1
|
Shen F, Wei J, Hui Y, Ouyang L, Feng H, Wu L, Yu X, Zhao Z, Jin Z, Zhou W. High-transition-temperature paraffin integration in IFAST device for efficient and robust nucleic acid extraction and detection. Biosens Bioelectron 2025; 278:117314. [PMID: 40054157 DOI: 10.1016/j.bios.2025.117314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/29/2024] [Accepted: 02/25/2025] [Indexed: 03/30/2025]
Abstract
Infectious diseases are prevalent in resource-limited regions with restricted access to health care. Nucleic acid testing is the gold standard for pathogen diagnosis. However, traditional methods are resource-intensive, which limits their use in point-of-care settings. Microfluidic technologies, such as the immiscible phase filtration-assisted system (IFAST) using paramagnetic particles (PMPs), simplify nucleic acid extraction but face barrier stability issues. The interface between the aqueous and oil phases in current IFAST systems is destabilized under the conditions required for efficient RNA extraction. These conditions include the use of reagents containing high concentrations of surfactants and organic solvents, as well as thermal treatment, which reduces the operational stability, reproducibility, and compatibility of the current IFAST systems. We developed a high-transition-temperature (HTT) paraffin-embedded IFAST-based device to improve barrier stability and extraction efficiency. HTT paraffin remains semi-solid at 65 °C, providing a robust barrier during the thermal lysis and RT-LAMP processes. At 75 °C, the device maintained compartment integrity and reduced carryover during the nucleic acid-bound magnetic particle transfer. Testing with SARS-CoV-2 samples showed detection of as little as 1 copy/μL of the viral genome without false positives. By integrating RNA extraction and colorimetric RT-LAMP detection, this device provided rapid on-site testing, advancing accessible and effective disease management in regions that require rapid diagnostics.
Collapse
Affiliation(s)
- Fengshan Shen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jitao Wei
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Hui
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liwei Ouyang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hongtao Feng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lie Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xuefeng Yu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Zhao
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zongwen Jin
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wenhua Zhou
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Chen X, Chen X. A novel electrophoretic assisted hydrophobic microdevice for enhancing blood cell sorting: design and numerical simulation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2368-2377. [PMID: 38572530 DOI: 10.1039/d4ay00196f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Microfluidic technology has great advantages in the precise manipulation of micro-nano particles, and the hybrid microfluidic separation technology has attracted much attention due to the advantages of both active and passive separation technology at the same time. In this paper, the hydrophoresis sorting technique is combined with the dielectrophoresis technique, and a dielectrophoresis-assisted hydrophoresis microdevice is studied to separate blood cells. By using the dielectrophoresis force to change the suspension position of the cells in the channel, the scope of the hydrophoresis device for sorting particles is expanded. At the same time, the effects of microchannel width, fluid velocity, and electrode voltage on cell sorting were discussed, and the cell separation process was simulated. This work has laid a certain theoretical foundation for the rapid diagnosis of diseases in practical applications.
Collapse
Affiliation(s)
- Xinkun Chen
- College of Transportation, Ludong University, Yantai, Shandong 264025, China.
| | - Xueye Chen
- College of Transportation, Ludong University, Yantai, Shandong 264025, China.
| |
Collapse
|
3
|
Zhang N, Yue C, Zhan X, Cheng Z, Li C, Du Y, Tian F. Quantitative analysis of respiratory viruses based on lab-on-a-chip platform. Anal Bioanal Chem 2023; 415:6561-6571. [PMID: 37682312 DOI: 10.1007/s00216-023-04935-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
The quantitative analysis of respiratory viruses is of great importance for rapid diagnosis, precision medicine, and prognosis. Several current quantitative analysis systems have been proposed and commercialized. Although they have been proven in trials, quantitative analyzes based on real samples are still complex, time-consuming, and expensive. Therefore, they are not able to directly quantify real samples. In this work, we presented a lab-on-a-chip platform combined with an automated control system to achieve quantitative analysis from samples to results. We developed a multilayer integrated chip to rapidly extract and quantify RNA of coronavirus disease 2019 (COVID-19) pseudovirus from large-volume nasal swab samples. The dependence of the magnetic bead size and the interfacial effect was studied for the first time, and the conditions of immiscible filtration assisted by surface tension (IFAST) method for nucleic acid extraction were optimized to increase the nucleic acid recovery rate up to 85%. Inside the chip, a pneumatic valve was developed for automatic opening and closing of the liquid channel. The integrated chip platform and automatic control system presented here are advantageous for use in resource-limited settings (RLS). In addition, our method can be extended to other respiratory viruses and other sample types.
Collapse
Affiliation(s)
- Ning Zhang
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Beijing, 100166, China
| | - Chao Yue
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Beijing, 100166, China
| | - Xiaobo Zhan
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Beijing, 100166, China
| | - Zhi Cheng
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Beijing, 100166, China
| | - Chao Li
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Beijing, 100166, China
| | - Yaohua Du
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Beijing, 100166, China.
| | - Feng Tian
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Beijing, 100166, China.
| |
Collapse
|
4
|
Rodriguez-Mateos P, Ngamsom B, Iles A, Pamme N. Microscale immiscible phase magnetic processing for bioanalytical applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
5
|
Rodems TS, Heninger E, Stahlfeld CN, Gilsdorf CS, Carlson KN, Kircher MR, Singh A, Krueger TEG, Beebe DJ, Jarrard DF, McNeel DG, Haffner MC, Lang JM. Reversible epigenetic alterations regulate class I HLA loss in prostate cancer. Commun Biol 2022; 5:897. [PMID: 36050516 PMCID: PMC9437063 DOI: 10.1038/s42003-022-03843-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/15/2022] [Indexed: 11/09/2022] Open
Abstract
Downregulation of HLA class I (HLA-I) impairs immune recognition and surveillance in prostate cancer and may underlie the ineffectiveness of checkpoint blockade. However, the molecular mechanisms regulating HLA-I loss in prostate cancer have not been fully explored. Here, we conducted a comprehensive analysis of HLA-I genomic, epigenomic and gene expression alterations in primary and metastatic human prostate cancer. Loss of HLA-I gene expression was associated with repressive chromatin states including DNA methylation, histone H3 tri-methylation at lysine 27, and reduced chromatin accessibility. Pharmacological DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibition decreased DNA methylation and increased H3 lysine 27 acetylation and resulted in re-expression of HLA-I on the surface of tumor cells. Re-expression of HLA-I on LNCaP cells by DNMT and HDAC inhibition increased activation of co-cultured prostate specific membrane antigen (PSMA)27-38-specific CD8+ T-cells. HLA-I expression is epigenetically regulated by functionally reversible DNA methylation and chromatin modifications in human prostate cancer. Methylated HLA-I was detected in HLA-Ilow circulating tumor cells (CTCs), which may serve as a minimally invasive biomarker for identifying patients who would benefit from epigenetic targeted therapies.
Collapse
Affiliation(s)
- Tamara S Rodems
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Erika Heninger
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.,Department of Medicine, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Charlotte N Stahlfeld
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Cole S Gilsdorf
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Kristin N Carlson
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Madison R Kircher
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Anupama Singh
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.,Department of Medicine, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Timothy E G Krueger
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - David J Beebe
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.,Department of Pathology, University of Wisconsin, Madison, 3170 UW Medical Foundation Centennial Building, 1685 Highland Ave., Madison, WI, 53705, USA
| | - David F Jarrard
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.,Department of Urology, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Douglas G McNeel
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Michael C Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, N., Seattle, WA, 98109, USA.,Department of Pathology, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA.,Department of Pathology, Johns Hopkins School of Medicine, 600N Wolfe St., Baltimore, MD, 21287, USA
| | - Joshua M Lang
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA. .,Department of Medicine, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.
| |
Collapse
|
6
|
Chen X, Feng Q, Zhang Y. Insights into a deterministic lateral displacement sorting chip with new cross-section micropillars. CHAOS, SOLITONS & FRACTALS 2022; 156:111884. [DOI: 10.1016/j.chaos.2022.111884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
7
|
Chen P, Qin Z, Sun X, Yang J, Lv J, Diao M. Expression and clinical significance of lncRNA OSER1-AS1 in peripheral blood of patients with non-small cell lung cancer. Cells Tissues Organs 2021; 211:589-600. [PMID: 34525476 DOI: 10.1159/000519529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/05/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Peirui Chen
- Department of Cardiothoracic Surgery, People's Hospital of Deyang City, Deyang City, China
| | - Zheng Qin
- Department of Cardiothoracic Surgery, People's Hospital of Deyang City, Deyang City, China
| | - Xiaokang Sun
- Department of Cardiothoracic Surgery, People's Hospital of Deyang City, Deyang City, China
| | - Junrong Yang
- Department of Cardiothoracic Surgery, People's Hospital of Deyang City, Deyang City, China
| | - Jing Lv
- Department of Cardiothoracic Surgery, People's Hospital of Deyang City, Deyang City, China
| | - Mingqiang Diao
- Department of Cardiothoracic Surgery, People's Hospital of Deyang City, Deyang City, China
| |
Collapse
|
8
|
Tokar JJ, Stahlfeld CN, Sperger JM, Niles DJ, Beebe DJ, Lang JM, Warrick JW. Pairing Microwell Arrays with an Affordable, Semiautomated Single-Cell Aspirator for the Interrogation of Circulating Tumor Cell Heterogeneity. SLAS Technol 2020; 25:162-176. [PMID: 31983266 PMCID: PMC8879417 DOI: 10.1177/2472630319898146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Comprehensive analysis of tumor heterogeneity requires robust methods for the isolation and analysis of single cells from patient samples. An ideal approach would be fully compatible with downstream analytic methods, such as advanced genomic testing. These endpoints necessitate the use of live cells at high purity. A multitude of microfluidic circulating tumor cell (CTC) enrichment technologies exist, but many of those perform bulk sample enrichment and are not, on their own, capable of single-cell interrogation. To address this, we developed an affordable semiautomated single-cell aspirator (SASCA) to further enrich rare-cell populations from a specialized microwell array, per their phenotypic markers. Immobilization of cells within microwells, integrated with a real-time image processing software, facilitates the detection and precise isolation of targeted cells that have been optimally seeded into the microwells. Here, we demonstrate the platform capabilities through the aspiration of target cells from an impure background population, where we obtain purity levels of 90%-100% and demonstrate the enrichment of the target population with high-quality RNA extraction. A range of low cell numbers were aspirated using SASCA before undergoing whole transcriptome and genome analysis, exhibiting the ability to obtain endpoints from low-template inputs. Lastly, CTCs from patients with castration-resistant prostate cancer were isolated with this platform and the utility of this method was confirmed for rare-cell isolation. SASCA satisfies a need for an affordable option to isolate single cells or highly purified subpopulations of cells to probe complex mechanisms driving disease progression and resistance in patients with cancer.
Collapse
Affiliation(s)
- Jacob J Tokar
- Dept. of Biomedical Eng. – Univ. of Wisconsin, Madison - Madison, USA
| | | | - Jamie M Sperger
- Dept. of Medicine – Univ. of Wisconsin, Madison - Madison, USA
| | - David J Niles
- Dept. of Biomedical Eng. – Univ. of Wisconsin, Madison - Madison, USA
| | - David J Beebe
- Dept. of Biomedical Eng. – Univ. of Wisconsin, Madison - Madison, USA
- UW Carbone Cancer Center. – Univ. of Wisconsin, Madison - Madison, USA
| | - Joshua M Lang
- UW Carbone Cancer Center. – Univ. of Wisconsin, Madison - Madison, USA
- Dept. of Medicine – Univ. of Wisconsin, Madison - Madison, USA
| | - Jay W Warrick
- Dept. of Biomedical Eng. – Univ. of Wisconsin, Madison - Madison, USA
| |
Collapse
|
9
|
Zhong R, Hou L, Zhao Y, Wang T, Wang S, Wang M, Xu D, Sun Y. A 3D mixing-based portable magnetic device for fully automatic immunofluorescence staining of γ-H2AX in UVC-irradiated CD4 + cells. RSC Adv 2020; 10:29311-29319. [PMID: 35521108 PMCID: PMC9055984 DOI: 10.1039/d0ra03925j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/02/2020] [Indexed: 11/22/2022] Open
Abstract
Immunofluorescence (IF) is a common method used in cell biology. The conventional protocol for IF staining is time and labor-intensive, operator dependent and reagent-consuming. Magnetic Bead (MB)-based microdevices are frequently utilized in cellular assays, but integration of simple and efficient mixing with downstream multi-step manipulation of MBs for automatic IF staining is still challenging. We herein present a portable, inexpensive and integratable device for MB-based automatic IF staining. First, a front-end cell capture step is performed using a 3D-mixing module, which is built upon a novel mechanism named ec-2MagRotors and generates periodically changing 3D magnetic fields. A 5-fold enhancement of cell capture efficiency was attained even with a low bead-to-cell concentration ratio (5 : 1), when conducting magnetic 3D mixing. Second, a 1D-moving module is employed downstream to automatically manipulate MB–cell complexes for IF staining. Further, a simplified protocol for staining of γ-H2AX, a biomarker widely used in evaluation of cell radiation damage, is presented for proof-of-principle study of the magnetic device. Using UVC-irradiated CD4+ cells as samples, our device achieved fully automatic γ-H2AX staining within 40 minutes at room temperature and showed a linear dose–response relationship. The developed portable magnetic device is automatic, efficient, cost-effective and simple-to-use, holding great potential for applications in different IF assays. A 3D mixing-based portable magnetic device to perform on-chip efficient cell capture and automatic intracellular immunofluorescence (IF) staining is presented.![]()
Collapse
Affiliation(s)
- Runtao Zhong
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Liangsheng Hou
- College of Marine Engineering
- Dalian Maritime University, Dalian
- Dalian 116026
- China
| | - Yingbo Zhao
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Tianle Wang
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Shaohua Wang
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Mengyu Wang
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Dan Xu
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Yeqing Sun
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| |
Collapse
|
10
|
Iliescu FS, Poenar DP, Yu F, Ni M, Chan KH, Cima I, Taylor HK, Cima I, Iliescu C. Recent advances in microfluidic methods in cancer liquid biopsy. BIOMICROFLUIDICS 2019; 13:041503. [PMID: 31431816 PMCID: PMC6697033 DOI: 10.1063/1.5087690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/24/2019] [Indexed: 05/04/2023]
Abstract
Early cancer detection, its monitoring, and therapeutical prediction are highly valuable, though extremely challenging targets in oncology. Significant progress has been made recently, resulting in a group of devices and techniques that are now capable of successfully detecting, interpreting, and monitoring cancer biomarkers in body fluids. Precise information about malignancies can be obtained from liquid biopsies by isolating and analyzing circulating tumor cells (CTCs) or nucleic acids, tumor-derived vesicles or proteins, and metabolites. The current work provides a general overview of the latest on-chip technological developments for cancer liquid biopsy. Current challenges for their translation and their application in various clinical settings are discussed. Microfluidic solutions for each set of biomarkers are compared, and a global overview of the major trends and ongoing research challenges is given. A detailed analysis of the microfluidic isolation of CTCs with recent efforts that aimed at increasing purity and capture efficiency is provided as well. Although CTCs have been the focus of a vast microfluidic research effort as the key element for obtaining relevant information, important clinical insights can also be achieved from alternative biomarkers, such as classical protein biomarkers, exosomes, or circulating-free nucleic acids. Finally, while most work has been devoted to the analysis of blood-based biomarkers, we highlight the less explored potential of urine as an ideal source of molecular cancer biomarkers for point-of-care lab-on-chip devices.
Collapse
Affiliation(s)
- Florina S. Iliescu
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore
| | - Daniel P. Poenar
- VALENS-Centre for Bio Devices and Signal Analysis, School of EEE, Nanyang Technological University, Singapore 639798, Singapore
| | - Fang Yu
- Singapore Institute of Manufacturing Technology, A*STAR, Singapore 138634, Singapore
| | - Ming Ni
- School of Biological Sciences and Engineering, Yachay Technological University, San Miguel de Urcuquí 100105, Ecuador
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, Singapore 138527, Singapore
| | | | - Hayden K. Taylor
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Igor Cima
- DKFZ-Division of Translational Oncology/Neurooncology, German Cancer Consortium (DKTK), Heidelberg and University Hospital Essen, Essen 45147, Germany
| | | |
Collapse
|
11
|
Zhao Y, Kankala RK, Wang SB, Chen AZ. Multi-Organs-on-Chips: Towards Long-Term Biomedical Investigations. Molecules 2019; 24:E675. [PMID: 30769788 PMCID: PMC6412790 DOI: 10.3390/molecules24040675] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
With advantageous features such as minimizing the cost, time, and sample size requirements, organ-on-a-chip (OOC) systems have garnered enormous interest from researchers for their ability for real-time monitoring of physical parameters by mimicking the in vivo microenvironment and the precise responses of xenobiotics, i.e., drug efficacy and toxicity over conventional two-dimensional (2D) and three-dimensional (3D) cell cultures, as well as animal models. Recent advancements of OOC systems have evidenced the fabrication of 'multi-organ-on-chip' (MOC) models, which connect separated organ chambers together to resemble an ideal pharmacokinetic and pharmacodynamic (PK-PD) model for monitoring the complex interactions between multiple organs and the resultant dynamic responses of multiple organs to pharmaceutical compounds. Numerous varieties of MOC systems have been proposed, mainly focusing on the construction of these multi-organ models, while there are only few studies on how to realize continual, automated, and stable testing, which still remains a significant challenge in the development process of MOCs. Herein, this review emphasizes the recent advancements in realizing long-term testing of MOCs to promote their capability for real-time monitoring of multi-organ interactions and chronic cellular reactions more accurately and steadily over the available chip models. Efforts in this field are still ongoing for better performance in the assessment of preclinical attributes for a new chemical entity. Further, we give a brief overview on the various biomedical applications of long-term testing in MOCs, including several proposed applications and their potential utilization in the future. Finally, we summarize with perspectives.
Collapse
Affiliation(s)
- Yi Zhao
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, China.
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, China.
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, China.
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, China.
| |
Collapse
|
12
|
PD-L1 Expression in Circulating Tumor Cells Increases during Radio(chemo)therapy and Indicates Poor Prognosis in Non-small Cell Lung Cancer. Sci Rep 2019; 9:566. [PMID: 30679441 PMCID: PMC6345864 DOI: 10.1038/s41598-018-36096-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
Preclinical studies demonstrated that radiation up-regulates PD-L1 expression in tumor cells, providing a rationale for combining PD-1/PD-L1 inhibitors with radiation. However this has not been validated in patients with non-small cell lung cancer due to the difficulty to obtain serial biopsies. Measuring PD-L1 expression in circulating tumor cells (CTCs), may allow real-time monitoring of immune activation in tumor. In this study, whole blood from non-metastatic NSCLC patients was collected before, during, and after radiation or chemoradiation using a microfluidic chip. PD-L1 expression in CTCs was assessed by immunofluorescence and qPCR and monitored through the course of treatment. Overall, PD-L1(+) CTCs were detected in 25 out of 38 samples (69.4%) with an average of 4.5 cells/ml. After initiation of radiation therapy, the proportion of PD-L1(+) CTCs increased significantly (median 0.7% vs. 24.7%, P < 0.01), indicating up-regulation of PD-L1 in tumor cells in response to radiation. In addition, patients positive for PD-L1 (≥5% of CTCs positive for PD-L1) at baseline had shorter PFS. Gene expression analysis revealed that higher levels of PD-L1 were associated with poor prognosis. Therefore, CTCs can be used to monitor dynamic changes of PD-L1 during radiation therapy which is potentially prognostic of response to treatment.
Collapse
|
13
|
Review: Microfluidics technologies for blood-based cancer liquid biopsies. Anal Chim Acta 2018; 1012:10-29. [PMID: 29475470 DOI: 10.1016/j.aca.2017.12.050] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 12/19/2022]
Abstract
Blood-based liquid biopsies provide a minimally invasive alternative to identify cellular and molecular signatures that can be used as biomarkers to detect early-stage cancer, predict disease progression, longitudinally monitor response to chemotherapeutic drugs, and provide personalized treatment options. Specific targets in blood that can be used for detailed molecular analysis to develop highly specific and sensitive biomarkers include circulating tumor cells (CTCs), exosomes shed from tumor cells, cell-free circulating tumor DNA (cfDNA), and circulating RNA. Given the low abundance of CTCs and other tumor-derived products in blood, clinical evaluation of liquid biopsies is extremely challenging. Microfluidics technologies for cellular and molecular separations have great potential to either outperform conventional methods or enable completely new approaches for efficient separation of targets from complex samples like blood. In this article, we provide a comprehensive overview of blood-based targets that can be used for analysis of cancer, review microfluidic technologies that are currently used for isolation of CTCs, tumor derived exosomes, cfDNA, and circulating RNA, and provide a detailed discussion regarding potential opportunities for microfluidics-based approaches in cancer diagnostics.
Collapse
|
14
|
Serra M, Ferraro D, Pereiro I, Viovy JL, Descroix S. The power of solid supports in multiphase and droplet-based microfluidics: towards clinical applications. LAB ON A CHIP 2017; 17:3979-3999. [PMID: 28948991 DOI: 10.1039/c7lc00582b] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multiphase and droplet microfluidic systems are growing in relevance in bioanalytical-related fields, especially due to the increased sensitivity, faster reaction times and lower sample/reagent consumption of many of its derived bioassays. Often applied to homogeneous (liquid/liquid) reactions, innovative strategies for the implementation of heterogeneous (typically solid/liquid) processes have recently been proposed. These involve, for example, the extraction and purification of target analytes from complex matrices or the implementation of multi-step protocols requiring efficient washing steps. To achieve this, solid supports such as functionalized particles (micro or nanometric) presenting different physical properties (e.g. magnetic, optical or others) are used for the binding of specific entities. The manipulation of such supports with different microfluidic principles has both led to the miniaturization of existing biomedical protocols and the development of completely new strategies for diagnostics and research. In this review, multiphase and droplet-based microfluidic systems using solid suspensions are presented and discussed with a particular focus on: i) working principles and technological developments of the manipulation strategies and ii) applications, critically discussing the level of maturity of these systems, which can range from initial proofs of concept to real clinical validations.
Collapse
Affiliation(s)
- M Serra
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.
| | | | | | | | | |
Collapse
|
15
|
Lu SH, Tsai WS, Chang YH, Chou TY, Pang ST, Lin PH, Tsai CM, Chang YC. Identifying cancer origin using circulating tumor cells. Cancer Biol Ther 2017; 17:430-8. [PMID: 26828696 PMCID: PMC4910938 DOI: 10.1080/15384047.2016.1141839] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Circulating tumor cells (CTCs) have become an established clinical evaluation biomarker. CTC count provides a good correlation with the prognosis of cancer patients, but has only been used with known cancer patients, and has been unable to predict the origin of the CTCs. This study demonstrates the analysis of CTCs for the identification of their primary cancer source. Twelve mL blood samples were equally dispensed on 6 CMx chips, microfluidic chips coated with an anti-EpCAM-conjugated supported lipid bilayer, for CTC capture and isolation. Captured CTCs were eluted to an immunofluorescence (IF) staining panel consisting of 6 groups of antibodies: anti-panCK, anti-CK18, anti-CK7, anti-TTF-1, anti-CK20/anti-CDX2, and anti-PSA/anti-PSMA. Cancer cell lines of lung (H1975), colorectal (DLD-1, HCT-116), and prostate (PC3, DU145, LNCaP) were selected to establish the sensitivity and specificity for distinguishing CTCs from lung, colorectal, and prostate cancer. Spiking experiments performed in 2mL of culture medium or whole blood proved the CMx platform can enumerate cancer cells of lung, colorectal, and prostate. The IF panel was tested on blood samples from lung cancer patients (n = 3), colorectal cancer patients (n = 5), prostate cancer patients (n = 5), and healthy individuals (n = 12). Peripheral blood samples found panCK+ and CK18+ CTCs in lung, colorectal, and prostate cancers. CTCs expressing CK7+ or TTF-1+, (CK20/ CDX2)+, or (PSA/ PSMA)+ corresponded to lung, colorectal, or prostate cancer, respectively. In conclusion, we have designed an immunofluorescence staining panel to identify CTCs in peripheral blood to correctly identify cancer cell origin.
Collapse
Affiliation(s)
- Si-Hong Lu
- a Graduate Institute of Life Sciences, National Defense Medical Center , Taiwan.,b Genomics Research Center, Academia Sinica , Taiwan
| | - Wen-Sy Tsai
- c Division of Colon and Rectal Surgery, Colorectal Section, Department of Surgery, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University , Taiwan
| | - Ying-Hsu Chang
- d Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University , Taiwan
| | - Teh-Ying Chou
- e Pathology and Laboratory Medicine Department, Taipei Veterans General Hospital , Taiwan
| | - See-Tong Pang
- d Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University , Taiwan
| | - Po-Hung Lin
- d Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University , Taiwan
| | - Chun-Ming Tsai
- f Chest Department , Taipei Veterans General Hospital , Taiwan
| | - Ying-Chih Chang
- a Graduate Institute of Life Sciences, National Defense Medical Center , Taiwan.,b Genomics Research Center, Academia Sinica , Taiwan
| |
Collapse
|
16
|
Schehr JL, Schultz ZD, Warrick JW, Guckenberger DJ, Pezzi HM, Sperger JM, Heninger E, Saeed A, Leal T, Mattox K, Traynor AM, Campbell TC, Berry SM, Beebe DJ, Lang JM. High Specificity in Circulating Tumor Cell Identification Is Required for Accurate Evaluation of Programmed Death-Ligand 1. PLoS One 2016; 11:e0159397. [PMID: 27459545 PMCID: PMC4961410 DOI: 10.1371/journal.pone.0159397] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/02/2016] [Indexed: 12/26/2022] Open
Abstract
Background Expression of programmed-death ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC) is typically evaluated through invasive biopsies; however, recent advances in the identification of circulating tumor cells (CTCs) may be a less invasive method to assay tumor cells for these purposes. These liquid biopsies rely on accurate identification of CTCs from the diverse populations in the blood, where some tumor cells share characteristics with normal blood cells. While many blood cells can be excluded by their high expression of CD45, neutrophils and other immature myeloid subsets have low to absent expression of CD45 and also express PD-L1. Furthermore, cytokeratin is typically used to identify CTCs, but neutrophils may stain non-specifically for intracellular antibodies, including cytokeratin, thus preventing accurate evaluation of PD-L1 expression on tumor cells. This holds even greater significance when evaluating PD-L1 in epithelial cell adhesion molecule (EpCAM) positive and EpCAM negative CTCs (as in epithelial-mesenchymal transition (EMT)). Methods To evaluate the impact of CTC misidentification on PD-L1 evaluation, we utilized CD11b to identify myeloid cells. CTCs were isolated from patients with metastatic NSCLC using EpCAM, MUC1 or Vimentin capture antibodies and exclusion-based sample preparation (ESP) technology. Results Large populations of CD11b+CD45lo cells were identified in buffy coats and stained non-specifically for intracellular antibodies including cytokeratin. The amount of CD11b+ cells misidentified as CTCs varied among patients; accounting for 33–100% of traditionally identified CTCs. Cells captured with vimentin had a higher frequency of CD11b+ cells at 41%, compared to 20% and 18% with MUC1 or EpCAM, respectively. Cells misidentified as CTCs ultimately skewed PD-L1 expression to varying degrees across patient samples. Conclusions Interfering myeloid populations can be differentiated from true CTCs with additional staining criteria, thus improving the specificity of CTC identification and the accuracy of biomarker evaluation.
Collapse
Affiliation(s)
- Jennifer L. Schehr
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zachery D. Schultz
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jay W. Warrick
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David J. Guckenberger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hannah M. Pezzi
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jamie M. Sperger
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erika Heninger
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anwaar Saeed
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ticiana Leal
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kara Mattox
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anne M. Traynor
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Toby C. Campbell
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Scott M. Berry
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Joshua M. Lang
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
17
|
Sperger JM, Strotman LN, Welsh A, Casavant BP, Chalmers Z, Horn S, Heninger E, Thiede SM, Tokar J, Gibbs BK, Guckenberger DJ, Carmichael L, Dehm SM, Stephens PJ, Beebe DJ, Berry SM, Lang JM. Integrated Analysis of Multiple Biomarkers from Circulating Tumor Cells Enabled by Exclusion-Based Analyte Isolation. Clin Cancer Res 2016; 23:746-756. [PMID: 27401243 DOI: 10.1158/1078-0432.ccr-16-1021] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 05/26/2016] [Accepted: 06/25/2016] [Indexed: 12/28/2022]
Abstract
PURPOSE There is a critical clinical need for new predictive and pharmacodynamic biomarkers that evaluate pathway activity in patients treated with targeted therapies. A microscale platform known as VERSA (versatile exclusion-based rare sample analysis) was developed to integrate readouts across protein, mRNA, and DNA in circulating tumor cells (CTC) for a comprehensive analysis of the androgen receptor (AR) signaling pathway. EXPERIMENTAL DESIGN Utilizing exclusion-based sample preparation principles, a handheld chip was developed to perform CTC capture, enumeration, quantification, and subcellular localization of proteins and extraction of mRNA and DNA. This technology was validated across integrated endpoints in cell lines and a cohort of patients with castrate-resistant prostate cancer (CRPC) treated with AR-targeted therapies and chemotherapies. RESULTS The VERSA was validated in cell lines to analyze AR protein expression, nuclear localization, and gene expression targets. When applied to a cohort of patients, radiographic progression was predicted by the presence of multiple AR splice variants and activity in the canonical AR signaling pathway. AR protein expression and nuclear localization identified phenotypic heterogeneity. Next-generation sequencing with the FoundationOne panel detected copy number changes and point mutations. Longitudinal analysis of CTCs identified acquisition of multiple AR variants during targeted treatments and chemotherapy. CONCLUSIONS Complex mechanisms of resistance to AR-targeted therapies, across RNA, DNA, and protein endpoints, exist in patients with CRPC and can be quantified in CTCs. Interrogation of the AR signaling pathway revealed distinct patterns relevant to tumor progression and can serve as pharmacodynamic biomarkers for targeted therapies. Clin Cancer Res; 1-11. ©2016 AACR.
Collapse
Affiliation(s)
- Jamie M Sperger
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lindsay N Strotman
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Benjamin P Casavant
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Sacha Horn
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Erika Heninger
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Stephanie M Thiede
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jacob Tokar
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Benjamin K Gibbs
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - David J Guckenberger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lakeesha Carmichael
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Scott M Dehm
- Masonic Cancer Center and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | | | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Scott M Berry
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Joshua M Lang
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin. .,Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
18
|
Mosley O, Melling L, Tarn MD, Kemp C, Esfahani MMN, Pamme N, Shaw KJ. Sample introduction interface for on-chip nucleic acid-based analysis of Helicobacter pylori from stool samples. LAB ON A CHIP 2016; 16:2108-15. [PMID: 27164181 DOI: 10.1039/c6lc00228e] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Despite recent advances in microfluidic-based integrated diagnostic systems, the sample introduction interface, especially with regards to large volume samples, has often been neglected. We present a sample introduction interface that allows direct on-chip processing of crude stool samples for the detection of Helicobacter pylori (H. pylori). The principle of IFAST (immiscible filtration assisted by surface tension) was adapted to include a large volume sample chamber with a septum-based interface for stool sample introduction. Solid chaotropic salt and dry superparamagnetic particles (PMPs) could be stored on-chip and reconstituted upon sample addition, simplifying the process of release of DNA from H. pylori cells and its binding to the PMPs. Finally, the PMPs were pulled via a magnet through a washing chamber containing an immiscible oil solution and into an elution chamber where the DNA was released into aqueous media for subsequent analysis. The entire process required only 7 min while enabling a 40-fold reduction in working volume from crude biological samples. The combination of a real-world interface and rapid DNA extraction offers the potential for the methodology to be used in point-of-care (POC) devices.
Collapse
Affiliation(s)
- O Mosley
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| | - L Melling
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| | - M D Tarn
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | - C Kemp
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | - M M N Esfahani
- School of Engineering, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - N Pamme
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | - K J Shaw
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
19
|
Ferguson JS, Sonetti DA. Surprised but Not Shaken: AQuIRE Sheds New Light on Innovations in Bronchoscopy. Am J Respir Crit Care Med 2016; 193:9-10. [PMID: 26720786 DOI: 10.1164/rccm.201509-1907ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- J Scott Ferguson
- 1 Division of Allergy, Pulmonary, and Critical Care Medicine University of Wisconsin-Madison Madison, Wisconsin
| | - David A Sonetti
- 1 Division of Allergy, Pulmonary, and Critical Care Medicine University of Wisconsin-Madison Madison, Wisconsin
| |
Collapse
|
20
|
The incorporation of microfluidics into circulating tumor cell isolation for clinical applications. Curr Opin Chem Eng 2016; 11:59-66. [PMID: 27857883 DOI: 10.1016/j.coche.2016.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The second leading cause of death in the United States, cancer is at its most dangerous as it spreads to secondary locations. Cancer cells in the blood stream, or circulating tumor cells (CTCs), present an opportunity to study metastasis provided they may be extracted successfully from blood. Engineers have accelerated the development of technologies that achieve this goal based on exploiting differences between tumor cells and surrounding blood cells such as varying expression patterns of membrane proteins or physical characteristics. Collaboration with biologists and clinicians has allowed additional analysis and will lead to the use of these rare cells to their full potential in the fight against cancer.
Collapse
|
21
|
Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering. SENSORS 2015; 15:31142-70. [PMID: 26690442 PMCID: PMC4721768 DOI: 10.3390/s151229848] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/16/2015] [Accepted: 12/04/2015] [Indexed: 12/24/2022]
Abstract
Recent advances in biomedical technologies are mostly related to the convergence of biology with microengineering. For instance, microfluidic devices are now commonly found in most research centers, clinics and hospitals, contributing to more accurate studies and therapies as powerful tools for drug delivery, monitoring of specific analytes, and medical diagnostics. Most remarkably, integration of cellularized constructs within microengineered platforms has enabled the recapitulation of the physiological and pathological conditions of complex tissues and organs. The so-called “organ-on-a-chip” technology, which represents a new avenue in the field of advanced in vitro models, with the potential to revolutionize current approaches to drug screening and toxicology studies. This review aims to highlight recent advances of microfluidic-based devices towards a body-on-a-chip concept, exploring their technology and broad applications in the biomedical field.
Collapse
|
22
|
Stedtfeld RD, Liu YC, Stedtfeld TM, Kostic T, Kronlein M, Srivannavit O, Khalife WT, Tiedje JM, Gulari E, Hughes M, Etchebarne B, Hashsham SA. Static self-directed sample dispensing into a series of reaction wells on a microfluidic card for parallel genetic detection of microbial pathogens. Biomed Microdevices 2015; 17:89. [PMID: 26260693 PMCID: PMC4531140 DOI: 10.1007/s10544-015-9994-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A microfluidic card is described for simultaneous and rapid genetic detection of multiple microbial pathogens. The hydrophobic surface of native acrylic and a novel microfluidic mechanism termed "airlock" were used to dispense sample into a series of 64 reaction wells without the use of valves, external pumping peripherals, multiple layers, or vacuum assistance. This airlock mechanism was tested with dilutions of whole human blood, saliva, and urine, along with mock samples of varying viscosities and surface tensions. Samples spiked with genomic DNA (gDNA) or crude lysates from clinical bacterial isolates were tested with loop mediated isothermal amplification assays (LAMP) designed to target virulence and antibiotic resistance genes. Reactions were monitored in real time using the Gene-Z, which is a portable smartphone-driven system. Samples loaded correctly into the microfluidic card in 99.3% of instances. Amplification results confirmed no carryover of pre-dispensed primer between wells during sample loading, and no observable diffusion between adjacent wells during the 60 to 90 min isothermal reaction. Sensitivity was comparable between LAMP reactions tested within the microfluidic card and in conventional vials. Tests demonstrate that the airlock card works with various sample types, manufacturing techniques, and can potentially be used in many point-of-care diagnostics applications.
Collapse
Affiliation(s)
- Robert D. Stedtfeld
- />Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Yen-Cheng Liu
- />Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Tiffany M. Stedtfeld
- />Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Tanja Kostic
- />Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824 USA
- />Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, A-3430 Tulln, Austria
| | - Maggie Kronlein
- />Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Onnop Srivannavit
- />Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Walid T. Khalife
- />Department of Microbiology, Sparrow Laboratories, Sparrow Health System, Lansing, MI 48912 USA
| | - James M. Tiedje
- />The Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824 USA
- />Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 USA
| | - Erdogan Gulari
- />Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Mary Hughes
- />Department of Osteopathic Medical Specialties, Section of Emergency Medicine, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - Brett Etchebarne
- />Department of Osteopathic Medical Specialties, Section of Emergency Medicine, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - Syed A. Hashsham
- />Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824 USA
- />The Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
23
|
Yap TA, Lorente D, Omlin A, Olmos D, de Bono JS. Circulating tumor cells: a multifunctional biomarker. Clin Cancer Res 2015; 20:2553-68. [PMID: 24831278 DOI: 10.1158/1078-0432.ccr-13-2664] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
One of the most promising developments in translational cancer medicine has been the emergence of circulating tumor cells (CTC) as a minimally invasive multifunctional biomarker. CTCs in peripheral blood originate from solid tumors and are involved in the process of hematogenous metastatic spread to distant sites for the establishment of secondary foci of disease. The emergence of modern CTC technologies has enabled serial assessments to be undertaken at multiple time points along a patient's cancer journey for pharmacodynamic (PD), prognostic, predictive, and intermediate endpoint biomarker studies. Despite the promise of CTCs as multifunctional biomarkers, there are still numerous challenges that hinder their incorporation into standard clinical practice. This review discusses the key technical aspects of CTC technologies, including the importance of assay validation and clinical qualification, and compares existing and novel CTC enrichment platforms. This article discusses the utility of CTCs as a multifunctional biomarker and focuses on the potential of CTCs as PD endpoints either directly via the molecular characterization of specific markers or indirectly through CTC enumeration. We propose strategies for incorporating CTCs as PD biomarkers in translational clinical trials, such as the Pharmacological Audit Trail. We also discuss issues relating to intrapatient heterogeneity and the challenges associated with isolating CTCs undergoing epithelial-mesenchymal transition, as well as apoptotic and small CTCs. Finally, we envision the future promise of CTCs for the selection and monitoring of antitumor precision therapies, including applications in single CTC phenotypic and genomic profiling and CTC-derived xenografts, and discuss the promises and limitations of such approaches. See ALL articles in this CCR focus section, "Progress in pharmacodynamic endpoints."
Collapse
Affiliation(s)
- Timothy A Yap
- Authors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, SpainAuthors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, Spain
| | - David Lorente
- Authors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, SpainAuthors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, Spain
| | - Aurelius Omlin
- Authors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, Spain
| | - David Olmos
- Authors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, Spain
| | - Johann S de Bono
- Authors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, SpainAuthors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, Spain
| |
Collapse
|
24
|
Dickherber A, Sorg B, Divi R, Ganguly A, Ossandon M. Guest editorial: funding for innovative cancer-relevant technology development. LAB ON A CHIP 2014; 14:3445-3446. [PMID: 25032520 DOI: 10.1039/c4lc90059f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Anthony Dickherber
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
25
|
Phurimsak C, Yildirim E, Tarn MD, Trietsch SJ, Hankemeier T, Pamme N, Vulto P. Phaseguide assisted liquid lamination for magnetic particle-based assays. LAB ON A CHIP 2014; 14:2334-2343. [PMID: 24832933 DOI: 10.1039/c4lc00139g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We have developed a magnetic particle-based assay platform in which functionalised magnetic particles are transferred sequentially through laminated volumes of reagents and washing buffers. Lamination of aqueous liquids is achieved via the use of phaseguide technology; microstructures that control the advancing air-liquid interface of solutions as they enter a microfluidic chamber. This allows manual filling of the device, eliminating the need for external pumping systems, and preparation of the system requires only a few minutes. Here, we apply the platform to two on-chip strategies: (i) a one-step streptavidin-biotin binding assay, and (ii) a two-step C-reactive protein immunoassay. With these, we demonstrate how condensing multiple reaction and washing processes into a single step significantly reduces procedural times, with both assay procedures requiring less than 8 seconds.
Collapse
Affiliation(s)
- Chayakom Phurimsak
- Department of Chemistry, The University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | | | | | | | | | | | | |
Collapse
|
26
|
Yu ZTF, Yong KMA, Fu J. Microfluidic blood cell sorting: now and beyond. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:1687-703. [PMID: 24515899 PMCID: PMC4013196 DOI: 10.1002/smll.201302907] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 12/16/2013] [Indexed: 05/15/2023]
Abstract
Blood plays an important role in homeostatic regulation with each of its cellular components having important therapeutic and diagnostic uses. Therefore, separation and sorting of blood cells hasa been of a great interest to clinicians and researchers. However, while conventional methods of processing blood have been successful in generating relatively pure fractions, they are time consuming, labor intensive, and are not optimal for processing small volume blood samples. In recent years, microfluidics has garnered great interest from clinicians and researchers as a powerful technology for separating blood into different cell fractions. As microfluidics involves fluid manipulation at the microscale level, it has the potential for achieving high-resolution separation and sorting of blood cells down to a single-cell level, with an added benefit of integrating physical and biological methods for blood cell separation and analysis on the same single chip platform. This paper will first review the conventional methods of processing and sorting blood cells, followed by a discussion on how microfluidics is emerging as an efficient tool to rapidly change the field of blood cell sorting for blood-based therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Zeta Tak For Yu
- Integrated Biosystems and Biomechanics Laboratory, University of
Michigan, Ann Arbor, Michigan, USA
- Department of Mechanical Engineering, University of Michigan, Ann
Arbor, Michigan, USA
| | - Koh Meng Aw Yong
- Integrated Biosystems and Biomechanics Laboratory, University of
Michigan, Ann Arbor, Michigan, USA
- Department of Mechanical Engineering, University of Michigan, Ann
Arbor, Michigan, USA
| | - Jianping Fu
- Integrated Biosystems and Biomechanics Laboratory, University of
Michigan, Ann Arbor, Michigan, USA
- Department of Mechanical Engineering, University of Michigan, Ann
Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann
Arbor, Michigan, USA
| |
Collapse
|