collagen constructs mimetic of aligned extracellular matrix architectures observed in carcinomas, breast CSCs demonstrate enhanced directional and total motility compared with more differentiated carcinoma populations. Here, we show that CSCs maintain increased motility in diverse environments including on 2D elastic polyacrylamide gels of various stiffness, 3D randomly oriented collagen matrices, and ectopic cerebral slices representative of a common metastatic site. A consistent twofold increase of CSC motility across platforms suggests a general shift in cell migration mechanics between well-differentiated carcinoma cells and their stem-like counterparts. To further elucidate the source of differences in migration, we demonstrate that CSCs are less contractile than the whole population (WP) and develop fewer and smaller focal adhesions and show that enhanced CSC migration can be tuned via contractile forces. The WP can be shifted to a CSC-like migratory phenotype using partial myosin II inhibition. Inversely, CSCs can be shifted to a less migratory WP-like phenotype using microtubule-destabilizing drugs that increase contractility or by directly enhancing contractile forces. This work begins to reveal the mechanistic differences driving CSC migration and raises important implications regarding the potentially disparate effects of microtubule-targeting agents on the motility of different cell populations.
Collapse
Affiliation(s)
- Rachel K Heussner
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota
| | - Hongrong Zhang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota; University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, Minnesota
| | - Guhan Qian
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota; University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, Minnesota
| | - Mikayla J Baker
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota; University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, Minnesota
| | - Paolo P Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota; University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Department of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota; Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
7
|
Ma Y, Wang X, Su T, Lu F, Chang Q, Gao J. Recent Advances in Macroporous Hydrogels for Cell Behavior and Tissue Engineering. Gels 2022; 8:606. [PMID: 36286107 PMCID: PMC9601978 DOI: 10.3390/gels8100606] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Hydrogels have been extensively used as scaffolds in tissue engineering for cell adhesion, proliferation, migration, and differentiation because of their high-water content and biocompatibility similarity to the extracellular matrix. However, submicron or nanosized pore networks within hydrogels severely limit cell survival and tissue regeneration. In recent years, the application of macroporous hydrogels in tissue engineering has received considerable attention. The macroporous structure not only facilitates nutrient transportation and metabolite discharge but also provides more space for cell behavior and tissue formation. Several strategies for creating and functionalizing macroporous hydrogels have been reported. This review began with an overview of the advantages and challenges of macroporous hydrogels in the regulation of cellular behavior. In addition, advanced methods for the preparation of macroporous hydrogels to modulate cellular behavior were discussed. Finally, future research in related fields was discussed.
Collapse
Affiliation(s)
| | | | | | | | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China
| |
Collapse
|
8
|
Sala F, Ficorella C, Osellame R, Käs JA, Martínez Vázquez R. Microfluidic Lab-on-a-Chip for Studies of Cell Migration under Spatial Confinement. BIOSENSORS 2022; 12:bios12080604. [PMID: 36004998 PMCID: PMC9405557 DOI: 10.3390/bios12080604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022]
Abstract
Understanding cell migration is a key step in unraveling many physiological phenomena and predicting several pathologies, such as cancer metastasis. In particular, confinement has been proven to be a key factor in the cellular migration strategy choice. As our insight in the field improves, new tools are needed in order to empower biologists’ analysis capabilities. In this framework, microfluidic devices have been used to engineer the mechanical and spatial stimuli and to investigate cellular migration response in a more controlled way. In this work, we will review the existing technologies employed in the realization of microfluidic cellular migration assays, namely the soft lithography of PDMS and hydrogels and femtosecond laser micromachining. We will give an overview of the state of the art of these devices, focusing on the different geometrical configurations that have been exploited to study specific aspects of cellular migration. Our scope is to highlight the advantages and possibilities given by each approach and to envisage the future developments in in vitro migration studies under spatial confinement in microfluidic devices.
Collapse
Affiliation(s)
- Federico Sala
- Institute for Photonics and Nanotechnologies, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Carlotta Ficorella
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, 04109 Leipzig, Germany
| | - Roberto Osellame
- Institute for Photonics and Nanotechnologies, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Josef A. Käs
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, 04109 Leipzig, Germany
| | - Rebeca Martínez Vázquez
- Institute for Photonics and Nanotechnologies, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Correspondence:
| |
Collapse
|
9
|
Wang L, Chen W, Li H, Xiong C, Sun F, Liu X, Hu Y, Wang W, Zhong W, Liu Z. Exploring Integrin-Mediated Force Transmission during Confined Cell Migration by DNA-Based Tension Probes. Anal Chem 2022; 94:4570-4575. [PMID: 35257583 DOI: 10.1021/acs.analchem.1c04962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mechanical forces have profound effects on the morphology and migration of cells in a two-dimensional environment. However, cells in vivo mostly migrate in three-dimensional space while physically constrained, and the mechanism by which cellular dynamic forces drive migration in this confined environment is unclear. Here, we present a method of fabricating microfluidic chips with integrated DNA-based tension probes to measure spatiotemporal variations in integrin-mediated force exerted during confined cell migration. Using this developed device, we measured the spatial locations, magnitudes, and temporal characteristics of integrin-ligand tension signals in motile cells in different microchannels and found that cells exerted less force and underwent increasingly transitory integrin-ligand interactions when migrating in confined spaces. This study demonstrates that the described method provides insights into understanding the migratory machinery of cells in geometrically confined environment that better mimics physiological conditions.
Collapse
Affiliation(s)
- Liang Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Wei Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Hongyun Li
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Chaohui Xiong
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Feng Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuru Hu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Wenxu Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Wenqun Zhong
- Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Zheng Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
10
|
Guo Y, Calve S, Tepole AB. Multiscale mechanobiology: Coupling models of adhesion kinetics and nonlinear tissue mechanics. Biophys J 2022; 121:525-539. [PMID: 35074393 PMCID: PMC8874030 DOI: 10.1016/j.bpj.2022.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/13/2021] [Accepted: 01/18/2022] [Indexed: 11/25/2022] Open
Abstract
The mechanical behavior of tissues at the macroscale is tightly coupled to cellular activity at the microscale. Dermal wound healing is a prominent example of a complex system in which multiscale mechanics regulate restoration of tissue form and function. In cutaneous wound healing, a fibrin matrix is populated by fibroblasts migrating in from a surrounding tissue made mostly out of collagen. Fibroblasts both respond to mechanical cues, such as fiber alignment and stiffness, as well as exert active stresses needed for wound closure. Here, we develop a multiscale model with a two-way coupling between a microscale cell adhesion model and a macroscale tissue mechanics model. Starting from the well-known model of adhesion kinetics proposed by Bell, we extend the formulation to account for nonlinear mechanics of fibrin and collagen and show how this nonlinear response naturally captures stretch-driven mechanosensing. We then embed the new nonlinear adhesion model into a custom finite element implementation of tissue mechanical equilibrium. Strains and stresses at the tissue level are coupled with the solution of the microscale adhesion model at each integration point of the finite element mesh. In addition, solution of the adhesion model is coupled with the active contractile stress of the cell population. The multiscale model successfully captures the mechanical response of biopolymer fibers and gels, contractile stresses generated by fibroblasts, and stress-strain contours observed during wound healing. We anticipate that this framework will not only increase our understanding of how mechanical cues guide cellular behavior in cutaneous wound healing, but will also be helpful in the study of mechanobiology, growth, and remodeling in other tissues.
Collapse
Affiliation(s)
- Yifan Guo
- School of Mechanical Engineering, Purdue University, West Lafayette
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette,Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, Boulder
| | - Adrian Buganza Tepole
- School of Mechanical Engineering, Purdue University, West Lafayette; Weldon School of Biomedical Engineering, Purdue University, West Lafayette.
| |
Collapse
|
11
|
Moriarty RA, Mili S, Stroka KM. RNA localization in confined cells depends on cellular mechanical activity and contributes to confined migration. iScience 2022; 25:103845. [PMID: 35198898 PMCID: PMC8850802 DOI: 10.1016/j.isci.2022.103845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/30/2021] [Accepted: 01/27/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer cells experience mechanical confining forces during metastasis and, consequently, can alter their migratory mechanisms. Localization of numerous mRNAs to cell protrusions contributes to cell polarization and migration and is controlled by proteins that can bind RNA and/or cytoskeletal elements, such as the adenomatous polyposis coli (APC). Here, we demonstrate that peripheral localization of APC-dependent RNAs in cells within confined microchannels is cell type dependent. This varying phenotype is determined by the levels of a detyrosinated tubulin network. We show that this network is regulated by mechanoactivity and that cells with mechanosensitive ion channels and increased myosin II activity direct peripheral localization of the RAB13 APC-dependent RNA. Through specific mislocalization of the RAB13 RNA, we show that peripheral RNA localization contributes to confined cell migration. Our results indicate that a cell’s mechanical activity determines its ability to peripherally target RNAs and utilize them for movement in confinement. Peripheral localization of APC-dependent RNAs in confinement depends on cell type RNA localization in confined cells is controlled by the mechanoactivity of cells RNA localization phenotype is influenced by the detyrosinated tubulin network Peripheral RNA accumulation functionally contributes to confined cell migration
Collapse
Affiliation(s)
- Rebecca A. Moriarty
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, MD 20742, USA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Corresponding author
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, MD 20742, USA
- Maryland Biophysics Program, University of Maryland College Park, College Park, MD 20742, USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland Baltimore, Baltimore, MD 21202, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21202, USA
- Corresponding author
| |
Collapse
|
12
|
Tong A, Voronov R. A Minireview of Microfluidic Scaffold Materials in Tissue Engineering. Front Mol Biosci 2022; 8:783268. [PMID: 35087865 PMCID: PMC8787357 DOI: 10.3389/fmolb.2021.783268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/14/2021] [Indexed: 01/09/2023] Open
Abstract
In 2020, nearly 107,000 people in the U.S needed a lifesaving organ transplant, but due to a limited number of donors, only ∼35% of them have actually received it. Thus, successful bio-manufacturing of artificial tissues and organs is central to satisfying the ever-growing demand for transplants. However, despite decades of tremendous investments in regenerative medicine research and development conventional scaffold technologies have failed to yield viable tissues and organs. Luckily, microfluidic scaffolds hold the promise of overcoming the major challenges associated with generating complex 3D cultures: 1) cell death due to poor metabolite distribution/clearing of waste in thick cultures; 2) sacrificial analysis due to inability to sample the culture non-invasively; 3) product variability due to lack of control over the cell action post-seeding, and 4) adoption barriers associated with having to learn a different culturing protocol for each new product. Namely, their active pore networks provide the ability to perform automated fluid and cell manipulations (e.g., seeding, feeding, probing, clearing waste, delivering drugs, etc.) at targeted locations in-situ. However, challenges remain in developing a biomaterial that would have the appropriate characteristics for such scaffolds. Specifically, it should ideally be: 1) biocompatible-to support cell attachment and growth, 2) biodegradable-to give way to newly formed tissue, 3) flexible-to create microfluidic valves, 4) photo-crosslinkable-to manufacture using light-based 3D printing and 5) transparent-for optical microscopy validation. To that end, this minireview summarizes the latest progress of the biomaterial design, and of the corresponding fabrication method development, for making the microfluidic scaffolds.
Collapse
Affiliation(s)
- Anh Tong
- Otto H. York Department of Chemical and Materials Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Roman Voronov
- Otto H. York Department of Chemical and Materials Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
13
|
Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther 2021; 6:426. [PMID: 34916490 PMCID: PMC8674418 DOI: 10.1038/s41392-021-00830-x] [Citation(s) in RCA: 410] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/05/2023] Open
Abstract
Hydrogel is a type of versatile platform with various biomedical applications after rational structure and functional design that leverages on material engineering to modulate its physicochemical properties (e.g., stiffness, pore size, viscoelasticity, microarchitecture, degradability, ligand presentation, stimulus-responsive properties, etc.) and influence cell signaling cascades and fate. In the past few decades, a plethora of pioneering studies have been implemented to explore the cell-hydrogel matrix interactions and figure out the underlying mechanisms, paving the way to the lab-to-clinic translation of hydrogel-based therapies. In this review, we first introduced the physicochemical properties of hydrogels and their fabrication approaches concisely. Subsequently, the comprehensive description and deep discussion were elucidated, wherein the influences of different hydrogels properties on cell behaviors and cellular signaling events were highlighted. These behaviors or events included integrin clustering, focal adhesion (FA) complex accumulation and activation, cytoskeleton rearrangement, protein cyto-nuclei shuttling and activation (e.g., Yes-associated protein (YAP), catenin, etc.), cellular compartment reorganization, gene expression, and further cell biology modulation (e.g., spreading, migration, proliferation, lineage commitment, etc.). Based on them, current in vitro and in vivo hydrogel applications that mainly covered diseases models, various cell delivery protocols for tissue regeneration and disease therapy, smart drug carrier, bioimaging, biosensor, and conductive wearable/implantable biodevices, etc. were further summarized and discussed. More significantly, the clinical translation potential and trials of hydrogels were presented, accompanied with which the remaining challenges and future perspectives in this field were emphasized. Collectively, the comprehensive and deep insights in this review will shed light on the design principles of new biomedical hydrogels to understand and modulate cellular processes, which are available for providing significant indications for future hydrogel design and serving for a broad range of biomedical applications.
Collapse
Affiliation(s)
- Huan Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lixia Duan
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Yan Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Jun Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China.
| | - Kun Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China.
| |
Collapse
|
14
|
Munoz-Garcia J, Jubelin C, Loussouarn A, Goumard M, Griscom L, Renodon-Cornière A, Heymann MF, Heymann D. In vitro three-dimensional cell cultures for bone sarcomas. J Bone Oncol 2021; 30:100379. [PMID: 34307011 PMCID: PMC8287221 DOI: 10.1016/j.jbo.2021.100379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/18/2022] Open
Abstract
Bone sarcomas are rare tumour entities that arise from the mesenchyme most of which are highly heterogeneous at the cellular, genetic and epigenetic levels. The three main types are osteosarcoma, Ewing sarcoma, and chondrosarcoma. These oncological entities are characterised by high morbidity and mortality and an absence of significant therapeutic improvement in the last four decades. In the field of oncology, in vitro cultures of cancer cells have been extensively used for drug screening unfortunately with limited success. Indeed, despite the massive knowledge acquired from conventional 2D culture methods, scientific community has been challenged by the loss of efficacy of drugs when moved to clinical trials. The recent explosion of new 3D culture methods is paving the way to more relevant in vitro models mimicking the in vivo tumour environment (e.g. bone structure) with biological responses close to the in vivo context. The present review gives a brief overview of the latest advances of the 3D culture methods used for studying primary bone sarcomas.
Collapse
Affiliation(s)
- Javier Munoz-Garcia
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Camille Jubelin
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France.,Atlantic Bone Screen, Saint-Herblain, France
| | | | - Matisse Goumard
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | | | | | - Marie-Françoise Heymann
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Dominique Heymann
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France.,University of Sheffield, Department of Oncology and Metabolism, Medical School, Sheffield, UK
| |
Collapse
|
15
|
Molecular subversion of Cdc42 signalling in cancer. Biochem Soc Trans 2021; 49:1425-1442. [PMID: 34196668 PMCID: PMC8412110 DOI: 10.1042/bst20200557] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Cdc42 is a member of the Rho family of small GTPases and a master regulator of the actin cytoskeleton, controlling cell motility, polarity and cell cycle progression. This small G protein and its regulators have been the subject of many years of fruitful investigation and the advent of functional genomics and proteomics has opened up new avenues of exploration including how it functions at specific locations in the cell. This has coincided with the introduction of new structural techniques with the ability to study small GTPases in the context of the membrane. The role of Cdc42 in cancer is well established but the molecular details of its action are still being uncovered. Here we review alterations found to Cdc42 itself and to key components of the signal transduction pathways it controls in cancer. Given the challenges encountered with targeting small G proteins directly therapeutically, it is arguably the regulators of Cdc42 and the effector signalling pathways downstream of the small G protein which will be the most tractable targets for therapeutic intervention. These will require interrogation in order to fully understand the global signalling contribution of Cdc42, unlock the potential for mapping new signalling axes and ultimately produce inhibitors of Cdc42 driven signalling.
Collapse
|
16
|
Aoun L, Nègre P, Gonsales C, Seveau de Noray V, Brustlein S, Biarnes-Pelicot M, Valignat MP, Theodoly O. Leukocyte transmigration and longitudinal forward-thrusting force in a microfluidic Transwell device. Biophys J 2021; 120:2205-2221. [PMID: 33838136 DOI: 10.1016/j.bpj.2021.03.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 01/21/2023] Open
Abstract
Transmigration of leukocytes across blood vessels walls is a critical step of the immune response. Transwell assays examine transmigration properties in vitro by counting cells passages through a membrane; however, the difficulty of in situ imaging hampers a clear disentanglement of the roles of adhesion, chemokinesis, and chemotaxis. We used here microfluidic Transwells to image the cells' transition from 2D migration on a surface to 3D migration in a confining microchannel and measure cells longitudinal forward-thrusting force in microchannels. Primary human effector T lymphocytes adhering with integrins LFA-1 (αLβ2) had a marked propensity to transmigrate in Transwells without chemotactic cue. Both adhesion and contractility were important to overcome the critical step of nucleus penetration but were remarkably dispensable for 3D migration in smooth microchannels deprived of topographic features. Transmigration in smooth channels was qualitatively consistent with a propulsion by treadmilling of cell envelope and squeezing of cell trailing edge. Stalling conditions of 3D migration were then assessed by imposing pressure drops across microchannels. Without specific adhesion, the cells slid backward with subnanonewton forces, showing that 3D migration under stress is strongly limited by a lack of adhesion and friction with channels. With specific LFA-1 mediated adhesion, stalling occurred at around 3 and 6 nN in 2 × 4 and 4 × 4 μm2 channels, respectively, supporting that stalling of adherent cells was under pressure control rather than force control. The stall pressure of 4 mbar is consistent with the pressure of actin filament polymerization that mediates lamellipod growth. The arrest of adherent cells under stress therefore seems controlled by the compression of the cell leading edge, which perturbs cells front-rear polarization and triggers adhesion failure or polarization reversal. Although stalling assays in microfluidic Transwells do not mimic in vivo transmigration, they provide a powerful tool to scrutinize 2D and 3D migration, barotaxis, and chemotaxis.
Collapse
Affiliation(s)
- Laurene Aoun
- LAI, Aix-Marseille Univ, CNRS, INSERM, Turing Centre for Living Systems, Marseille, France
| | - Paulin Nègre
- LAI, Aix-Marseille Univ, CNRS, INSERM, Turing Centre for Living Systems, Marseille, France
| | - Cristina Gonsales
- LAI, Aix-Marseille Univ, CNRS, INSERM, Turing Centre for Living Systems, Marseille, France
| | | | - Sophie Brustlein
- LAI, Aix-Marseille Univ, CNRS, INSERM, Turing Centre for Living Systems, Marseille, France
| | | | - Marie-Pierre Valignat
- LAI, Aix-Marseille Univ, CNRS, INSERM, Turing Centre for Living Systems, Marseille, France
| | - Olivier Theodoly
- LAI, Aix-Marseille Univ, CNRS, INSERM, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
17
|
Puleri DF, Balogh P, Randles A. Computational models of cancer cell transport through the microcirculation. Biomech Model Mechanobiol 2021; 20:1209-1230. [PMID: 33765196 DOI: 10.1007/s10237-021-01452-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
The transport of cancerous cells through the microcirculation during metastatic spread encompasses several interdependent steps that are not fully understood. Computational models which resolve the cellular-scale dynamics of complex microcirculatory flows offer considerable potential to yield needed insights into the spread of cancer as a result of the level of detail that can be captured. In recent years, in silico methods have been developed that can accurately and efficiently model the circulatory flows of cancer and other biological cells. These computational methods are capable of resolving detailed fluid flow fields which transport cells through tortuous physiological geometries, as well as the deformation and interactions between cells, cell-to-endothelium interactions, and tumor cell aggregates, all of which play important roles in metastatic spread. Such models can provide a powerful complement to experimental works, and a promising approach to recapitulating the endogenous setting while maintaining control over parameters such as shear rate, cell deformability, and the strength of adhesive binding to better understand tumor cell transport. In this review, we present an overview of computational models that have been developed for modeling cancer cells in the microcirculation, including insights they have provided into cell transport phenomena.
Collapse
Affiliation(s)
- Daniel F Puleri
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Peter Balogh
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Amanda Randles
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
18
|
Nguyen AK, Kilian KA. Physicochemical Tools for Visualizing and Quantifying Cell-Generated Forces. ACS Chem Biol 2020; 15:1731-1746. [PMID: 32530602 DOI: 10.1021/acschembio.0c00304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To discern how mechanical forces coordinate biological outcomes, methods that map cell-generated forces in a spatiotemporal manner, and at cellular length scales, are critical. In their native environment, whether it be within compact multicellular three-dimensional structures or sparsely populated fibrillar networks of the extracellular matrix, cells are constantly exposed to a slew of physical forces acting on them from all directions. At the same time, cells exert highly localized forces of their own on their surroundings and on neighboring cells. Together, the generation and transmission of these forces can control diverse cellular activities and behavior as well as influence cell fate decisions. To thoroughly understand these processes, we must first be able to characterize and measure such forces. However, our experimental needs and technical capabilities are in discord-while it is apparent that we should study cell-generated forces within more biologically relevant 3D environments, this goal remains challenging because of caveats associated with complex "sensing-transduction-readout" modalities. In this Review, we will discuss the latest techniques for measuring cell-generated forces. We will highlight recent advances in traction force microscopy and examine new alternative approaches for quantifying cell-generated forces, both of individual cells and within 3D tissues. Finally, we will explore the future direction of novel cellular force-sensing tools in the context of mechanobiology and next-generation biomaterials design.
Collapse
Affiliation(s)
- Ashley K. Nguyen
- School of Chemistry, School of Materials Science and Engineering, Australian Centre for Nanomedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Kristopher A. Kilian
- School of Chemistry, School of Materials Science and Engineering, Australian Centre for Nanomedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
19
|
Doolin MT, Moriarty RA, Stroka KM. Mechanosensing of Mechanical Confinement by Mesenchymal-Like Cells. Front Physiol 2020; 11:365. [PMID: 32390868 PMCID: PMC7193100 DOI: 10.3389/fphys.2020.00365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) and tumor cells have the unique capability to migrate out of their native environment and either home or metastasize, respectively, through extremely heterogeneous environments to a distant location. Once there, they can either aid in tissue regrowth or impart an immunomodulatory effect in the case of MSCs, or form secondary tumors in the case of tumor cells. During these journeys, cells experience physically confining forces that impinge on the cell body and the nucleus, ultimately causing a multitude of cellular changes. Most drastically, confining individual MSCs within hydrogels or confining monolayers of MSCs within agarose wells can sway MSC lineage commitment, while applying a confining compressive stress to metastatic tumor cells can increase their invasiveness. In this review, we seek to understand the signaling cascades that occur as cells sense confining forces and how that translates to behavioral changes, including elongated and multinucleated cell morphologies, novel migrational mechanisms, and altered gene expression, leading to a unique MSC secretome that could hold great promise for anti-inflammatory treatments. Through comparison of these altered behaviors, we aim to discern how MSCs alter their lineage selection, while tumor cells may become more aggressive and invasive. Synthesizing this information can be useful for employing MSCs for therapeutic approaches through systemic injections or tissue engineered grafts, and developing improved strategies for metastatic cancer therapies.
Collapse
Affiliation(s)
- Mary T. Doolin
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
| | - Rebecca A. Moriarty
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
- Maryland Biophysics Program, University of Maryland, College Park, College Park, MD, United States
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
20
|
Prahl LS, Stanslaski MR, Vargas P, Piel M, Odde DJ. Predicting Confined 1D Cell Migration from Parameters Calibrated to a 2D Motor-Clutch Model. Biophys J 2020; 118:1709-1720. [PMID: 32145191 PMCID: PMC7136340 DOI: 10.1016/j.bpj.2020.01.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Biological tissues contain micrometer-scale gaps and pores, including those found within extracellular matrix fiber networks, between tightly packed cells, and between blood vessels or nerve bundles and their associated basement membranes. These spaces restrict cell motion to a single-spatial dimension (1D), a feature that is not captured in traditional in vitro cell migration assays performed on flat, unconfined two-dimensional (2D) substrates. Mechanical confinement can variably influence cell migration behaviors, and it is presently unclear whether the mechanisms used for migration in 2D unconfined environments are relevant in 1D confined environments. Here, we assessed whether a cell migration simulator and associated parameters previously measured for cells on 2D unconfined compliant hydrogels could predict 1D confined cell migration in microfluidic channels. We manufactured microfluidic devices with narrow channels (60-μm2 rectangular cross-sectional area) and tracked human glioma cells that spontaneously migrated within channels. Cell velocities (vexp = 0.51 ± 0.02 μm min-1) were comparable to brain tumor expansion rates measured in the clinic. Using motor-clutch model parameters estimated from cells on unconfined 2D planar hydrogel substrates, simulations predicted similar migration velocities (vsim = 0.37 ± 0.04 μm min-1) and also predicted the effects of drugs targeting the motor-clutch system or cytoskeletal assembly. These results are consistent with glioma cells utilizing a motor-clutch system to migrate in confined environments.
Collapse
Affiliation(s)
- Louis S Prahl
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Maria R Stanslaski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Pablo Vargas
- Institut Curie, PSL Research University, CNRS UMR 144 and Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France; INSERM U932 Immunité et Cancer, Institut Curie, PSL Research University, Paris, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS UMR 144 and Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; Physical Sciences-Oncology Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
21
|
Obenaus AM, Mollica MY, Sniadecki NJ. (De)form and Function: Measuring Cellular Forces with Deformable Materials and Deformable Structures. Adv Healthc Mater 2020; 9:e1901454. [PMID: 31951099 PMCID: PMC7274881 DOI: 10.1002/adhm.201901454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/04/2019] [Indexed: 12/29/2022]
Abstract
The ability for biological cells to produce mechanical forces is important for the development, function, and homeostasis of tissue. The measurement of cellular forces is not a straightforward task because individual cells are microscopic in size and the forces they produce are at the nanonewton scale. Consequently, studies in cell mechanics rely on advanced biomaterials or flexible structures that permit one to infer these forces by the deformation they impart on the material or structure. Herein, the scientific progression on the use of deformable materials and deformable structures to measure cellular forces are reviewed. The findings and insights made possible with these approaches in the field of cell mechanics are summarized.
Collapse
Affiliation(s)
- Ava M Obenaus
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Molly Y Mollica
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Nathan J Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
22
|
Moose DL, Krog BL, Kim TH, Zhao L, Williams-Perez S, Burke G, Rhodes L, Vanneste M, Breheny P, Milhem M, Stipp CS, Rowat AC, Henry MD. Cancer Cells Resist Mechanical Destruction in Circulation via RhoA/Actomyosin-Dependent Mechano-Adaptation. Cell Rep 2020; 30:3864-3874.e6. [PMID: 32187555 PMCID: PMC7219793 DOI: 10.1016/j.celrep.2020.02.080] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 12/27/2022] Open
Abstract
During metastasis, cancer cells are exposed to potentially destructive hemodynamic forces including fluid shear stress (FSS) while en route to distant sites. However, prior work indicates that cancer cells are more resistant to brief pulses of high-level FSS in vitro relative to non-transformed epithelial cells. Herein, we identify a mechano-adaptive mechanism of FSS resistance in cancer cells. Our findings demonstrate that cancer cells activate RhoA in response to FSS, which protects them from FSS-induced plasma membrane damage. We show that cancer cells freshly isolated from mouse and human tumors are resistant to FSS, that formin and myosin II activity protects circulating tumor cells (CTCs) from destruction, and that short-term inhibition of myosin II delays metastasis in mouse models. Collectively, our data indicate that viable CTCs actively resist destruction by hemodynamic forces and are likely to be more mechanically robust than is commonly thought.
Collapse
Affiliation(s)
- Devon L Moose
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Cancer Biology Program, Biomedical Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin L Krog
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Tae-Hyung Kim
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | - Gretchen Burke
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lillian Rhodes
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Marion Vanneste
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Patrick Breheny
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Mohammed Milhem
- Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA; Division of Hematology and Oncology, Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christopher S Stipp
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA; Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael D Henry
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Cancer Biology Program, Biomedical Sciences, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA; Departments of Pathology, Urology and Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
23
|
Rianna C, Radmacher M, Kumar S. Direct evidence that tumor cells soften when navigating confined spaces. Mol Biol Cell 2020; 31:1726-1734. [PMID: 31995446 PMCID: PMC7521845 DOI: 10.1091/mbc.e19-10-0588] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mechanical properties of cells strongly regulate many physiological and pathological processes. For example, in cancer, invasive and metastatic tumor cells have often been reported to be softer than nontumor cells, raising speculation that cancer cells might adaptively soften to facilitate migration through narrow tissue spaces. Despite growing interest in targeting cell softening to impede invasion and metastasis, it remains to be directly demonstrated that tumor cells soften as they migrate through confined spaces. Here, we address this open question by combining topographically patterned substrates with atomic force microscopy (AFM). Using a polydimethylsiloxane open-roof microdevice featuring tapered, fibronectin-coated channels, we followed the migration of U2OS cells through various stages of confinement while simultaneously performing AFM indentation. As cells progress from unconfined migration to fully confined migration, cells soften and exclude Yes-associated protein from the nucleus. Superresolution imaging reveals that confinement induces remodeling of actomyosin stress fiber architecture. Companion studies with flat one-dimensional microlines indicate that the changes in cytoarchitecture and mechanics are intrinsically driven by topographical confinement rather than changes in cellular aspect ratio. Our studies represent among the most direct evidence to date that tumor cells soften during confined migration and support cell softening as a mechanoadaptive mechanism during invasion.
Collapse
Affiliation(s)
- Carmela Rianna
- Institute of Biophysics, University of Bremen, 28359 Bremen, Germany.,Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720
| | - Manfred Radmacher
- Institute of Biophysics, University of Bremen, 28359 Bremen, Germany
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720
| |
Collapse
|
24
|
Patteson AE, Pogoda K, Byfield FJ, Mandal K, Ostrowska-Podhorodecka Z, Charrier EE, Galie PA, Deptuła P, Bucki R, McCulloch CA, Janmey PA. Loss of Vimentin Enhances Cell Motility through Small Confining Spaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903180. [PMID: 31721440 PMCID: PMC6910987 DOI: 10.1002/smll.201903180] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/22/2019] [Indexed: 05/28/2023]
Abstract
The migration of cells through constricting spaces or along fibrous tracks in tissues is important for many biological processes and depends on the mechanical properties of a cytoskeleton made up of three different filaments: F-actin, microtubules, and intermediate filaments. The signaling pathways and cytoskeletal structures that control cell motility on 2D are often very different from those that control motility in 3D. Previous studies have shown that intermediate filaments can promote actin-driven protrusions at the cell edge, but have little effect on overall motility of cells on flat surfaces. They are however important for cells to maintain resistance to repeated compressive stresses that are expected to occur in vivo. Using mouse embryonic fibroblasts derived from wild-type and vimentin-null mice, it is found that loss of vimentin increases motility in 3D microchannels even though on flat surfaces it has the opposite effect. Atomic force microscopy and traction force microscopy experiments reveal that vimentin enhances perinuclear cell stiffness while maintaining the same level of acto-myosin contractility in cells. A minimal model in which a perinuclear vimentin cage constricts along with the nucleus during motility through confining spaces, providing mechanical resistance against large strains that could damage the structural integrity of cells, is proposed.
Collapse
Affiliation(s)
- Alison E. Patteson
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
- Physics Department, Syracuse University, Syracuse, NY 13244
| | - Katarzyna Pogoda
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Fitzroy J. Byfield
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Kalpana Mandal
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Elisabeth E. Charrier
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Peter A. Galie
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028
| | - Piotr Deptuła
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, Białystok, Poland
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, Białystok, Poland
| | | | - Paul A. Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
- Departments of Physiology and Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
25
|
Chang SS, Rape AD, Wong SA, Guo WH, Wang YL. Migration regulates cellular mechanical states. Mol Biol Cell 2019; 30:3104-3111. [PMID: 31693433 PMCID: PMC6938245 DOI: 10.1091/mbc.e19-02-0099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recent studies indicate that adherent cells are keenly sensitive to external physical environment, such as substrate rigidity and topography, and internal physical states, such as cell shape and spreading area. Many of these responses are believed to involve coupled output and input of mechanical forces, which may constitute the key sensing mechanism to generate downstream regulatory signals for cell growth and differentiation. Here, we show that the state of cell migration also plays a regulatory role. Compared with migrating cells, stationary cells generate stronger, less dynamic, and more peripherally localized traction forces. These changes are coupled to reduced focal adhesion turnover and enhanced paxillin phosphorylation. Further, using cells migrating along checkerboard micropatterns, we show that the appearance of new focal adhesions directly in front of existing focal adhesions is associated with the down-regulation of existing focal adhesions and associated traction forces. Together, our results imply a mechanism where cell migration regulates traction forces by promoting dynamic turnover of focal adhesions, which may then regulate processes such as wound healing and embryogenesis where cell differentiation must coordinate with migration state and proper localization.
Collapse
Affiliation(s)
- Stephanie S Chang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Andrew D Rape
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Stephanie A Wong
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Wei-Hui Guo
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Yu-Li Wang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
26
|
Doolin MT, Stroka KM. Integration of Mesenchymal Stem Cells into a Novel Micropillar Confinement Assay. Tissue Eng Part C Methods 2019; 25:662-676. [PMID: 31347455 PMCID: PMC6998058 DOI: 10.1089/ten.tec.2019.0083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/24/2019] [Indexed: 01/12/2023] Open
Abstract
Mechanical cues such as stiffness have been shown to influence cell gene expression, protein expression, and cell behaviors critical for tissue engineering. The mechanical cue of confinement is also a pervasive parameter affecting cells in vivo and in tissue-engineered constructs. Despite its prevalence, the mechanical cue of confinement lacks assays that provide precise control over the degree of confinement induced on cells, yield a large sample size, enable long-term culture, and enable easy visualization of cells over time. In this study, we developed a process to systematically confine cells using micropillar arrays. Using photolithography and polydimethylsiloxane (PDMS) molding, we created PDMS arrays of micropillars that were 5, 10, 20, or 50 μm in spacing and between 13 and 17 μm in height. The tops of micropillars were coated with Pluronic F127 to inhibit cell adhesion, and we observed that mesenchymal stem cells (MSCs) robustly infiltrated into the micropillar arrays. MSC and nucleus morphology were altered by narrowing the micropillar spacing, and cytoskeletal elements within MSCs appeared to become more diffuse with increasing confinement. Specifically, MSCs exhibited a ring of actin around their periphery and punctate focal adhesions. MSC migration speed was reduced by narrowing micropillar spacing, and distinct migration behaviors of MSCs emerged in the presence of micropillars. MSCs continued to proliferate within micropillar arrays after 3 weeks in culture, displaying our assay's capability for long-term studies. Our assay also has the capacity to provide adequate cell numbers for quantitative assays to investigate the effect of confinement on gene and protein expression. Through deeper understanding of cell mechanotransduction in the context of confinement, we can modify tissue-engineered constructs to be optimal for a given purpose. Impact Statement In this study, we developed a novel process to systematically confine cells using micropillar arrays. Our assay provides insight into cell behavior in response to mechanical confinement. Through deeper understanding of how cells sense and respond to confinement, we can fine tune tissue-engineered constructs to be optimal for a given purpose. By combining confinement with other physical cues, we can harness mechanical properties to encourage or inhibit cell migration, direct cells down a particular lineage, induce cell secretion of specific cytokines or extracellular vesicles, and ultimately direct cells to behave in a way conducive to tissue engineering.
Collapse
Affiliation(s)
- Mary T. Doolin
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
- Biophysics Program, University of Maryland, College Park, Maryland
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, Maryland
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland
| |
Collapse
|
27
|
Ellefsen KL, Holt JR, Chang AC, Nourse JL, Arulmoli J, Mekhdjian AH, Abuwarda H, Tombola F, Flanagan LA, Dunn AR, Parker I, Pathak MM. Myosin-II mediated traction forces evoke localized Piezo1-dependent Ca 2+ flickers. Commun Biol 2019; 2:298. [PMID: 31396578 PMCID: PMC6685976 DOI: 10.1038/s42003-019-0514-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/18/2019] [Indexed: 02/05/2023] Open
Abstract
Piezo channels transduce mechanical stimuli into electrical and chemical signals to powerfully influence development, tissue homeostasis, and regeneration. Studies on Piezo1 have largely focused on transduction of "outside-in" mechanical forces, and its response to internal, cell-generated forces remains poorly understood. Here, using measurements of endogenous Piezo1 activity and traction forces in native cellular conditions, we show that cellular traction forces generate spatially-restricted Piezo1-mediated Ca2+ flickers in the absence of externally-applied mechanical forces. Although Piezo1 channels diffuse readily in the plasma membrane and are widely distributed across the cell, their flicker activity is enriched near force-producing adhesions. The mechanical force that activates Piezo1 arises from Myosin II phosphorylation by Myosin Light Chain Kinase. We propose that Piezo1 Ca2+ flickers allow spatial segregation of mechanotransduction events, and that mobility allows Piezo1 channels to explore a large number of mechanical microdomains and thus respond to a greater diversity of mechanical cues.
Collapse
Affiliation(s)
- Kyle L. Ellefsen
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697 USA
| | - Jesse R. Holt
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA 92697 USA
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697 USA
- Center for Complex Biological Systems, UC Irvine, Irvine, CA 92697 USA
| | - Alice C. Chang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305 USA
| | - Jamison L. Nourse
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA 92697 USA
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697 USA
| | - Janahan Arulmoli
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697 USA
- Department of Biomedical Engineering, UC Irvine, Irvine, CA 92697 USA
| | - Armen H. Mekhdjian
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305 USA
| | - Hamid Abuwarda
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA 92697 USA
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697 USA
| | - Francesco Tombola
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA 92697 USA
| | - Lisa A. Flanagan
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697 USA
- Department of Biomedical Engineering, UC Irvine, Irvine, CA 92697 USA
- Department of Neurology, UC Irvine, Irvine, CA 92697 USA
| | - Alexander R. Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305 USA
- Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305 USA
| | - Ian Parker
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697 USA
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA 92697 USA
| | - Medha M. Pathak
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA 92697 USA
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697 USA
- Center for Complex Biological Systems, UC Irvine, Irvine, CA 92697 USA
- Department of Biomedical Engineering, UC Irvine, Irvine, CA 92697 USA
| |
Collapse
|
28
|
Quantitative Phenotyping of Cell-Cell Junctions to Evaluate ZO-1 Presentation in Brain Endothelial Cells. Ann Biomed Eng 2019; 47:1675-1687. [PMID: 30993538 DOI: 10.1007/s10439-019-02266-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/06/2019] [Indexed: 12/28/2022]
Abstract
The selective permeability of the blood-brain barrier (BBB) is controlled by tight junction-expressing brain endothelial cells. The integrity of these junctional proteins, which anchor to actin via zonula occludens (e.g., ZO-1), plays a vital role in barrier function. While disrupted junctions are linked with several neurodegenerative diseases, the mechanisms underlying disruption are not fully understood. This is largely due to the lack of appropriate models and efficient techniques to quantify edge-localized protein. Here, we developed a novel junction analyzer program (JAnaP) to semi-automate the quantification of junctional protein presentation. Because significant evidence suggests a link between myosin-II mediated contractility and endothelial barrier properties, we used the JAnaP to investigate how biochemical and physical cues associated with altered contractility influence ZO-1 presentation in brain endothelial cells. Treatment with contractility-decreasing agents increased continuous ZO-1 presentation; however, this increase was greatest on soft gels of brain-relevant stiffness, suggesting improved barrier maturation. This effect was reversed by biochemically inhibiting protein phosphatases to increase cell contractility on soft substrates. These results promote the use of brain-mimetic substrate stiffness in BBB model design and motivates the use of this novel JAnaP to provide insight into the role of junctional protein presentation in BBB physiology and pathologies.
Collapse
|
29
|
Hui J, Pang S. Cell traction force in a confined microenvironment with double-sided micropost arrays. RSC Adv 2019; 9:8575-8584. [PMID: 35518671 PMCID: PMC9061871 DOI: 10.1039/c8ra10170a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/07/2019] [Indexed: 11/21/2022] Open
Abstract
Three-dimensional (3D) cell migrations are regulated by force interactions between cells and a 3D extracellular matrix (ECM). Mapping the 3D traction force generated by cells on the surrounding ECM with controlled confinement and contact area will be useful in understanding cell migration. In this study, double-sided micropost arrays were fabricated. The cell traction force was mapped by microposts on the top and bottom of opposing surfaces with a controlled separating distance to create different confinements. The density of micropost arrays was modified to investigate the effect of cell contact area on 3D traction force development. Using MC3T3-E1 osteoblastic cells, the leading traction force was found to increase with additional contact surface on the top. Summing force vectors on both surfaces, a large force imbalance was found from the leading to trailing regions for fast migrating cells. With 10 μm separation and densely arranged microposts, the traction force on the top surface was the largest at 28.6 ± 2.5 nN with the highest migration speed of 0.61 ± 0.07 μm min−1. Decreasing the density of the top micropost arrays resulted in a reduced traction force on the top and lower migration speed. With 15 μm separation, the cell traction force on the top and migration speed further decreased simultaneously. These results revealed traction force development on 3D ECM with varied degrees of confinement and contact area, which is important in regulating 3D cell migration. Double-sided micropost arrays to monitor three-dimensional cell traction force development over time on top and bottom surfaces with controlled confinement and contact area.![]()
Collapse
Affiliation(s)
- Jianan Hui
- Department of Electronic Engineering
- City University of Hong Kong
- China
- Center for Biosystems, Neuroscience, and Nanotechnology
- City University of Hong Kong
| | - Stella W. Pang
- Department of Electronic Engineering
- City University of Hong Kong
- China
- Center for Biosystems, Neuroscience, and Nanotechnology
- City University of Hong Kong
| |
Collapse
|
30
|
Desvignes E, Bouissou A, Laborde A, Mangeat T, Proag A, Vieu C, Thibault C, Maridonneau-Parini I, Poincloux R. Nanoscale Forces during Confined Cell Migration. NANO LETTERS 2018; 18:6326-6333. [PMID: 30232897 DOI: 10.1021/acs.nanolett.8b02611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In vivo, immune cells migrate through a wide variety of tissues, including confined and constricting environments. Deciphering how cells apply forces when infiltrating narrow areas is a critical issue that requires innovative experimental procedures. To reveal the distribution and dynamics of the forces of cells migrating in confined environments, we designed a device combining microchannels of controlled dimensions with integrated deformable micropillars serving as sensors of nanoscale subcellular forces. First, a specific process composed of two steps of photolithography and dry etching was tuned to obtain micrometric pillars of controlled stiffness and dimensions inside microchannels. Second, an image-analysis workflow was developed to automatically evaluate the amplitude and direction of the forces applied on the micropillars by migrating cells. Using this workflow, we show that this microdevice is a sensor of forces with a limit of detection down to 64 pN. Third, by recording pillar movements during the migration of macrophages inside the confining microchannels, we reveal that macrophages bent the pillars with typical forces of 0.3 nN and applied higher forces at the cell edges than around their nuclei. When the degree of confinement was increased, we found that forces were redirected from inward to outward. By providing a microdevice that allows the analysis of force direction and force magnitude developed by confined cells, our work paves the way for investigating the mechanical behavior of cells migrating though 3D constricted environments.
Collapse
Affiliation(s)
- Emma Desvignes
- LAAS-CNRS , Université de Toulouse, CNRS, INSA , Toulouse 31031 , France
| | - Anaïs Bouissou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS , Toulouse 31077 , France
| | - Adrian Laborde
- LAAS-CNRS , Université de Toulouse, CNRS, INSA , Toulouse 31031 , France
| | - Thomas Mangeat
- LBCMCP, Centre de Biologie Intégrative , Université de Toulouse, CNRS, UPS , Toulouse 31062 , France
| | - Amsha Proag
- LBCMCP, Centre de Biologie Intégrative , Université de Toulouse, CNRS, UPS , Toulouse 31062 , France
| | - Christophe Vieu
- LAAS-CNRS , Université de Toulouse, CNRS, INSA , Toulouse 31031 , France
| | | | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS , Toulouse 31077 , France
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS , Toulouse 31077 , France
| |
Collapse
|
31
|
Doolin MT, Stroka KM. Physical confinement alters cytoskeletal contributions towards human mesenchymal stem cell migration. Cytoskeleton (Hoboken) 2018; 75:103-117. [PMID: 29316327 DOI: 10.1002/cm.21433] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/07/2017] [Accepted: 01/03/2018] [Indexed: 11/11/2022]
Abstract
The in vivo microenvironment is critical for providing physico-chemical signaling cues which ultimately regulate human mesenchymal stem cell (hMSC) behavior in clinically-relevant applications. hMSCs experience mechanical confinement of the cell body and nucleus in three dimensional (3D) tissues during homing and in porous tissue engineered scaffolds, yet the effects of this mechanical cue on hMSC migration are not known. Here, we use a microchannel device to systematically examine the effect of confinement on hMSC migration and cytoskeletal organization. Notably, we show that hMSC actin and microtubules change from filamentous in unconfined spaces to a more diffuse network in confinement, and that confinement abrogates the presence of paxillin-rich focal adhesions seen in 2D. Furthermore, several morphological parameters of the hMSC body are altered in confinement. Interestingly, hMSC speed displays a biphasic trend as a function of confinement, and increasing hMSC passage number decreases speed in all but the narrowest microchannels. Confinement also alters the relative contributions of cytoskeletal (i.e., actin and microtubule) and contractile (i.e., myosin II and Rho kinase) machinery in hMSC migration in unconfined and confined spaces. These results provide an improved understanding of how hMSCs navigate mechanical confinement, which is a central component of complicated 3D microenvironments. Hence, this work may provide insight towards more effective control of hMSC localization in porous tissue engineered scaffolds and mobilization to distinct tissue sites during homing after clinical therapy.
Collapse
Affiliation(s)
- Mary T Doolin
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Biophysics Program, University of Maryland, College Park, Maryland.,Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland
| |
Collapse
|
32
|
Exposing Cell-Itary Confinement: Understanding the Mechanisms of Confined Single Cell Migration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:139-157. [DOI: 10.1007/978-3-319-95294-9_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Vig DK, Hamby AE, Wolgemuth CW. Cellular Contraction Can Drive Rapid Epithelial Flows. Biophys J 2017; 113:1613-1622. [PMID: 28978451 DOI: 10.1016/j.bpj.2017.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 01/18/2023] Open
Abstract
Single, isolated epithelial cells move randomly; however, during wound healing, organism development, cancer metastasis, and many other multicellular phenomena, motile cells group into a collective and migrate persistently in a directed manner. Recent work has examined the physics and biochemistry that coordinates the motions of these groups of cells. Of late, two mechanisms have been touted as being crucial to the physics of these systems: leader cells and jamming. However, the actual importance of these to collective migration remains circumstantial. Fundamentally, collective behavior must arise from the actions of individual cells. Here, we show how biophysical activity of an isolated cell impacts collective dynamics in epithelial layers. Although many reports suggest that wound closure rates depend on isolated cell speed and/or leader cells, we find that these correlations are not universally true, nor do collective dynamics follow the trends suggested by models for jamming. Instead, our experimental data, when coupled with a mathematical model for collective migration, shows that intracellular contractile stress, isolated cell speed, and adhesion all play a substantial role in influencing epithelial dynamics, and that alterations in contraction and/or substrate adhesion can cause confluent epithelial monolayers to exhibit an increase in motility, a feature reminiscent of cancer metastasis. These results directly question the validity of wound-healing assays as a general means for measuring cell migration, and provide further insight into the salient physics of collective migration.
Collapse
Affiliation(s)
- Dhruv K Vig
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Alex E Hamby
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Charles W Wolgemuth
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona; Department of Physics, University of Arizona, Tucson, Arizona.
| |
Collapse
|
34
|
Abstract
In vivo, cells of the vascular system are subjected to various mechanical stimuli and have demonstrated the ability to adapt their behavior via mechanotransduction. Recent advances in microfluidic and "on-chip" techniques have provided the technology to study these alterations in cell behavior. Contrary to traditional in vitro assays such as transwell plates and parallel plate flow chambers, these microfluidic devices (MFDs) provide the opportunity to integrate multiple mechanical cues (e.g. shear stress, confinement, substrate stiffness, vessel geometry and topography) with in situ quantification capabilities. As such, MFDs can be used to recapitulate the in vivo mechanical setting and systematically vary microenvironmental conditions for improved mechanobiological studies of the endothelium. Additionally, adequate modelling provides for enhanced understanding of disease progression, design of cell separation and drug delivery systems, and the development of biomaterials for tissue engineering applications. Here, we will discuss the advances in knowledge about endothelial cell mechanosensing resulting from the design and application of biomimetic on-chip and microfluidic platforms.
Collapse
|
35
|
Sheets K, Wang J, Zhao W, Kapania R, Nain AS. Nanonet Force Microscopy for Measuring Cell Forces. Biophys J 2017; 111:197-207. [PMID: 27410747 DOI: 10.1016/j.bpj.2016.05.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 01/03/2023] Open
Abstract
The influence of physical forces exerted by or felt by cells on cell shape, migration, and cytoskeleton arrangement is now widely acknowledged and hypothesized to occur due to modulation of cellular inside-out forces in response to changes in the external fibrous environment (outside-in). Our previous work using the non-electrospinning Spinneret-based Tunable Engineered Parameters' suspended fibers has revealed that cells are able to sense and respond to changes in fiber curvature and structural stiffness as evidenced by alterations to focal adhesion cluster lengths. Here, we present the development and application of a suspended nanonet platform for measuring C2C12 mouse myoblast forces attached to fibers of three diameters (250, 400, and 800 nm) representing a wide range of structural stiffness (3-50 nN/μm). The nanonet force microscopy platform measures cell adhesion forces in response to symmetric and asymmetric external perturbation in single and cyclic modes. We find that contractility-based, inside-out forces are evenly distributed at the edges of the cell, and that forces are dependent on fiber structural stiffness. Additionally, external perturbation in symmetric and asymmetric modes biases cell-fiber failure location without affecting the outside-in forces of cell-fiber adhesion. We then extend the platform to measure forces of (1) cell-cell junctions, (2) single cells undergoing cyclic perturbation in the presence of drugs, and (3) cancerous single-cells transitioning from a blebbing to a pseudopodial morphology.
Collapse
Affiliation(s)
- Kevin Sheets
- Departments of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia
| | - Ji Wang
- Departments of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia
| | - Wei Zhao
- Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, Virginia
| | - Rakesh Kapania
- Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, Virginia
| | - Amrinder S Nain
- Departments of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia; Mechanical Engineering, Virginia Tech, Blacksburg, Virginia.
| |
Collapse
|
36
|
Abstract
Time-lapse, deep-tissue imaging made possible by advances in intravital microscopy has demonstrated the importance of tumour cell migration through confining tracks in vivo. These tracks may either be endogenous features of tissues or be created by tumour or tumour-associated cells. Importantly, migration mechanisms through confining microenvironments are not predicted by 2D migration assays. Engineered in vitro models have been used to delineate the mechanisms of cell motility through confining spaces encountered in vivo. Understanding cancer cell locomotion through physiologically relevant confining tracks could be useful in developing therapeutic strategies to combat metastasis.
Collapse
Affiliation(s)
- Colin D Paul
- Department of Chemical and Biomolecular Engineering and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| |
Collapse
|
37
|
Rathod ML, Pareek N, Agrawal S, Jaddivada S, Lee DW, Gundiah N. Engineered ridge and micropillar array detectors to quantify the directional migration of fibroblasts. RSC Adv 2017. [DOI: 10.1039/c7ra09068d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Fibroblasts align and show persistent migration on ridge-pillar micropatterned substrates. Traction forces vary along the polarized cell length.
Collapse
Affiliation(s)
- Mitesh L. Rathod
- School of Mechanical and Aerospace Engineering
- Seoul National University
- Seoul 151-744
- South Korea
| | - Nikhil Pareek
- Department of Mechanical Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| | - Suchi Agrawal
- Department of Mechanical Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| | - Siddhartha Jaddivada
- Department of Mechanical Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| | | | - Namrata Gundiah
- Department of Mechanical Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| |
Collapse
|
38
|
Tanja Mierke C. Physical role of nuclear and cytoskeletal confinements in cell migration mode selection and switching. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.4.615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
39
|
Qiao W, Huang W, Liu Y, Li X, Chen LS, Tang JX. Toward Scalable Flexible Nanomanufacturing for Photonic Structures and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:10353-10380. [PMID: 27976840 DOI: 10.1002/adma.201601801] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/31/2016] [Indexed: 06/06/2023]
Abstract
Continuous and scalable nanopatterning over flexible substrates is highly desirable for both commercial and scientific interests, but is difficult to realize with traditional photolithographic processes. The recent advancements in nanofabrication methodologies enable light management with photonic structures on flexible materials, providing an increasingly popular strategy to control the light harvesting in the optoelectronic devices of photovoltaics, and in organic and inorganic light-emitting diodes. Here, the current status of nanopatterning technologies for the fabrication of optoelectronic devices is summarized. Scalable nanopatterning technologies for nanomanufacturing on flexible materials are emphasized. Critical challenges in various patterning techniques when considering the resolution, scalability, processing throughput, and the use of masks and resists are addressed. The integration of flexible nanopatterned substrates with light manipulation in organic optoelectronic devices is also discussed; this enables the control of light flux and spectra. Finally, potential development directions are highlighted.
Collapse
Affiliation(s)
- Wen Qiao
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
- College of Physics, Optoelectronics and Energy, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China
| | - Wenbin Huang
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
- College of Physics, Optoelectronics and Energy, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China
| | - Yanhua Liu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
- College of Physics, Optoelectronics and Energy, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China
| | - Xiangmin Li
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, China
| | - Lin-Sen Chen
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
- College of Physics, Optoelectronics and Energy, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China
| | - Jian-Xin Tang
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
40
|
Wang X, Sun J, Xu Q, Chowdhury F, Roein-Peikar M, Wang Y, Ha T. Integrin Molecular Tension within Motile Focal Adhesions. Biophys J 2016; 109:2259-67. [PMID: 26636937 DOI: 10.1016/j.bpj.2015.10.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/19/2015] [Accepted: 10/26/2015] [Indexed: 12/12/2022] Open
Abstract
Forces transmitted by integrins regulate many important cellular functions. Previously, we developed tension gauge tether (TGT) as a molecular force sensor and determined the threshold tension across a single integrin-ligand bond, termed integrin tension, required for initial cell adhesion. Here, we used fluorescently labeled TGTs to study the magnitude and spatial distribution of integrin tension on the cell-substratum interface. We observed two distinct levels of integrin tension. A >54 pN molecular tension is transmitted by clustered integrins in motile focal adhesions (FAs) and such force is generated by actomyosin, whereas the previously reported ∼40 pN integrin tension is transmitted by integrins before FA formation and is independent of actomyosin. We then studied FA motility using a TGT-coated surface as a fluorescent canvas, which records the history of integrin force activity. Our data suggest that the region of the strongest integrin force overlaps with the center of a motile FA within 0.2 μm resolution. We also found that FAs move in pairs and that the asymmetry in the motility of an FA pair is dependent on the initial FA locations on the cell-substratum interface.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Physics and Astronomy, Iowa State University, Ames, Iowa.
| | - Jie Sun
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Qian Xu
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Farhan Chowdhury
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Mehdi Roein-Peikar
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Yingxiao Wang
- Bioengineering Department, University of California San Diego, La Jolla, California
| | - Taekjip Ha
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, Maryland; Department of Biophysics & Biophysical Chemistry, Department of Biophysics, and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
41
|
Abstract
Cells in the body are physically confined by neighboring cells, tissues, and the extracellular matrix. Although physical confinement modulates intracellular signaling and the underlying mechanisms of cell migration, it is difficult to study in vivo. Furthermore, traditional two-dimensional cell migration assays do not recapitulate the complex topographies found in the body. Therefore, a number of experimental in vitro models that confine and impose forces on cells in well-defined microenvironments have been engineered. We describe the design and use of microfluidic microchannel devices, grooved substrates, micropatterned lines, vertical confinement devices, patterned hydrogels, and micropipette aspiration assays for studying cell responses to confinement. Use of these devices has enabled the delineation of changes in cytoskeletal reorganization, cell-substrate adhesions, intracellular signaling, nuclear shape, and gene expression that result from physical confinement. These assays and the physiologically relevant signaling pathways that have been elucidated are beginning to have a translational and clinical impact.
Collapse
Affiliation(s)
- Colin D Paul
- Department of Chemical and Biomolecular Engineering
- Institute for NanoBioTechnology, and
| | - Wei-Chien Hung
- Department of Chemical and Biomolecular Engineering
- Institute for NanoBioTechnology, and
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering
- Institute for NanoBioTechnology, and
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218;
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering
- Institute for NanoBioTechnology, and
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218;
| |
Collapse
|
42
|
Hung WC, Yang JR, Yankaskas CL, Wong BS, Wu PH, Pardo-Pastor C, Serra SA, Chiang MJ, Gu Z, Wirtz D, Valverde MA, Yang JT, Zhang J, Konstantopoulos K. Confinement Sensing and Signal Optimization via Piezo1/PKA and Myosin II Pathways. Cell Rep 2016; 15:1430-1441. [PMID: 27160899 PMCID: PMC5341576 DOI: 10.1016/j.celrep.2016.04.035] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/07/2016] [Accepted: 04/04/2016] [Indexed: 12/01/2022] Open
Abstract
Cells adopt distinct signaling pathways to optimize cell locomotion in different physical microenvironments. However, the underlying mechanism that enables cells to sense and respond to physical confinement is unknown. Using microfabricated devices and substrate-printing methods along with FRET-based biosensors, we report that, as cells transition from unconfined to confined spaces, intracellular Ca2+ level is increased, leading to phosphodiesterase 1 (PDE1)-dependent suppression of PKA activity. This Ca2+ elevation requires Piezo1, a stretch-activated cation channel. Moreover, differential regulation of PKA and cell stiffness in unconfined versus confined cells is abrogated by dual, but not individual, inhibition of Piezo1 and myosin II, indicating that these proteins can independently mediate confinement sensing. Signals activated by Piezo1 and myosin II in response to confinement both feed into a signaling circuit that optimizes cell motility. This study provides a mechanism by which confinement-induced signaling enables cells to sense and adapt to different physical microenvironments.
Collapse
Affiliation(s)
- Wei-Chien Hung
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jessica R Yang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christopher L Yankaskas
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bin Sheng Wong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Carlos Pardo-Pastor
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Carrera del Doctor Aiguader 88, Barcelona 08003, Spain
| | - Selma A Serra
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Carrera del Doctor Aiguader 88, Barcelona 08003, Spain
| | - Meng-Jung Chiang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhizhan Gu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Miguel A Valverde
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Carrera del Doctor Aiguader 88, Barcelona 08003, Spain
| | - Joy T Yang
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
43
|
Paul CD, Shea DJ, Mahoney MR, Chai A, Laney V, Hung WC, Konstantopoulos K. Interplay of the physical microenvironment, contact guidance, and intracellular signaling in cell decision making. FASEB J 2016; 30:2161-70. [PMID: 26902610 DOI: 10.1096/fj.201500199r] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/05/2016] [Indexed: 12/23/2022]
Abstract
The peritumoral physical microenvironment consists of complex topographies that influence cell migration. Cell decision making, upon encountering anisotropic, physiologically relevant physical cues, has yet to be elucidated. By integrating microfabrication with cell and molecular biology techniques, we provide a quantitative and mechanistic analysis of cell decision making in a variety of well-defined physical microenvironments. We used MDA-MB-231 breast carcinoma and HT1080 fibrosarcoma as cell models. Cell decision making after lateral confinement in 2-dimensional microcontact printed lines is governed by branch width at bifurcations. Cells confined in narrow feeder microchannels prefer to enter wider branches at bifurcations. In contrast, in feeder channels that are wider than the cell body, cells elongate along one side wall of the channel and are guided by contact with the wall to the contiguous branch channel independent of its width. Knockdown of β1-integrins or inhibition of cellular contractility suppresses contact guidance. Concurrent, but not individual, knockdown of nonmuscle myosin isoforms IIA and IIB also decreases contact guidance, which suggests the existence of a compensatory mechanism between myosin IIA and myosin IIB. Conversely, knockdown or inhibition of cell division control protein 42 homolog promotes contact guidance-mediated decision making. Taken together, the dimensionality, length scales of the physical microenvironment, and intrinsic cell signaling regulate cell decision making at intersections.-Paul, C. D., Shea, D. J., Mahoney, M. R., Chai, A., Laney, V., Hung, W.-C., Konstantopoulos, K. Interplay of the physical microenvironment, contact guidance, and intracellular signaling in cell decision making.
Collapse
Affiliation(s)
- Colin D Paul
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, USA; and
| | - Daniel J Shea
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Megan R Mahoney
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Andreas Chai
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Victoria Laney
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Wei-Chien Hung
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, USA; and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
44
|
Stroka KM, Gu Z, Sun SX, Konstantopoulos K. Bioengineering paradigms for cell migration in confined microenvironments. Curr Opin Cell Biol 2014; 30:41-50. [PMID: 24973724 DOI: 10.1016/j.ceb.2014.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/27/2014] [Accepted: 06/04/2014] [Indexed: 12/25/2022]
Abstract
Cell migration is a fundamental process underlying diverse (patho)physiological phenomena. The classical understanding of the molecular mechanisms of cell migration has been based on in vitro studies on two-dimensional substrates. More recently, mounting evidence from intravital studies has shown that during metastasis, tumor cells must navigate complex microenvironments in vivo, including narrow, pre-existing microtracks created by anatomical structures. It is becoming apparent that unraveling the mechanisms of confined cell migration in this context requires a multi-disciplinary approach through integration of in vivo and in vitro studies, along with sophisticated bioengineering techniques and mathematical modeling. Here, we highlight such an approach that has led to discovery of a new model for cell migration in confined microenvironments (i.e., the Osmotic Engine Model).
Collapse
Affiliation(s)
- Kimberly M Stroka
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zhizhan Gu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sean X Sun
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
45
|
Stroka KM, Jiang H, Chen SH, Tong Z, Wirtz D, Sun SX, Konstantopoulos K. Water permeation drives tumor cell migration in confined microenvironments. Cell 2014; 157:611-23. [PMID: 24726433 DOI: 10.1016/j.cell.2014.02.052] [Citation(s) in RCA: 357] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/10/2013] [Accepted: 02/02/2014] [Indexed: 11/28/2022]
Abstract
Cell migration is a critical process for diverse (patho)physiological phenomena. Intriguingly, cell migration through physically confined spaces can persist even when typical hallmarks of 2D planar migration, such as actin polymerization and myosin II-mediated contractility, are inhibited. Here, we present an integrated experimental and theoretical approach ("Osmotic Engine Model") and demonstrate that directed water permeation is a major mechanism of cell migration in confined microenvironments. Using microfluidic and imaging techniques along with mathematical modeling, we show that tumor cells confined in a narrow channel establish a polarized distribution of Na+/H+ pumps and aquaporins in the cell membrane, which creates a net inflow of water and ions at the cell leading edge and a net outflow of water and ions at the trailing edge, leading to net cell displacement. Collectively, this study presents an alternate mechanism of cell migration in confinement that depends on cell-volume regulation via water permeation.
Collapse
Affiliation(s)
- Kimberly M Stroka
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hongyuan Jiang
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, PRC
| | - Shih-Hsun Chen
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ziqiu Tong
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Denis Wirtz
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sean X Sun
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Konstantinos Konstantopoulos
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
46
|
Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochim Biophys Acta Gen Subj 2014; 1840:2386-95. [PMID: 24721714 DOI: 10.1016/j.bbagen.2014.03.020] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cancer invasion is a multi-step process which coordinates interactions between tumor cells with mechanotransduction towards the surrounding matrix, resulting in distinct cancer invasion strategies. Defined by context, mesenchymal tumors, including melanoma and fibrosarcoma, develop either single-cell or collective invasion modes, however, the mechanical and molecular programs underlying such plasticity of mesenchymal invasion programs remain unclear. METHODS To test how tissue anatomy determines invasion mode, spheroids of MV3 melanoma and HT1080 fibrosarcoma cells were embedded into 3D collagen matrices of varying density and stiffness and analyzed for migration type and efficacy with matrix metalloproteinase (MMP)-dependent collagen degradation enabled or pharmacologically inhibited. RESULTS With increasing collagen density and dependent on proteolytic collagen breakdown and track clearance, but independent of matrix stiffness, cells switched from single-cell to collective invasion modes. Conversion to collective invasion included gain of cell-to-cell junctions, supracellular polarization and joint guidance along migration tracks. CONCLUSIONS The density of the extracellulair matrix (ECM) determines the invasion mode of mesenchymal tumor cells. Whereas fibrillar, high porosity ECM enables single-cell dissemination, dense matrix induces cell-cell interaction, leader-follower cell behavior and collective migration as an obligate protease-dependent process. GENERAL SIGNIFICANCE These findings establish plasticity of cancer invasion programs in response to ECM porosity and confinement, thereby recapitulating invasion patterns of mesenchymal tumors in vivo. The conversion to collective invasion with increasing ECM confinement supports the concept of cell jamming as a guiding principle for melanoma and fibrosarcoma cells into dense tissue. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
|
47
|
Stroka KM, Konstantopoulos K. Physical biology in cancer. 4. Physical cues guide tumor cell adhesion and migration. Am J Physiol Cell Physiol 2014; 306:C98-C109. [PMID: 24133064 PMCID: PMC3919991 DOI: 10.1152/ajpcell.00289.2013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/15/2013] [Indexed: 12/13/2022]
Abstract
As tumor cells metastasize from the primary tumor location to a distant secondary site, they encounter an array of biologically and physically heterogeneous microenvironments. While it is well established that biochemical signals guide all stages of the metastatic cascade, mounting evidence indicates that physical cues also direct tumor cell behavior, including adhesion and migration phenotypes. Physical cues acting on tumor cells in vivo include extracellular matrix mechanical properties, dimensionality, and topography, as well as interstitial flow, hydrodynamic shear stresses, and local forces due to neighboring cells. State-of-the-art technologies have recently enabled us and other researchers to engineer cell microenvironments that mimic specific physical properties of the cellular milieu. Through integration of these engineering strategies, along with physics, molecular biology, and imaging techniques, we have acquired new insights into tumor cell adhesion and migration mechanisms. In this review, we focus on the extravasation and invasion stages of the metastatic cascade. We first discuss the physical role of the endothelium during tumor cell extravasation and invasion and how contractility of endothelial and tumor cells contributes to the ability of tumor cells to exit the vasculature. Next, we examine how matrix dimensionality and stiffness coregulate tumor cell adhesion and migration beyond the vasculature. Finally, we summarize how tumor cells translate and respond to physical cues through mechanotransduction. Because of the critical role of tumor cell mechanotransduction at various stages of the metastatic cascade, targeting signaling pathways involved in tumor cell mechanosensing of physical stimuli may prove to be an effective therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Kimberly M Stroka
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland
| | | |
Collapse
|