1
|
Zandi P, Phani A, Kim S. Detecting Cr 6+ at ≈100 pM Concentration with Fluorescence Enhancement Signatures in a Novel Eco-Fluorophore: Matching WHO's 96 pM Recommended Standard for Drinking Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2504142. [PMID: 40318106 DOI: 10.1002/adma.202504142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/06/2025] [Indexed: 05/07/2025]
Abstract
Hexavalent chromium (Cr6+) ions in drinking water pose a significant risk to human health, being a leading cause for neurological disorders, organ damage, and infertility. This study introduces an ultrasensitive method for detecting trace Cr6+ over a wide concentration range (≈ 100 pM - 100 µM) through fluorescence enhancement signatures via integration of both covalent and non-covalent interaction strategies on carbon quantum dots (CQD). The covalent functionalization is achieved from dual-functionalized CQD (CQD-(NH2, COOH)) derived from coffee-waste. Additionally, the covalent and non-covalent approach integrates CQD-(NH2, COOH) with graphitic carbon nitride (g-C3N4) to form a 2D/2D heterostructure. The synergy between CQD-(NH2, COOH) and g-C3N4 introduces a mid-gap band in their band structure, allowing multiple carrier excitation and recombination states, significantly enhancing the fluorescence quenching signal. This combination allows to achieve Cr6+ detection sensitivity down to ≈100 pM concentration-matching the World Health Organization's 96 pM permissible limit of total Cr in drinking water. Furthermore, a 70 pM detection limit is reported for Cr6+ in a mixture of twelve ions, including cations and anions, surpassing current state-of-the-art detection limits. These results highlight the potential of dual covalent and non-covalent modification strategy in nanomaterials to set new standards in ultrasensitive and wide-range fluorescent sensing applications.
Collapse
Affiliation(s)
- Pegah Zandi
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Arindam Phani
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Seonghwan Kim
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
2
|
Yao Y, Cao Q, Fang H, Tian H. Application of Nanomaterials in the Diagnosis and Treatment of Retinal Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2503070. [PMID: 40197854 DOI: 10.1002/smll.202503070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/24/2025] [Indexed: 04/10/2025]
Abstract
In recent years, nanomaterials have demonstrated broad prospects in the diagnosis and treatment of retinal diseases due to their unique physicochemical properties, such as small-size effects, high biocompatibility, and functional surfaces. Retinal diseases are often accompanied by complex pathological microenvironments, where conventional diagnostic and therapeutic approaches face challenges such as low drug delivery efficiency, risks associated with invasive procedures, and difficulties in real-time monitoring. Nanomaterials hold promise in addressing these limitations of traditional therapies, thereby improving treatment precision and efficacy. The applications of nanomaterials in diagnostics are summarized, where they enable high-resolution retinal imaging by carrying fluorescent probes or contrast agents or act as biosensors to sensitively detect disease-related biomarkers, facilitating early diagnosis and dynamic monitoring. In therapeutics, functionalized nanocarriers can precisely deliver drugs, genes, or antioxidant molecules to retinal target cells, significantly enhancing therapeutic outcomes while reducing systemic toxicity. Additionally, nanofiber materials possess unique properties that make them particularly suitable for retinal regeneration in tissue engineering. By loading neurotrophic factors into nanofiber scaffolds, their regenerative effects can be amplified, promoting the repair of retinal neurons. Despite their immense potential, clinical translation of nanomaterials still requires addressing challenges such as long-term biosafety, scalable manufacturing processes, and optimization of targeting efficiency.
Collapse
Affiliation(s)
- Yingli Yao
- College of Chemistry and Chemical Engineering, Xiamen Eye Center and Eye Institute of Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Qiannan Cao
- College of Chemistry and Chemical Engineering, Xiamen Eye Center and Eye Institute of Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Huapan Fang
- College of Chemistry and Chemical Engineering, Xiamen Eye Center and Eye Institute of Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, China
| | - Huayu Tian
- College of Chemistry and Chemical Engineering, Xiamen Eye Center and Eye Institute of Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
3
|
Zhang Z, Zhou Y, Zhang N, Pang K, Wang Y, Liu X, Yan J. Hydrothermal Synthesis of Sulfuric Acid-Mediated Yellow Carbon Dots and It Applications in Fluorescent Ink and Cell Imaging. J Fluoresc 2025:10.1007/s10895-025-04215-z. [PMID: 40035935 DOI: 10.1007/s10895-025-04215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 02/17/2025] [Indexed: 03/06/2025]
Abstract
In this work, a series of sulfuric acid-mediated carbon dots (S-CDs) with different sulfur content were facile synthesized by the hydrothermal reaction from contaminant reactive brilliant blue (RB5). The S-CDs (S-CD-4) are selected due to their excellent optical properties in water, and the detailed structure information were characterized by XRD, Raman spectrum, FTIR spectra, and XPS. The morphology and thickness were further characterized by TEM (HRTEM, average diameter around 3.45 nm), and AFM (7-9 layers). Optical properties, photo stability and solvent effect of this S-CDs are investigated by absorption and fluorescence emission spectra. Notably, the photoluminescence of S-CDs is excitation-wavelength dependent, with emission wavelengths tunable from 670 nm to 707 nm. The maximum fluorescent emission peak is 707 nm under 680 nm excitation wavelengths with a large Stokes shift of up to 227 nm in DMF, exhibiting a moderate fluorescence intensity of 19.0%. The relationship between the amount of sulfur in CDs and the emission wavelength is further discussed by DFT calculation. Finally, S-CDs are successfully applied in fluorescent ink and cell imaging.
Collapse
Affiliation(s)
- Ziyi Zhang
- Hubei Three Gorges Laboratory, Yichang, Hubei, 443007, P.R. China
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Three Gorges University, Yichang, Hubei, 443002, P.R. China
| | - Yuhang Zhou
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Three Gorges University, Yichang, Hubei, 443002, P.R. China
| | - Nuonuo Zhang
- Hubei Three Gorges Laboratory, Yichang, Hubei, 443007, P.R. China.
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Three Gorges University, Yichang, Hubei, 443002, P.R. China.
| | - Kun Pang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Three Gorges University, Yichang, Hubei, 443002, P.R. China
| | - Yanlan Wang
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Xiang Liu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Three Gorges University, Yichang, Hubei, 443002, P.R. China.
| | - Jiaying Yan
- Hubei Three Gorges Laboratory, Yichang, Hubei, 443007, P.R. China.
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Three Gorges University, Yichang, Hubei, 443002, P.R. China.
| |
Collapse
|
4
|
Zhang H, Liu H, Liu X, Song A, Jiang H, Wang X. Progress on Carbon Dots with Intrinsic Bioactivities for Multimodal Theranostics. Adv Healthc Mater 2025; 14:e2402285. [PMID: 39440645 DOI: 10.1002/adhm.202402285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Carbon dots (CDs) with intrinsic bioactivities are candidates for bioimaging and disease therapy due to their diverse bioactivities, high biocompatibility, and multiple functionalities in multimodal theranostics. It is a multidisciplinary research hotspot that includes biology, physics, materials science, and chemistry. This progress report discusses the CDs with intrinsic bioactivities and their applications in multimodal theranostics. The relationship between the synthesis and structure of CDs is summarized and analyzed from a material and chemical perspective. The bioactivities of CDs including anti-tumor, antibacterial, anti-inflammatory etc. are discussed from biological points of view. Subsequently, the optical and electronic properties of CDs that can be applied in the biomedical field are summarized from a physical perspective. Based on the functional review of CDs, their applications in the biomedical field are reviewed, including optical diagnosis and treatment, biological activity, etc. Unlike previous reviews, this review combines multiple disciplines to gain a more comprehensive understanding of the mechanisms, functions, and applications of CDs with intrinsic bioactivities.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Hao Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Aiguo Song
- School of Instrument Science and Engineering, Southeast University, Nanjing, 210023, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
5
|
Debnath M, Sarkar S, Debnath SK, Dkhar DS, Kumari R, Vaskuri GSSJ, Srivastava A, Chandra P, Prasad R, Srivastava R. Photothermally Active Quantum Dots in Cancer Imaging and Therapeutics: Nanotheranostics Perspective. ACS APPLIED BIO MATERIALS 2024; 7:8126-8148. [PMID: 39526826 DOI: 10.1021/acsabm.4c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cancer is becoming a global threat, as the cancerous cells manipulate themselves frequently, resulting in mutants and more abnormalities. Early-stage and real-time detection of cancer biomarkers can provide insight into designing cost-effective diagnostic and therapeutic modalities. Nanoparticle and quantum dot (QD)-based approaches have been recognized as clinically relevant methods to detect disease biomarkers at the molecular level. Over decades, as an emergent noninvasive approach, photothermal therapy has evolved to eradicate cancer. Moreover, various structures, viz., nanoparticles, clusters, quantum dots, etc., have been tested as bioimaging and photothermal agents to identify tumor cells selectively. Among them, QDs have been recognized as versatile probes. They have attracted enormous attention for imaging and therapeutic applications due to their unique colloidal stability, optical and physicochemical properties, biocompatibility, easy surface conjugation, scalable production, etc. However, a few critical concerns of QDs, viz., precise engineering for molecular imaging and sensing, selective interaction with the biological system, and their associated toxicity, restrict their potential intervention in curing cancer and are yet to be explored. According to the U.S. Food and Drug Administration (FDA), there is no specific regulation for the approval of nanomedicines. Therefore, these nanomedicines undergo the traditional drug, biological, and device approval process. However, the market survey of QDs is increasing, and their prospects in translational nanomedicine are very promising. From this perspective, we discuss the importance of QDs for imaging, sensing, and therapeutic usage pertinent to cancer, especially in its early stages. Moreover, we also discuss the rapidly growing translational view of QDs. The long-term safety studies and cellular interaction of these QDs could enhance their visibility and bring photothermally active QDs to the clinical stage and concurrently to FDA approval.
Collapse
Affiliation(s)
- Monalisha Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sayoni Sarkar
- Center for Research in Nanotechnology and Sciences, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sujit Kumar Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Daphika S Dkhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rohini Kumari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | | | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
6
|
Magalhães CM, Ribeiro E, Fernandes S, Esteves da Silva J, Vale N, Pinto da Silva L. Safety Evaluation of Carbon Dots in UM-UC-5 and A549 Cells for Biomedical Applications. Cancers (Basel) 2024; 16:3332. [PMID: 39409951 PMCID: PMC11475197 DOI: 10.3390/cancers16193332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUNG The rising complexity and associated side effects of cancer treatments highlight the need for safer and more effective therapeutic agents. Carbon-based nanomaterials such as CDs have been gaining prominence for their unique characteristics, opening avenues for diverse applications such as fluorescence imaging, drug and gene transport, controlled drug delivery, medical diagnosis, and biosensing. Despite promising advancements in research, it remains imperative to scrutinize the properties and potential cytotoxicity of newly developed CDs, ensuring their viability for these applications. METHODS We synthesized four N-doped CDs through a hydrothermal method. Cell viability assays were conducted on A549 and UM-UC-5 cancer cells at a range of concentrations and incubation times, both individually and with the chemotherapeutic agent 5-fluorouracil (5-FU). RESULTS The obtained results suggest that the newly developed CDs exhibit suitability for applications such as bioimaging, as no significant impact on cell viability was observed for CDs alone.
Collapse
Affiliation(s)
- Carla M. Magalhães
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences, Department of Geosciences, Environment, and Spatial Plannings, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (C.M.M.); (S.F.); (J.E.d.S.)
| | - Eduarda Ribeiro
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Sónia Fernandes
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences, Department of Geosciences, Environment, and Spatial Plannings, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (C.M.M.); (S.F.); (J.E.d.S.)
| | - Joaquim Esteves da Silva
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences, Department of Geosciences, Environment, and Spatial Plannings, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (C.M.M.); (S.F.); (J.E.d.S.)
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences, Department of Geosciences, Environment, and Spatial Plannings, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (C.M.M.); (S.F.); (J.E.d.S.)
| |
Collapse
|
7
|
Ayisha Naziba T, Praveen Kumar D, Karthikeyan S, Sriramajayam S, Djanaguiraman M, Sundaram S, Ghamari M, Prasada Rao R, Ramakrishna S, Ramesh D. Biomass Derived Biofluorescent Carbon Dots for Energy Applications: Current Progress and Prospects. CHEM REC 2024; 24:e202400030. [PMID: 38837295 DOI: 10.1002/tcr.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/23/2024] [Indexed: 06/07/2024]
Abstract
Biomass resources are often disposed of inefficiently and it causes environmental degradation. These wastes can be turned into bio-products using effective conversion techniques. The synthesis of high-value bio-products from biomass adheres to the principles of a sustainable circular economy in a variety of industries, including agriculture. Recently, fluorescent carbon dots (C-dots) derived from biowastes have emerged as a breakthrough in the field, showcasing outstanding fluorescence properties and biocompatibility. The C-dots exhibit unique quantum confinement properties due to their small size, contributing to their exceptional fluorescence. The significance of their fluorescent properties lies in their versatile applications, particularly in bio-imaging and energy devices. Their rapid and straight-forward production using green/chemical precursors has further accelerated their adoption in diverse applications. The use of green precursors for C-dot not only addresses the biomass disposal issue through a scientific approach, but also establishes a path for a circular economy. This approach not only minimizes biowaste, which also harnesses the potential of fluorescent C-dots to contribute to sustainable practices in agriculture. This review explores recent developments and challenges in synthesizing high-quality C-dots from agro-residues, shedding light on their crucial role in advancing technologies for a cleaner and more sustainable future.
Collapse
Affiliation(s)
- T Ayisha Naziba
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - D Praveen Kumar
- Bannari Amman Institute of Technology, Sathya Mangalam, 638 401, Tamil Nadu, India
| | - S Karthikeyan
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - S Sriramajayam
- Department of Agricultural Engineering, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam, 628 252., Tamil Nadu, India
| | - M Djanaguiraman
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Senthilarasu Sundaram
- School of Computing, Engineering and Digital Technologies, Teesside University Tees Valley, Middlesbrough, TS1 3BX, UK
| | - Mehrdad Ghamari
- School of Computing, Engineering and Digital Technologies, Teesside University Tees Valley, Middlesbrough, TS1 3BX, UK
| | - R Prasada Rao
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering, Drive 1, 117576, Singapore
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering, Drive 1, 117576, Singapore
| | - D Ramesh
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| |
Collapse
|
8
|
Kong J, Wei Y, Zhou F, Shi L, Zhao S, Wan M, Zhang X. Carbon Quantum Dots: Properties, Preparation, and Applications. Molecules 2024; 29:2002. [PMID: 38731492 PMCID: PMC11085940 DOI: 10.3390/molecules29092002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Carbon quantum dots are a novel form of carbon material. They offer numerous benefits including particle size adjustability, light resistance, ease of functionalization, low toxicity, excellent biocompatibility, and high-water solubility, as well as their easy accessibility of raw materials. Carbon quantum dots have been widely used in various fields. The preparation methods employed are predominantly top-down methods such as arc discharge, laser ablation, electrochemical and chemical oxidation, as well as bottom-up methods such as templates, microwave, and hydrothermal techniques. This article provides an overview of the properties, preparation methods, raw materials for preparation, and the heteroatom doping of carbon quantum dots, and it summarizes the applications in related fields, such as optoelectronics, bioimaging, drug delivery, cancer therapy, sensors, and environmental remediation. Finally, currently encountered issues of carbon quantum dots are presented. The latest research progress in synthesis and application, as well as the challenges outlined in this review, can help and encourage future research on carbon quantum dots.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangfeng Zhang
- School of Medicine, Henan Polytechnic University, Jiaozuo 454000, China; (Y.W.); (F.Z.); (L.S.); (S.Z.); (M.W.)
| |
Collapse
|
9
|
Wang H, Yang S, Chen L, Li Y, He P, Wang G, Dong H, Ma P, Ding G. Tumor diagnosis using carbon-based quantum dots: Detection based on the hallmarks of cancer. Bioact Mater 2024; 33:174-222. [PMID: 38034499 PMCID: PMC10684566 DOI: 10.1016/j.bioactmat.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Carbon-based quantum dots (CQDs) have been shown to have promising application value in tumor diagnosis. Their use, however, is severely hindered by the complicated nature of the nanostructures in the CQDs. Furthermore, it seems impossible to formulate the mechanisms involved using the inadequate theoretical frameworks that are currently available for CQDs. In this review, we re-consider the structure-property relationships of CQDs and summarize the current state of development of CQDs-based tumor diagnosis based on biological theories that are fully developed. The advantages and deficiencies of recent research on CQDs-based tumor diagnosis are thus explained in terms of the manifestation of nine essential changes in cell physiology. This review makes significant progress in addressing related problems encountered with other nanomaterials.
Collapse
Affiliation(s)
- Hang Wang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Liangfeng Chen
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peng He
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, PR China
| | - Hui Dong
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| |
Collapse
|
10
|
Bai Y, Xu H, Wang H, Fan Y, Li X, Li Y, Fan L, Zhang Y, Qi L, Li Y. Highly Efficient Loading of Procaine on Water-Soluble Carbon Dots toward Long-Acting Anesthesia. J Phys Chem B 2024; 128:1700-1710. [PMID: 38334803 DOI: 10.1021/acs.jpcb.3c07411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Safe and efficient local anesthetic delivery carriers are crucial for long-term anesthesia and analgesics in clinical treatment. But currently, most of the local anesthetic carriers still have some disadvantages such as low drug-loading capacity, drug leakage, and potential side effects. Here, we report red-emissive carbon dots (Cys-CDs) synthesized by choosing cysteine and citric acid as precursors, which contain a large and intact sp2-domain with rich hydrophilic groups around the edge. The special structure of Cys-CDs is conducive to the efficient loading of procaine (PrC) via strong π-π stacking interactions. Based on the strong noncovalent interactions between them, the PrC loaded on Cys-CDs achieved slow release in vitro and had a long-lasting nerve blocking effect in vivo, which is 4-fold more than that of free PrC. More importantly, PrC/Cys-CDs do not cause any toxicity and inflammation during treatment owing to slow release of PrC and good water solubility of Cys-CDs, thus demonstrating the potential clinical application of CDs in long-lasting analgesia.
Collapse
Affiliation(s)
- Yiqi Bai
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Huimin Xu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Haoyu Wang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yixiao Fan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Xiaohong Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yunchao Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Louzhen Fan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yang Zhang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Ling Qi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yong Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
11
|
Kim K, Park MH. Advancing Cancer Treatment: Enhanced Combination Therapy through Functionalized Porous Nanoparticles. Biomedicines 2024; 12:326. [PMID: 38397928 PMCID: PMC10887220 DOI: 10.3390/biomedicines12020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer remains a major global health challenge, necessitating the development of innovative treatment strategies. This review focuses on the functionalization of porous nanoparticles for combination therapy, a promising approach to enhance cancer treatment efficacy while mitigating the limitations associated with conventional methods. Combination therapy, integrating multiple treatment modalities such as chemotherapy, phototherapy, immunotherapy, and others, has emerged as an effective strategy to address the shortcomings of individual treatments. The unique properties of mesoporous silica nanoparticles (MSN) and other porous materials, like nanoparticles coated with mesoporous silica (NP@MS), metal-organic frameworks (MOF), mesoporous platinum nanoparticles (mesoPt), and carbon dots (CDs), are being explored for drug solubility, bioavailability, targeted delivery, and controlled drug release. Recent advancements in the functionalization of mesoporous nanoparticles with ligands, biomaterials, and polymers are reviewed here, highlighting their role in enhancing the efficacy of combination therapy. Various research has demonstrated the effectiveness of these nanoparticles in co-delivering drugs and photosensitizers, achieving targeted delivery, and responding to multiple stimuli for controlled drug release. This review introduces the synthesis and functionalization methods of these porous nanoparticles, along with their applications in combination therapy.
Collapse
Affiliation(s)
- Kibeom Kim
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Republic of Korea;
| | - Myoung-Hwan Park
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Republic of Korea;
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Republic of Korea
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
12
|
Chaudhary M, Singh P, Singh GP, Rathi B. Structural Features of Carbon Dots and Their Agricultural Potential. ACS OMEGA 2024; 9:4166-4185. [PMID: 38313515 PMCID: PMC10831853 DOI: 10.1021/acsomega.3c04638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 02/06/2024]
Abstract
Carbon dots (CDs) have drawn attention due to their enticing physical, chemical, and surface properties. Besides, good conductivity, low toxicity, environmental friendliness, simple synthetic routes, and comparable optical properties are advantageous features of CDs. Further, recently, CDs have been explored for biological systems, including plants. Among biological systems, only plants form the basis for sustainability and life on Earth. In this Review, we reviewed suitable properties and applications of CDs, such as promoting the growth of agricultural plants, disease resistance, stress tolerance, and target transportation. Summing up the available studies, we believe that the applications of CDs are yet to be explored significantly for innovation and technology-based agriculture.
Collapse
Affiliation(s)
- Monika Chaudhary
- Department
of Chemistry, Hansraj College, University
of Delhi, Delhi 110007, India
| | - Priyamvada Singh
- Department
of Chemistry, Miranda House, University
of Delhi, Delhi 110007, India
| | - Gajendra Pratap Singh
- Disruptive
and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology
(SMART), 138602 Singapore
| | - Brijesh Rathi
- Department
of Chemistry, Hansraj College, University
of Delhi, Delhi 110007, India
| |
Collapse
|
13
|
Das S, Mondal S, Ghosh D. Carbon quantum dots in bioimaging and biomedicines. Front Bioeng Biotechnol 2024; 11:1333752. [PMID: 38318419 PMCID: PMC10841552 DOI: 10.3389/fbioe.2023.1333752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Carbon quantum dots (CQDs) are gaining a lot more attention than traditional semiconductor quantum dots owing to their intrinsic fluorescence property, chemical inertness, biocompatibility, non-toxicity, and simple and inexpensive synthetic route of preparation. These properties allow CQDs to be utilized for a broad range of applications in various fields of scientific research including biomedical sciences, particularly in bioimaging and biomedicines. CQDs are a promising choice for advanced nanomaterials research for bioimaging and biomedicines owing to their unique chemical, physical, and optical properties. CQDs doped with hetero atom, or polymer composite materials are extremely advantageous for biochemical, biological, and biomedical applications since they are easy to prepare, biocompatible, and have beneficial properties. This type of CQD is highly useful in phototherapy, gene therapy, medication delivery, and bioimaging. This review explores the applications of CQDs in bioimaging and biomedicine, highlighting recent advancements and future possibilities to increase interest in their numerous advantages for therapeutic applications.
Collapse
Affiliation(s)
- Surya Das
- Department of Chemistry, University of Kalyani, Kalyani, India
| | - Somnath Mondal
- Department of Chemistry, Pennsylvania State University, State College, PA, United States
| | - Dhiman Ghosh
- Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| |
Collapse
|
14
|
Yan J, Zhou Y, Shen J, Zhang N, Liu X. Facile synthesis of S, N-co-doped carbon dots for bio-imaging, Fe 3+ detection and DFT calculation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123105. [PMID: 37421697 DOI: 10.1016/j.saa.2023.123105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Turning waste into wealth, herein, two highly fluorescent N and S co-doped carbon dots (N, S-CDs-A and N, S-CDs-B) were synthesized by the hydrothermal reaction of contaminant reactive red 2 (RR2) and L-cysteine or L-methionine, respectively. The detailed morphology and structure of N, S-CDs were characterized by XRD, Raman spectrum, FTIR spectra, TEM, HRTEM, AFM and XPS. The maximum fluorescent of N, S-CDs-A and N, S-CDs-B are 565 and 615 nm under different excitation wavelengths with moderate fluorescence intensity of 14.0 % and 6.3 %, respectively. The microstructure models of N, S-CDs-A and N, S-CDs-B, which were induced by FT-IR, XPS and element analysis, had been applied in DFT calculation. The result indicated that the doping of S and N is beneficial to obtain the red-shift of fluorescent spectra. Both N, S-CDs-A and N, S-CDs-B showed highly sensitive and selective to Fe3+. N, S-CDs-A can also detect Al3+ ion with high sensitivity and selectivity. Finally, N, S-CDs-B was successfully applied in cell imaging.
Collapse
Affiliation(s)
- Jiaying Yan
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, 443002 Yichang, Hubei, China
| | - Yuhang Zhou
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, 443002 Yichang, Hubei, China
| | - Jialu Shen
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, 443002 Yichang, Hubei, China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Nuonuo Zhang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, 443002 Yichang, Hubei, China.
| | - Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, 443002 Yichang, Hubei, China.
| |
Collapse
|
15
|
Gan J, Chen L, Chen Z, Zhang J, Yu W, Huang C, Wu Y, Zhang K. Lignocellulosic Biomass-Based Carbon Dots: Synthesis Processes, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304066. [PMID: 37537709 DOI: 10.1002/smll.202304066] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/17/2023] [Indexed: 08/05/2023]
Abstract
Carbon dots (CDs), a new type of carbon-based fluorescent nanomaterial, have attracted widespread attention because of their numerous excellent properties. Lignocellulosic biomass is the most abundant renewable natural resource and possesses broad potential to manufacture different composite and smart materials. Numerous studies have explored the potential of using the components (such as cellulose, hemicellulose, and lignin) in lignocellulosic biomass to produce CDs. There are few papers systemically aiming in the review of the state-of-the-art works related to lignocellulosic biomass-derived CDs. In this review, the significant advances in synthesis processes, formation mechanisms, structural characteristics, optical properties, and applications of lignocellulosic biomass-based CDs such as cellulose-based CDs, hemicellulose-based CDs and lignin-based CDs in latest research are reviewed. In addition, future research directions on the improvement of the synthesis technology of CDs using lignocellulosic biomass as raw materials to enhance the properties of CDs are proposed. This review will serve as a road map for scientists engaged in research and exploring more applications of CDs in different science fields to achieve the highest material performance goals of CDs.
Collapse
Affiliation(s)
- Jian Gan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Lizhen Chen
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Zhijun Chen
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science & Technology Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jilei Zhang
- Department of Sustainable Bioproducts, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Wenji Yu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Caoxing Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
16
|
Yang Z, Xu T, Li H, She M, Chen J, Wang Z, Zhang S, Li J. Zero-Dimensional Carbon Nanomaterials for Fluorescent Sensing and Imaging. Chem Rev 2023; 123:11047-11136. [PMID: 37677071 DOI: 10.1021/acs.chemrev.3c00186] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Advances in nanotechnology and nanomaterials have attracted considerable interest and play key roles in scientific innovations in diverse fields. In particular, increased attention has been focused on carbon-based nanomaterials exhibiting diverse extended structures and unique properties. Among these materials, zero-dimensional structures, including fullerenes, carbon nano-onions, carbon nanodiamonds, and carbon dots, possess excellent bioaffinities and superior fluorescence properties that make these structures suitable for application to environmental and biological sensing, imaging, and therapeutics. This review provides a systematic overview of the classification and structural properties, design principles and preparation methods, and optical properties and sensing applications of zero-dimensional carbon nanomaterials. Recent interesting breakthroughs in the sensitive and selective sensing and imaging of heavy metal pollutants, hazardous substances, and bioactive molecules as well as applications in information encryption, super-resolution and photoacoustic imaging, and phototherapy and nanomedicine delivery are the main focus of this review. Finally, future challenges and prospects of these materials are highlighted and envisaged. This review presents a comprehensive basis and directions for designing, developing, and applying fascinating fluorescent sensors fabricated based on zero-dimensional carbon nanomaterials for specific requirements in numerous research fields.
Collapse
Affiliation(s)
- Zheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Hui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
17
|
Koç Ö, Üzer A, Apak R. Heteroatom-Doped Carbon Quantum Dots and Polymer Composite as Dual-Mode Nanoprobe for Fluorometric and Colorimetric Determination of Picric Acid. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42066-42079. [PMID: 37611222 PMCID: PMC10485801 DOI: 10.1021/acsami.3c07938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
Oxygen- and nitrogen-heteroatom-doped, water-dispersible, and bright blue-fluorescent carbon dots (ON-CDs) were prepared for the selective and sensitive determination of 2,4,6-trinitrophenol (picric acid, PA). ON-CDs with 49.7% quantum yield were one-pot manufactured by the reflux method using citric acid, d-glucose, and ethylenediamine precursors. The surface morphology of ON-CDs was determined by scanning transmission electron microscopy, high-resolution transmission electron microscopy, dynamic light scattering, Raman, infrared, and X-ray photoelectron spectroscopy techniques, and their photophysical properties were estimated by fluorescence spectroscopy, UV-vis spectroscopy, fluorescence lifetime measurement, and 3D-fluorescence excitation-emission matrix analysis. ON-CDs at an average particle size of 3.0 nm had excitation/emission wavelengths of 355 and 455 nm, respectively. With the dominant inner-filter effect- and hydrogen-bonding interaction-based static fluorescence quenching phenomena supported by ground-state charge-transfer complexation (CTC), the fluorescence of ON-CDs was selectively quenched with PA in the presence of various types of explosives (i.e., 2,4,6-trinitrotoluene, tetryl, 1,3,5-trinitroperhydro-1,3,5-triazine, 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane, pentaerythritol tetranitrate, 3-nitro-1,2,4-triazole-5-one, and TATP-hydrolyzed H2O2). The analytical results showed that the emission intensity varied linearly with a correlation coefficient of 0.9987 over a PA concentration range from 1.0 × 10-9 to 11.0 × 10-9 M. As a result of ground-state interaction (H-bonding and CTC) of ON-CDs with PA, an orange-colored complex was formed different from the characteristic yellow color of PA in an aqueous medium, allowing naked-eye detection of PA. The detection limits for PA with ON-CDs were 12.5 × 10-12 M (12.5 pM) by emission measurement and 9.0 × 10-10 M (0.9 nM) by absorption measurement. In the presence of synthetic explosive mixtures, common soil cations/anions, and camouflage materials, PA was recovered in the range of 95.2 and 102.5%. The developed method was statistically validated against a reference liquid chromatography coupled to tandem mass spectrometry method applied to PA-contaminated soil. In addition, a poly(vinyl alcohol)-based polymer composite film {PF(ON-CDs)} was prepared by incorporating ON-CDs, enabling the smartphone-assisted fluorometric detection of PA.
Collapse
Affiliation(s)
- Ömer
Kaan Koç
- Institute
of Graduate Studies, Istanbul University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey
| | - Ayşem Üzer
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey
| | - Reşat Apak
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey
- Bayraktar
Neighborhood, Turkish Academy of Sciences
(TUBA), Vedat Dalokay
Street No: 112, Çankaya, Ankara 06690, Turkey
| |
Collapse
|
18
|
Kumar VB. Design and development of molten metal nanomaterials using sonochemistry for multiple applications. Adv Colloid Interface Sci 2023; 318:102934. [PMID: 37301065 DOI: 10.1016/j.cis.2023.102934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Molten metals have prospective applications as soft fluids with unique physical and chemical properties, yet materials based on them are still in their infancy and have great potential. Ultrasonic irradiation of molten metals in liquid media induces acoustic cavitation and dispersion of the liquid metal into micrometric and nanometric spheres. This review focuses on the synthesis of mmetallic materials via sonochemistry from molten metals with low melting point (< 420 ᴼC): Ga, Hg, In, Sn, Bi, Pb, and Zn, which can be melted in organic or inorganic media or water and of aqueous solutions of metallic ions to form two immiscible liquid phases. Organic molecule entrapment, polymer solubilization, chiral imprinting, and catalyst incorporation within metals or metallic particles were recently developed to provide novel hybrid nanomaterials for several applications including catalysis, fuel cells, and biomass-to-biofuel conversion. In all cases where molten metal was sonicated in an organic solvent, in addition to a solid precipitant, an interesting supernatant was obtained that contained metal-doped carbon dots (M@C-dots). Some of these M@C-dots were found to exhibit highly effective antimicrobial activity, promote neuronal tissue growth, or have utility in lithium-ion rechargeable batteries. The economic feasibility and commercial scalability of molten metal sonochemistry attract fundamental interest in the reaction mechanisms, as the versatility and controllability of the structure and material properties invite exploration of various applications.
Collapse
Affiliation(s)
- Vijay Bhooshan Kumar
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel.
| |
Collapse
|
19
|
Hindi SS, Sabir JSM, Dawoud UM, Ismail IM, Asiry KA, Mirdad ZM, Abo-Elyousr KA, Shiboob MH, Gabal MA, Albureikan MOI, Alanazi RA, Ibrahim OHM. Nanocellulose-Based Passivated-Carbon Quantum Dots (P-CQDs) for Antimicrobial Applications: A Practical Review. Polymers (Basel) 2023; 15:2660. [PMID: 37376306 PMCID: PMC10305638 DOI: 10.3390/polym15122660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Passivated-carbon quantum dots (P-CQDs) have been attracting great interest as an antimicrobial therapy tool due to their bright fluorescence, lack of toxicity, eco-friendly nature, simple synthetic schemes, and possession of photocatalytic functions comparable to those present in traditional nanometric semiconductors. Besides synthetic precursors, CQDs can be synthesized from a plethora of natural resources including microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC). Converting MCC into NCC is performed chemically via the top-down route, while synthesizing CODs from NCC can be performed via the bottom-up route. Due to the good surface charge status with the NCC precursor, we focused in this review on synthesizing CQDs from nanocelluloses (MCC and NCC) since they could become a potential source for fabricating carbon quantum dots that are affected by pyrolysis temperature. There are several P-CQDs synthesized with a wide spectrum of featured properties, namely functionalized carbon quantum dots (F-CQDs) and passivated carbon quantum dots (P-CQDs). There are two different important P-CQDs, namely 2,2'-ethylenedioxy-bis-ethylamine (EDA-CQDs) and 3-ethoxypropylamine (EPA-CQDs), that have achieved desirable results in the antiviral therapy field. Since NoV is the most common dangerous cause of nonbacterial, acute gastroenteritis outbreaks worldwide, this review deals with NoV in detail. The surficial charge status (SCS) of the P-CQDs plays an important role in their interactions with NoVs. The EDA-CQDs were found to be more effective than EPA-CQDs in inhibiting the NoV binding. This difference may be attributed to their SCS as well as the virus surface. EDA-CQDs with surficial terminal amino (-NH2) groups are positively charged at physiological pH (-NH3+), whereas EPA-CQDs with surficial terminal methyl groups (-CH3) are not charged. Since the NoV particles are negatively charged, they are attracted to the positively charged EDA-CQDs, resulting in enhancing the P-CQDs concentration around the virus particles. The carbon nanotubes (CNTs) were found to be comparable to the P-CQDs in the non-specific binding with NoV capsid proteins, through complementary charges, π-π stacking, and/or hydrophobic interactions.
Collapse
Affiliation(s)
- Sherif S. Hindi
- Department of Agriculture, Faculty of Environmental Sciences, King Abdullaziz University (KAU), P.O. Box 80208, Jeddah 21589, Saudi Arabia (R.A.A.); (O.H.M.I.)
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Sciences, King Abdullaziz University (KAU), P.O. Box 80208, Jeddah 21589, Saudi Arabia
| | - Uthman M. Dawoud
- Department of Chemical and Materials Engineering, King Abdullaziz University (KAU), P.O. Box 80208, Jeddah 21589, Saudi Arabia
| | - Iqbal M. Ismail
- Department of Chemistry, Faculty of Science, Center of Excellence in Environmental Studies, King Abdullaziz University (KAU), P.O. Box 80208, Jeddah 21589, Saudi Arabia
| | - Khalid A. Asiry
- Department of Agriculture, Faculty of Environmental Sciences, King Abdullaziz University (KAU), P.O. Box 80208, Jeddah 21589, Saudi Arabia (R.A.A.); (O.H.M.I.)
| | - Zohair M. Mirdad
- Department of Agriculture, Faculty of Environmental Sciences, King Abdullaziz University (KAU), P.O. Box 80208, Jeddah 21589, Saudi Arabia (R.A.A.); (O.H.M.I.)
| | - Kamal A. Abo-Elyousr
- Department of Agriculture, Faculty of Environmental Sciences, King Abdullaziz University (KAU), P.O. Box 80208, Jeddah 21589, Saudi Arabia (R.A.A.); (O.H.M.I.)
- Plant Pathology Department, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Mohamed H. Shiboob
- Department of Environment, Faculty of Environmental Sciences, King Abdullaziz University (KAU), P.O. Box 80208, Jeddah 21589, Saudi Arabia
| | - Mohamed A. Gabal
- Department of Chemistry, Faculty of Science, King Abdullaziz University (KAU), P.O. Box 80208, Jeddah 21589, Saudi Arabia
| | - Mona Othman I. Albureikan
- Department of Biological Sciences, Faculty of Sciences, King Abdullaziz University (KAU), P.O. Box 80208, Jeddah 21589, Saudi Arabia
| | - Rakan A. Alanazi
- Department of Agriculture, Faculty of Environmental Sciences, King Abdullaziz University (KAU), P.O. Box 80208, Jeddah 21589, Saudi Arabia (R.A.A.); (O.H.M.I.)
| | - Omer H. M. Ibrahim
- Department of Agriculture, Faculty of Environmental Sciences, King Abdullaziz University (KAU), P.O. Box 80208, Jeddah 21589, Saudi Arabia (R.A.A.); (O.H.M.I.)
| |
Collapse
|
20
|
Research Progress on Up-Conversion Fluorescence Probe for Detection of Perfluorooctanoic Acid in Water Treatment. Polymers (Basel) 2023; 15:polym15030605. [PMID: 36771906 PMCID: PMC9920290 DOI: 10.3390/polym15030605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Perfluorooctanoic acid (PFOA) is a new type of organic pollutant in wastewater that is persistent, toxic, and accumulates in living organisms. The development of rapid and sensitive analytical methods to detect PFOA in environmental media is of great importance. Fluorescence detection has the advantages of high efficiency and low cost, in which fluorescent probes have excellent fluorescence properties, excellent bio-solubility, and remarkable photostability. It is necessary to review the fluorescence detection routes for PFOA. In addition, the up-conversion of fluorescent materials (UCNPs), as fluorescent materials to prepare fluorescent probes with, has significant advantages and also attracts the attention of researchers, however, reviews related to their application in detecting PFOA and comparing them with other routes are rare. Furthermore, there are many strategies to improve the performance of up-conversion fluorescent probes including SiO2 modification and amino modification. These strategies can enhance the detection effect of PFOA. Thus, this work reviews the types of fluorescence detection, the design, and synthesis of UCNPs, their recognition mechanism, properties, and their application progress. Moreover, the development trend and prospects of these detection probes are given.
Collapse
|
21
|
Synthesis, characterization and potential sensing application of carbon dots synthesized via the hydrothermal treatment of cow milk. Sci Rep 2022; 12:22495. [PMID: 36577768 PMCID: PMC9797560 DOI: 10.1038/s41598-022-26906-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Carbon quantum dots (CQDs) were synthesized in this study by hydrothermally treating cow milk. The procedure is simple, non-hazardous to the environment, and does not necessitate the use of any special instruments or chemicals. CQDs were practically almost circular when they were manufactured and had an average size of 7 nm. Carbon (67.36%), oxygen (22.73%), and nitrogen (9.91%) comprised the majority of their composition. They feature broad excitation-emission spectra, excitation-dependent emission, and temperature-dependent photoluminescence. They remained quite stable in the presence of a lot of salt, UV radiation, and storage time. Because luminescence quenching mechanisms are sensitive to and selective for Sn2+, they can be employed to create a nanosensor for detecting Sn2+.
Collapse
|
22
|
Wiśniewski M. The Consequences of Water Interactions with Nitrogen-Containing Carbonaceous Quantum Dots-The Mechanistic Studies. Int J Mol Sci 2022; 23:14292. [PMID: 36430767 PMCID: PMC9694419 DOI: 10.3390/ijms232214292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022] Open
Abstract
Despite the importance of quantum dots in a wide range of biological, chemical, and physical processes, the structure of the molecular layers surrounding their surface in solution remains unknown. Thus, knowledge about the interaction mechanism of Nitrogen enriched Carbonaceous Quantum Dots' (N-CQDs) surface with water-their natural environment-is highly desirable. A diffusive and Stern layer over the N-CQDs, characterized in situ, reveals the presence of anionic water clusters [OH(H2O)n]-. Their existence explains new observations: (i) the unexpectedly low adsorption enthalpy (ΔHads) in a pressure range below 0.1 p/ps, and ΔHads being as high as 190 kJ/mol at 0.11 p/ps; (ii) the presence of a "conductive window" isolating nature-at p/ps below 0.45-connected to the formation of smaller clusters and increasing conductivity above 0.45 p/ps, (iii) Stern layer stability; and (iv) superhydrophilic properties of the tested material. These observables are the consequences of H2O dissociative adsorption on N-containing basic centers. The additional direct application of surfaces formed by N-CQDs spraying is the possibility of creating antistatic, antifogging, bio-friendly coatings.
Collapse
Affiliation(s)
- Marek Wiśniewski
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
23
|
Chai Y, Feng Y, Zhang K, Li J. Preparation of Fluorescent Carbon Dots Composites and Their Potential Applications in Biomedicine and Drug Delivery-A Review. Pharmaceutics 2022; 14:pharmaceutics14112482. [PMID: 36432673 PMCID: PMC9697445 DOI: 10.3390/pharmaceutics14112482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Carbon dots (CDs), a new member of carbon nanostructures, rely on surface modification and functionalization for their good fluorescence phosphorescence and excellent physical and chemical properties, including small size (<10 nm), high chemical stability, biocompatibility, non-toxicity, low cost, and easy synthesis. In the field of medical research on cancer (IARC), CDs, a new material with unique optical properties as a photosensitizer, are being applied to heating local apoptosis induction of cancer cells. In addition, imaging tools can also be combined with a drug to form the nanometer complex compound, the imaging guidance for multi-function dosage, so as to improve the efficiency of drug delivery, which also plays a big role in genetic diagnosis. This paper mainly includes three parts: The first part briefly introduces the synthesis and preparation of carbon dots, and summarizes the advantages and disadvantages of different preparation methods; The second part introduces the preparation methods of carbon dot composites. Finally, the application status of carbon dot composites in biomedicine, cancer theranostics, drug delivery, electrochemistry, and photocatalysis is summarized.
Collapse
Affiliation(s)
- Yaru Chai
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, China
| | - Yashan Feng
- Advanced Functional Materials Laboratory, Zhengzhou Railway Vocational & Technical College, Zhengzhou 450000, China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China
- Correspondence: (K.Z.); (J.L.); Tel.: +86-185-3995-6211 (J.L.)
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, China
- Correspondence: (K.Z.); (J.L.); Tel.: +86-185-3995-6211 (J.L.)
| |
Collapse
|
24
|
Rizk M, Toubar S, Ramzy E, Helmy MI. Fluorescent carbon dots as selective nano probe for determination of diacerein in presence of co-formulated drugs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121388. [PMID: 35588607 DOI: 10.1016/j.saa.2022.121388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/03/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
In this work, a new and simple carbon dots (CDs) based fluorescent probe was introduced for selective determination of diacerein (DIA) in presence of two co-formulated drugs. This highly fluorescent sensor was constructed using chitosan as a carbon and nitrogen source by single step carbonization. The constructed probe is based on the inner filter effect (IFE), in which DIA serves as a strong absorber, influencing the excitation of the fluorescer (CDs). This overlap leads to quenching of CDs fluorescence upon increasing DIA concentration within the range of 2.5-17.5 µg/mL with mean % recovery reached to 99.7 ± 0.7. The performance of the constructed sensor had been validated according to the ICH guidelines and the results revealed that it is precise and accurate. Moreover, it has many advantages such as simplicity, saving time and good selectivity for the determination of DIA as a minor component in presence of co-formulated drugs in its tablet dosage form.
Collapse
Affiliation(s)
- Mohamed Rizk
- Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, 11795 Cairo, Egypt
| | - Safaa Toubar
- Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, 11795 Cairo, Egypt
| | - Emad Ramzy
- Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, 11795 Cairo, Egypt.
| | - Marwa I Helmy
- Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, 11795 Cairo, Egypt.
| |
Collapse
|
25
|
Shabana S, Hamouda HI, Abdalla M, Sharaf M, Chi Z, Liu C. Multifunctional nanoparticles based on marine polysaccharides for apremilast delivery to inflammatory macrophages: Preparation, targeting ability, and uptake mechanism. Int J Biol Macromol 2022; 222:1709-1722. [PMID: 36179875 DOI: 10.1016/j.ijbiomac.2022.09.225] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/17/2022] [Accepted: 09/24/2022] [Indexed: 11/24/2022]
Abstract
Hydrophobic drug encapsulation inside targeted nanoparticles can enhance accumulation in inflamed sites, limit toxicity to healthy tissue, and improve pharmacokinetics compared to free drug dosing. This study reports a functionalized marine polysaccharide nanoparticle with a controlled release, targeting abilities, and in-situ imaging properties. Carbon dots functionalized Enteromorpha polysaccharide/Mannose/Methionine functionalized Chitosan (CDs.EP/Man/Meth.Cs) NPs could deliver apremilast to inflammatory macrophages and Caco-2 intestinal cells as an in vitro model for application in oral drug delivery to cure IBD. The nanoparticles were simply a polyelectrolyte complex between cationic functionalized chitosan and anionic polysaccharide of Enteromorpha prolifera. Functionalized polysaccharides and the prepared NPs were well characterized. The functionalized nanoparticles could overcome the limitation of poor drug bioavailability and showed a high loading capacity of (45 %) with a controlled release of about (74.5 %). Confocal laser scanning imaging showed higher cellular uptake of the modified nanoparticles than that of the unmodified nanoparticles in LPS-activated RAW 264.7 macrophages and Caco-2 cells. The effect of functionalization on the cellular uptake targetability was assessed using spectrofluorometric measurements after mannose competition. Anti-inflammatory activity of apremilast-loaded NPs is more elevated than the free drug. These results suggest the feasibility of using functionalized EP/Cs nanoparticles in IBD oral drug delivery.
Collapse
Affiliation(s)
- Samah Shabana
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Egyptian Ministry of Health and Population, 11516, Cairo, Egypt
| | - Hamed I Hamouda
- Processes Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727, Cairo, Egypt; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China.
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, Shandong 250022, PR China
| | - Mohamed Sharaf
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Department of Biochemistry, Faculty of Agriculture, AL-Azhar University, Nasr City, Cairo 11751, Egypt.
| | - Zhe Chi
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China.
| | - Chenguang Liu
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
26
|
Immobilization of α-Amylase onto Quantum Dots Prepared from Hypericum perforatum L. Flowers and Hypericum capitatum Seeds: Its Physicochemical and Biochemical Characterization. Top Catal 2022. [DOI: 10.1007/s11244-022-01699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
ZnO/CQDs Nanocomposites for Visible Light Photodegradation of Organic Pollutants. Catalysts 2022. [DOI: 10.3390/catal12090952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Currently, carbon quantum dots (CQDs) have been widely investigated as an enhancing photocatalytic component of various nanocomposites. In this study, hetero-structures containing carbon quantum dots (CQDs) associated to zinc oxide were prepared following two one-pot procedures: (i) a hydrothermal approach in which commercial ZnO was used as carrier for CQDs; and (ii) an approach in which the ZnO/CQDs samples were produced in situ by adding zinc acetate to an aqueous suspension of CQDs. CQDs were prepared in advance by a low-temperature hydrothermal (LHT) treatment of useless humins wastes produced by the glucose dehydration in an acidic medium. These samples were characterized by several techniques such asadsorption-desorption isotherms of liquid nitrogen at 77K, X-ray diffraction (XRD), infrared diffuse reflectance with Fourier transform (DRIFT) and UV-vis spectroscopy. The photocatalytic behavior of these materials was investigated in the degradation of methylene blue (MB). The obtained results revealed electronic interactions between CQDs and ZnO which have as an effect an enhancement of the charge separation and diminution of the charge recombination. In accordance, a correlation between the photocatalytic activity and the intrinsic properties of ZnO/CQDs has been evidenced. The highest photocatalytic activity corresponded to the heterostructure containing highly dispersed narrow sized CQDs onto ZnO. Under visible light irradiation and after 180 min of irradiation, MB was degraded by as much as 97.6%.
Collapse
|
28
|
Ornelas-Hernández LF, Garduno-Robles A, Zepeda-Moreno A. A Brief Review of Carbon Dots-Silica Nanoparticles Synthesis and their Potential Use as Biosensing and Theragnostic Applications. NANOSCALE RESEARCH LETTERS 2022; 17:56. [PMID: 35661270 PMCID: PMC9167377 DOI: 10.1186/s11671-022-03691-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Carbon dots (CDs) are carbon nanoparticles with sizes below 10 nm and have attracted attention due to their relatively low toxicity, great biocompatibility, water solubility, facile synthesis, and exceptional photoluminescence properties. Accordingly, CDs have been widely exploited in different sensing and biomedical applications, for example, metal sensing, catalysis, biosensing, bioimaging, drug and gene delivery, and theragnostic applications. Similarly, the well-known properties of silica, such as facile surface functionalization, good biocompatibility, high surface area, and tunable pore volume, have allowed the loading of diverse inorganic and organic moieties and nanoparticles, creating complex hybrid nanostructures that exploit distinct properties (optical, magnetic, metallic, mesoporous, etc.) for sensing, biosensing, bioimaging, diagnosis, and gene and drug delivery. In this context, CDs have been successfully grafted into diverse silica nanostructures through various synthesis methods (e.g., solgel chemistry, inverse microemulsion, surfactant templating, and molecular imprinting technology (MIT)), imparting hybrid nanostructures with multimodal properties for distinct objectives. This review discusses the recently employed synthesis methods for CDs and silica nanoparticles and their typical applications. Then, we focus on combined synthesis techniques of CD-silica nanostructures and their promising biosensing operations. Finally, we overview the most recent potential applications of these materials as innovative smart hybrid nanocarriers and theragnostic agents for the nanomedical field.
Collapse
Affiliation(s)
- Luis Fernando Ornelas-Hernández
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México
| | - Angeles Garduno-Robles
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México
| | - Abraham Zepeda-Moreno
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México.
- Unidad de Biología Molecular, Investigación Y Diagnóstico SA de CV, Hospital San Javier, Pablo Casals 640, Guadalajara, Jalisco, México.
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara, Jalisco, México.
| |
Collapse
|
29
|
Somaraj G, Mathew S, Abraham T, Ambady KG, Mohan C, Mathew B. Nitrogen and Sulfur Co‐Doped Carbon Quantum Dots for Sensing Applications: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202200473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gayathri Somaraj
- School of chemical Sciences Mahatma Gandhi University Kottayam India
| | - Sneha Mathew
- School of chemical Sciences Mahatma Gandhi University Kottayam India
| | - Thomas Abraham
- Department of Chemistry Catholicate College Pathanamthitta Kerala India
| | - K. G. Ambady
- Department of Special Education National Institute for the Empowerment of Persons with Intellectual Disabilities Telangana India
| | - Chitra Mohan
- School of chemical Sciences Mahatma Gandhi University Kottayam India
| | - Beena Mathew
- School of chemical Sciences Mahatma Gandhi University Kottayam India
| |
Collapse
|
30
|
Wu X, Abbas K, Yang Y, Li Z, Tedesco AC, Bi H. Photodynamic Anti-Bacteria by Carbon Dots and Their Nano-Composites. Pharmaceuticals (Basel) 2022; 15:487. [PMID: 35455484 PMCID: PMC9032997 DOI: 10.3390/ph15040487] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
The misuse of many types of broad-spectrum antibiotics leads to increased antimicrobial resistance. As a result, the development of a novel antibacterial agent is essential. Photodynamic antimicrobial chemotherapy (PACT) is becoming more popular due to its advantages in eliminating drug-resistant strains and providing broad-spectrum antibacterial resistance. Carbon dots (CDs), zero-dimensional nanomaterials with diameters smaller than 10 nm, offer a green and cost-effective alternative to PACT photosensitizers. This article reviewed the synthesis methods of antibacterial CDs as well as the recent progress of CDs and their nanocomposites in photodynamic sterilization, focusing on maximizing the bactericidal impact of CDs photosensitizers. This review establishes the base for future CDs development in the PACT field.
Collapse
Affiliation(s)
- Xiaoyan Wu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (X.W.); (K.A.); (Y.Y.); (A.C.T.)
| | - Khurram Abbas
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (X.W.); (K.A.); (Y.Y.); (A.C.T.)
| | - Yuxiang Yang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (X.W.); (K.A.); (Y.Y.); (A.C.T.)
| | - Zijian Li
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China;
| | - Antonio Claudio Tedesco
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (X.W.); (K.A.); (Y.Y.); (A.C.T.)
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Hong Bi
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (X.W.); (K.A.); (Y.Y.); (A.C.T.)
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China;
| |
Collapse
|
31
|
Ma J, Li K, Gu S, Wu Y, Zhang J, Wu J, Zhao L, Li X. Antimicrobial carbon-dot–stabilized silver nanoparticles. NEW J CHEM 2022. [DOI: 10.1039/d1nj05798g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon-dot–stabilized silver nanoparticles (CD–AgNPs) with high stability and low toxicity exhibit good antibacterial activity and broad-spectrum performance.
Collapse
Affiliation(s)
- Jinliang Ma
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Kexin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Jing Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Jiafa Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Lina Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Xuan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| |
Collapse
|
32
|
Lin Y, Zhao Y, Yang Z, Shen Z, Ke J, Yin F, Fang L, Zvyagin AV, Yang B, Lin Q. Gold nanodots with stable red fluorescence for rapid dual-mode imaging of spinal cord and injury monitoring. Talanta 2022; 241:123241. [DOI: 10.1016/j.talanta.2022.123241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
|
33
|
Chang P, Wu LJ, Yuan X, Yukun B, Dan Y, Wu G, An M, Zhao L. Construction of a ratiometric fluorescence sensing platform based on DES-CDs/CoOOH/OPD system for ascorbic acid detection. NEW J CHEM 2022. [DOI: 10.1039/d2nj02066a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a ratiometric fluorescence sensing platform based on deep eutectic solvent-carbon dots (DES-CDs) was constructed to efficiently determine ascorbic acid (AA). The CDs were synthesized by hydrothermal method using green...
Collapse
|
34
|
Wu L, Gao Y, Zhao C, Huang D, Chen W, Lin X, Liu A, Lin L. Synthesis of curcumin-quaternized carbon quantum dots with enhanced broad-spectrum antibacterial activity for promoting infected wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112608. [DOI: 10.1016/j.msec.2021.112608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
|
35
|
Photoactivated Carbon Dots for Inactivation of Foodborne Pathogens Listeria and Salmonella. Appl Environ Microbiol 2021; 87:e0104221. [PMID: 34550755 DOI: 10.1128/aem.01042-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Foodborne pathogens have long been recognized as major challenges for the food industry and repeatedly implicated in food product recalls and outbreaks of foodborne diseases. This study demonstrated the application of a recently discovered class of visible-light-activated carbon-based nanoparticles, namely, carbon dots (CDots), for photodynamic inactivation of foodborne pathogens. The results demonstrated that CDots were highly effective in the photoinactivation of Listeria monocytogenes in suspensions and on stainless steel surfaces. However, it was much less effective for Salmonella cells, but treatments with higher CDot concentrations and longer times were still able to inactivate Salmonella cells. The mechanistic implications of the observed different antibacterial effects on the two types of cells were assessed, and the associated generation of intracellular reactive oxygen species (ROS), the resulting lipid peroxidation, and the leakage of nucleic acid and proteins from the treated cells were analyzed, with the results collectively suggesting CDots as a class of promising photodynamic inactivation agents for foodborne pathogens. IMPORTANCE Foodborne infectious diseases have long been recognized as major challenges in public health. Contaminations of food processing facilities and equipment with foodborne pathogens occur often. There is a critical need for new tools/approaches to control the pathogens and prevent such contaminations in food processing facilities and other settings. This study reports a newly established antimicrobial nanomaterials platform, CDots coupled with visible/natural light, for effective and efficient inactivation of representative foodborne bacterial pathogens. The study will contribute to promoting the practical application of CDots as a new class of promising nanomaterial-based photodynamic inactivation agents for foodborne pathogens.
Collapse
|
36
|
Calabrese G, De Luca G, Nocito G, Rizzo MG, Lombardo SP, Chisari G, Forte S, Sciuto EL, Conoci S. Carbon Dots: An Innovative Tool for Drug Delivery in Brain Tumors. Int J Mol Sci 2021; 22:11783. [PMID: 34769212 PMCID: PMC8583729 DOI: 10.3390/ijms222111783] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/16/2023] Open
Abstract
Brain tumors are particularly aggressive and represent a significant cause of morbidity and mortality in adults and children, affecting the global population and being responsible for 2.6% of all cancer deaths (as well as 30% of those in children and 20% in young adults). The blood-brain barrier (BBB) excludes almost 100% of the drugs targeting brain neoplasms, representing one of the most significant challenges to current brain cancer therapy. In the last decades, carbon dots have increasingly played the role of drug delivery systems with theranostic applications against cancer, thanks to their bright photoluminescence, solubility in bodily fluids, chemical stability, and biocompatibility. After a summary outlining brain tumors and the current drug delivery strategies devised in their therapeutic management, this review explores the most recent literature about the advances and open challenges in the employment of carbon dots as both diagnostic and therapeutic agents in the treatment of brain cancers, together with the strategies devised to allow them to cross the BBB effectively.
Collapse
Affiliation(s)
- Giovanna Calabrese
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali—Università degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (G.N.); (M.G.R.); (S.C.)
| | - Giovanna De Luca
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali—Università degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (G.N.); (M.G.R.); (S.C.)
| | - Giuseppe Nocito
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali—Università degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (G.N.); (M.G.R.); (S.C.)
| | - Maria Giovanna Rizzo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali—Università degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (G.N.); (M.G.R.); (S.C.)
| | - Sofia Paola Lombardo
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (S.P.L.); (G.C.)
| | - Giulia Chisari
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (S.P.L.); (G.C.)
| | - Stefano Forte
- IOM Ricerca, Via Penninazzo 11, 95029 Viagrande, Italy;
| | - Emanuele Luigi Sciuto
- A.O.-Universitaria Policlinico “G. Rodolico–San Marco”, Via Santa Sofia 78, 95123 Catania, Italy;
| | - Sabrina Conoci
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali—Università degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (G.N.); (M.G.R.); (S.C.)
| |
Collapse
|
37
|
Tiwari DK, Jha G, Tiwari M, Kerkar S, Das S, Gobre VV. Synergistic Antibacterial Potential and Cell Surface Topology Study of Carbon Nanodots and Tetracycline Against E. coli. Front Bioeng Biotechnol 2021; 9:626276. [PMID: 34676200 PMCID: PMC8524088 DOI: 10.3389/fbioe.2021.626276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 08/05/2021] [Indexed: 11/24/2022] Open
Abstract
Increasing drugs and antibiotic resistance against pathogenic bacteria create the necessity to explore novel biocompatible antibacterial materials. This study investigated the antibacterial effect of carbon dot (C-dot) against E. coli and suggested an effective synergistic dose of tetracycline with C-dot, using mathematical modeling of antibacterial data. Colony count and growth curve studies clearly show an enhanced antibacterial activity against E. coli synergistically treated with C-dot and tetracycline, even at a concentration ten times lower than the minimum inhibitory concentration (MIC). The Richards model-fit of growth curve clearly showed an increase in doubling time, reduction in growth rate, and early stationary phase in the synergistic treatment with 42% reduction in the growth rate (μm) compared to the control. Morphological studies of E. coli synergistically treated with C-dot + tetracycline showed cell damage and deposition of C-dots on the bacterial cell membrane in scanning electron microscopy imaging. We further validated the topological changes, cell surface roughness, and significant changes in the height profile (ΔZ) with the control and treated E. coli cells viewed under an atomic force microscope. We confirmed that the effective antibacterial doses of C-dot and tetracycline were much lower than the MIC in a synergistic treatment.
Collapse
Affiliation(s)
- Dhermendra K Tiwari
- Department of Biotechnology, Faculty of Life Sciences and Environment, Goa University, Taleigao plateau, Goa, India
| | - Gargi Jha
- Department of Biotechnology, Faculty of Life Sciences and Environment, Goa University, Taleigao plateau, Goa, India
| | - Manisha Tiwari
- Department of Biotechnology, Faculty of Life Sciences and Environment, Goa University, Taleigao plateau, Goa, India
| | - Savita Kerkar
- Department of Biotechnology, Faculty of Life Sciences and Environment, Goa University, Taleigao plateau, Goa, India
| | - Suman Das
- Department of Biotechnology, Faculty of Life Sciences and Environment, Goa University, Taleigao plateau, Goa, India
| | - Vivekanand V Gobre
- School of Chemical Sciences, Goa University, Taleigao plateau, Goa, India
| |
Collapse
|
38
|
Ding R, Chen Y, Wang Q, Wu Z, Zhang X, Li B, Lin L. Recent advances in quantum dots-based biosensors for antibiotic detection. J Pharm Anal 2021; 12:355-364. [PMID: 35811614 PMCID: PMC9257440 DOI: 10.1016/j.jpha.2021.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/21/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Rui Ding
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yue Chen
- School of Nursing, Nanjing Medical University, Nanjing, 211166, China
| | - Qiusu Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Zhengzhang Wu
- Jiangsu Conat Biological Products Co., Ltd., Taixing, Jiangsu, 225400, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
- Corresponding author.
| | - Lei Lin
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
- Corresponding author. .
| |
Collapse
|
39
|
Ge G, Li L, Wang D, Chen M, Zeng Z, Xiong W, Wu X, Guo C. Carbon dots: synthesis, properties and biomedical applications. J Mater Chem B 2021; 9:6553-6575. [PMID: 34328147 DOI: 10.1039/d1tb01077h] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Carbon dots (CDs) are a new type of carbon nanomaterial that have unique physical and chemical properties, good biocompatibility, low toxicity, and easy surface functionalization, making them widely used in biological imaging, environmental monitoring, chemical analysis, targeted drug delivery, disease diagnosis, therapy, etc. In this review, our content is mainly divided into four parts. In the first part, we focused on the preparation methods of CDs, including arc discharge, laser ablation, electrochemical oxidation, chemical oxidation, combustion, hydrothermal/solvent thermal, microwave, template, method etc. Next, we summarized methods of CD modification, including heteroatom doping and surface functionalization. Then, we discussed the optical properties of CDs (ultraviolet absorption, photoluminescence, up-conversion fluorescence, etc.). Lastly, we reviewed the common applications of CDs in biomedicine from the aspects of in vivo and in vitro imaging, sensors, drug delivery, cancer theranostics, etc. Furthermore, we also discussed the existing problems and the future development direction of CDs.
Collapse
Affiliation(s)
- Guili Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410008, China.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Czarnecka J, Kwiatkowski M, Wiśniewski M, Roszek K. Protein Corona Hinders N-CQDs Oxidative Potential and Favors Their Application as Nanobiocatalytic System. Int J Mol Sci 2021; 22:ijms22158136. [PMID: 34360901 PMCID: PMC8347256 DOI: 10.3390/ijms22158136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 01/13/2023] Open
Abstract
The oxidative properties of nanomaterials arouse legitimate concerns about oxidative damage in biological systems. On the other hand, the undisputable benefits of nanomaterials promote them for biomedical applications; thus, the strategies to reduce oxidative potential are urgently needed. We aimed at analysis of nitrogen-containing carbon quantum dots (N-CQDs) in terms of their biocompatibility and internalization by different cells. Surprisingly, N-CQD uptake does not contribute to the increased oxidative stress inside cells and lacks cytotoxic influence even at high concentrations, primarily through protein corona formation. We proved experimentally that the protein coating effectively limits the oxidative capacity of N-CQDs. Thus, N-CQDs served as an immobilization support for three different enzymes with the potential to be used as therapeutics. Various kinetic parameters of immobilized enzymes were analyzed. Regardless of the enzyme structure and type of reaction catalyzed, adsorption on the nanocarrier resulted in increased catalytic efficiency. The enzymatic-protein-to-nanomaterial ratio is the pivotal factor determining the course of kinetic parameter changes that can be tailored for enzyme application. We conclude that the above properties of N-CQDs make them an ideal support for enzymatic drugs required for multiple biomedical applications, including personalized medical therapies.
Collapse
Affiliation(s)
- Joanna Czarnecka
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Correspondence: (J.C.); (M.W.); (K.R.)
| | - Mateusz Kwiatkowski
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| | - Marek Wiśniewski
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Correspondence: (J.C.); (M.W.); (K.R.)
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Correspondence: (J.C.); (M.W.); (K.R.)
| |
Collapse
|
41
|
Liang W, Wang P, Meziani MJ, Ge L, Yang L, Patel AK, Morgan SO, Sun YP. On the myth of "red/near-IR carbon quantum dots" from thermal processing of specific colorless organic precursors. NANOSCALE ADVANCES 2021; 3:4186-4195. [PMID: 36132851 PMCID: PMC9419825 DOI: 10.1039/d1na00286d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/10/2021] [Indexed: 06/08/2023]
Abstract
Carbon dots were originally found and reported as surface-passivated small carbon nanoparticles, where the effective surface passivation was the chemical functionalization of the carbon nanoparticles with organic molecules. Understandably, the very broad optical absorptions of carbon dots are largely the same as those intrinsic to the carbon nanoparticles, characterized by progressively decreasing absorptivities from shorter to longer wavelengths. Thus, carbon dots are generally weak absorbers in the red/near-IR and correspondingly weak emitters with low quantum yields. Much effort has been made on enhancing the optical performance of carbon dots in the red/near-IR, but without meaningful success due to the fact that optical absorptivities defined by Mother Nature are in general rather inert to any induced alterations. Nevertheless, there were shockingly casual claims in the literature on the major success in dramatically altering the optical absorption profiles of "carbon dots" by simply manipulating the dot synthesis to produce samples of some prominent optical absorption bands in the red/near-IR. Such claims have found warm receptions in the research field with a desperate need for carbon dots of the same optical performance in the red/near-IR as that in the green and blue. However, by looking closely at the initially reported synthesis and all its copies in subsequent investigations on the "red/near-IR carbon dots", one would find that the "success" of the synthesis by thermal or hydrothermal carbonization processing requires specific precursor mixtures of citric acid with formamide or urea. In the study reported here, the systematic investigation included precursor mixtures of citric acid with not only formamide or urea but also their partially methylated or permethylated derivatives for the carbonization processing under conditions similar to and beyond those commonly used and reported in the literature. Collectively all of the results are consistent only with the conclusion that the origins of the observed red/near-IR optical absorptions in samples from some of the precursor mixtures must be molecular chromophores from thermally induced chemical reactions, nothing to do with any nanoscale carbon entities produced by carbonization.
Collapse
Affiliation(s)
- Weixiong Liang
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University Clemson South Carolina 29634 USA
| | - Ping Wang
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University Clemson South Carolina 29634 USA
| | - Mohammed J Meziani
- Department of Natural Sciences, Northwest Missouri State University Maryville Missouri 64468 USA
| | - Lin Ge
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University Clemson South Carolina 29634 USA
| | - Liju Yang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University Durham NC 27707 USA
| | - Amankumar K Patel
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University Clemson South Carolina 29634 USA
- Department of Natural Sciences, Northwest Missouri State University Maryville Missouri 64468 USA
| | - Sabina O Morgan
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University Durham NC 27707 USA
| | - Ya-Ping Sun
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University Clemson South Carolina 29634 USA
| |
Collapse
|
42
|
Wang FT, Wang LN, Xu J, Huang KJ, Wu X. Synthesis and modification of carbon dots for advanced biosensing application. Analyst 2021; 146:4418-4435. [PMID: 34195700 DOI: 10.1039/d1an00466b] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been an explosion of interest in the use of nanomaterials for biosensing applications, and carbonaceous nanomaterials in particular are at the forefront of this explosion. Carbon dots (CDs), a new type of carbon material, have attracted extensive attention due to their fascinating properties, such as small particle size, tunable optical properties, good conductivity, low cytotoxicity, and good biocompatibility. These properties have enabled them to be highly promising candidates for the fabrication of various high-performance biosensors. In this review, we summarize the top-down and bottom-up synthesis routes of CDs, highlight their modification strategies, and discuss their applications in the fields of photoluminescence biosensors, electrochemiluminescence biosensors, chemiluminescence biosensors, electrochemical biosensors and fluorescence biosensors. In addition, the challenges and future prospects of the application of CDs for biosensors are also proposed.
Collapse
Affiliation(s)
- Fu-Ting Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Li-Na Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Xu Wu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
43
|
Chung S, Zhang M. Microwave-Assisted Synthesis of Carbon Dot - Iron Oxide Nanoparticles for Fluorescence Imaging and Therapy. Front Bioeng Biotechnol 2021; 9:711534. [PMID: 34295883 PMCID: PMC8290417 DOI: 10.3389/fbioe.2021.711534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
Fluorescence microscopy is commonly used to image specific parts of a biological system, and is applicable for early diagnosis of cancer. Current fluorescent probes, such as organic dyes and quantum dots, suffer from poor solubility and high toxicity, respectively, demonstrating a need for a colloidal stable and non-toxic fluorescent probe. Here we present an iron oxide and carbon dot (CD) based nanoparticle (CNPCP) that displays optical properties similar to those of conventional fluorescent probe and also exhibits good biocompatibility. Fluorescent CDs were synthesized from glucosamine onto chitosan - polyethylene glycol (PEG) graft copolymer using microwave irradiation. These NPs were monodispersed in aqueous environments and displayed excitation-dependent fluorescence; they demonstrated good size stability and fluorescence intensity in biological media. In vitro evaluation of CNP as fluorescent probes in cancer cell lines showed that these NPs caused little toxicity, and allowed fast and quantitative imaging. Model therapeutic doxorubicin (DOX) was conjugated onto the NPs (CNPCP-DOX) to demonstrate the multifunctionality of the NPs, and in vitro studies showed that CNPCP-DOX was able to kill cancer cells in a dose dependent manner. These results indicate the potential of using CNPCPs as fluorescent probes capable of delivering chemotherapeutics.
Collapse
Affiliation(s)
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
44
|
Romero MP, Alves F, Stringasci MD, Buzzá HH, Ciol H, Inada NM, Bagnato VS. One-Pot Microwave-Assisted Synthesis of Carbon Dots and in vivo and in vitro Antimicrobial Photodynamic Applications. Front Microbiol 2021; 12:662149. [PMID: 34234756 PMCID: PMC8255795 DOI: 10.3389/fmicb.2021.662149] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Carbon-based photosensitizers are more attractive than the other ones based on their low cost, high stability, broadband of light absorption, tunable emission spectra, high quantum yield, water solubility, high resistance to metabolic degradation, and selective delivery. These properties allow multiple applications in the field of biology and medicine. The present study evaluated in vitro and in vivo the antimicrobial photodynamic effect of a one-pot microwave produced C-DOTS based on citric acid. The in vitro assays assessed the effectiveness of illuminated C-DOTS (C-DOTS + light) against Staphylococcus aureus suspension and biofilm. The concentrations of 6.9 and 13.8 mg/mL of C-DOTS and light doses of 20 and 40 J/cm2 were able to reduce significantly the microorganisms. Based on these parameters and results, the in vivo experiments were conducted in mice, evaluating this treatment on wounds contaminated with S. aureus. The viability test showed that C-DOTS-mediated photodynamic inactivation reduced 104 log of the bacteria present on the skin lesions. These results, altogether, showed that antibacterial photodynamic therapy using C-DOTS is a promising and viable treatment for Gram-positive bacteria-infected wounds.
Collapse
Affiliation(s)
- María Paulina Romero
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
- Departamento de Materiales, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito, Ecuador
| | - Fernanda Alves
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | | | - Hilde Harb Buzzá
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Heloísa Ciol
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | | | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
- Hagler Fellow, Texas A&M University, College Station, TX, United States
| |
Collapse
|
45
|
Chung S, Revia RA, Zhang M. Graphene Quantum Dots and Their Applications in Bioimaging, Biosensing, and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e1904362. [PMID: 31833101 PMCID: PMC7289657 DOI: 10.1002/adma.201904362] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/22/2019] [Indexed: 05/05/2023]
Abstract
Graphene quantum dots (GQDs) are carbon-based, nanoscale particles that exhibit excellent chemical, physical, and biological properties that allow them to excel in a wide range of applications in nanomedicine. The unique electronic structure of GQDs confers functional attributes onto these nanomaterials such as strong and tunable photoluminescence for use in fluorescence bioimaging and biosensing, a high loading capacity of aromatic compounds for small-molecule drug delivery, and the ability to absorb incident radiation for use in the cancer-killing techniques of photothermal and photodynamic therapy. Recent advances in the development of GQDs as novel, multifunctional biomaterials are presented with a focus on their physicochemical, electronic, magnetic, and biological properties, along with a discussion of technical progress in the synthesis of GQDs. Progress toward the application of GQDs in bioimaging, biosensing, and therapy is reviewed, along with a discussion of the current limitations and future directions of this exciting material.
Collapse
Affiliation(s)
- Seokhwan Chung
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Richard A Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
46
|
Sustainable process to co-synthesize nano carbon dots, nano hydroxyapatite and nano β-dicalcium diphosphate from the fish scale. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01875-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
47
|
Zhang L, Wang Z, Wang H, Dong W, Liu Y, Hu Q, Shuang S, Dong C, Gong X. Nitrogen-doped carbon dots for wash-free imaging of nucleolus orientation. Mikrochim Acta 2021; 188:183. [PMID: 33970343 DOI: 10.1007/s00604-021-04837-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 11/26/2022]
Abstract
Carbon dots (CDs) are a rising star in the field of cellular imaging, especially cytoplasmic imaging, attributing to the super-stable optical performance and ultra-low biological toxicity. Nucleolus can accurately reflect the expression state of a cell and is strongly linked to the occurrence and development of many diseases, so exploring bran-new CDs for nucleolus-orientation imaging with no-wash technology has important theoretical value and practical significance. Herein, nitrogen-doped carbon dots (N-CDs) with green fluorescence (the relative fluorescence quantum yield of 24.4%) was fabricated by the hydrothermal treatment of m-phenylenediamine and p-aminobenzoic acid. The N-CDs possess small size, bright green fluorescence, abundant surface functional groups, excellent fluorescence stability and good biocompatibility, facilitating that the N-CDs are an excellent imaging reagent for cellular imaging. N-CDs can particularly bind to RNA in nucleoli to enhance their fluorescence, which ensures that the N-CDs can be used in nucleolus-orientation imaging with high specificity and wash-free technique. This study demonstrates that the N-CDs have a significant feasibility to be used for nucleolus-orientation imaging in biomedical analysis and clinical diagnostic applications.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Environmental Science, and Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Zihan Wang
- Institute of Environmental Science, and Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Huiping Wang
- Institute of Environmental Science, and Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Wenjuan Dong
- Institute of Environmental Science, and Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Yang Liu
- Institute of Environmental Science, and Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Qin Hu
- College of Food Chemistry and Engineering, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Chuan Dong
- Institute of Environmental Science, and Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, People's Republic of China.
| | - Xiaojuan Gong
- Institute of Environmental Science, and Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, People's Republic of China.
| |
Collapse
|
48
|
Wiśniewski M, Czarnecka J, Bolibok P, Świdziński M, Roszek K. New Insight into the Fluorescence Quenching of Nitrogen-Containing Carbonaceous Quantum Dots-From Surface Chemistry to Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:ma14092454. [PMID: 34065161 PMCID: PMC8125974 DOI: 10.3390/ma14092454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
Carbon-based quantum dots are widely suggested as fluorescent carriers of drugs, genes or other bioactive molecules. In this work, we thoroughly examine the easy-to-obtain, biocompatible, nitrogen-containing carbonaceous quantum dots (N-CQDs) with stable fluorescent properties that are resistant to wide-range pH changes. Moreover, we explain the mechanism of fluorescence quenching at extreme pH conditions. Our in vitro results indicate that N-CQDs penetrate the cell membrane; however, fluorescence intensity measured inside the cells was lower than expected from carbonaceous dots extracellular concentration decrease. We studied the mechanism of quenching and identified reduced form of β-nicotinamide adenine dinucleotide (NADH) as one of the intracellular quenchers. We proved it experimentally that the elucidated redox process triggers the efficient reduction of amide functionalities to non-fluorescent amines on carbonaceous dots surface. We determined the 5 nm-wide reactive redox zone around the N-CQD surface. The better understanding of fluorescence quenching will help to accurately quantify and dose the internalized carbonaceous quantum dots for biomedical applications.
Collapse
Affiliation(s)
- Marek Wiśniewski
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
- Correspondence: (M.W.); (K.R.)
| | - Joanna Czarnecka
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Paulina Bolibok
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Michał Świdziński
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
- Correspondence: (M.W.); (K.R.)
| |
Collapse
|
49
|
Tan TL, Zulkifli NA, Zaman ASK, Jusoh MB, Yaapar MN, Rashid SA. Impact of photoluminescent carbon quantum dots on photosynthesis efficiency of rice and corn crops. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:737-751. [PMID: 33799185 DOI: 10.1016/j.plaphy.2021.03.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Photosynthesis is one of the most fundamental biochemical processes on earth such that it is vital to the existence of most lives on this planet. In fact, unravelling the potentials in enhancing photosynthetic efficiency and electron transfer process, which are thought to improve plant growth is one of the emerging approaches in tackling modern agricultural shortcomings. In light of this, zero-dimensional carbon quantum dots (CQD) have emerged and garnered much interest in recent years which can enhance photosynthesis by modulating the associated electron transfer process. In this work, CQD was extracted from empty fruit bunch (EFB) biochar using a green acid-free microwave method. The resulting CQD was characterized using HRTEM, PL, UV-Vis and XPS. Typical rice (C3) and corn (C4) crops were selected in the present study in order to compare the significant effect of CQD on the two different photosynthetic pathways of crops. CQD was first introduced into crop via foliar spraying application instead of localised placement of CQD before seedling development. The influence of CQD on the photosynthetic efficiency of rice (C3) and corn (C4) leaves was determined by measuring both carbon dioxide conversion and the stomatal conductance of the leaf. As a result, the introduction of CQD greatly enhanced the photosynthesis in CQD-exposed crops. This is the first study focusing on phylogenetically constrained differences in photosynthetic responses between C3 and C4 crops upon CQD exposure, which gives a better insight into the understanding of photosynthesis process and shows considerable promise in nanomaterial research for sustainable agriculture practices.
Collapse
Affiliation(s)
- Tong Ling Tan
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400, Selangor, Malaysia.
| | - Noor Atiqah Zulkifli
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Selangor, Malaysia
| | | | - Mashitah Binti Jusoh
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Selangor, Malaysia
| | - Muhammad Nazmin Yaapar
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Selangor, Malaysia
| | - Suraya Abdul Rashid
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400, Selangor, Malaysia.
| |
Collapse
|
50
|
Wu H, Xu H, Shi Y, Yuan T, Meng T, Zhang Y, Xie W, Li X, Li Y, Fan L. Recent Advance in Carbon Dots: From Properties to Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hao Wu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Huimin Xu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Yuxin Shi
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Ting Yuan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Ting Meng
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Yang Zhang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Wenjing Xie
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Xiaohong Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Yunchao Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Louzhen Fan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| |
Collapse
|