1
|
Tunca Arın TA, Sedlacek O. Stimuli-Responsive Polymers for Advanced 19F Magnetic Resonance Imaging: From Chemical Design to Biomedical Applications. Biomacromolecules 2024; 25:5630-5649. [PMID: 39151065 PMCID: PMC11388145 DOI: 10.1021/acs.biomac.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/18/2024]
Abstract
Fluorine magnetic resonance imaging (19F MRI) is a rapidly evolving research area with a high potential to advance the field of clinical diagnostics. In this review, we provide an overview of the recent progress in the field of fluorinated stimuli-responsive polymers applied as 19F MRI tracers. These polymers respond to internal or external stimuli (e.g., temperature, pH, oxidative stress, and specific molecules) by altering their physicochemical properties, such as self-assembly, drug release, and polymer degradation. Incorporating noninvasive 19F labels enables us to track the biodistribution of such polymers. Furthermore, by triggering polymer transformation, we can induce changes in 19F MRI signals, including attenuation, amplification, and chemical shift changes, to monitor alterations in the environment of the tracer. Ultimately, this review highlights the emerging potential of stimuli-responsive fluoropolymer 19F MRI tracers in the current context of polymer diagnostics research.
Collapse
Affiliation(s)
- Tuba Ayça Tunca Arın
- Department of Physical and
Macromolecular Chemistry, Faculty of Science, Charles University, 128 00 Prague 2, Czech Republic
| | - Ondrej Sedlacek
- Department of Physical and
Macromolecular Chemistry, Faculty of Science, Charles University, 128 00 Prague 2, Czech Republic
| |
Collapse
|
2
|
Zhang Z, Chen K, Ameduri B, Chen M. Fluoropolymer Nanoparticles Synthesized via Reversible-Deactivation Radical Polymerizations and Their Applications. Chem Rev 2023; 123:12431-12470. [PMID: 37906708 DOI: 10.1021/acs.chemrev.3c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Fluorinated polymeric nanoparticles (FPNPs) combine unique properties of fluorocarbon and polymeric nanoparticles, which has stimulated massive interest for decades. However, fluoropolymers are not readily available from nature, resulting in synthetic developments to obtain FPNPs via free radical polymerizations. Recently, while increasing cutting-edge directions demand tailored FPNPs, such materials have been difficult to access via conventional approaches. Reversible-deactivation radical polymerizations (RDRPs) are powerful methods to afford well-defined polymers. Researchers have applied RDRPs to the fabrication of FPNPs, enabling the construction of particles with improved complexity in terms of structure, composition, morphology, and functionality. Related examples can be classified into three categories. First, well-defined fluoropolymers synthesized via RDRPs have been utilized as precursors to form FPNPs through self-folding and solution self-assembly. Second, thermally and photoinitiated RDRPs have been explored to realize in situ preparations of FPNPs with varied morphologies via polymerization-induced self-assembly and cross-linking copolymerization. Third, grafting from inorganic nanoparticles has been investigated based on RDRPs. Importantly, those advancements have promoted studies toward promising applications, including magnetic resonance imaging, biomedical delivery, energy storage, adsorption of perfluorinated alkyl substances, photosensitizers, and so on. This Review should present useful knowledge to researchers in polymer science and nanomaterials and inspire innovative ideas for the synthesis and applications of FPNPs.
Collapse
Affiliation(s)
- Zexi Zhang
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Kaixuan Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Bruno Ameduri
- Institute Charles Gerhardt of Montpellier (ICGM), CNRS, University of Montpellier, ENSCM, Montpellier 34296, France
| | - Mao Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
3
|
Duan Z, Liu C, Tang J, Zhang R, Peng D, Lu R, Cao Z, Wu D. Fluorinated hydrogel nanoparticles with regulable fluorine contents and T2 relaxation times as 19F MRI contrast agents. RSC Adv 2023; 13:22335-22345. [PMID: 37497094 PMCID: PMC10366653 DOI: 10.1039/d3ra02827e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
Medical imaging contrast agents that are able to provide detailed biological information have attracted increasing attention. Among the new emerging imaging contrast agents, 19F magnetic resonance imaging contrast agents (19F MRI CAs) are extremely promising for their weak background disturbing signal from the body. However, to prepare 19F MRI CAs with a long T2 relaxation time and excellent biocompatibility in a simple and highly effective strategy is still a challenge. Herein, we report a new type of 19F MRI hydrogel nanocontrast agents (19F MRI HNCAs) synthesized by a surfactant-free emulsion polymerization with commercial fluorinated monomers. The T2 relaxation time of 19F MRI HNCA-1 was found to be 25-40 ms, guaranteeing its good imaging ability in vitro. In addition, according to an investigation into the relationship between the fluorine content and 19F MRI signal intensity, the 19F MRI signal intensity was not only determined by the fluorine content in 19F MRI HNCAs but also by the hydration microenvironment around the fluorine atoms. Moreover, 19F MRI HNCAs demonstrated excellent biocompatibility and imaging capability inside cells. The primary exploration demonstrated that 19F MRI HNCAs as a new type of 19F MRI contrast agent hold potential for imaging lesion sites and tracking cells in vivo by 19F MRI technology.
Collapse
Affiliation(s)
- Ziwei Duan
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University Shenzhen 518107 China
| | - Changjiang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University Shenzhen 518107 China
| | - Junjie Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University Shenzhen 518107 China
| | - Ruling Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University Shenzhen 518107 China
| | - Danfeng Peng
- Shenzhen International Institute for Biomedical Research Shenzhen 518109 China
| | - Ruitao Lu
- Shenzhen International Institute for Biomedical Research Shenzhen 518109 China
| | - Zong Cao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University Shenzhen 518107 China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University Shenzhen 518107 China
| |
Collapse
|
4
|
Alhaidari LM, Spain SG. Synthesis of 5-Fluorouracil Polymer Conjugate and 19F NMR Analysis of Drug Release for MRI Monitoring. Polymers (Basel) 2023; 15:polym15071778. [PMID: 37050392 PMCID: PMC10097235 DOI: 10.3390/polym15071778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
To monitor the release of fluorinated drugs from polymeric carriers, a novel 19F MRI enzyme-responsive contrast agent was developed and tested. This contrast agent was prepared by conjugation of 5-fluorouracil (5-FU) to hyperbranched poly(N,N-dimethylacrylamide) (HB-PDMA) via an enzyme-degradable peptide linker. Due to the different molecular sizes, the release of 5-FU from the 5-FU polymer conjugate resulted in a sufficiently substantial difference in spin-spin T2 19F NMR/MRI relaxation time that enabled differentiating between attached and released drug states. The 5-FU polymer conjugate exhibited a broad signal and short T2 relaxation time under 19F NMR analysis. Incubation with the enzyme induced the release of 5-FU, accompanied by an extension of T2 relaxation times and an enhancement in the 19F MRI signal. This approach is promising for application in the convenient monitoring of 5-FU drug release and can be used to monitor the release of other fluorinated drugs.
Collapse
Affiliation(s)
- Laila M. Alhaidari
- Department of Chemistry, Faculty of Science, University of Majmaah, Majmaah 11952, Saudi Arabia
| | - Sebastian G. Spain
- Department of Chemistry, Dainton Building, University of Sheffield, Sheffield S3 7HF, UK
| |
Collapse
|
5
|
Yang X, Ning J, Zhao Y, Xu S, Wang L. Design of novel fluorinated probes for versatile surface functionalization and 19F magnetic resonance imaging. Chem Asian J 2022; 17:e202200397. [DOI: 10.1002/asia.202200397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Xi Yang
- Beijing University of Chemical Technology College of Chemistry 100029 Beijing CHINA
| | - Jinchuang Ning
- Beijing University of Chemical Technology College of Chemistry 100029 Beijing CHINA
| | - Yingying Zhao
- Beijing University of Chemical Technology College of Chemistry CHINA
| | - Suying Xu
- Beijing University of Chemical Technology NO. 15, North 3rd ring Road,Chaoyang District Beijing CHINA
| | - Leyu Wang
- Beijing University of Chemical Technology College of Chemistry 100029 CHINA
| |
Collapse
|
6
|
Zalewski M, Janasik D, Kapała A, Minoshima M, Sugihara F, Raj W, Pietrasik J, Kikuchi K, Krawczyk T. Ph‐Sensitive Polymethacrylates as Potential Contrast Agents in
19
F MRI. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mariusz Zalewski
- Department of Chemical Organic Technology and Petrochemistry Silesian University of Technology Krzywoustego 4 Gliwice 44–100 Poland
| | - Dawid Janasik
- Department of Chemical Organic Technology and Petrochemistry Silesian University of Technology Krzywoustego 4 Gliwice 44–100 Poland
| | - Anna Kapała
- Department of Chemical Organic Technology and Petrochemistry Silesian University of Technology Krzywoustego 4 Gliwice 44–100 Poland
| | - Masafumi Minoshima
- Graduate School of Engineering Osaka University Yamadaoka 2‐1 Suita Osaka 565–0871 Japan
| | - Fuminori Sugihara
- Immunology Frontier Research Center Osaka University Yamadaoka 3‐1 Suita Osaka 565–0871 Japan
| | - Wojciech Raj
- Institute of Polymer and Dye Technology Lodz University of Technology Stefanowskiego 16 Lodz 90–537 Poland
| | - Joanna Pietrasik
- Institute of Polymer and Dye Technology Lodz University of Technology Stefanowskiego 16 Lodz 90–537 Poland
| | - Kazuya Kikuchi
- Graduate School of Engineering Osaka University Yamadaoka 2‐1 Suita Osaka 565–0871 Japan
| | - Tomasz Krawczyk
- Department of Chemical Organic Technology and Petrochemistry Silesian University of Technology Krzywoustego 4 Gliwice 44–100 Poland
| |
Collapse
|
7
|
Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Biological Utility of Fluorinated Compounds: from Materials Design to Molecular Imaging, Therapeutics and Environmental Remediation. Chem Rev 2022; 122:167-208. [PMID: 34609131 DOI: 10.1021/acs.chemrev.1c00632] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The applications of fluorinated molecules in bioengineering and nanotechnology are expanding rapidly with the controlled introduction of fluorine being broadly studied due to the unique properties of C-F bonds. This review will focus on the design and utility of C-F containing materials in imaging, therapeutics, and environmental applications with a central theme being the importance of controlling fluorine-fluorine interactions and understanding how such interactions impact biological behavior. Low natural abundance of fluorine is shown to provide sensitivity and background advantages for imaging and detection of a variety of diseases with 19F magnetic resonance imaging, 18F positron emission tomography and ultrasound discussed as illustrative examples. The presence of C-F bonds can also be used to tailor membrane permeability and pharmacokinetic properties of drugs and delivery agents for enhanced cell uptake and therapeutics. A key message of this review is that while the promise of C-F containing materials is significant, a subset of highly fluorinated compounds such as per- and polyfluoroalkyl substances (PFAS), have been identified as posing a potential risk to human health. The unique properties of the C-F bond and the significant potential for fluorine-fluorine interactions in PFAS structures necessitate the development of new strategies for facile and efficient environmental removal and remediation. Recent progress in the development of fluorine-containing compounds as molecular imaging and therapeutic agents will be reviewed and their design features contrasted with environmental and health risks for PFAS systems. Finally, present challenges and future directions in the exploitation of the biological aspects of fluorinated systems will be described.
Collapse
Affiliation(s)
- Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Kai Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
8
|
Mali A, Kaijzel EL, Lamb HJ, Cruz LJ. 19F-nanoparticles: Platform for in vivo delivery of fluorinated biomaterials for 19F-MRI. J Control Release 2021; 338:870-889. [PMID: 34492234 DOI: 10.1016/j.jconrel.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
Fluorine-19 (19F) magnetic resonance imaging (MRI) features one of the most investigated and innovative techniques for quantitative and unambiguous cell tracking, providing information for both localization and number of cells. Because of the relative insensitivity of the MRI technique, a high number of magnetically equivalent fluorine atoms are required to gain detectable signals. However, an increased amount of 19F nuclei induces low solubility in aqueous solutions, making fluorine-based probes not suitable for in vivo imaging applications. In this context, nanoparticle-based platforms play a crucial role, since nanoparticles may carry a high payload of 19F-based contrast agents into the relevant cells or tissues, increase the imaging agents biocompatibility, and provide a highly versatile platform. In this review, we present an overview of the 19F-based nanoprobes for sensitive 19F-MRI, focusing on the main nanotechnologies employed to date, such as fluorine and theranostic nanovectors, including their design and applications.
Collapse
Affiliation(s)
- Alvja Mali
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Eric L Kaijzel
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
9
|
Structurally nanoengineered antimicrobial peptide polymers: design, synthesis and biomedical applications. World J Microbiol Biotechnol 2021; 37:139. [PMID: 34278535 PMCID: PMC8286942 DOI: 10.1007/s11274-021-03109-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/12/2021] [Indexed: 11/02/2022]
Abstract
Antimicrobial resistance not only increases the contagiousness of infectious diseases but also a threat for the future as it is one of the health care concern around the globe. Conventional antibiotics are unsuccessful in combating chronic infections caused by multidrug-resistant (MDR) bacteria, therefore it is important to design and develop novel strategies to tackle this problems. Among various novel strategies, Structurally Nanoengineered Antimicrobial Peptide Polymers (SNAPPs) have been introduced in recent years to overcome this global health care issue and they are found to be more efficient in their performance. Many facile methods are adapted to synthesize complex SNAPPs with required dimensions and unique functionalities. Their unique characteristics and remarkable properties have been exploited for their immense applications in various fields including biomedicine, targeting therapies, gene delivery, bioimaging, and many more. This review article deals with its background, design, synthesis, mechanism of action, and wider applications in various fields of SNAPPs.
Collapse
|
10
|
Kaberov LI, Kaberova Z, Murmiliuk A, Trousil J, Sedláček O, Konefal R, Zhigunov A, Pavlova E, Vít M, Jirák D, Hoogenboom R, Filippov SK. Fluorine-Containing Block and Gradient Copoly(2-oxazoline)s Based on 2-(3,3,3-Trifluoropropyl)-2-oxazoline: A Quest for the Optimal Self-Assembled Structure for 19F Imaging. Biomacromolecules 2021; 22:2963-2975. [PMID: 34180669 DOI: 10.1021/acs.biomac.1c00367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of fluorinated contrast agents in magnetic resonance imaging (MRI) facilitates improved image quality due to the negligible amount of endogenous fluorine atoms in the body. In this work, we present a comprehensive study of the influence of the amphiphilic polymer structure and composition on its applicability as contrast agents in 19F MRI. Three series of novel fluorine-containing poly(2-oxazoline) copolymers and terpolymers, hydrophilic-fluorophilic, hydrophilic-lipophilic-fluorophilic, and hydrophilic-thermoresponsive-fluorophilic, with block and gradient distributions of the fluorinated units, were synthesized. It was discovered that the CF3 in the 2-(3,3,3-trifluoropropyl)-2-oxazoline (CF3EtOx) group activated the cationic chain end, leading to faster copolymerization kinetics, whereby spontaneous monomer gradients were formed with accelerated incorporation of 2-methyl-2-oxazoline or 2-n-propyl-2-oxazoline with a gradual change to the less-nucleophilic CF3EtOx monomer. The obtained amphiphilic copolymers and terpolymers form spherical or wormlike micelles in water, which was confirmed using transmission electron microscopy (TEM), while small-angle X-ray scattering (SAXS) revealed the core-shell or core-double-shell morphologies of these nanoparticles. The core and shell sizes obey the scaling laws for starlike micelles predicted by the scaling theory. Biocompatibility studies confirm that all copolymers obtained are noncytotoxic and, at the same time, exhibit high sensitivity during in vitro 19F MRI studies. The gradient copolymers provide the best 19F MRI signal-to-noise ratio in comparison with the analogue block copolymer structures, making them most promising as 19F MRI contrast agents.
Collapse
Affiliation(s)
- Leonid I Kaberov
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Zhansaya Kaberova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Anastasiia Murmiliuk
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague, Czech Republic
| | - Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Ondřej Sedláček
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague, Czech Republic.,Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Rafal Konefal
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Alexander Zhigunov
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Martin Vít
- Faculty of Mechatronics Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic
| | - Daniel Jirák
- Institute for Clinical and Experimental Medicine, Vídeňská 9, 140 21 Prague, Czech Republic.,Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovská 1, 120 00 Prague, Czech Republic
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Sergey K Filippov
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland.,Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| |
Collapse
|
11
|
Lv J, Cheng Y. Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chem Soc Rev 2021; 50:5435-5467. [DOI: 10.1039/d0cs00258e] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomedical applications of fluoropolymers in gene delivery, protein delivery, drug delivery, 19F MRI, PDT, anti-fouling, anti-bacterial, cell culture, and tissue engineering.
Collapse
Affiliation(s)
- Jia Lv
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| |
Collapse
|
12
|
Carrazzone RJ, Foster JC, Li Z, Matson JB. Tuning small molecule release from polymer micelles: Varying H 2S release through cross linking in the micelle core. Eur Polym J 2020; 141:110077. [PMID: 33162563 PMCID: PMC7643851 DOI: 10.1016/j.eurpolymj.2020.110077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polymer micelles, used extensively as vehicles in the delivery of active pharmaceutical ingredients, represent a versatile polymer architecture in drug delivery systems. We hypothesized that degree of crosslinking in the hydrophobic core of amphiphilic block copolymer micelles could be used to tune the rate of release of the biological signaling gas (gasotransmitter) hydrogen sulfide (H2S), a potential therapeutic. To test this hypothesis, we first synthesized amphiphilic block copolymers of the structure PEG-b-P(FBEA) (PEG = poly(ethylene glycol), FBEA = 2-(4-formylbenzoyloxy)ethyl acrylate). Using a modified arm-first approach, we then varied the crosslinking percentage in the core-forming block via addition of a 'O,O'-alkanediyl bis(hydroxylamine) crosslinking agent. We followed incorporation of the crosslinker by 1H NMR spectroscopy, monitoring the appearance of the oxime signal resulting from reaction of pendant aryl aldehydes on the block copolymer with hydroxylamines on the crosslinker, which revealed crosslinking percentages of 5, 10, and 15%. We then installed H2S-releasing S-aroylthiooxime (SATO) groups on the crosslinked polymers, yielding micelles with SATO units in their hydrophobic cores after self-assembly in water. H2S release studies in water, using cysteine (Cys) as a trigger to induce H2S release from the SATO groups in the micelle core, revealed increasing half-lives of H2S release, from 117 ± 6 min to 210 ± 30 min, with increasing crosslinking density in the micelle core. This result was consistent with our hypothesis, and we speculate that core crosslinking limits the rate of Cys diffusion into the micelle core, decreasing the release rate. This method for tuning the release of covalently linked small molecules through modulation of micelle core crosslinking density may extend beyond H2S to other drug delivery systems where precise control of release rate is needed.
Collapse
Affiliation(s)
- Ryan J. Carrazzone
- Department of Chemistry, Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Jeffrey C. Foster
- Department of Chemistry, Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Zhao Li
- Department of Chemistry, Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, United States
| | - John B. Matson
- Department of Chemistry, Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, United States
| |
Collapse
|
13
|
|
14
|
Taylor NG, Chung SH, Kwansa AL, Johnson RR, Teator AJ, Milliken NJB, Koshlap KM, Yingling YG, Lee YZ, Leibfarth FA. Partially Fluorinated Copolymers as Oxygen Sensitive
19
F MRI Agents. Chemistry 2020; 26:9982-9990. [DOI: 10.1002/chem.202001505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/19/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Nicholas G. Taylor
- Department of Chemistry The University of North Carolina at Chapel Hill 125 South Rd Chapel Hill NC 27599 USA
| | - Sang Hun Chung
- Department of Radiology The University of North Carolina at Chapel Hill 101 Manning Dr Chapel Hill NC 27599 USA
| | - Albert L. Kwansa
- Department of Materials Science and Engineering North Carolina State University 911 Partners Way Raleigh NC 27695 USA
| | - Rob R. Johnson
- Department of Chemistry The University of North Carolina at Chapel Hill 125 South Rd Chapel Hill NC 27599 USA
| | - Aaron J. Teator
- Department of Chemistry The University of North Carolina at Chapel Hill 125 South Rd Chapel Hill NC 27599 USA
| | - Nina J. B. Milliken
- Department of Materials Science and Engineering North Carolina State University 911 Partners Way Raleigh NC 27695 USA
| | - Karl M. Koshlap
- Eshelman School of Pharmacy The University of North Carolina at Chapel Hill 301 Pharmacy Ln Chapel Hill NC 27599 USA
| | - Yaroslava G. Yingling
- Department of Materials Science and Engineering North Carolina State University 911 Partners Way Raleigh NC 27695 USA
| | - Yueh Z. Lee
- Department of Radiology The University of North Carolina at Chapel Hill 101 Manning Dr Chapel Hill NC 27599 USA
| | - Frank A. Leibfarth
- Department of Chemistry The University of North Carolina at Chapel Hill 125 South Rd Chapel Hill NC 27599 USA
| |
Collapse
|
15
|
Bej R, Dey P, Ghosh S. Disulfide chemistry in responsive aggregation of amphiphilic systems. SOFT MATTER 2020; 16:11-26. [PMID: 31776542 DOI: 10.1039/c9sm01960j] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The dynamic nature of the disulfide bond has enhanced the potential for disulfide based amphiphiles in the emerging biomedical field. Disulfide containing amphiphiles have extensively been used for constructing wide ranging soft nanostructures as potential candidates for delivery of drugs, proteins and genes owing to their degradable nature in the presence of intracellular glutathione (present in a many fold excess compared to the extracellular milieu). This degradable nature of amphiphiles is not only useful to deliver therapeutics but it also eliminates the toxicity issues associated with the carrier after delivery of such therapeutics. Therefore, these bioreducible and biocompatible nano-aggregates inspired researchers to use them as vehicles for therapeutic delivery and as a result the literature of disulfide containing amphiphiles has been intensified. This review article highlights the structural diversity in disulfide containing amphiphilic small molecule and polymeric systems, structural effects on their aqueous aggregation, redox-responsive disassembly and biological applications. Furthermore, the use of disulfide chemistry towards the design of cell penetrating polymers has also been discussed. Finally a brief perspective on some future opportunities of these systems is provided.
Collapse
Affiliation(s)
- Raju Bej
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Pradip Dey
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
16
|
Celentano W, Neri G, Distante F, Li M, Messa P, Chirizzi C, Chaabane L, De Campo F, Metrangolo P, Baldelli Bombelli F, Cellesi F. Design of fluorinated hyperbranched polyether copolymers for 19F MRI nanotheranostics. Polym Chem 2020. [DOI: 10.1039/d0py00393j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
19F MRI contrast agents and drug nanocarriers based on fluorinated hyperbranched polyether copolymers.
Collapse
Affiliation(s)
- Wanda Celentano
- Dipartimento di Chimica
- Materiali ed Ingegneria Chimica “G. Natta”
- Politecnico di Milano
- 20131 Milan
- Italy
| | - Giulia Neri
- Dipartimento di Chimica
- Materiali ed Ingegneria Chimica “G. Natta”
- Politecnico di Milano
- 20131 Milan
- Italy
| | - Francesco Distante
- ETH Zurich
- Department of Chemistry and Applied Biosciences
- Institute of Chemical and Bioengineering
- CH-8093 Zurich
- Switzerland
| | - Min Li
- Renal Research Laboratory
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico
- 20122 Milan
- Italy
| | - Piergiorgio Messa
- Renal Research Laboratory
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico
- 20122 Milan
- Italy
| | - Cristina Chirizzi
- Institute of Experimental Neurology (INSPE) and Imaging (CIS)
- IRCCS San Raffaele Scientific Institute
- I-20132 Milan
- Italy
| | - Linda Chaabane
- Institute of Experimental Neurology (INSPE) and Imaging (CIS)
- IRCCS San Raffaele Scientific Institute
- I-20132 Milan
- Italy
| | | | - Pierangelo Metrangolo
- Dipartimento di Chimica
- Materiali ed Ingegneria Chimica “G. Natta”
- Politecnico di Milano
- 20131 Milan
- Italy
| | | | - Francesco Cellesi
- Dipartimento di Chimica
- Materiali ed Ingegneria Chimica “G. Natta”
- Politecnico di Milano
- 20131 Milan
- Italy
| |
Collapse
|
17
|
Gibson TJ, Smyth P, Semsarilar M, McCann AP, McDaid WJ, Johnston MC, Scott CJ, Themistou E. Star polymers with acid-labile diacetal-based cores synthesized by aqueous RAFT polymerization for intracellular DNA delivery. Polym Chem 2020. [DOI: 10.1039/c9py00573k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Facile low temperature aqueous heterogeneous RAFT polymerization for preparation of novel star polymers with acid-labile diacetal-based cores for DNA delivery.
Collapse
Affiliation(s)
- Thomas J. Gibson
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast BT9 5AG
- UK
| | - Peter Smyth
- Centre for Cancer Research & Cell Biology
- Queen's University Belfast
- Belfast BT9 7AE
- UK
| | - Mona Semsarilar
- Institut Européen des Membranes
- IEM
- UMR 5635
- Université de Montpellier
- ENSCM
| | - Aidan P. McCann
- Centre for Cancer Research & Cell Biology
- Queen's University Belfast
- Belfast BT9 7AE
- UK
| | - William J. McDaid
- Centre for Cancer Research & Cell Biology
- Queen's University Belfast
- Belfast BT9 7AE
- UK
| | - Michael C. Johnston
- Centre for Cancer Research & Cell Biology
- Queen's University Belfast
- Belfast BT9 7AE
- UK
| | - Christopher J. Scott
- Centre for Cancer Research & Cell Biology
- Queen's University Belfast
- Belfast BT9 7AE
- UK
| | - Efrosyni Themistou
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast BT9 5AG
- UK
| |
Collapse
|
18
|
Zhang M, Lai Y, Li M, Hong T, Wang W, Yu H, Li L, Zhou Q, Ke Y, Zhan X, Zhu T, Huang C, Yin P. The Microscopic Structure–Property Relationship of Metal–Organic Polyhedron Nanocomposites. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mingxin Zhang
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Yuyan Lai
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Tao Hong
- Deparmemt of ChemistryUniversity of Tennessee, Knoxville Knoxville Tennessee 37996 USA
| | - Weiyu Wang
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Haitao Yu
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Lengwan Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Qianjie Zhou
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Yubin Ke
- China Spallation Neutron SourceInstitute of High Energy PhysicsChinese Academy of Science Dongguan 523000 China
| | - Xiaozhi Zhan
- China Spallation Neutron SourceInstitute of High Energy PhysicsChinese Academy of Science Dongguan 523000 China
| | - Tao Zhu
- Institute of PhysicsChinese Academy of Science Beijing 100190 China
| | - Caili Huang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| |
Collapse
|
19
|
Zhang M, Lai Y, Li M, Hong T, Wang W, Yu H, Li L, Zhou Q, Ke Y, Zhan X, Zhu T, Huang C, Yin P. The Microscopic Structure-Property Relationship of Metal-Organic Polyhedron Nanocomposites. Angew Chem Int Ed Engl 2019; 58:17412-17417. [PMID: 31545541 DOI: 10.1002/anie.201909241] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/15/2019] [Indexed: 12/11/2022]
Abstract
Monodispersed hairy nanocomposites with typical 2 nm (isophthalic acid)24 Cu24 metal-organic polyhedra (MOP) as a core protected by 24 polymer chains with controlled narrow molecular weight distribution has been probed by imaging and scattering studies for the heterogeneity of polymers in the nanocomposites and the confinement effect the MOPs imposing on anchored polymers. Typical confined-extending surrounded by one entanglement area is proposed to describe the physical states of the polymer chains. This model dictates the counterintuitive thermal and rheological properties and prohibited solvent exchange properties of the nanocomposites, whilst those polymer chain states are tunable and deterministic based on their component inputs. From the relationship between the structure and behavior of the MOP nanocomposites, a MOP-composited thermoplastic elastomer was obtained, providing practical solutions to improve mechanical/rheological performances and processabilities of inorganic MOPs.
Collapse
Affiliation(s)
- Mingxin Zhang
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yuyan Lai
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Tao Hong
- Deparmemt of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee, 37996, USA
| | - Weiyu Wang
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Haitao Yu
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Lengwan Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Qianjie Zhou
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yubin Ke
- China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Science, Dongguan, 523000, China
| | - Xiaozhi Zhan
- China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Science, Dongguan, 523000, China
| | - Tao Zhu
- Institute of Physics, Chinese Academy of Science, Beijing, 100190, China
| | - Caili Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
20
|
Munkhbat O, Canakci M, Zheng S, Hu W, Osborne B, Bogdanov AA, Thayumanavan S. 19F MRI of Polymer Nanogels Aided by Improved Segmental Mobility of Embedded Fluorine Moieties. Biomacromolecules 2019; 20:790-800. [PMID: 30563327 PMCID: PMC6449047 DOI: 10.1021/acs.biomac.8b01383] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Using fluorinated probes for 19F MRI imaging is an emerging field with potential utility in cellular imaging and cell tracking in vivo, which complements conventional 1H MRI. An attractive feature of 19F-based imaging is that this is a bio-orthogonal nucleus and the naturally abundant isotope is NMR active. A significant hurdle however in the 19F MRI arises from the tendency of organic macromolecules, with multiple fluorocarbon substitutions, to aggregate in the aqueous phase. This aggregation results in significant loss of sensitivity, because the T2 relaxation times of these aggregated 19F species tend to be significantly lower. In this report, we have developed a strategy to covalently trap nanoscopic states with an optimal degree of 19F substitutions, followed by significant enhancement in T2 relaxation times through increased segmental mobility of the side chain substituents facilitated by the stimulus-responsive elements in the polymeric nanogel. In addition to NMR relaxation time based evaluations, the ability to obtain such signals are also evaluated in mouse models. The propensity of these nanoscale assemblies to encapsulate hydrophobic drug molecules and the availability of surfaces for convenient introduction of fluorescent labels suggest the potential of these nanoscale architectures for use in multimodal imaging and therapeutic applications.
Collapse
Affiliation(s)
- Oyuntuya Munkhbat
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Mine Canakci
- Molecular and Cellular Biology Program , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Shaokuan Zheng
- Department of Radiology and the Laboratory of Molecular Imaging Probes and The Chemical Biology Interface Program , University of Massachusetts Medical School , Worcester , Massachusetts 01655 , United States
| | - Weiguo Hu
- Department of Polymer Science and Engineering , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Barbara Osborne
- Molecular and Cellular Biology Program , University of Massachusetts , Amherst , Massachusetts 01003 , United States
- The Center for Bioactive Delivery, Institute for Applied Life Sciences , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Alexei A Bogdanov
- Department of Radiology and the Laboratory of Molecular Imaging Probes and The Chemical Biology Interface Program , University of Massachusetts Medical School , Worcester , Massachusetts 01655 , United States
| | - S Thayumanavan
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
- Molecular and Cellular Biology Program , University of Massachusetts , Amherst , Massachusetts 01003 , United States
- The Center for Bioactive Delivery, Institute for Applied Life Sciences , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
21
|
Zhang C, Kim DS, Lawrence J, Hawker CJ, Whittaker AK. Elucidating the Impact of Molecular Structure on the 19F NMR Dynamics and MRI Performance of Fluorinated Oligomers. ACS Macro Lett 2018; 7:921-926. [PMID: 35650966 DOI: 10.1021/acsmacrolett.8b00433] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To understand molecular factors that impact the performance of polymeric 19F magnetic resonance imaging (MRI) agents, a series of discrete fluorinated oligoacrylates with precisely defined structure were prepared through the combination of controlled polymerization and chromatographic separation techniques. These discrete oligomers enabled thorough elucidation of the dependence of 19F NMR and MRI properties on molecular structure, for example, the chain length. Importantly, the oligomer size and dispersity strongly influence NMR dynamics (T1 and T2 relaxation times) and MR imaging properties with higher signal-to-noise ratio (SNR) observed for oligomers with longer chain length and shorter T1. Our approach enables an effective pathway and thus opportunities to rationally design effective polymeric 19F MR imaging agents with optimized molecular structure and NMR relaxivity.
Collapse
Affiliation(s)
| | - Dong Sub Kim
- Materials Research Laboratory, Materials Department and Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Jimmy Lawrence
- Materials Research Laboratory, Materials Department and Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Craig J. Hawker
- Materials Research Laboratory, Materials Department and Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | | |
Collapse
|
22
|
Wang X, Shen L, An Z. Dispersion polymerization in environmentally benign solvents via reversible deactivation radical polymerization. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.05.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Huang P, Guo W, Yang G, Song H, Wang Y, Wang C, Kong D, Wang W. Fluorine Meets Amine: Reducing Microenvironment-Induced Amino-Activatable Nanoprobes for 19F-Magnetic Resonance Imaging of Biothiols. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18532-18542. [PMID: 29775280 DOI: 10.1021/acsami.8b03764] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
19F-magnetic resonance imaging (MRI) is of great significance for noninvasive imaging and detection of various diseases. However, the main obstacle in the application of 19F-MRI agents stems from the unmet signal sensitivity due to the poor water solubility and restricted mobility of segments with high number of fluorine atoms. Herein, we report a kind of intracellular reducing microenvironment-induced amino-activatable 19F-MRI nanoprobe, which can be used for specific imaging of biothiols. In principle, the nanoprobe has an initial architecture of hydrophobic core, where the trifluoromethyl-containing segments are compactly packed and 19F NMR/MRI signals are quenched ("OFF" state). Upon encountering sulfydryl, the strong electron-withdrawing 2,4-dinitrobenzenesulfonyl groups are excised to recover secondary amino groups, whose p Ka is proved to be 7.21. As a consequence, the molecular weight loss of the hydrophobic segment and the protonation of amino groups induce significant disturbance of hydrophilic/hydrophobic balance, leading to the disassembly of the nanoprobes and regain of spin-spin relaxation and 19F NMR/MRI signals ("ON" state, T2 up to 296 ± 5.3 ms). This nanoprobe shows high sensitivity and selectivity to biothiols, enabling intracellular and intratumoral imaging of glutathione. Our study not only provides a new nanoprobe candidate for biothiols imaging in vivo but also a promising strategy for the molecular design of real water-soluble and highly sensitive 19F-MRI nanoprobes.
Collapse
Affiliation(s)
- Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , P. R. China
| | - Weisheng Guo
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology of China , Beijing 100190 , P. R. China
| | - Guang Yang
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
| | - Huijuan Song
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , P. R. China
| | - Yuqing Wang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology of China , Beijing 100190 , P. R. China
| | - Chun Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , P. R. China
- Department of Biomedical Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , P. R. China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , P. R. China
| |
Collapse
|
24
|
Synthesis of bioreducible core crosslinked star polymers with N,N′-bis(acryloyl)cystamine crosslinker via aqueous ethanol dispersion RAFT polymerization. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.05.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Moonshi SS, Zhang C, Peng H, Puttick S, Rose S, Fisk NM, Bhakoo K, Stringer BW, Qiao GG, Gurr PA, Whittaker AK. A unique 19F MRI agent for the tracking of non phagocytic cells in vivo. NANOSCALE 2018; 10:8226-8239. [PMID: 29682654 DOI: 10.1039/c8nr00703a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There is currently intense interest in new methods for understanding the fate of therapeutically-relevant cells, such as mesenchymal stem cells (MSCs). The absence of a confounding background signal and consequent unequivocal assignment makes 19F MRI one of the most attractive modalities for the tracking of injected cells in vivo. We describe here the synthesis of novel partly-fluorinated polymeric nanoparticles with small size and high fluorine content as MRI agents. The polymers, constructed from perfluoropolyether methacrylate (PFPEMA) and oligo(ethylene glycol) methacrylate (OEGMA) have favourable cell uptake profiles and excellent MRI performance. To facilitate cell studies the polymer was further conjugated with a fluorescent dye creating a dual-modal imaging agent. The efficacy of labelling of MSCs was assessed using 19F NMR, flow cytometry and confocal microscopy. The labelling efficiency of 2.6 ± 0.1 × 1012 19F atoms per cell, and viability of >90% demonstrates high uptake and good tolerance by the cells. This loading translates to a minimum 19F MRI detection sensitivity of ∼7.4 × 103 cells per voxel. Importantly, preliminary in vivo data demonstrate that labelled cells can be readily detected within a short acquisition scan period (12 minutes). Hence, these copolymers show outstanding potential for 19F MRI cellular tracking and for quantification of non-phagocytic and therapeutically-relevant cells in vivo.
Collapse
Affiliation(s)
- Shehzahdi S Moonshi
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, QLD 4072, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu W, Wijeratne S, Yang L, Bruening M. Porous star-star polyelectrolyte multilayers for protein binding. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.01.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Guo C, Xu S, Arshad A, Wang L. A pH-responsive nanoprobe for turn-on 19F-magnetic resonance imaging. Chem Commun (Camb) 2018; 54:9853-9856. [DOI: 10.1039/c8cc06129g] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A pH-responsive MRI nanoprobe was developed by partially replacing organic linkers in ZIF-8, which displays pH-responsive in vivo19F MRI ability.
Collapse
Affiliation(s)
- Chang Guo
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Anila Arshad
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
28
|
|
29
|
Cortez-Lemus NA, Licea-Claverie A. Preparation of a Mini-Library of Thermo-Responsive Star (NVCL/NVP-VAc) Polymers with Tailored Properties Using a Hexafunctional Xanthate RAFT Agent. Polymers (Basel) 2017; 10:E20. [PMID: 30966057 PMCID: PMC6414999 DOI: 10.3390/polym10010020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/16/2017] [Accepted: 12/20/2017] [Indexed: 01/02/2023] Open
Abstract
A mini-library of star-shaped thermoresponsive polymers having six arms was prepared using a hexafunctional xanthate by reversible addition⁻fragmentation chain transfer (RAFT) polymerization. Star polymers with homopolymeric arms of poly(N-vinylcaprolactam) (PNVCL), copolymeric arms of poly(N-vinylcaprolactam-co-N-vinylpyrrolidone) (PNVCL-co-PNVP) and also arms of block copolymers of PNVCL-b-PVAc, (PNVCL-co-PNVP)-b-PVAc, and combinations of them changing the order of the block was achieved exploiting the R-RAFT synthetic methodology (or R-group approach), wherein the thiocarbonyl group is transferred to the polymeric chain end. Taking advantage of the RAFT benefits, the molecular weight of the star polymers was controlled (Mn = 11,880⁻153,400 g/mol) to yield star polymers of different sizes and lower critical solution temperature (LCST) values. Removing the xanthate group of the star polymers allowed for the introduction of specific functional groups at the ends of the star arms and resulted in an increase of the LCST values. Star PNVCL-b-PVAc diblock copolymers with PVAc contents of 5⁻26 mol % were prepared; the hydrophobic segment (PVAc) is located at the end of the star arms. Interestingly, when the PVAc content was 5⁻7 mol %, the hydrodynamic diameter (Dh) value of the aggregates formed in water was almost the same sa the Dh of the corresponding PNVCL star homopolymers. It is proposed that these star block copolymers self-assemble into single flowerlike micelles, showing great stability in aqueous solution. Star block copolymers with the PVAc hydrophobic block in the core of the star, such as PVAc-b-(PNVCL-co-PNVP), form micellar aggregates in aqueous solution with Dh values in the range from ~115 to 245 nm while maintaining a thermoresponsive behavior. Micellar aggregates of selected star polymers were used to encapsulate methotrexate (MTX) showing their potential in the temperature controlled release of this antineoplasic drug. The importance of the order in which each block constituent is introduced in the arms of the star polymers for their solution/aggregation behavior is demonstrated.
Collapse
Affiliation(s)
- Norma Aidé Cortez-Lemus
- Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, A. P. 1166, Tijuana 22000, B. C., Mexico.
| | - Angel Licea-Claverie
- Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, A. P. 1166, Tijuana 22000, B. C., Mexico.
| |
Collapse
|
30
|
Zhang C, Moonshi SS, Han Y, Puttick S, Peng H, Magoling BJA, Reid JC, Bernardi S, Searles DJ, Král P, Whittaker AK. PFPE-Based Polymeric 19F MRI Agents: A New Class of Contrast Agents with Outstanding Sensitivity. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01285] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cheng Zhang
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
- ARC Centre of
Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Shehzahdi Shebbrin Moonshi
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
- ARC Centre of
Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | - Simon Puttick
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
- ARC Centre of
Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Hui Peng
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
- ARC Centre of
Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Bryan John Abel Magoling
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - James C. Reid
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Stefano Bernardi
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Debra J. Searles
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Petr Král
- Department
of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Andrew K. Whittaker
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
- ARC Centre of
Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
31
|
Ardana A, Whittaker AK, Thurecht KJ. Synthesis and post-polymerisation ligations of PEG-based hyperbranched polymers for RNA conjugation via reversible disulfide linkage. Macromol Res 2017. [DOI: 10.1007/s13233-017-5111-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
32
|
A Novel Gd-DTPA-conjugated Poly(L-γ-glutamyl-glutamine)-paclitaxel Polymeric Delivery System for Tumor Theranostics. Sci Rep 2017. [PMID: 28630436 PMCID: PMC5476566 DOI: 10.1038/s41598-017-03633-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The conventional chemotherapeutics could not be traced in vivo and provide timely feedback on the clinical effectiveness of drugs. In this study, poly(L-γ-glutamyl-glutamine)-paclitaxel (PGG-PTX), as a model polymer, was chemically conjugated with Gd-DTPA (Gd-diethylenetriaminepentaacetic acid), a T1-contrast agent of MRI, to prepare a Gd-DTPA-conjugated PGG-PTX (PGG-PTX-DTPA-Gd) delivery system used for tumor theranostics. PGG-PTX-DTPA-Gd can be self-assembled to NPs in water with a z-average hydrodynamic diameter about 35.9 nm. The 3 T MRI results confirmed that the relaxivity of PGG-PTX-DTPA-Gd NPs (r1 = 18.98 mM−1S−1) was increased nearly 4.9 times compared with that of free Gd-DTPA (r1 = 3.87 mM−1S−1). The in vivo fluorescence imaging results showed that PGG-PTX-DTPA-Gd NPs could be accumulated in the tumor tissue of NCI-H460 lung cancer animal model by EPR effect, which was similar to PGG-PTX NPs. The MRI results showed that compared with free Gd-DTPA, PGG-PTX-DTPA-Gd NPs showed significantly enhanced and prolonged signal intensity in tumor tissue, which should be attributed to the increased relaxivity and tumor accumulation. PGG-PTX-DTPA-Gd NPs also showed effective antitumor effect in vivo. These results indicated that PGG-PTX-DTPA-Gd NPs are an effective delivery system for tumor theranostics, and should have a potential value in personalized treatment of tumor.
Collapse
|
33
|
Guo C, Xu M, Xu S, Wang L. Multifunctional nanoprobes for both fluorescence and 19F magnetic resonance imaging. NANOSCALE 2017; 9:7163-7168. [PMID: 28513699 DOI: 10.1039/c7nr01858d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fluorescence is widely used for cell imaging due to its high sensitivity and rich color choice but limited for in vivo imaging because of its low light penetration. Meanwhile, magnetic resonance imaging (MRI) is widely applied for in vivo diagnosis but not suitable for cell imaging because of its low resolution. Compared to 1H-MRI, 19F-MRI is more suitable for clinical application due to its high sensitivity but fabricating 19F-MRI probes is a great challenge. Therefore, it is highly desirable to develop a dual-modal imaging probe for both cell fluorescence imaging and in vivo19F-MRI with high sensitivity and deep penetration. In this study, 19F moiety loaded nanocomposites with an organic fluorescent core were successfully prepared via a facile strategy by encapsulating organic dyes with oleylamine-functionalized polysuccinimide and 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDTES). The aggregation of organic fluorescent dyes in the core results in significant fluorescence for optical imaging, while the 19F moieties on PDTES allow for simultaneous 19F MRI. Moreover, the nanocomposites exhibited high water dispersibility and excellent biocompatibility. These properties make them promising for both cell imaging and in vivo imaging applications.
Collapse
Affiliation(s)
- Chang Guo
- State Key Laboratory of Chemical Resource Engineering, School of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | | | | | | |
Collapse
|
34
|
Zhao W, Ta HT, Zhang C, Whittaker AK. Polymerization-Induced Self-Assembly (PISA) - Control over the Morphology of 19F-Containing Polymeric Nano-objects for Cell Uptake and Tracking. Biomacromolecules 2017; 18:1145-1156. [DOI: 10.1021/acs.biomac.6b01788] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Zhao
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland 4072, Australia
| | - Hang T. Ta
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland 4072, Australia
| | - Cheng Zhang
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland 4072, Australia
| | - Andrew K. Whittaker
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland 4072, Australia
| |
Collapse
|
35
|
Development of highly-sensitive detection system in 19 F NMR for bioactive compounds based on the assembly of paramagnetic complexes with fluorinated cubic silsesquioxanes. Bioorg Med Chem 2017; 25:1389-1393. [DOI: 10.1016/j.bmc.2016.12.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/27/2016] [Accepted: 12/27/2016] [Indexed: 01/06/2023]
|
36
|
Fuchs AV, Bapat AP, Cowin GJ, Thurecht KJ. Switchable 19F MRI polymer theranostics: towards in situ quantifiable drug release. Polym Chem 2017. [DOI: 10.1039/c7py00345e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A switchable polymeric 19F magnetic resonance imaging (MRI) contrast agent was synthesised whereby the transverse (T2) relaxation times increased as a therapeutic was released from a hyperbranched polymer (HBP) scaffold.
Collapse
Affiliation(s)
- A. V. Fuchs
- Australian Institute of Bioengineering and Nanotechnology
- University of Queensland
- Brisbane
- Australia
- Centre for Advanced Imaging
| | - A. P. Bapat
- Centre for Advanced Imaging
- University of Queensland
- Brisbane
- Australia
| | - G. J. Cowin
- Centre for Advanced Imaging
- University of Queensland
- Brisbane
- Australia
| | - K. J. Thurecht
- Australian Institute of Bioengineering and Nanotechnology
- University of Queensland
- Brisbane
- Australia
- Centre for Advanced Imaging
| |
Collapse
|
37
|
Abstract
This review summarizes pH-responsive monomers, polymers and their derivative nano- and micro-structures including micelles, cross-linked micelles, microgels and hydrogels.
Collapse
Affiliation(s)
- G. Kocak
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| | - C. Tuncer
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| | - V. Bütün
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| |
Collapse
|
38
|
Quinn JF, Whittaker MR, Davis TP. Glutathione responsive polymers and their application in drug delivery systems. Polym Chem 2017. [DOI: 10.1039/c6py01365a] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Materials which respond to biological cues are the subject of intense research interest due to their possible application in smart drug delivery vehicles.
Collapse
Affiliation(s)
- John F. Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| |
Collapse
|
39
|
Hu J, Qiao R, Whittaker MR, Quinn JF, Davis TP. Synthesis of Star Polymers by RAFT Polymerization as Versatile Nanoparticles for Biomedical Applications. Aust J Chem 2017. [DOI: 10.1071/ch17391] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The precise control of polymer chain architecture has been made possible by developments in polymer synthesis and conjugation chemistry. In particular, the synthesis of polymers in which at least three linear polymeric chains (or arms) are tethered to a central core has yielded a useful category of branched architecture, so-called star polymers. Fabrication of star polymers has traditionally been achieved using either a core-first technique or an arm-first approach. Recently, the ability to couple polymeric chain precursors onto a functionalized core via highly efficient coupling chemistry has provided a powerful new methodology for star synthesis. Star syntheses can be implemented using any of the living polymerization techniques using ionic or living radical intermediates. Consequently, there are innumerable routes to fabricate star polymers with varying chemical composition and arm numbers. In comparison with their linear counterparts, star polymers have unique characteristics such as low viscosity in solution, prolonged blood circulation, and high accumulation in tumour regions. These advantages mean that, far beyond their traditional application as rheology control agents, star polymers may also be useful in the medical and pharmaceutical sciences. In this account, we discuss recent advances made in our laboratory focused on star polymer research ranging from improvements in synthesis through to novel applications of the product materials. Specifically, we examine the core-first and arm-first preparation of stars using reversible addition–fragmentation chain transfer (RAFT) polymerization. Further, we also discuss several biomedical applications of the resulting star polymers, particularly those made by the arm-first protocol. Emphasis is given to applications in the emerging area of nanomedicine, in particular to the use of star polymers for controlled delivery of chemotherapeutic agents, protein inhibitors, signalling molecules, and siRNA. Finally, we examine possible future developments for the technology and suggest the further work required to enable clinical applications of these interesting materials.
Collapse
|
40
|
Wallat JD, Czapar AE, Wang C, Wen AM, Wek KS, Yu X, Steinmetz NF, Pokorski JK. Optical and Magnetic Resonance Imaging Using Fluorous Colloidal Nanoparticles. Biomacromolecules 2016; 18:103-112. [PMID: 27992176 DOI: 10.1021/acs.biomac.6b01389] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Improved imaging of cancerous tissue has the potential to aid prognosis and improve patient outcome through longitudinal imaging of treatment response and disease progression. While nuclear imaging has made headway in cancer imaging, fluorinated tracers that enable magnetic resonance imaging (19F MRI) hold promise, particularly for repeated imaging sessions because nonionizing radiation is used. Fluorine MRI detects molecular signatures by imaging a fluorinated tracer and takes advantage of the spatial and anatomical resolution afforded by MRI. This manuscript describes a fluorous polymeric nanoparticle that is capable of 19F MR imaging and fluorescent tracking for in vitro and in vivo monitoring of immune cells and cancerous tissue. The fluorous particle is derived from low-molecular-weight amphiphilic copolymers that self-assemble into micelles with a hydrodynamic diameter of 260 nm. The polymer is MR-active at concentrations as low as 2.1 mM in phantom imaging studies. The fluorinated particle demonstrated rapid uptake into immune cells for potential cell-tracking or delineation of the tumor microenvironment and showed negligible toxicity. Systemic administration indicates significant uptake into two tumor types, triple-negative breast cancer and ovarian cancer, with little accumulation in off-target tissue. These results indicate a robust platform imaging agent capable of immune cell tracking and systemic disease monitoring with exceptional uptake of the nanoparticle in multiple cancer models.
Collapse
Affiliation(s)
- Jaqueline D Wallat
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Case School of Engineering , Cleveland, Ohio 44106, United States
| | - Anna E Czapar
- Department of Pathology, Case Western Reserve University School of Medicine , Cleveland, Ohio 44106, United States
| | - Charlie Wang
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine and Case School of Engineering , Cleveland, Ohio 44106, United States
| | - Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine and Case School of Engineering , Cleveland, Ohio 44106, United States
| | - Kristen S Wek
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Case School of Engineering , Cleveland, Ohio 44106, United States
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine and Case School of Engineering , Cleveland, Ohio 44106, United States
| | - Nicole F Steinmetz
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Case School of Engineering , Cleveland, Ohio 44106, United States.,Department of Biomedical Engineering, Case Western Reserve University School of Medicine and Case School of Engineering , Cleveland, Ohio 44106, United States.,Department of Radiology, Case Western Reserve University School of Medicine , Cleveland, Ohio 44106, United States.,Department of Materials Science and Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States.,Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Jonathan K Pokorski
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Case School of Engineering , Cleveland, Ohio 44106, United States
| |
Collapse
|
41
|
Xiao Q, Rubien JD, Wang Z, Reed EH, Hammer DA, Sahoo D, Heiney PA, Yadavalli SS, Goulian M, Wilner SE, Baumgart T, Vinogradov SA, Klein ML, Percec V. Self-Sorting and Coassembly of Fluorinated, Hydrogenated, and Hybrid Janus Dendrimers into Dendrimersomes. J Am Chem Soc 2016; 138:12655-63. [PMID: 27580315 DOI: 10.1021/jacs.6b08069] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The modular synthesis of a library containing seven self-assembling amphiphilic Janus dendrimers is reported. Three of these molecules contain environmentally friendly chiral-racemic fluorinated dendrons in their hydrophobic part (RF), one contains achiral hydrogenated dendrons (RH), while one denoted hybrid Janus dendrimer, contains a combination of chiral-racemic fluorinated and achiral hydrogenated dendrons (RHF) in its hydrophobic part. Two Janus dendrimers contain either chiral-racemic fluorinated dendrons and a green fluorescent dye conjugated to its hydrophilic part (RF-NBD) or achiral hydrogenated and a red fluorescent dye in its hydrophilic part (RH-RhB). These RF, RH, and RHF Janus dendrimers self-assembled into unilamellar or onion-like soft vesicular dendrimersomes (DSs), with similar thicknesses to biological membranes by simple injection from ethanol solution into water or buffer. Since RF and RH dendrons are not miscible, RF-NBD and RH-RhB were employed to investigate by fluorescence microscopy the self-sorting and coassembly of RF and RH as well as of phospholipids into hybrid DSs mediated by the hybrid hydrogenated-fluorinated RHF Janus dendrimer. The hybrid RHF Janus dendrimer coassembled with both RF and RH. Three-component hybrid DSs containing RH, RF, and RHF were formed when the proportion of RHF was higher than 40%. With low concentration of RHF and in its absence, RH and RF self-sorted into individual RH or RF DSs. Phospholipids were also coassembled with hybrid RHF Janus dendrimers. The simple synthesis and self-assembly of DSs and hybrid DSs, their similar thickness with biological membranes and their imaging by fluorescence and (19)F-MRI make them important tools for synthetic biology.
Collapse
Affiliation(s)
- Qi Xiao
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Jack D Rubien
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Zhichun Wang
- Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6321, United States
| | - Ellen H Reed
- Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6321, United States
| | - Daniel A Hammer
- Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6321, United States.,Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6391, United States
| | - Dipankar Sahoo
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States.,Department of Physics and Astronomy, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6396, United States
| | - Paul A Heiney
- Department of Physics and Astronomy, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6396, United States
| | - Srujana S Yadavalli
- Department of Biology, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6313, United States
| | - Mark Goulian
- Department of Biology, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6313, United States
| | - Samantha E Wilner
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6059, United States
| | - Michael L Klein
- Institute of Computational Molecular Science, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Virgil Percec
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
42
|
Wu HQ, Wang CC. Biodegradable Smart Nanogels: A New Platform for Targeting Drug Delivery and Biomedical Diagnostics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6211-25. [PMID: 27255455 DOI: 10.1021/acs.langmuir.6b00842] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanogels (or nanohydrogels) have been extensively investigated as one of the most promising nanoparticulate biomedical platforms owing to their advantageous properties that combine the characteristics of hydrogel systems with nanoparticles. Among them, smart nanogels that have the ability to respond to external stimuli, such as pH, redox, temperature, enzymes, light, magnetic field and so forth, are most attractive in the area of drug delivery. Besides, numerous multifunctionalized nanogels with high sensitivity and specificity were designed for diagnostic applications. In this feature article, we have reviewed and discussed the recent progress of biodegradable nanogels as smart nanocarriers of anticancer drugs and biomedical diagnostic agents for cancer.
Collapse
Affiliation(s)
- Hai-Qiu Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University , Shanghai 200433, China
| | - Chang-Chun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University , Shanghai 200433, China
| |
Collapse
|
43
|
Ren JM, McKenzie TG, Fu Q, Wong EHH, Xu J, An Z, Shanmugam S, Davis TP, Boyer C, Qiao GG. Star Polymers. Chem Rev 2016; 116:6743-836. [PMID: 27299693 DOI: 10.1021/acs.chemrev.6b00008] [Citation(s) in RCA: 558] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.
Collapse
Affiliation(s)
- Jing M Ren
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Thomas G McKenzie
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Qiang Fu
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Edgar H H Wong
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University , Shanghai 2000444, People's Republic of China
| | - Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia.,Department of Chemistry, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
44
|
Zhang C, Moonshi SS, Peng H, Puttick S, Reid J, Bernardi S, Searles DJ, Whittaker AK. Ion-Responsive 19F MRI Contrast Agents for the Detection of Cancer Cells. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00216] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Cheng Zhang
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Shehzahdi Shebbrin Moonshi
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hui Peng
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Simon Puttick
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | - Andrew K. Whittaker
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
45
|
Wang K, Peng H, Thurecht KJ, Whittaker AK. Fluorinated POSS‐Star Polymers for
19
F MRI. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kewei Wang
- Australian Institute for Bioengineering and Nanotechnology and Centre for Advanced Imaging The University of Queensland St. Lucia Queensland 4072 Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology and Centre for Advanced Imaging The University of Queensland St. Lucia Queensland 4072 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland St. Lucia Queensland 4072 Australia
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology and Centre for Advanced Imaging The University of Queensland St. Lucia Queensland 4072 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland St. Lucia Queensland 4072 Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology and Centre for Advanced Imaging The University of Queensland St. Lucia Queensland 4072 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland St. Lucia Queensland 4072 Australia
| |
Collapse
|
46
|
Khor SY, Hu J, McLeod VM, Quinn JF, Porter CJ, Whittaker MR, Kaminskas LM, Davis TP. The Pharmacokinetics and Biodistribution of a 64 kDa PolyPEG Star Polymer After Subcutaneous and Pulmonary Administration to Rats. J Pharm Sci 2016; 105:293-300. [DOI: 10.1016/j.xphs.2015.11.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 11/30/2022]
|
47
|
Wang K, Peng H, Thurecht KJ, Puttick S, Whittaker AK. Multifunctional hyperbranched polymers for CT/19F MRI bimodal molecular imaging. Polym Chem 2016. [DOI: 10.1039/c5py01707f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multifunctional hyperbranched polymers containing iodine and fluorine were synthesised by reversible addition–fragmentation chain transfer (RAFT) polymerisation, and evaluated as novel contrast agents for CT/19F MRI bimodal molecular imaging.
Collapse
Affiliation(s)
- Kewei Wang
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| | - Simon Puttick
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| |
Collapse
|
48
|
Khor SY, Hu J, McLeod VM, Quinn JF, Williamson M, Porter CJ, Whittaker MR, Kaminskas LM, Davis TP. Molecular weight (hydrodynamic volume) dictates the systemic pharmacokinetics and tumour disposition of PolyPEG star polymers. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:2099-108. [DOI: 10.1016/j.nano.2015.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 07/28/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
|
49
|
Zetterlund PB, Thickett SC, Perrier S, Bourgeat-Lami E, Lansalot M. Controlled/Living Radical Polymerization in Dispersed Systems: An Update. Chem Rev 2015; 115:9745-800. [PMID: 26313922 DOI: 10.1021/cr500625k] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Per B Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales , Sydney, NSW 2052, Australia
| | - Stuart C Thickett
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales , Sydney, NSW 2052, Australia
| | - Sébastien Perrier
- Department of Chemistry, The University of Warwick , Coventry CV4 7AL, U.K.,Faculty of Pharmacy and Pharmaceutical Sciences, Monash University , Melbourne, VIC 3052, Australia
| | - Elodie Bourgeat-Lami
- Laboratory of Chemistry, Catalysis, Polymers and Processes (C2P2), LCPP group, Université de Lyon, Université Lyon 1, CPE Lyon, CNRS, UMR 5265, 43, Boulevard du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Muriel Lansalot
- Laboratory of Chemistry, Catalysis, Polymers and Processes (C2P2), LCPP group, Université de Lyon, Université Lyon 1, CPE Lyon, CNRS, UMR 5265, 43, Boulevard du 11 Novembre 1918, F-69616 Villeurbanne, France
| |
Collapse
|
50
|
Wang K, Peng H, Thurecht KJ, Puttick S, Whittaker AK. Segmented Highly Branched Copolymers: Rationally Designed Macromolecules for Improved and Tunable 19F MRI. Biomacromolecules 2015. [DOI: 10.1021/acs.biomac.5b00800] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kewei Wang
- Australian Institute for
Bioengineering and Nanotechnology; Centre for Advanced Imaging; ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for
Bioengineering and Nanotechnology; Centre for Advanced Imaging; ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kristofer J. Thurecht
- Australian Institute for
Bioengineering and Nanotechnology; Centre for Advanced Imaging; ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Simon Puttick
- Australian Institute for
Bioengineering and Nanotechnology; Centre for Advanced Imaging; ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Andrew K. Whittaker
- Australian Institute for
Bioengineering and Nanotechnology; Centre for Advanced Imaging; ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|