1
|
Ahmad M, Roy NJ, Mondal D, Vijayakanth T, Lahiri M, Talukdar P. Illuminating apoptosis: a visible light-activated chloride carrier for chloride transport and cell death. J Mater Chem B 2025; 13:5957-5966. [PMID: 40314174 DOI: 10.1039/d4tb02436b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Synthetic chloride carriers are known to induce chloride-mediated apoptosis inside cancer cells. One of the main disadvantages is the unfavorable cytotoxicity towards healthy cells due to the lack of selectivity. The use of stimuli, such as light, enzymes, ligands, etc., has enabled the selective activation of these systems in cancer cells. Light, notably, is a significant stimulus that has been utilized due to its excellent spatiotemporal control, remote addressability, and low cytotoxicity. However, previously reported photoresponsive systems require UV radiation for their activation, which has low tissue penetration and can lead to phototoxic cell damage or death. Herein, we report 3-substituted indole-2-carboxamide ion carriers and their o-nitrobenzyl (ONB) linked procarriers. The incorporation of the electron-donating substituents to the ONB photocleavable group leads to a significant red shift in the absorption wavelength, and for the N,N-dimethyl-based procarrier, the absorbance peak extends up to 500 nm. Eventually, all the synthesized procarriers were photoactivated inside MCF-7 cancer cells under 400 nm electromagnetic radiation, and the N,N-dimethyl-based procarrier was also photoactivated at 450 nm. This photoactivation at a higher wavelength of electromagnetic radiation is highly desirable for its practical biological applications.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| | - Naveen J Roy
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| | - Debashis Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| | - Thangavel Vijayakanth
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| |
Collapse
|
2
|
Wang P, Fares M, Eladwy RA, Bhuyan DJ, Wu X, Lewis W, Loeb SJ, Macreadie LK, Gale PA. Platinum-based metal complexes as chloride transporters that trigger apoptosis. Chem Sci 2024; 15:11584-11593. [PMID: 39055016 PMCID: PMC11268493 DOI: 10.1039/d4sc02115k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
In this paper we demonstrate that Pt(ii) complexes can function as efficient transmembrane chloride transporters. A series of Pt(ii) metal complexes with urea-appended isoquinoline ligands were synthesised and operate via classical hydrogen bonding interactions rather than ligand exchange. A number of the complexes exhibited potent transmembrane chloride activity in vesicle studies, while also showing strong antiproliferative activity in cisplatin-resistant cell lines via induction of apoptosis and inhibition of intracellular ROS.
Collapse
Affiliation(s)
- Patrick Wang
- School of Chemistry, The University of Sydney NSW 2006 Australia
| | - Mohamed Fares
- School of Pharmacy, The University of Sydney NSW 2006 Australia
| | - Radwa A Eladwy
- NICM, Research Health Institute, Western Sydney University NSW 2751 Australia
| | - Deep J Bhuyan
- NICM, Research Health Institute, Western Sydney University NSW 2751 Australia
| | - Xin Wu
- School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 Fujian China
| | - William Lewis
- School of Chemistry, The University of Sydney NSW 2006 Australia
| | - Stephen J Loeb
- Department of Chemistry and Biochemistry, University of Windsor Ontario N9B 3P4 Canada
| | | | - Philip A Gale
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney Ultimo NSW 2007 Australia
| |
Collapse
|
3
|
Rather IA, Ahmad M, Talukdar P, Ali R. Probing and evaluating transmembrane chloride ion transport in double walled trifluorophenyl/phthalimide extended calix[4]pyrrole-based supramolecular receptors. J Mater Chem B 2024; 12:5950-5956. [PMID: 38804847 DOI: 10.1039/d3tb02880a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Therapeutic applications have sparked increased interest in the use of synthetic anion receptors for ion transport across lipid membranes. In this context, the construction of synthetic transmembrane transporters for the physiologically important chloride ion is currently of enormous interest. As a result, considerable effort is being devoted to the design and synthesis of artificial transmembrane chloride ion transporters. However, only inadequate progress has been made in developing macrocyclic chloride ion transporters using the fundamental principles of supramolecular chemistry, and hence this field entails fostering investigations. In this investigation, the synthesis of two new double walled trifluorophenyl/phthalimide extended calix[4]pyrrole (C4P) receptors (3 and 7) has been successfully reported. 1H-NMR titration and HRMS studies confirmed the 1 : 1 binding stoichiometry of the chloride ion with these receptors in the solution phase (only receptor 3b was studied by 1H-NMR). Regarding ion transport of 3b and 7, when studied in the HPTS-based vesicular system, 3b showed better activity with an EC50 value of 0.39 μM. The detailed ion transport studies on 3b have revealed that ion transport occurs through the Cl-/NO3- antiport mode.
Collapse
Affiliation(s)
- Ishfaq Ahmad Rather
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi 110025, India.
| | - Manzoor Ahmad
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411008, Maharashtra, India.
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411008, Maharashtra, India.
| | - Rashid Ali
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi 110025, India.
| |
Collapse
|
4
|
Tosolini M, Alberoni C, Outis M, Parola AJ, Milani B, Tecilla P, Avó J. Naphthalimide-Dyes Bearing Phosphine and Phosphorylamide Moieties: Synthesis and Optical Properties. Chemistry 2023; 29:e202301597. [PMID: 37377174 DOI: 10.1002/chem.202301597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 06/29/2023]
Abstract
1,8-Naphthalimides (NIs) represent a class of organic dyes with interesting optical properties that has been extensively explored in the last decades in lighting devices, chemosensors, optical probes or medicinal chemistry. However, despite their remarkable potential, reports on organometallic dyes bearing NIs are scarce and virtually inexistent regarding palladium(II) complexes. Herein, we report the synthesis of NIs bearing phosphine and amine chelating moieties and the characterization of their optical properties both as single molecules and when complexed on Pd(II) ions. It is shown that the introduction of phosphine moieties in the naphthalimide core results in a marked increase in non-radiative processes, leading to a significant reduction of the emission efficiency and lifetime of these dyes, compared to amine-bearing counterparts. The complexation to Pd(II) sequesters the electronic contribution of chelating moieties, with complexes assuming an optical behavior similar to that of unsubstituted 1,8-naphthalimide. The complexation significantly increases the acidity of chelating secondary amines, giving rise to an unexpected intramolecular reaction that results in the formation of a novel 1,8-naphthalimide dye bearing a cyclic phosphorylamide moiety. The new dye exhibits good emission quantum yield, long fluorescence lifetime and sensitivity to basic media, evidencing potential for application in optical imaging and sensing scenarios.
Collapse
Affiliation(s)
- Massimo Tosolini
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Giorgieri 1, 34127, Trieste, Italy
| | - Chiara Alberoni
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Giorgieri 1, 34127, Trieste, Italy
| | - Mani Outis
- LAQV-REQUIMTE, Department of Chemistry NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - António Jorge Parola
- LAQV-REQUIMTE, Department of Chemistry NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - Barbara Milani
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Giorgieri 1, 34127, Trieste, Italy
| | - Paolo Tecilla
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Giorgieri 1, 34127, Trieste, Italy
| | - João Avó
- LAQV-REQUIMTE, Department of Chemistry NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
- IBB-Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| |
Collapse
|
5
|
Ahmad M, Roy NJ, Singh A, Mondal D, Mondal A, Vijayakanth T, Lahiri M, Talukdar P. Photocontrolled activation of doubly o-nitrobenzyl-protected small molecule benzimidazoles leads to cancer cell death. Chem Sci 2023; 14:8897-8904. [PMID: 37621434 PMCID: PMC10445434 DOI: 10.1039/d3sc01786a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Artificial biomimetic chloride anionophores have shown promising applications as anticancer scaffolds. Importantly, stimuli-responsive chloride transporters that can be selectively activated inside the cancer cells to avoid undesired toxicity to normal, healthy cells are very rare. Particularly, light-responsive systems promise better applicability for photodynamic therapy because of their spatiotemporal controllability, low toxicity, and high tunability. Here, in this work, we report o-nitrobenzyl-linked, benzimidazole-based singly and doubly protected photocaged protransporters 2a, 2b, 3a, and 3b, respectively, and benzimidazole-2-amine-based active transporters 1a-1d. Among the active compounds, trifluoromethyl-based anionophore 1a showed efficient ion transport activity (EC50 = 1.2 ± 0.2 μM). Detailed mechanistic studies revealed Cl-/NO3- antiport as the main ion transport process. Interestingly, double protection with photocages was found to be necessary to achieve the complete "OFF-state" that could be activated by external light. The procarriers were eventually activated inside the MCF-7 cancer cells to induce phototoxic cell death.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Naveen J Roy
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Anurag Singh
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Debashis Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Abhishek Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Thangavel Vijayakanth
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University Tel Aviv 6997801 Israel
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| |
Collapse
|
6
|
Yang K, Kotak HA, Haynes CJ. Metal-organic ion transport systems. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Chen L, Wu X, Gilchrist AM, Gale PA. Organoplatinum Compounds as Anion-Tuneable Uphill Hydroxide Transporters. Angew Chem Int Ed Engl 2022; 61:e202116355. [PMID: 35192743 PMCID: PMC9310596 DOI: 10.1002/anie.202116355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/12/2022]
Abstract
Active transport of ions uphill, creating a concentration gradient across a cell membrane, is essential for life. It remains a significant challenge to develop synthetic systems that allow active uphill transport. Here, a transport process fuelled by organometallic compounds is reported that creates a pH gradient. The hydrolysis reaction of PtII complexes results in the formation of aqua complexes that established rapid transmembrane movement ("flip-flop") of neutral Pt-OH species, leading to protonation of the OH group in the inner leaflet, generating OH- ions, and so increasing the pH in the intravesicular solution. The organoplatinum complex effectively transports bound hydroxide ions across the membrane in a neutral complex. The initial net flow of the PtII complex into the vesicles generates a positive electric potential that can further drive uphill transport because the electric potential is opposed to the chemical potential of OH- . The OH- ions equilibrate with this transmembrane electric potential but cannot remove it due to the relatively low permeability of the charged species. As a result, effective hydroxide transport against its concentration gradient can be achieved, and multiple additions can continuously drive the generation of OH- against its concentration gradient up to ΔpH>2. Moreover, the external addition of different anions can control the generation of OH- depending on their anion binding affinity. When anions displayed very high binding affinities towards PtII compounds, such as halides, the external anions could dissipate the pH gradient. In contrast, a further pH increase was observed for weak binding anions, such as sulfate, due to the increase of positive electric potential.
Collapse
Affiliation(s)
- Li‐Jun Chen
- School of ChemistryThe University of SydneySydneyNSW 2006Australia
| | - Xin Wu
- School of ChemistryThe University of SydneySydneyNSW 2006Australia
| | | | - Philip A. Gale
- School of ChemistryThe University of SydneySydneyNSW 2006Australia
- The University of Sydney Nano Institute (SydneyNano)The University of SydneySydneyNSW 2006Australia
| |
Collapse
|
8
|
Chen L, Wu X, Gilchrist AM, Gale PA. Organoplatinum Compounds as Anion‐Tuneable Uphill Hydroxide Transporters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Li‐Jun Chen
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - Xin Wu
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | | | - Philip A. Gale
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
- The University of Sydney Nano Institute (SydneyNano) The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
9
|
Howe ENW, Chang VVT, Wu X, Fares M, Lewis W, Macreadie LK, Gale PA. Halide-selective, proton-coupled anion transport by phenylthiosemicarbazones. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183828. [PMID: 34861222 DOI: 10.1016/j.bbamem.2021.183828] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022]
Abstract
Phenylthiosemicarbazones (PTSCs) are proton-coupled anion transporters with pH-switchable behaviour known to be regulated by an imine protonation equilibrium. Previously, chloride/nitrate exchange by PTSCs was found to be inactive at pH 7.2 due to locking of the thiourea anion binding site by an intramolecular hydrogen bond, and switched ON upon imine protonation at pH 4.5. The rate-determining process of the pH switch, however, was not examined. We here develop a new series of PTSCs and demonstrate their conformational behaviour by X-ray crystallographic analysis and pH-switchable anion transport properties by liposomal assays. We report the surprising finding that the protonated PTSCs are extremely selective for halides over oxyanions in membrane transport. Owing to the high chloride over nitrate selectivity, the pH-dependent chloride/nitrate exchange of PTSCs originates from the rate-limiting nitrate transport process being inhibited at neutral pH.
Collapse
Affiliation(s)
- Ethan N W Howe
- School of Chemistry (F11), The University of Sydney, NSW 2006, Australia
| | - Vai-Vai Tiffany Chang
- School of Chemistry (F11), The University of Sydney, NSW 2006, Australia; Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Xin Wu
- School of Chemistry (F11), The University of Sydney, NSW 2006, Australia
| | - Mohamed Fares
- School of Chemistry (F11), The University of Sydney, NSW 2006, Australia
| | - William Lewis
- School of Chemistry (F11), The University of Sydney, NSW 2006, Australia
| | - Lauren K Macreadie
- School of Chemistry (F11), The University of Sydney, NSW 2006, Australia
| | - Philip A Gale
- School of Chemistry (F11), The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute (SydneyNano), The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
10
|
Benke BP, Behera H, Madhavan N. Low Molecular Weight Di‐ to Tetrapeptide Transmembrane Cation Transporters. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bahiru P. Benke
- Department of Chemistry Indian Institute of Technology Madras 600036 Chennai Tamil Nadu India
| | - Harekrushna Behera
- Department of Chemistry Indian Institute of Technology Madras 600036 Chennai Tamil Nadu India
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Nandita Madhavan
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| |
Collapse
|
11
|
Tosolini M, Avó J, Parola AJ, Balducci G, Tecilla P. Sterically Encumbered 4,5‐Bis(diphenylphosphino)acenaphthene Ligand and Its Ni(II), Pd(II), Pt(II), and Cu(I) Complexes. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Massimo Tosolini
- Department of Chemical and Pharmaceutical Science University of Trieste Via Giorgieri 1 34127 Trieste Italy
| | - João Avó
- IBB‐Institute for Bioengineering and Biosciences Instituto Superior Técnico Universidade de Lisboa Lisbon Portugal
| | - António Jorge Parola
- LAQVREQUIMTE Department of Chemistry Universidade NOVA de Lisboa Campus da Caparica 2829‐516 Caparica Portugal
| | - Gabriele Balducci
- Department of Chemical and Pharmaceutical Science University of Trieste Via Giorgieri 1 34127 Trieste Italy
| | - Paolo Tecilla
- Department of Mathematic and Geosciences University of Trieste Via Weiss 2 1 34127 Trieste Italy
| |
Collapse
|
12
|
Fares M, Wu X, Ramesh D, Lewis W, Keller PA, Howe ENW, Pérez‐Tomás R, Gale PA. Stimuli‐Responsive Cycloaurated “OFF‐ON” Switchable Anion Transporters. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mohamed Fares
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
- School of Chemistry & Molecular Bioscience, Molecular Horizons University of Wollongong Illawarra Health & Medical Research Institute Wollongong NSW 2522 Australia
| | - Xin Wu
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
| | - Deepthi Ramesh
- Faculty of Medicine & Health Sciences Department of Pathology and Experimental Therapeutics Cancer Cell Biology Research Group University of Barcelona Barcelona Spain
| | - William Lewis
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
| | - Paul A. Keller
- School of Chemistry & Molecular Bioscience, Molecular Horizons University of Wollongong Illawarra Health & Medical Research Institute Wollongong NSW 2522 Australia
| | - Ethan N. W. Howe
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
- GlaxoSmithKline GSK Jurong 1 Pioneer Sector 1 Singapore 628413 Singapore
| | - Ricardo Pérez‐Tomás
- Faculty of Medicine & Health Sciences Department of Pathology and Experimental Therapeutics Cancer Cell Biology Research Group University of Barcelona Barcelona Spain
| | - Philip A. Gale
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
| |
Collapse
|
13
|
Fares M, Wu X, Ramesh D, Lewis W, Keller PA, Howe ENW, Pérez-Tomás R, Gale PA. Stimuli-Responsive Cycloaurated "OFF-ON" Switchable Anion Transporters. Angew Chem Int Ed Engl 2020; 59:17614-17621. [PMID: 32583552 DOI: 10.1002/anie.202006392] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Indexed: 01/28/2023]
Abstract
Anion transporters have shown potential application as anti-cancer agents that function by disrupting homeostasis and triggering cell death. In this research article we report switchable anion transport by gold complexes of anion transporters that are "switched on" in situ in the presence of the reducing agent GSH by decomplexation of gold. GSH is found in higher concentrations in tumors than in healthy tissue and hence this approach offers a strategy to target these systems to tumors.
Collapse
Affiliation(s)
- Mohamed Fares
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.,School of Chemistry & Molecular Bioscience, Molecular Horizons, University of Wollongong, Illawarra Health & Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Xin Wu
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Deepthi Ramesh
- Faculty of Medicine & Health Sciences, Department of Pathology and Experimental Therapeutics, Cancer Cell Biology Research Group, University of Barcelona, Barcelona, Spain
| | - William Lewis
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Paul A Keller
- School of Chemistry & Molecular Bioscience, Molecular Horizons, University of Wollongong, Illawarra Health & Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Ethan N W Howe
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.,GlaxoSmithKline, GSK Jurong, 1 Pioneer Sector 1, Singapore, 628413, Singapore
| | - Ricardo Pérez-Tomás
- Faculty of Medicine & Health Sciences, Department of Pathology and Experimental Therapeutics, Cancer Cell Biology Research Group, University of Barcelona, Barcelona, Spain
| | - Philip A Gale
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
14
|
Shen Y, Zhong Y, Fei F, Sun J, Czajkowsky DM, Gong B, Shao Z. Ultrasensitive liposome-based assay for the quantification of fundamental ion channel properties. Anal Chim Acta 2020; 1112:8-15. [PMID: 32334685 DOI: 10.1016/j.aca.2020.03.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/16/2020] [Accepted: 03/22/2020] [Indexed: 10/24/2022]
Abstract
One of the most widely used approaches to characterize transmembrane ion transport through nanoscale synthetic or biological channels is a straightforward, liposome-based assay that monitors changes in ionic flux across the vesicle membrane using pH- or ion-sensitive dyes. However, failure to account for the precise experimental conditions, in particular the complete ionic composition on either side of the membrane and the inherent permeability of ions through the lipid bilayer itself, can prevent quantifications and lead to fundamentally incorrect conclusions. Here we present a quantitative model for this assay based on the Goldman-Hodgkin-Katz flux theory, which enables accurate measurements and identification of optimal conditions for the determination of ion channel permeability and selectivity. Based on our model, the detection sensitivity of channel permeability is improved by two orders of magnitude over the commonly used experimental conditions. Further, rather than obtaining qualitative preferences of ion selectivity as is typical, we determine quantitative values of these parameters under rigorously controlled conditions even when the experimental results would otherwise imply (without our model) incorrect behavior. We anticipate that this simply employed ultrasensitive assay will find wide application in the quantitative characterization of synthetic or biological ion channels.
Collapse
Affiliation(s)
- Yi Shen
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yulong Zhong
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY, 14260, United States
| | - Fan Fei
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jielin Sun
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daniel M Czajkowsky
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Bing Gong
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY, 14260, United States.
| | - Zhifeng Shao
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
15
|
Plajer AJ, Zhu J, Pröhm P, Rizzuto FJ, Keyser UF, Wright DS. Conformational Control in Main Group Phosphazane Anion Receptors and Transporters. J Am Chem Soc 2020; 142:1029-1037. [PMID: 31877039 DOI: 10.1021/jacs.9b11347] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Anion binding by receptor molecules is a central field of modern chemistry which impacts areas of catalysis as well as biological and materials chemistry. As binding often requires high chemical stability under aerobic and aqueous conditions for practical applications, carbon-based anion receptors have dominated this field, with main group element analogues receiving far less attention. The recent observation that the air- and moisture-stable amino-cyclophosph(V)azanes of the type [RN(E)P(μ-NR)]2 (E = O, S, Se) can exhibit halide binding that is competitive with topologically related organic receptors (such as squaramides and thioureas) has motivated us here to explore how the binding properties of phosphazane receptors can be enhanced further. Coordination of transition metals by the two P,N metal coordination sites of the phosph(III)azane dimer [(2-py)NHP(μ-NtBu)]2 not only activates the receptor for anion binding (by fixing the optimum exo-exo conformation and polarizing the endocyclic N-H substituents) but also stabilizes the P2N2 ring to hydrolysis and oxidation. We show how the binding properties of these receptors can be modulated by the coordinated metal fragments and that they can bind chloride 1 to 2 orders of magnitude stronger than the related squaramides and thioureas. These features can be utilized in anion transport through phospholipid bilayers under aqueous conditions for which transport can be improved by 1 order of magnitude compared to the previous best phosphazane and thiourea transporters. This study demonstrates how careful design of inorganic systems can result in potent supramolecular functionality, beyond that observed for organic counterparts.
Collapse
Affiliation(s)
- Alex J Plajer
- Chemistry Department , Cambridge University , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Jinbo Zhu
- Cavendish Laboratory, Department of Physics , Cambridge University , J. J. Thomson Avenue , Cambridge CB3 0HE , U.K
| | - Patrick Pröhm
- Institut für Chemie und Biochemie , Freie Universitaet Berlin Fabeckstr , 34-36 14159 Berlin , Germany
| | - Felix J Rizzuto
- Department of Chemistry , McGill University , 801 Sherbrooke Street W , Montreal , Quebec H3A 0B8 , Canada
| | - Ulrich F Keyser
- Cavendish Laboratory, Department of Physics , Cambridge University , J. J. Thomson Avenue , Cambridge CB3 0HE , U.K
| | - Dominic S Wright
- Chemistry Department , Cambridge University , Lensfield Road , Cambridge CB2 1EW , U.K
| |
Collapse
|
16
|
Jowett LA, Howe ENW, Wu X, Busschaert N, Gale PA. New Insights into the Anion Transport Selectivity and Mechanism of Tren-based Tris-(thio)ureas. Chemistry 2018; 24:10475-10487. [PMID: 29786913 DOI: 10.1002/chem.201801463] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/09/2018] [Indexed: 11/07/2022]
Abstract
The anion transport properties of a series of previously reported tren-based anionophores have been revisited using new assays designed to measure anion uniport. This study provides new insights into the transport mechanism and selectivity of this important class of transporters. Specifically, we report the chloride and nitrate transport selectivity of these systems and quantify sulfate transport to determine EC50 values for sulfate transport for the first time. Two new assays were developed to study bicarbonate transport allowing accurate quantification of chloride/bicarbonate exchange.
Collapse
Affiliation(s)
- Laura A Jowett
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ethan N W Howe
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Xin Wu
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | | | - Philip A Gale
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
17
|
Behera H, Madhavan N. Anion-Selective Cholesterol Decorated Macrocyclic Transmembrane Ion Carriers. J Am Chem Soc 2017; 139:12919-12922. [DOI: 10.1021/jacs.7b07479] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Harekrushna Behera
- Department
of Chemistry, Indian Institute of Technology, Madras, Tamil Nadu 600036, India
| | - Nandita Madhavan
- Department
of Chemistry, Indian Institute of Technology, Madras, Tamil Nadu 600036, India
- Indian Institute of Technology, Bombay, Maharashtra 400076, India
| |
Collapse
|
18
|
Benke BP, Aich P, Kim Y, Kim KL, Rohman MR, Hong S, Hwang IC, Lee EH, Roh JH, Kim K. Iodide-Selective Synthetic Ion Channels Based on Shape-Persistent Organic Cages. J Am Chem Soc 2017; 139:7432-7435. [DOI: 10.1021/jacs.7b02708] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bahiru Punja Benke
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Pulakesh Aich
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Younghoon Kim
- Department
of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kyung Lock Kim
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Md Rumum Rohman
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Soonsang Hong
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department
of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - In-Chul Hwang
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Eun Hui Lee
- Department
of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Joon Ho Roh
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Kimoon Kim
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department
of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
19
|
Wu X, Gale PA. Small-Molecule Uncoupling Protein Mimics: Synthetic Anion Receptors as Fatty Acid-Activated Proton Transporters. J Am Chem Soc 2016; 138:16508-16514. [PMID: 27998096 DOI: 10.1021/jacs.6b10615] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Uncoupling proteins (UCPs) regulate energy expenditure in living cells by inducing proton leakage across the mitochondrial inner membrane, thereby uncoupling adenosine diphosphate phosphorylation from nutrient oxidation. The proton transport activity of UCP1 and UCP2 requires activation by fatty acids. We report here the first examples of synthetic neutral anion receptors performing this biologically important fatty acid-activated function in phospholipid bilayers. We have shown that a tripodal thiourea possesses poor H+/OH- transport activity without fatty acids, but in the presence of long-chain fatty acids is "switched on" as a proton transporter with an activity close to that of a commonly used protonophore. The fatty acid-enhanced proton transport was also observed for other hydrogen and halogen bond-based synthetic anion transporters. We propose that these compounds induce proton permeability by catalyzing transbilayer movement ("flip-flop") of anionic forms of fatty acids, so allowing the fatty acids to complete a proton transport cycle. Several lines of evidence have been provided to support such a fatty acid cycling mechanism. Our findings open up new applications of anion receptor chemistry and provide important clues for understanding biological activities of synthetic anion transporters and potentially the uncoupling mechanism of naturally occurring membrane proteins.
Collapse
Affiliation(s)
- Xin Wu
- Chemistry, University of Southampton , Southampton SO17 1BJ, U.K
| | - Philip A Gale
- Chemistry, University of Southampton , Southampton SO17 1BJ, U.K
| |
Collapse
|
20
|
Saha T, Hossain MS, Saha D, Lahiri M, Talukdar P. Chloride-Mediated Apoptosis-Inducing Activity of Bis(sulfonamide) Anionophores. J Am Chem Soc 2016; 138:7558-67. [DOI: 10.1021/jacs.6b01723] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tanmoy Saha
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra 411008, India
| | - Munshi Sahid Hossain
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra 411008, India
| | - Debasis Saha
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra 411008, India
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra 411008, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra 411008, India
| |
Collapse
|
21
|
Pisano S, Milano D, Passoni N, Iengo E, Tecilla P. Synthesis and characterization of trans-di-(4-pyridyl)porphyrin dimers. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424616500334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Preparation and characterization of a small library of symmetric trans-di(4-pyridyl)porphyrin dimers, obtained by either Glaser–Hay or Sonogashira coupling reactions from appropriately prepared trans-di-4-pyridylporphyrin precursors, is presented. The porphyrin dimers are differentiated by a phenyl-alkynyl bridge of increasing length at one meso-position, while for all the derivatives the two remaining opposite meso-positions are tailored with a phenyl moiety bearing a short polyether chain. Coordination of the four pyridyl groups with appropriate metal fragments may be exploited to construct tubular hollow structures, with varied internal sizes, depending on the choice of the porphyrin dimer component.
Collapse
Affiliation(s)
- Simone Pisano
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Domenico Milano
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Nicola Passoni
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Elisabetta Iengo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Paolo Tecilla
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
22
|
Hein R, Uzundal CB, Hennig A. Simple and rapid quantification of phospholipids for supramolecular membrane transport assays. Org Biomol Chem 2016; 14:2182-5. [DOI: 10.1039/c5ob02480c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We introduce a simple 1H NMR method for quantification of the phospholipid content of liposomes.
Collapse
Affiliation(s)
- Robert Hein
- Department of Life Sciences and Chemistry
- Jacobs University Bremen
- 28759 Bremen
- Germany
| | - Can B. Uzundal
- Department of Life Sciences and Chemistry
- Jacobs University Bremen
- 28759 Bremen
- Germany
| | - Andreas Hennig
- Department of Life Sciences and Chemistry
- Jacobs University Bremen
- 28759 Bremen
- Germany
| |
Collapse
|
23
|
Behera H, Ramkumar V, Madhavan N. Cation-Transporting Peptides: Scaffolds for Functionalized Pores? Chemistry 2015; 21:10179-84. [DOI: 10.1002/chem.201500881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 01/09/2023]
|
24
|
Busschaert N, Caltagirone C, Van Rossom W, Gale PA. Applications of Supramolecular Anion Recognition. Chem Rev 2015; 115:8038-155. [PMID: 25996028 DOI: 10.1021/acs.chemrev.5b00099] [Citation(s) in RCA: 915] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Claudia Caltagirone
- ‡Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy
| | - Wim Van Rossom
- †Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Philip A Gale
- †Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
25
|
Benke BP, Madhavan N. Aminobenzoic acid incorporated octapeptides for cation transport. Bioorg Med Chem 2015; 23:1413-20. [DOI: 10.1016/j.bmc.2015.02.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 01/03/2023]
|
26
|
Wu X, Busschaert N, Wells NJ, Jiang YB, Gale PA. Dynamic Covalent Transport of Amino Acids across Lipid Bilayers. J Am Chem Soc 2015; 137:1476-84. [DOI: 10.1021/ja510063n] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xin Wu
- Chemistry, University of Southampton, Southampton, SO17 1BJ, U.K
| | | | - Neil J. Wells
- Chemistry, University of Southampton, Southampton, SO17 1BJ, U.K
| | - Yun-Bao Jiang
- Department
of Chemistry, College of Chemistry and Chemical Engineering, and the
MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, China
| | - Philip A. Gale
- Chemistry, University of Southampton, Southampton, SO17 1BJ, U.K
| |
Collapse
|