1
|
Zhang Y, Mi F, Zhao Y, Geng P, Zhang S, Song H, Chen G, Yan B, Guan M. Multifunctional nanozymatic biosensors: Awareness, regulation and pathogenic bacteria detection. Talanta 2025; 292:127957. [PMID: 40154048 DOI: 10.1016/j.talanta.2025.127957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/24/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025]
Abstract
It is estimated that approximately 700,000 fatalities occur annually due to infections attributed to various pathogens, which are capable of dissemination via multiple environmental vectors, including air, water, and soil. Consequently, there is an urgent need to enhance and refine rapid detection technologies for pathogens to prevent and control the spread of associated diseases. This review focuses on applying nanozymes in constructing biosensors, particularly their advancement in detecting pathogenic bacteria. Nanozymes, which are nanomaterials exhibiting enzyme-like activity, combine unique magnetic, optical, and electronic properties with structural diversity. This blend of characteristics makes them highly appealing for use in biocatalytic applications. Moreover, their nanoscale dimensions facilitate effective contact with pathogenic bacteria, leading to efficient detection and antibacterial effects. This article briefly summarizes the development, classification, and strategies for regulating the catalytic activity of nanozymes. It primarily focuses on recent advancements in constructing biosensors that utilize nanozymes as probes for sensitively detecting pathogenic bacteria. The discussion covers the development of various optical and electrochemical biosensors, including colorimetric, fluorescence, surface-enhanced Raman scattering (SERS), and electrochemical methods. These approaches provide a reliable solution for the sensitive detection of pathogenic bacteria. Finally, the challenges and future development directions of nanozymes in pathogen detection are discussed.
Collapse
Affiliation(s)
- Yiyao Zhang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Fang Mi
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
| | - Yajun Zhao
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Pengfei Geng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Shan Zhang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Han Song
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Guotong Chen
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Bo Yan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Ming Guan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
| |
Collapse
|
2
|
Guo X, Feng S, Peng Y, Li B, Zhao J, Xu H, Meng X, Zhai W, Pang H. Emerging insights into the application of metal-organic framework (MOF)-based materials for electrochemical heavy metal ion detection. Food Chem 2025; 463:141387. [PMID: 39332375 DOI: 10.1016/j.foodchem.2024.141387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Heavy metal ions are one of the main sources of water pollution, which has become a major global problem. Given the growing need for heavy metal ion detection, electrochemical sensor stands out for its high sensitivity and efficiency. Metal-organic frameworks (MOFs) have garnered much interest as electrode modifiers for electrochemical detection of heavy metal ions owing to their significant specific surface area, tailored pore size, and catalytic activity. This review summarizes the progress of MOF-based materials, including pristine MOFs and MOF composites, in the electrochemical detection of various heavy metal ions. The synthetic methods of pristine MOFs, the detection mechanisms of heavy metal ions and the modification strategies of MOFs are introduced. Besides, the diverse applications of MOF-based materials in detecting both single and multiple heavy metal ions are presented. Furthermore, we present the current challenges and prospects for MOF-based materials in electrochemical heavy metal ion detection.
Collapse
Affiliation(s)
- Xiaotian Guo
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Siyi Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yi Peng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing 211189, PR China
| | - Bing Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Jingwen Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hengyue Xu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xiangren Meng
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China.
| | - Weiwei Zhai
- Jiangsu Food and Pharmaceutical Science College, Huai'an, Jiangsu 223003, PR China.
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
3
|
Mishra UK, Srivastava S, Singh KR, Kumar A, Singh V, Mishra DP, Chandel VS, Singh J, Pandey SS, Srivastava S. A bio-nano-engineered platform fabricated from cerium oxide-carbon nanoparticles stabilized with chitosan for label-free sensing of a lung cancer biomarker. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:349-359. [PMID: 39633582 DOI: 10.1039/d4ay01535e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Herein, we report a label-free cancer biosensor designed for carcinoembryonic antigen (CEA) detection using a nanohybrid comprising CeO2 nanoparticles, carbon nanoparticles (CNPs), and chitosan (Ch). CeO2 nanoparticles were prepared using a simple green synthesis process. A thin film of the CeO2-CNPs-Ch nanohybrid was formed on indium tin oxide (ITO)-coated glass plates that endowed a high surface area, excellent stability, and good adsorption for the efficient loading of CEA antibodies. Quantitative and selective determination of CEA antigen was achieved by immobilizing monoclonal CEA antibodies (anti-CEA) on the CeO2-CNPs-Ch/ITO platform. The electrochemical response of the anti-CEA/CeO2-CNPs-Ch/ITO immunoelectrode was evaluated in a label-free immunoassay format using differential pulse voltammetry (DPV). The response studies of immunoelectrodes indicated wider linearity with respect to the CEA concentration in the range of 0.05-100 ng mL-1. The electrochemical cancer biosensor exhibited a higher sensitivity of 22.40 μA cm-2 per decade change in concentration along with storage stability for up to 35 days. The limit of detection (LOD) was 0.037 ng mL-1. Furthermore, this cancer biosensor exhibited good specificity and reproducibility. Thus, the proposed CeO2-CNPs-Ch nanocomposite-based platform provides an efficient method for the analysis of other antigen-antibody interactions and biomolecule detection. The efficacy of the anti-CEA/CeO2-CNPs-Ch/ITO immunoelectrode was further examined by measuring CEA levels in human serum.
Collapse
Affiliation(s)
- Upendra Kumar Mishra
- Department of Applied Science and Humanities, Rajkiya Engineering College Ambedkar Nagar (Dr A.P.J. Abdul Kalam Technical University, Lucknow), Uttar Pradesh 224122, India.
| | - Saurabh Srivastava
- Department of Applied Science and Humanities, Rajkiya Engineering College Ambedkar Nagar (Dr A.P.J. Abdul Kalam Technical University, Lucknow), Uttar Pradesh 224122, India.
| | - Kshitij Rb Singh
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| | - Atul Kumar
- Department of Applied Science and Humanities, Rajkiya Engineering College Ambedkar Nagar (Dr A.P.J. Abdul Kalam Technical University, Lucknow), Uttar Pradesh 224122, India.
| | - Vivekanand Singh
- Department of Applied Science and Humanities, Rajkiya Engineering College Ambedkar Nagar (Dr A.P.J. Abdul Kalam Technical University, Lucknow), Uttar Pradesh 224122, India.
| | - Devendra P Mishra
- Department of Applied Science and Humanities, Rajkiya Engineering College Ambedkar Nagar (Dr A.P.J. Abdul Kalam Technical University, Lucknow), Uttar Pradesh 224122, India.
| | - Vishal Singh Chandel
- Department of Applied Science and Humanities, Rajkiya Engineering College Ambedkar Nagar (Dr A.P.J. Abdul Kalam Technical University, Lucknow), Uttar Pradesh 224122, India.
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| | - Saurabh Srivastava
- Department of Applied Science and Humanities, Rajkiya Engineering College Ambedkar Nagar (Dr A.P.J. Abdul Kalam Technical University, Lucknow), Uttar Pradesh 224122, India.
| |
Collapse
|
4
|
Lin MH, Hong SH, Ding JF, Liu CL. Organic Porous Materials and Their Nanohybrids for Next-Generation Thermoelectric Application. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67116-67133. [PMID: 39576145 DOI: 10.1021/acsami.4c12729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Thermoelectricity offers a promising solution for reducing carbon emissions by efficiently converting waste heat into electrical energy. However, high-performance thermoelectric materials predominantly consist of rare, toxic, and costly inorganic compounds. Therefore, the development of alternating material systems for high-performance thermoelectric materials is crucial for broader applications. A significant challenge in this field is the strong interdependence of the various thermoelectric parameters, which complicates their simultaneous optimization. Consequently, the methods for decoupling these parameters are required. In this respect, composite technology has emerged as an effective strategy that leverages the advantages of diverse components to enhance the overall performance. After elaborating on the fundamental concepts of thermoelectricity and the challenges in enhancing the thermoelectric performance, the present review provides a comparative analysis of inorganic and organic materials and explores various methods for decoupling the thermoelectric parameters. In addition, the benefits of composite systems are emphasized and a range of low thermal conductivity materials with microporous to macroporous structures are introduced, highlighting their potential thermoelectric applications. Furthermore, the current development obstacles are discussed, and several cutting-edge studies are highlighted, with a focus on the role of high electrical conductivity fillers in enhancing the performance and mechanical properties. Finally, by combining low thermal conductivity materials with high electrical conductivity fillers can achieve superior thermoelectric performance. These insights are intended to guide future research and development in the field of organic porous materials and their nanohybrids in order to promote more sustainable and efficient energy solutions.
Collapse
Affiliation(s)
- Meng-Hao Lin
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shao-Huan Hong
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jian-Fa Ding
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
5
|
Ramezani MA, Najafi M, Karimi-Harandi MH. Highly sensitive determination of trace arsenic(III) onto carbon paste electrode modified with graphitic carbon nitride decorated Fe-MOF. Food Chem 2024; 458:140296. [PMID: 38959806 DOI: 10.1016/j.foodchem.2024.140296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
An effective electrochemical sensor was developed to detect and determine of the As(III) by modifying the carbon paste electrode (CPE) with graphitic carbon nitride decorated with iron-based metal-organic frameworks (Fe-MOF/g-C3N5). The differential pulse anodic stripping voltammetry (DPASV) method was used to analyze As(III) ions in a phosphate buffer solution (0.10 M, pH = 5). Fe-MOF/g-C3N5/CPE showed high sensitivity (4.24 μA μg-1 L), satisfactory linear range (0.50 μg L-1-5.00 μg L-1 and 5.00 μg L-1-30.00 μg L-1), and low detection limit (LOD, 0.013 μg L-1). The prepared sensor was showed an excellent repeatability and selectivity, and successfully used for determination of the As(III) ion in ambient waters and apple juice samples.
Collapse
Affiliation(s)
| | - Mostafa Najafi
- Department of Chemistry, Imam Hossein University, Tehran, Iran.
| | | |
Collapse
|
6
|
Liao Z, Zhong J, Tang X, Peng Z, Xu P, Qiu P. Smartphone-assisted portable swabs for blood glucose management: A point-of-use assay for dual-mode visual detection based on bifunctional carbon dots. Talanta 2024; 278:126545. [PMID: 39002257 DOI: 10.1016/j.talanta.2024.126545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Controlling glucose (Glu) intake is a "required course" for diabetics, thus quickly and precisely measuring the amount of Glu in food is crucial. For this purpose, a novel smartphone-assisted portable swab for the dual-mode visual detection of Glu was constructed combined the selectivity of natural enzymes with the controllable catalytic activity of nanozymes. Glu was specifically decomposed by glucose oxidase (natural enzyme) to produce H2O2, which was catalyzed by carbon dots (FeMn/N-CDs, nanozyme) to accelerate the reaction of o-phenylenediamine (OPD, colorless) to produce 2,3-diaminophenazine (DAP, yellow). As a result, the absorbance at 450 nm gradually increased with the increasing concentration of Glu, leading to a color change in the system from colorless to yellow. Meanwhile, the fluorescence of FeMn/N-CDs gradually decreased at 450 nm, while the fluorescence of DAP gradually increased at 550 nm, allowing for both ratiometric fluorescence and colorimetric dual-mode detection. Furthermore, natural enzyme and nanozyme together with OPD were co-loaded on the swabs to achieve cascade catalysis of Glu. The assembled portable swabs have detection ranges of 1-600 μM (LOD = 0.37 μM) and 4-1200 μM (LOD = 1.19 μM) for the colorimetric and fluorometric detection, respectively. The field test results on real samples demonstrated that the portable swabs have great promise for use in efficiently and accurately guiding the dietary intake of diabetics.
Collapse
Affiliation(s)
- Ziwen Liao
- Department of Chemistry, Nanchang University, Nanchang 330031, China; College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Jiali Zhong
- Department of Chemistry, Nanchang University, Nanchang 330031, China
| | - Xiaomin Tang
- The Fourth Affiliated Hospital, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Zoujun Peng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Peng Xu
- Center of Analysis and Testing, Nanchang University, Nanchang 330031, China.
| | - Ping Qiu
- Department of Chemistry, Nanchang University, Nanchang 330031, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
7
|
Mo F, Zhou P, Lin S, Zhong J, Wang Y. A Review of Conductive Hydrogel-Based Wearable Temperature Sensors. Adv Healthc Mater 2024; 13:e2401503. [PMID: 38857480 DOI: 10.1002/adhm.202401503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Conductive hydrogel has garnered significant attention as an emergent candidate for diverse wearable sensors, owing to its remarkable and tailorable properties such as flexibility, biocompatibility, and strong electrical conductivity. These attributes make it highly suitable for various wearable sensor applications (e.g., biophysical, bioelectrical, and biochemical sensors) that can monitor human health conditions and provide timely interventions. Among these applications, conductive hydrogel-based wearable temperature sensors are especially important for healthcare and disease surveillance. This review aims to provide a comprehensive overview of conductive hydrogel-based wearable temperature sensors. First, this work summarizes different types of conductive fillers-based hydrogel, highlighting their recent developments and advantages as wearable temperature sensors. Next, this work discusses the sensing characteristics of conductive hydrogel-based wearable temperature sensors, focusing on sensitivity, dynamic stability, stretchability, and signal output. Then, state-of-the-art applications are introduced, ranging from body temperature detection and wound temperature detection to disease monitoring. Finally, this work identifies the remaining challenges and prospects facing this field. By addressing these challenges with potential solutions, this review hopes to shed some light on future research and innovations in this promising field.
Collapse
Affiliation(s)
- Fan Mo
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shihong Lin
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| | - Junwen Zhong
- Department of Electromechanical Engineering, University of Macau, Macau, 999078, China
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| |
Collapse
|
8
|
Tripathi AD, Labh Y, Katiyar S, Chaturvedi VK, Sharma P, Mishra A. Advancements in Nano-Mediated Biosensors: Targeting Cancer Exosome Detection. J CLUST SCI 2024; 35:2195-2212. [DOI: 10.1007/s10876-024-02676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/24/2024] [Indexed: 01/05/2025]
|
9
|
Yu S, Hou R, Sun J, Deng C, Tan D, Shi H. In Situ Growth of Nitrogen-Doped Fluorescent Carbon Dots on Sisal Fibers: Investigating Their Selective and Enhanced Adsorption Capabilities for Methyl Blue Dye. J Fluoresc 2024:10.1007/s10895-024-03884-6. [PMID: 39180573 DOI: 10.1007/s10895-024-03884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024]
Abstract
Preparing a biomass adsorbent material with high-absorption performance but low cost plays a vital role in wastewater treatment. In this study, a novel nitrogen-doped sisal fiber-based carbon dots (SF-N-CDs) composite was prepared by directly growing carbon dots (CDs) on sisal fiber (SF) using a microwave method with polyethyleneimine (PEI) as a raw material. The prepared SF-N-CDs were characterized using FTIR, XRD, Contact angle(CA), TGA, XPS, and SEM. The results revealed that the CDs were successfully grown on SF. The adsorption properties of SF-N-CDs were significantly enhanced when they adsorbed methyl blue (MeB) dye. Specifically, the adsorption of MeB by SF-N-CDs was up to 619.7 mg/g, which was about 2.6 times higher than that of raw SF. This implied that the introduction of CDs increases the adsorption site, thus enhancing the adsorption capacity. Analysis on kinetics and thermodynamics of MeB adsorption by SF-N-CDs revealed that the adsorption process followed the Langmuir isotherm model and were consistent with both kinetic models. It signifies that the adsorption involves both physical and chemical adsorption processes. Further, the SF-N-CDs maintained a removal rate of 70.9% after six adsorption-regeneration cycles, demonstrating good regeneration performance. Moreover, the SF-N-CDs could selectively separate MeB from a mixture of rhodamine B and saffron T. Consequently, the findings of this study suggest that SF-N-CDs are promising adsorbents for anionic dyes.
Collapse
Affiliation(s)
- Shujuan Yu
- Department of Materials Science and Engineering, Suqian University, Suqian, 223800, People's Republic of China.
| | - Ruiliang Hou
- Department of Materials Science and Engineering, Suqian University, Suqian, 223800, People's Republic of China
| | - Jiaxiang Sun
- Department of Materials Science and Engineering, Suqian University, Suqian, 223800, People's Republic of China
| | - Cailong Deng
- Department of Materials Science and Engineering, Suqian University, Suqian, 223800, People's Republic of China
| | - Dengfeng Tan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, People's Republic of China
| | - Hongqi Shi
- Department of Materials Science and Engineering, Suqian University, Suqian, 223800, People's Republic of China
| |
Collapse
|
10
|
Xue C, Jamal R, Abdiryim T, Liu X, Liu F, Xu F, Cheng Q, Tang X, Fan N. An ionic liquid-modified PEDOT/Ti 3C 2T X based molecularly imprinted electrochemical sensor for pico-molar sensitive detection of L-Tryptophan in milk. Food Chem 2024; 449:139114. [PMID: 38581782 DOI: 10.1016/j.foodchem.2024.139114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
L-Tryptophan (L-Trp) is essential for the human body and can only be obtained externally. It is important to develop a method to efficiently detect L-Trp in food. In this work, ionic liquid (IL) modified poly(3,4-ethylendioxythiophene)/ Titanium carbide (PEDOT/Ti3C2TX) was used as a substrate material to improve detection sensitivity. Molecular imprinted polymers (MIP) film for specific recognition of L-Trp was fabricated on the surface of modified electrodes using electrochemical polymerization. The monitoring results showed that the molecularly imprinted electrochemical sensors (MIECS) exhibited good linearity ranges (10-6 - 0.1 μM and 0.1-100 μM) with a low detection limit (LOD) of 2.09 × 10-7 μM. In addition, the MIECS exhibited remarkable stability, reproducibility, and immunity to interference. A good recovery (93.54-99.59%) was demonstrated in the detection of milk. The sensor was expected to be developed as a highly selective and sensitive portable assay, and applied to the detection of L-Trp in food.
Collapse
Affiliation(s)
- Cong Xue
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Ruxangul Jamal
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Tursun Abdiryim
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Xiong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Fangfei Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Feng Xu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Qian Cheng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Xinsheng Tang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Nana Fan
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| |
Collapse
|
11
|
Selva Sharma A, Lee NY. Comprehensive review on fluorescent carbon dots and their applications in nucleic acid detection, nucleolus targeted imaging and gene delivery. Analyst 2024; 149:4095-4115. [PMID: 39007289 DOI: 10.1039/d4an00630e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Carbon dots (CDs), including carbon quantum dots, graphene quantum dots, carbon nanodots, and polymer dots, have gained significant attention due to their unique structural and fluorescence characteristics. This review provides a comprehensive overview of the classification, structural characteristics, and fluorescence properties of CDs, followed by an exploration of various fluorescence sensing mechanisms and their applications in gene detection, nucleolus imaging, and gene delivery. Furthermore, the functionalization of CDs with diverse surface ligand molecules, including dye molecules, nucleic acid probes, and metal derivatives, for sensitive nucleic acid detection is systematically examined. Fluorescence imaging of the cell nucleolus plays a vital role in examining intracellular processes and the dynamics of subcellular structures. By analyzing the mechanism of fluorescence and structure-function relationships inherent in CDs, the nucleolus targeting abilities of CDs in various cell lines have been discussed. Additionally, challenges such as the insufficient organelle specificity of CDs and the inconsistent mechanisms underlying nucleolus targeting have also been highlighted. The unique physical and chemical properties of CDs, particularly their strong affinity toward deoxyribonucleic acid (DNA), have spurred interest in gene delivery applications. The use of nuclear-targeting peptides, polymers, and ligands in conjunction with CDs for improved gene delivery applications have been systematically reviewed. Through a comprehensive analysis, the review aims to contribute to a deeper understanding of the potential and challenges associated with CDs in biomedical applications.
Collapse
Affiliation(s)
- Arumugam Selva Sharma
- Department of Nanoscience and Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea.
| |
Collapse
|
12
|
Chowardhara B, Saha B, Awasthi JP, Deori BB, Nath R, Roy S, Sarkar S, Santra SC, Hossain A, Moulick D. An assessment of nanotechnology-based interventions for cleaning up toxic heavy metal/metalloid-contaminated agroecosystems: Potentials and issues. CHEMOSPHERE 2024; 359:142178. [PMID: 38704049 DOI: 10.1016/j.chemosphere.2024.142178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Heavy metals (HMs) are among the most dangerous environmental variables for a variety of life forms, including crops. Accumulation of HMs in consumables and their subsequent transmission to the food web are serious concerns for scientific communities and policy makers. The function of essential plant cellular macromolecules is substantially hampered by HMs, which eventually have a detrimental effect on agricultural yield. Among these HMs, three were considered, i.e., arsenic, cadmium, and chromium, in this review, from agro-ecosystem perspective. Compared with conventional plant growth regulators, the use of nanoparticles (NPs) is a relatively recent, successful, and promising method among the many methods employed to address or alleviate the toxicity of HMs. The ability of NPs to reduce HM mobility in soil, reduce HM availability, enhance the ability of the apoplastic barrier to prevent HM translocation inside the plant, strengthen the plant's antioxidant system by significantly enhancing the activities of many enzymatic and nonenzymatic antioxidants, and increase the generation of specialized metabolites together support the effectiveness of NPs as stress relievers. In this review article, to assess the efficacy of various NP types in ameliorating HM toxicity in plants, we adopted a 'fusion approach', in which a machine learning-based analysis was used to systematically highlight current research trends based on which an extensive literature survey is planned. A holistic assessment of HMs and NMs was subsequently carried out to highlight the future course of action(s).
Collapse
Affiliation(s)
- Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh-792103, India.
| | - Bedabrata Saha
- Plant Pathology and Weed Research Department, Newe Ya'ar Research Centre, Agricultural Research Organization, Ramat Yishay-3009500, Israel.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Biswajit Bikom Deori
- Department of Environmental Science, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India.
| | - Ratul Nath
- Department of Life-Science, Dibrugarh University, Dibrugarh, Assam-786004, India.
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, P.O.- NBU, Dist- Darjeeling, West Bengal, 734013, India.
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| |
Collapse
|
13
|
Wang X, Ding Q, Groleau RR, Wu L, Mao Y, Che F, Kotova O, Scanlan EM, Lewis SE, Li P, Tang B, James TD, Gunnlaugsson T. Fluorescent Probes for Disease Diagnosis. Chem Rev 2024; 124:7106-7164. [PMID: 38760012 PMCID: PMC11177268 DOI: 10.1021/acs.chemrev.3c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
The identification and detection of disease-related biomarkers is essential for early clinical diagnosis, evaluating disease progression, and for the development of therapeutics. Possessing the advantages of high sensitivity and selectivity, fluorescent probes have become effective tools for monitoring disease-related active molecules at the cellular level and in vivo. In this review, we describe current fluorescent probes designed for the detection and quantification of key bioactive molecules associated with common diseases, such as organ damage, inflammation, cancers, cardiovascular diseases, and brain disorders. We emphasize the strategies behind the design of fluorescent probes capable of disease biomarker detection and diagnosis and cover some aspects of combined diagnostic/therapeutic strategies based on regulating disease-related molecules. This review concludes with a discussion of the challenges and outlook for fluorescent probes, highlighting future avenues of research that should enable these probes to achieve accurate detection and identification of disease-related biomarkers for biomedical research and clinical applications.
Collapse
Affiliation(s)
- Xin Wang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Qi Ding
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | | | - Luling Wu
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Yuantao Mao
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Feida Che
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Oxana Kotova
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, Trinity College
Dublin, The University of Dublin, Dublin 2 D02 W9K7, Ireland
| | - Eoin M. Scanlan
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Synthesis
and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2 , Ireland
| | - Simon E. Lewis
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Ping Li
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Tang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
- Laoshan
Laboratory, 168 Wenhai
Middle Road, Aoshanwei Jimo, Qingdao 266237, Shandong, People’s Republic of China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, People’s
Republic of China
| | - Thorfinnur Gunnlaugsson
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, Trinity College
Dublin, The University of Dublin, Dublin 2 D02 W9K7, Ireland
- Synthesis
and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2 , Ireland
| |
Collapse
|
14
|
Farcaş AA, Bende A. Theoretical insights into dopamine photochemistry adsorbed on graphene-type nanostructures. Phys Chem Chem Phys 2024; 26:14937-14947. [PMID: 38738904 DOI: 10.1039/d4cp00432a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The equilibrium geometry structures and light absorption properties of the dopamine (DA) and dopamine-o-quinone (DAQ) adsorbed on the graphene surface have been investigated using the ground state and linear-response time-dependent density functional theories. Two types of graphene systems were considered, a rectangular form of hexagonal lattice with optimized C-C bond length as the model system for graphene nanoparticles (GrNP) and a similar system but with fixed C-C bond length (1.42 Å) as the model system for graphene 2D sheet (GrS). The analysis of the vertical excitations showed that three types of electronic transitions are possible, namely, localized on graphene, localized on the DA or DAQ, and charge transfer (CT). In the case of the graphene-DA complex, the charge transfer excitations were characterized by the molecule-to-surface (MSCT) character, whereas the graphene-DAQ was characterized by the reverse, i.e. surface-to-molecule (SMCT). The difference between the two cases is given by the presence of an energetically low-lying unoccupied orbital (LUMO+1) that allows charge transfer from the surface to the molecule in the case of DAQ. However, it was also shown that the fingerprints of excited electronic states associated with the adsorbed molecules cannot be seen in the spectrum, as they are mostly suppressed by the characteristic spectral shape of graphene.
Collapse
Affiliation(s)
- Alex-Adrian Farcaş
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, Ro-400293 Cluj-Napoca, Romania.
| | - Attila Bende
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, Ro-400293 Cluj-Napoca, Romania.
| |
Collapse
|
15
|
Wang H, Sun H, Shao H, Liu F, Xu S, Zheng P, Zheng L, Ying Z, Zheng H, Jiang Y, Zhang Y. Multi-functional ratiometric detection based on dual-emitting N-doped carbon dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124149. [PMID: 38490120 DOI: 10.1016/j.saa.2024.124149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/23/2023] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Ratiometric fluorescence probes based on multi-emission carbon dots improve accuracy and sensitivity on detecting various environment issues. Herein, a novel dual-emitting N-doped carbon dots (N-CDs) was synthesized from citric acid and urea via a solvothermal method in N,N-dimethylformamide (DMF). The blue and orange emissions of N-CDs in water were modulated, and pure white light-emitting with Commission Internationale de L'Eclairage (CIE) coordinates of (0.33, 0.33) was achieved. The two PL centers behaved differently for Fe3+, Cu2+ and Ag+ ions, with the limit of detection (LOD) of ppm as fluorescence probes. Additionally, N-CDs displayed unique solvatochromism phenomenon. A new green emission appeared in organic solvents and gradually quenched with the increase of solvent polarity. The ratiometric PL displayed an excellent linear response for detecting water, and the LOD was between 0.003 % and 0.3 % in DMF, ethanol, isopropanol and N-methylpyrrolidone. Furthermore, N-CDs exhibited pH-sensitive response in the range of 4.0-7.0 and temperature-dependent response during heating-cooling cycles between 15 and 70 °C. A simple, efficient and reliable multi-functional ratiometric probe for detecting metal ions, water content, pH and temperature simultaneously was realized. However, there is a need for future application research to overcome the limitation imposed by the excitation wavelength of 330 nm.
Collapse
Affiliation(s)
- Haiyang Wang
- Lab for Nanoelectronics and NanoDevices, Department of Electronics Information, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
| | - Hongcan Sun
- Advance Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - HaiBao Shao
- School of Electronics and Information, Nantong University, Nantong 226019, Jiangsu, China
| | - Fan Liu
- Advance Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Shuhong Xu
- Advance Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Peng Zheng
- Lab for Nanoelectronics and NanoDevices, Department of Electronics Information, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
| | - Liang Zheng
- Lab for Nanoelectronics and NanoDevices, Department of Electronics Information, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
| | - Zhihua Ying
- Lab for Nanoelectronics and NanoDevices, Department of Electronics Information, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
| | - Hui Zheng
- Lab for Nanoelectronics and NanoDevices, Department of Electronics Information, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
| | - Yuan Jiang
- Lab for Nanoelectronics and NanoDevices, Department of Electronics Information, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China.
| | - Yang Zhang
- Lab for Nanoelectronics and NanoDevices, Department of Electronics Information, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
16
|
van Rijn JPM, Martens M, Ammar A, Cimpan MR, Fessard V, Hoet P, Jeliazkova N, Murugadoss S, Vinković Vrček I, Willighagen EL. From papers to RDF-based integration of physicochemical data and adverse outcome pathways for nanomaterials. J Cheminform 2024; 16:49. [PMID: 38693555 PMCID: PMC11064368 DOI: 10.1186/s13321-024-00833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/23/2024] [Indexed: 05/03/2024] Open
Abstract
Adverse Outcome Pathways (AOPs) have been proposed to facilitate mechanistic understanding of interactions of chemicals/materials with biological systems. Each AOP starts with a molecular initiating event (MIE) and possibly ends with adverse outcome(s) (AOs) via a series of key events (KEs). So far, the interaction of engineered nanomaterials (ENMs) with biomolecules, biomembranes, cells, and biological structures, in general, is not yet fully elucidated. There is also a huge lack of information on which AOPs are ENMs-relevant or -specific, despite numerous published data on toxicological endpoints they trigger, such as oxidative stress and inflammation. We propose to integrate related data and knowledge recently collected. Our approach combines the annotation of nanomaterials and their MIEs with ontology annotation to demonstrate how we can then query AOPs and biological pathway information for these materials. We conclude that a FAIR (Findable, Accessible, Interoperable, Reusable) representation of the ENM-MIE knowledge simplifies integration with other knowledge. SCIENTIFIC CONTRIBUTION: This study introduces a new database linking nanomaterial stressors to the first known MIE or KE. Second, it presents a reproducible workflow to analyze and summarize this knowledge. Third, this work extends the use of semantic web technologies to the field of nanoinformatics and nanosafety.
Collapse
Affiliation(s)
- Jeaphianne P M van Rijn
- Dept of Bioinformatics, BiGCaT, NUTRIM, FHML, Maastricht University, Maastricht, The Netherlands
| | - Marvin Martens
- Dept of Bioinformatics, BiGCaT, NUTRIM, FHML, Maastricht University, Maastricht, The Netherlands
| | - Ammar Ammar
- Dept of Bioinformatics, BiGCaT, NUTRIM, FHML, Maastricht University, Maastricht, The Netherlands
| | - Mihaela Roxana Cimpan
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Valerie Fessard
- Fougères Laboratory, Anses, French Agency for Food, Environmental and Occupational Health and Safety, Toxicology of Contaminants Unit, Fougères, France
| | - Peter Hoet
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | | | - Sivakumar Murugadoss
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- SD Chemical and Physical Health Risks, Brussels, Belgium
| | | | - Egon L Willighagen
- Dept of Bioinformatics, BiGCaT, NUTRIM, FHML, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
17
|
Hyder A, Ali A, Buledi JA, Memon AA, Iqbal M, Bangalni TH, Solangi AR, Thebo KH, Akhtar J. Nanodiamonds: A Cutting-Edge Approach to Enhancing Biomedical Therapies and Diagnostics in Biosensing. CHEM REC 2024; 24:e202400006. [PMID: 38530037 DOI: 10.1002/tcr.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/25/2024] [Indexed: 03/27/2024]
Abstract
Nanodiamonds (NDs) have garnered attention in the field of nanomedicine due to their unique properties. This review offers a comprehensive overview of NDs synthesis methods, properties, and their uses in biomedical applications. Various synthesis techniques, such as detonation, high-pressure, high-temperature, and chemical vapor deposition, offer distinct advantages in tailoring NDs' size, shape, and surface properties. Surface modification methods further enhance NDs' biocompatibility and enable the attachment of bioactive molecules, expanding their applicability in biological systems. NDs serve as promising nanocarriers for drug delivery, showcasing biocompatibility and the ability to encapsulate therapeutic agents for targeted delivery. Additionally, NDs demonstrate potential in cancer treatment through hyperthermic therapy and vaccine enhancement for improved immune responses. Functionalization of NDs facilitates their utilization in biosensors for sensitive biomolecule detection, aiding in precise diagnostics and rapid detection of infectious diseases. This review underscores the multifaceted role of NDs in advancing biomedical applications. By synthesizing NDs through various methods and modifying their surfaces, researchers can tailor their properties for specific biomedical needs. The ability of NDs to serve as efficient drug delivery vehicles holds promise for targeted therapy, while their applications in hyperthermic therapy and vaccine enhancement offer innovative approaches to cancer treatment and immunization. Furthermore, the integration of NDs into biosensors enhances diagnostic capabilities, enabling rapid and sensitive detection of biomolecules and infectious diseases. Overall, the diverse functionalities of NDs underscore their potential as valuable tools in nanomedicine, paving the way for advancements in healthcare and biotechnology.
Collapse
Affiliation(s)
- Ali Hyder
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Akbar Ali
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing, 100F190, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur KPK, Haripur, 22620, Pakistan
| | - Talib Hussain Bangalni
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Khalid Hussain Thebo
- Institute of Metal Research (IMR), Chinese Academy of Science, 2 Wenhua Rood, Shenyang, China
- Department of Chemistry Mirpur, University of Science and Technology (MUST), 10250 (AJK), Mirpur, Pakistan
| | - Javeed Akhtar
- Department of Chemistry Mirpur, University of Science and Technology (MUST), 10250 (AJK), Mirpur, Pakistan
| |
Collapse
|
18
|
Shin M, Lim J, Park Y, Lee JY, Yoon J, Choi JW. Carbon-based nanocomposites for biomedical applications. RSC Adv 2024; 14:7142-7156. [PMID: 38419681 PMCID: PMC10900039 DOI: 10.1039/d3ra08946k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Carbon nanomaterials have attracted significant attention in the biomedical field, including for biosensing, drug delivery, and tissue engineering applications. Based on their inherent properties such as their unique structure and high conductivity, carbon nanomaterials can overcome the current limitations in biomedical research such as poor stability of biomolecules, low sensitivity and selectivity of biosensors, and difficulty in precise drug delivery. In addition, recently, several novel nanomaterials have been integrated with carbon nanomaterials to develop carbon-based nanocomposites for application in biomedical research. In this review, we discuss recent studies on carbon-based nanocomposites and their biomedical applications. First, we discuss the representative carbon nanomaterials and nanocomposites composed of carbon and other novel nanomaterials. Next, applications of carbon nanomaterials and nanocomposites in the biomedical field are discussed according to topics in the biomedical field. We have discussed the recent studies on biosensors, drug delivery, and tissue engineering. In conclusion, we believe that this review provides the potential and applicability of carbon nanomaterials and their nanocomposites and suggests future directions of the application of carbon-based nanocomposites in biomedical applications.
Collapse
Affiliation(s)
- Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| | - Yongseon Park
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| | - Ji-Young Lee
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| | - Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea 43 Jibong-ro, Wonmi-gu Bucheon-si Gyeonggi-do 14662 Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| |
Collapse
|
19
|
Almeida CMR, Merillas B, Pontinha ADR. Trends on Aerogel-Based Biosensors for Medical Applications: An Overview. Int J Mol Sci 2024; 25:1309. [PMID: 38279307 PMCID: PMC10816975 DOI: 10.3390/ijms25021309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/01/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Aerogels are unique solid-state materials composed of interconnected 3D solid networks and a large number of air-filled pores. This structure leads to extended structural characteristics as well as physicochemical properties of the nanoscale building blocks to macroscale, and integrated typical features of aerogels, such as high porosity, large surface area, and low density, with specific properties of the various constituents. Due to their combination of excellent properties, aerogels attract much interest in various applications, ranging from medicine to construction. In recent decades, their potential was exploited in many aerogels' materials, either organic, inorganic or hybrid. Considerable research efforts in recent years have been devoted to the development of aerogel-based biosensors and encouraging accomplishments have been achieved. In this work, recent (2018-2023) and ground-breaking advances in the preparation, classification, and physicochemical properties of aerogels and their sensing applications are presented. Different types of biosensors in which aerogels play a fundamental role are being explored and are collected in this manuscript. Moreover, the current challenges and some perspectives for the development of high-performance aerogel-based biosensors are summarized.
Collapse
Affiliation(s)
- Cláudio M. R. Almeida
- University of Coimbra, CERES, Department of Chemical Engineering, Rua Silvio Lima, 3030-790 Coimbra, Portugal; (C.M.R.A.); (B.M.)
- LAQV-REQUIMTE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Beatriz Merillas
- University of Coimbra, CERES, Department of Chemical Engineering, Rua Silvio Lima, 3030-790 Coimbra, Portugal; (C.M.R.A.); (B.M.)
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain
| | - Ana Dora Rodrigues Pontinha
- University of Coimbra, ISISE, ARISE, Department of Civil Engineering, 3030-788 Coimbra, Portugal
- SeaPower, Associação Para o Desenvolvimento da Economia do Mar, Rua Das Acácias, N° 40A, Parque Industrial Da Figueira Da Foz, 3090-380 Figueira Da Foz, Portugal
| |
Collapse
|
20
|
Zhizhin KY, Turyshev ES, Shpigun LK, Gorobtsov PY, Simonenko NP, Simonenko TL, Kuznetsov NT. Poly(vinyl chloride)/Nanocarbon Composites for Advanced Potentiometric Membrane Sensor Design. Int J Mol Sci 2024; 25:1124. [PMID: 38256194 PMCID: PMC10816362 DOI: 10.3390/ijms25021124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Polymer nanocomposites filled with carbon nanoparticles (CNPs) are a hot topic in materials science. This article discusses the current research on the use of these materials as interfacial electron transfer films for solid contact potentiometric membrane sensors (SC-PMSs). The results of a comparative study of plasticized poly (vinyl chloride) (pPVC) matrices modified with single-walled carbon nanotubes (SWCNTs), fullerenes-C60, and their hybrid ensemble (SWCNTs-C60) are reported. The morphological characteristics and electrical conductivity of the prepared nanostructured composite films are reported. It was found that the specific electrical conductivity of the pPVC/SWCNTs-C60 polymer film was higher than that of pPVC filled with individual nanocomponents. The effectiveness of this composite material as an electron transfer film in a new potentiometric membrane sensor for detecting phenylpyruvic acid (in anionic form) was demonstrated. Screening for this metabolic product of phenylalanine in body fluids is of significant diagnostic interest in phenylketonuria (dementia), viral hepatitis, and alcoholism. The developed sensor showed a stable and fast Nernstian response for phenylpyruvate ions in aqueous solutions over the wide linear concentration range of 5 × 10-7-1 × 10-3 M, with a detection limit of 10-7.2 M.
Collapse
Affiliation(s)
| | - Evgeniy S. Turyshev
- N. S. Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences, 119991 Moscow, Russia; (K.Y.Z.); (P.Y.G.); (N.P.S.); (T.L.S.)
| | - Liliya K. Shpigun
- N. S. Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences, 119991 Moscow, Russia; (K.Y.Z.); (P.Y.G.); (N.P.S.); (T.L.S.)
| | | | | | | | | |
Collapse
|
21
|
Kim Y, Jeon Y, Na M, Hwang SJ, Yoon Y. Recent Trends in Chemical Sensors for Detecting Toxic Materials. SENSORS (BASEL, SWITZERLAND) 2024; 24:431. [PMID: 38257524 PMCID: PMC10821350 DOI: 10.3390/s24020431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Industrial development has led to the widespread production of toxic materials, including carcinogenic, mutagenic, and toxic chemicals. Even with strict management and control measures, such materials still pose threats to human health. Therefore, convenient chemical sensors are required for toxic chemical monitoring, such as optical, electrochemical, nanomaterial-based, and biological-system-based sensors. Many existing and new chemical sensors have been developed, as well as new methods based on novel technologies for detecting toxic materials. The emergence of material sciences and advanced technologies for fabrication and signal-transducing processes has led to substantial improvements in the sensing elements for target recognition and signal-transducing elements for reporting interactions between targets and sensing elements. Many excellent reviews have effectively summarized the general principles and applications of different types of chemical sensors. Therefore, this review focuses on chemical sensor advancements in terms of the sensing and signal-transducing elements, as well as more recent achievements in chemical sensors for toxic material detection. We also discuss recent trends in biosensors for the detection of toxic materials.
Collapse
Affiliation(s)
| | | | | | | | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.K.); (Y.J.); (M.N.); (S.-J.H.)
| |
Collapse
|
22
|
Xiao X, Li L, Deng H, Zhong Y, Deng W, Xu Y, Chen Z, Zhang J, Hu X, Wang Y. Biomass-derived 2D carbon materials: structure, fabrication, and application in electrochemical sensors. J Mater Chem B 2023; 11:10793-10821. [PMID: 37910389 DOI: 10.1039/d3tb01910a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Biomass, a renewable hydrocarbon, is one of the favorable sources of advanced carbon materials owing to its abundant resources and diverse molecular structures. Biomass-based two-dimensional carbon nanomaterials (2D-BC) have attracted extensive attention due to their tunable structures and properties, and have been widely used in the design and fabrication of electrochemical sensing platforms. This review embarks on the thermal conversion process of biomass from different sources and the synthesis strategy of 2D-BC materials. The affinity between 2D-BC structure and properties is emphasized. The recent progress in 2D-BC-based electrochemical sensors for health and environmental monitoring is also presented. Finally, the challenges and future development directions related to such materials are proposed in order to promote their further application in the field of electrochemical sensing.
Collapse
Affiliation(s)
- Xuanyu Xiao
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Hui Deng
- Rotex Co., Ltd., Chengdu, Sichuan 610043, China
| | - Yuting Zhong
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Wei Deng
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Yuanyuan Xu
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Zhiyu Chen
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, Chengdu, 610044, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
23
|
Azhdary P, Janfaza S, Fardindoost S, Tasnim N, Hoorfar M. Highly selective molecularly imprinted polymer nanoparticles (MIP NPs)-based microfluidic gas sensor for tetrahydrocannabinol (THC) detection. Anal Chim Acta 2023; 1278:341749. [PMID: 37709477 DOI: 10.1016/j.aca.2023.341749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
A highly selective microfluidic integrated metal oxide gas sensor for THC detection is reported based on MIP nanoparticles (MIP NPs). We synthesized MIP NPs with THC recognition sites and coated them on a 3D-printed microfluidic channel surface. The sensitivity and selectivity of coated microfluidic integrated gas sensors were evaluated by exposure to THC, cannabidiol (CBD), methanol, and ethanol analytes in 300-700 ppm at 300 °C. For comparison, reference signals were obtained from a microfluidic channel coated with nonimprinted polymers (NIP NPs). The MIP and NIP NPs were characterized using scanning electron microscopy (SEM) and Raman spectroscopy. MIP and NIP NPs channels response data were combined and classified with 96.3% accuracy using the Fine KNN classification model in MATLAB R2021b Classification Learner App. Compared to the MIP NPs coated channel, the NIP NPs channel had poor selectivity towards THC, demonstrating that the THC recognition sites in the MIP structure enabled selective detection of THC. The findings demonstrated that the recognition sites of MIP NPs properly captured THC molecules, enabling the selective detection of THC compared to CBD, methanol, and ethanol.
Collapse
Affiliation(s)
- Peyman Azhdary
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada
| | - Sajjad Janfaza
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada
| | - Somayeh Fardindoost
- School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada
| | - Nishat Tasnim
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
24
|
Zhour K, Daouli A, Postnikov A, Hasnaoui A, Badawi M. Potential of nanostructured carbon materials for iodine detection in realistic environments revealed by first-principles calculations. Phys Chem Chem Phys 2023; 25:26461-26474. [PMID: 37752811 DOI: 10.1039/d3cp02205f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
In the context of effective detection of iodine species (I2, CH3I) formed in nuclear power plants and nuclear fuel reprocessing facilities, we perform a comparative study of the potential sensing performance of four expectedly promising 2D materials (8-Pmmn borophene, BC3, C3N, and BC6N) towards the iodine-containing gases and, with the view of checking selectivity, towards common inhibiting gases in the containment atmosphere (H2O and CO), applying methods of dispersion-corrected density functional theory with periodic boundary conditions. A covalent bond is formed between the CO molecule and boron in BC3 or in 8-Pmmn borophene, compromising the anticipated applicability of these materials for iodine detection. The presence of nitrogen atoms in BC6N-2 prevents the formation of a covalent bond with CO; however, the closeness of adsorption energies for all the four gases studied does not distinguish this material as specifically sensitive to iodine species. Finally, the energies of adsorption on C3N yield a significant and promising discrimination between the adsorption energies of (I2, CH3I) vs. (CO, H2O), revealing possibilities for this material's use as an iodine sensor. The conclusions are supported by simulations at finite temperature; underlying electronic structures are also discussed.
Collapse
Affiliation(s)
- Kazem Zhour
- LCPT, Université de Lorraine, F-54000 Nancy, France.
| | - Ayoub Daouli
- LS2ME, Sultan Moulay Slimane University of Beni Mellal, FP-Khouribga, Morocco
| | | | - Abdellatif Hasnaoui
- LS2ME, Sultan Moulay Slimane University of Beni Mellal, FP-Khouribga, Morocco
| | | |
Collapse
|
25
|
Yang Z, Xu T, Li H, She M, Chen J, Wang Z, Zhang S, Li J. Zero-Dimensional Carbon Nanomaterials for Fluorescent Sensing and Imaging. Chem Rev 2023; 123:11047-11136. [PMID: 37677071 DOI: 10.1021/acs.chemrev.3c00186] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Advances in nanotechnology and nanomaterials have attracted considerable interest and play key roles in scientific innovations in diverse fields. In particular, increased attention has been focused on carbon-based nanomaterials exhibiting diverse extended structures and unique properties. Among these materials, zero-dimensional structures, including fullerenes, carbon nano-onions, carbon nanodiamonds, and carbon dots, possess excellent bioaffinities and superior fluorescence properties that make these structures suitable for application to environmental and biological sensing, imaging, and therapeutics. This review provides a systematic overview of the classification and structural properties, design principles and preparation methods, and optical properties and sensing applications of zero-dimensional carbon nanomaterials. Recent interesting breakthroughs in the sensitive and selective sensing and imaging of heavy metal pollutants, hazardous substances, and bioactive molecules as well as applications in information encryption, super-resolution and photoacoustic imaging, and phototherapy and nanomedicine delivery are the main focus of this review. Finally, future challenges and prospects of these materials are highlighted and envisaged. This review presents a comprehensive basis and directions for designing, developing, and applying fascinating fluorescent sensors fabricated based on zero-dimensional carbon nanomaterials for specific requirements in numerous research fields.
Collapse
Affiliation(s)
- Zheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Hui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
26
|
Bora P, Bhuyan C, Borah AR, Hazarika S. Carbon nanomaterials for designing next-generation membranes and their emerging applications. Chem Commun (Camb) 2023; 59:11320-11336. [PMID: 37671435 DOI: 10.1039/d3cc03490a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Carbon nanomaterials have enormous applications in various fields, such as adsorption, membrane separation, catalysis, electronics, capacitors, batteries, and medical sciences. Owing to their exceptional properties, such as large specific surface area, carrier mobility, flexibility, electrical conductivity, and optical pellucidity, the family of carbon nanomaterials is considered as one of the most studied group of materials to date. They are abundantly used in membrane science for multiple applications, such as the separation of organics, enantiomeric separation, gas separation, biomolecule separation, heavy metal separation, and wastewater treatment. This study provides an overview of the significant studies on carbon nanomaterial-based membranes and their emerging applications in our membrane research journey. The types of carbon nanomaterials, their utilization in membrane-based separations, and the mechanism involved are summarized in this study. Techniques for the fabrication of different nanocomposite membranes are also highlighted. Lastly, we have provided an overview of the existing issues and future scopes of carbon nanomaterial-based membranes for technological perspectives.
Collapse
Affiliation(s)
- Prarthana Bora
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Chinmoy Bhuyan
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Akhil Ranjan Borah
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Swapnali Hazarika
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
27
|
Yu S, Lu S, Zheng G. Reusable flexible poly(vinyl alcohol)/chitosan-based polymer carbon dots composite film for acid blue 93 dye adsorption. LUMINESCENCE 2023; 38:1552-1561. [PMID: 37328411 DOI: 10.1002/bio.4543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 06/18/2023]
Abstract
The design and synthesis of water-insoluble chitosan-based polymer carbon dots [P(CS-g-CA)CDs] are described. A polyvinyl alcohol/chitosan-based polymer carbon dot [PVA/P(CS-g-CA)CDs] composite film was prepared using a simple casting method to be used in dye adsorption. The composite film was characterized using FT-IR, XPS, transparency, contact angle, and mechanical properties tests, which showed the successful incorporation of P(CS-g-CA)CDs into the film and also revealed that hydrogen bonding improved the mechanical properties of the PVA film. Furthermore, the composite film displayed substantially enhanced hydrophobicity, making it suitable for use in aqueous environments. In addition, the composite film exhibited stable adsorption of acid blue 93 (AB93) at pH 2-9, with an enhanced adsorption capacity of 433.24 mg/g. The adsorption obeyed Langmuir law with an efficiency of more than 89% even after five cycles. Therefore, the PVA/P(CS-g-CA)CDs film is a promising material for the treatment of organic dye-polluted wastewater.
Collapse
Affiliation(s)
- Shujuan Yu
- Department of Materials Science and Engineering, Suqian University, Suqian, China
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| | - Shiyan Lu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| | - Guangjian Zheng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| |
Collapse
|
28
|
Wang P, Liu H, Zhou S, Chen L, Yu S, Wei J. A Review of the Carbon-Based Solid Transducing Layer for Ion-Selective Electrodes. Molecules 2023; 28:5503. [PMID: 37513374 PMCID: PMC10384130 DOI: 10.3390/molecules28145503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
As one of the key components of solid-contact ion-selective electrodes (SC-ISEs), the SC layer plays a crucial role in electrode performance. Carbon materials, known for their efficient ion-electron signal conversion, chemical stability, and low cost, are considered ideal materials for solid-state transducing layers. In this review, the application of different types of carbon materials in SC-ISEs (from 2007 to 2023) has been comprehensively summarized and discussed. Representative carbon-based materials for the fabrication of SC-ISEs have been systematically outlined, and the influence of the structural characteristics of carbon materials on achieving excellent performance has been emphasized. Finally, the persistent challenges and potential opportunities are also highlighted and discussed, aiming to inspire the design and fabrication of next-generation SC-ISEs with multifunctional composite carbon materials in the future.
Collapse
Affiliation(s)
- Peike Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Haipeng Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shiqiang Zhou
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Lina Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Suzhu Yu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
29
|
Yu J, Luo L, Shang H, Sun B. Rational Fabrication of Ionic Covalent Organic Frameworks for Chemical Analysis Applications. BIOSENSORS 2023; 13:636. [PMID: 37367001 DOI: 10.3390/bios13060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
The rapid development of advanced material science boosts novel chemical analytical technologies for effective pretreatment and sensitive sensing applications in the fields of environmental monitoring, food security, biomedicines, and human health. Ionic covalent organic frameworks (iCOFs) emerge as a class of covalent organic frameworks (COFs) with electrically charged frames or pores as well as predesigned molecular and topological structures, large specific surface area, high crystallinity, and good stability. Benefiting from the pore size interception effect, electrostatic interaction, ion exchange, and recognizing group load, iCOFs exhibit the promising ability to extract specific analytes and enrich trace substances from samples for accurate analysis. On the other hand, the stimuli response of iCOFs and their composites to electrochemical, electric, or photo-irradiating sources endows them as potential transducers for biosensing, environmental analysis, surroundings monitoring, etc. In this review, we summarized the typical construction of iCOFs and focused on their rational structure design for analytical extraction/enrichment and sensing applications in recent years. The important role of iCOFs in the chemical analysis was fully highlighted. Finally, the opportunities and challenges of iCOF-based analytical technologies were also discussed, which may be beneficial to provide a solid foundation for further design and application of iCOFs.
Collapse
Affiliation(s)
- Jing Yu
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| | - Liuna Luo
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hong Shang
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| | - Bing Sun
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
30
|
Li G, Xu C, Xu H, Gan L, Sun K, Yuan B. Tunable graphene oxide for the low-fouling electrochemical sensing of uric acid in human serum. Analyst 2023; 148:2553-2563. [PMID: 37157878 DOI: 10.1039/d3an00291h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Numerous studies have been reported to improve the selectivity of uric acid (UA) by eliminating the interference from other electroactive species that coexist in biological fluids. However, two main challenges associated with the nonenzymatic electrochemical detection of UA need to be overcome to achieve practical applications in biological samples. Those are the chemical fouling of electrodes caused by the oxidation product of UA and biofouling due to the non-specific absorption of biological macromolecules. It was found that the residual oxo-functional groups and defects on graphene played a crucial part in both electrocatalysis and anti-biofouling. Here, graphene oxide (GO) was tuned by electro-oxidation and electro-reduction and was investigated in antifouling and electrocatalytic performances for the electrochemical sensing of UA by using pristine GO, BSA bound GO, electro-reduction-treated GO and electro-oxidation-treated GO. The electro-oxidation-treated GO was explored in electrochemical sensing for the first time and exhibited the highest sensitivity and low fouling properties. Holey GO might be formed on the electrode surface by the electrochemical oxidation method in a mild and green solution without the use of an acid. The different electrode interfaces as well as the interaction with BSA were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy, contact angle measurements, scanning electron microscopy, electrochemistry, and electrochemical impedance spectroscopy.
Collapse
Affiliation(s)
- Gang Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Chunying Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Hui Xu
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou, 313000, P.R. China
| | - Liju Gan
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Kai Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005, P. R. China
| | - Baiqing Yuan
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| |
Collapse
|
31
|
Sonkaya Ö, Ocakçı Ş, Toksoy A, Pamuk Algi M, Algi F. N-doped carbon nanomaterials as fluorescent pH and metal ion sensors for imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122412. [PMID: 36720189 DOI: 10.1016/j.saa.2023.122412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Herein we describe the facile synthesis of new N-doped carbon nanoparticles (CNPs) obtained from 1,10-phenanthroline by the solvothermal method. Characterization of CNPs were carried out with transmission electron microscope (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectra (FTIR), UV-vis absorption spectra, and luminescence spectra. CNPs were pH sensitive and exploited as fluorescent chemosensors and imaging agents for Al(III) and Zn(II) ions in real-life samples. Remarkably, we show that CNPs can be used for the detection of Al(III) and Zn(II) ions in water samples. Accordingly, the results indicate that CNPs are highly effective in detecting Zn(II) content of cosmetic creams. We also demonstrated that the CNPs could be used for in vitro imaging of Al(III) and Zn(II) in Human Larynx Squamous Cell Carcinoma (Hep-2). Finally, Al(III) imaging in Angelica Officinalis root tissue was also achieved successfully. The CNPs are promising as luminescent multianalyte (pH, Al(III) and Zn(II)) sensors.
Collapse
Affiliation(s)
- Ömer Sonkaya
- Department of Chemistry & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey
| | - Şeyma Ocakçı
- Department of Biotechnology & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey
| | - Alihan Toksoy
- Department of Biotechnology & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey
| | - Melek Pamuk Algi
- Department of Chemistry & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey.
| | - Fatih Algi
- Department of Biotechnology & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey.
| |
Collapse
|
32
|
Gui F, Mo W, Guo X, Cao F, Zhai T, Hong C, Guan X, Huang B, Pan X. Biosynthesis of nanocrystalline silver chloride with high antibacterial activity using bacterial extracts. ADVANCED AGROCHEM 2023; 2:88-96. [DOI: 10.1016/j.aac.2022.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
33
|
Bloch DN, Sandre M, Ben Zichri S, Masato A, Kolusheva S, Bubacco L, Jelinek R. Scavenging neurotoxic aldehydes using lysine carbon dots. NANOSCALE ADVANCES 2023; 5:1356-1367. [PMID: 36866263 PMCID: PMC9972859 DOI: 10.1039/d2na00804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Reactive aldehydes generated in cells and tissues are associated with adverse physiological effects. Dihydroxyphenylacetaldehyde (DOPAL), the biogenic aldehyde enzymatically produced from dopamine, is cytotoxic, generates reactive oxygen species, and triggers aggregation of proteins such as α-synuclein implicated in Parkinson's disease. Here, we demonstrate that carbon dots (C-dots) prepared from lysine as the carbonaceous precursor bind DOPAL molecules through interactions between the aldehyde units and amine residues on the C-dot surface. A set of biophysical and in vitro experiments attests to attenuation of the adverse biological activity of DOPAL. In particular, we show that the lysine-C-dots inhibit DOPAL-induced α-synuclein oligomerization and cytotoxicity. This work underlines the potential of lysine-C-dots as an effective therapeutic vehicle for aldehyde scavenging.
Collapse
Affiliation(s)
- Daniel Nir Bloch
- Department of Chemistry, Ben Gurion University of the Negev Israel
| | - Michele Sandre
- Department of Neuroscience, University of Padova Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova Italy
| | - Shani Ben Zichri
- Department of Chemistry, Ben Gurion University of the Negev Israel
| | - Anna Masato
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova Italy
- Department of Biology, University of Padova Italy
| | - Sofiya Kolusheva
- Ilse Katz Institute for Nanoscale Science and Technology (IKI), Ben Gurion University of the Negev Israel
| | - Luigi Bubacco
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova Italy
- Department of Biology, University of Padova Italy
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev Israel
- Ilse Katz Institute for Nanoscale Science and Technology (IKI), Ben Gurion University of the Negev Israel
| |
Collapse
|
34
|
Carbon Quantum Dots: Synthesis, Structure, Properties, and Catalytic Applications for Organic Synthesis. Catalysts 2023. [DOI: 10.3390/catal13020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Carbon quantum dots (CQDs), also known as carbon dots (CDs), are novel zero-dimensional fluorescent carbon-based nanomaterials. CQDs have attracted enormous attention around the world because of their excellent optical properties as well as water solubility, biocompatibility, low toxicity, eco-friendliness, and simple synthesis routes. CQDs have numerous applications in bioimaging, biosensing, chemical sensing, nanomedicine, solar cells, drug delivery, and light-emitting diodes. In this review paper, the structure of CQDs, their physical and chemical properties, their synthesis approach, and their application as a catalyst in the synthesis of multisubstituted 4H pyran, in azide-alkyne cycloadditions, in the degradation of levofloxacin, in the selective oxidation of alcohols to aldehydes, in the removal of Rhodamine B, as H-bond catalysis in Aldol condensations, in cyclohexane oxidation, in intrinsic peroxidase-mimetic enzyme activity, in the selective oxidation of amines and alcohols, and in the ring opening of epoxides are discussed. Finally, we also discuss the future challenges in this research field. We hope this review paper will open a new channel for the application of CQDs as a catalyst in organic synthesis.
Collapse
|
35
|
Adeshina MA, Lee H, Mareddi B, Kang D, Ogunleye AM, Kim H, Kim T, Choi M, Park H, Park J. Liquid phase IR detector based on the photothermal effect of reduced graphene oxide-doped liquid crystals. NANOSCALE 2023; 15:2061-2066. [PMID: 36651184 DOI: 10.1039/d2nr06220h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Owing to the additional functionalities endowed by nanoparticle dopants, liquid crystals doped with nanoparticles are promising optical materials in a wide range of applications. In this study, we exploited the photothermal effect of reduced graphene oxide (rGO)-doped 5CB nematic liquid crystals (LC-rGO) to develop an infrared (IR) detector that is not only sensitive to IR but also measures the temperature and energy deposited in the detector. We demonstrate that rGO doping in LCs significantly enhances the IR absorption and transforms the light energy into thermal energy through the photothermal effect. The changes in the orientational order and birefringence of the LC-rGO induced by the photothermal effect under IR irradiation were manifested as an instantaneous color change in the white light probe beam. The change in the probe beam intensity was further translated into a temperature change and energy deposited in the detector. We also demonstrated that the external voltage applied to the detector significantly amplifies the photothermal responsivity by compensating for the anchoring energy of the LC. This study proposes a novel technology for detecting IR, temperature, and energy deposited in the detector by means of visible light, which has significant potential for developing large-area and high-resolution IR detectors by exploiting mature liquid crystal display technologies.
Collapse
Affiliation(s)
- Mohammad A Adeshina
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Hakseon Lee
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - BharathKumar Mareddi
- IMEC, Leuven, Department of Electrical Engineering, KU Leuven, Leuven 3001, Belgium
| | - Daekyung Kang
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Abdulazeez M Ogunleye
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Hyunmin Kim
- Department of Interdisciplinary Engineering, DGIST, Daegu 42988, Republic of Korea
| | - Taewan Kim
- Department of Electrical Engineering and Smart Grid Research Center, Jeonbuk National University, Jeonju 54896, Korea
| | - Muhan Choi
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Hongsik Park
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jonghoo Park
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
36
|
Wu M, Su H, Li C, Fu Z, Wu F, Yang J, Wang L. Effects of foliar application of single-walled carbon nanotubes on carbohydrate metabolism in crabapple plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:214-222. [PMID: 36427383 DOI: 10.1016/j.plaphy.2022.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Carbon nanotubes (CNTs) regulate growth in many plants. Carbohydrates provide energy and carbon skeleton for cell growth. However, how CNTs influence plant carbohydrate metabolism remains largely unknown. For a comprehensive understanding the response of carbohydrate metabolism and accumulation in leaves of crabapple (Malus hupehensis Rehd) to single-walled carbon nanotubes (SWCNTs), the expression of key enzymes and genes involved in apple sugar metabolism was investigated. In this report, TEM showed that SWCNTs particles were absorbed in apple leaf. Foliar application of 10 and 20 mg/L SWCNTs promoted chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate. SWCNTs up-regulate the activity of aldose-6-phosphate reductase (A6PR), accompanied by increased concentration of photosynthetic assimilate‒sorbitol. However, the activities of sucrose phosphate synthase (SPS) and the accumulation of sucrose did not change significantly in SWCNTs-sprayed apple leaves compared with the control. In addition, the activities of photoassimilate degradation enzyme (sorbitol dehydrogenase, SDH; sucrose synthase, SUSY; neutral invertase, NINV) and hexose degradation enzyme (fructokinase, FRK; hexokinase, HK) were higher in SWCNTs-treated apple leaves than that in the control leaves. Quantitative real-time polymerase chain reaction (qRT‒PCR) results indicated that the expression of genes associated with sugar metabolism changed significantly after SWCNTs application. Taken together, we propose that spraying apple leaves with 10 and 20 mg/L SWCNTs can improve photosynthetic activity and accelerate carbohydrate metabolism in apple leaves. Our results provide insight into understanding the biological effects of CNTs in plants and are valuable for continued use of SWCNTs in agri-nanotechnology.
Collapse
Affiliation(s)
- Mingqi Wu
- College of life Sciences, Ludong Universtiy, Yantai, 264025, PR China
| | - Hongyan Su
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong/College of Agriculture, Ludong Universtiy, Yantai, 264025, PR China; The Institute of Ecological Garden, Ludong University, Yantai, 264025, PR China
| | - Chuanshou Li
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong/College of Agriculture, Ludong Universtiy, Yantai, 264025, PR China
| | - Zhishun Fu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong/College of Agriculture, Ludong Universtiy, Yantai, 264025, PR China
| | - Fanlin Wu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong/College of Agriculture, Ludong Universtiy, Yantai, 264025, PR China
| | - Jingjing Yang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong/College of Agriculture, Ludong Universtiy, Yantai, 264025, PR China.
| | - Lei Wang
- College of life Sciences, Ludong Universtiy, Yantai, 264025, PR China.
| |
Collapse
|
37
|
Anusuyadevi K, Velmathi S. Design strategies of carbon nanomaterials in fluorescent sensing of biomolecules and metal ions -A review. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
38
|
Pourmadadi M, Rahmani E, Rajabzadeh-Khosroshahi M, Samadi A, Behzadmehr R, Rahdar A, Ferreira LFR. Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection: A comprehensive review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Naithani S, Goswami T, Thetiot F, Kumar S. Imidazo[4,5-f][1,10]phenanthroline based luminescent probes for anion recognition: Recent achievements and challenges. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Ghezzi F, Donnini R, Sansonetti A, Giovanella U, La Ferla B, Vercelli B. Nitrogen-Doped Carbon Quantum Dots for Biosensing Applications: The Effect of the Thermal Treatments on Electrochemical and Optical Properties. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010072. [PMID: 36615268 PMCID: PMC9821838 DOI: 10.3390/molecules28010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
The knowledge of the ways in which post-synthesis treatments may influence the properties of carbon quantum dots (CDs) is of paramount importance for their employment in biosensors. It enables the definition of the mechanism of sensing, which is essential for the application of the suited design strategy of the device. In the present work, we studied the ways in which post-synthesis thermal treatments influence the optical and electrochemical properties of Nitrogen-doped CDs (N-CDs). Blue-emitting, N-CDs for application in biosensors were synthesized through the hydrothermal route, starting from citric acid and urea as bio-synthesizable and low-cost precursors. The CDs samples were thermally post-treated and then characterized through a combination of spectroscopic, structural, and electrochemical techniques. We observed that the post-synthesis thermal treatments show an oxidative effect on CDs graphitic N-atoms. They cause their partially oxidation with the formation of mixed valence state systems, [CDs]0+, which could be further oxidized into the graphitic N-oxide forms. We also observed that thermal treatments cause the decomposition of the CDs external ammonium ions into ammonia and protons, which protonate their pyridinic N-atoms. Photoluminescence (PL) emission is quenched.
Collapse
Affiliation(s)
- Francesco Ghezzi
- Istituto per la Scienza e Tecnologia dei Plasmi, CNR-ISTP, Via Cozzi 53, 20125 Milano, Italy
| | - Riccardo Donnini
- Istituto di Chimica della Materia Condensata e di Tecnologie per l’Energia, CNR-ICMATE, Via Cozzi 53, 20125 Milano, Italy
| | - Antonio Sansonetti
- Istituto di Scienze del Patrimonio Culturale, CNR-ISPC, Via Cozzi 53, 20125 Milano, Italy
| | - Umberto Giovanella
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, CNR-SCITEC, Via Alfonso Corti 12, 20133 Milano, Italy
| | - Barbara La Ferla
- Dipartimento di Biotecnologie e di Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Barbara Vercelli
- Istituto di Chimica della Materia Condensata e di Tecnologie per l’Energia, CNR-ICMATE, Via Cozzi 53, 20125 Milano, Italy
- Correspondence:
| |
Collapse
|
41
|
Ramos-Soriano J, Ghirardello M, Galan MC. Carbon-based glyco-nanoplatforms: towards the next generation of glycan-based multivalent probes. Chem Soc Rev 2022; 51:9960-9985. [PMID: 36416290 PMCID: PMC9743786 DOI: 10.1039/d2cs00741j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 11/24/2022]
Abstract
Cell surface carbohydrates mediate a wide range of carbohydrate-protein interactions key to healthy and disease mechanisms. Many of such interactions are multivalent in nature and in order to study these processes at a molecular level, many glycan-presenting platforms have been developed over the years. Among those, carbon nanoforms such as graphene and their derivatives, carbon nanotubes, carbon dots and fullerenes, have become very attractive as biocompatible platforms that can mimic the multivalent presentation of biologically relevant glycosides. The most recent examples of carbon-based nanoplatforms and their applications developed over the last few years to study carbohydrate-mediate interactions in the context of cancer, bacterial and viral infections, among others, are highlighted in this review.
Collapse
Affiliation(s)
- Javier Ramos-Soriano
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
- Departamento de Química, Universidad de La Rioja, Calle Madre de Dios 53, 26006 Logroño, Spain.
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
42
|
Ouyang Y, O'Hagan MP, Willner I. Functional catalytic nanoparticles (nanozymes) for sensing. Biosens Bioelectron 2022; 218:114768. [DOI: 10.1016/j.bios.2022.114768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
|
43
|
Klimm W, Kwok K. Tunneling resistance model for piezoresistive carbon nanotube polymer composites. NANOTECHNOLOGY 2022; 34:045502. [PMID: 36265434 DOI: 10.1088/1361-6528/ac9c0d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Carbon nanotube (CNT) polymer composites exhibit outstanding electrical conductivity that enables a myriad of sensing and actuation applications. Highly sensitive strain sensors can be realized through piezoresistivity in which a resistance change is induced by mechanical strains. Tunneling conduction between CNTs in close proximity is a major mechanism contributing to the overall piezoresistivity of the CNT network, and is sensitive to the separation distance, lattice registry and the orbital overlap of the interacting CNTs. In this paper, we propose a tunneling resistance model that relate these effects to the CNT chirality, geometry, and orientation. We construct the model based on the distance-dependent Landauer equation, and introduce two additional geometric variables, namely the lattice alignment angle and the axis alignment angle. The tunneling resistance model is incorporated into a CNT network representative volume element to determine the piezoresistivity of the CNT polymer composite. The model reproduces the periodic variation of tunneling resistance consistent with experimental observations and quantum simulations in the literature, and provides improved predictive accuracy of piezoresistivity in CNT polymer composites.
Collapse
Affiliation(s)
- Wolfgang Klimm
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, United States of America
| | - Kawai Kwok
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, United States of America
| |
Collapse
|
44
|
Feng T, Yan S, Hou S, Fan X. Novel fluorescence biosensor custom-made for protein tyrosine phosphatase 1B detection based on titanium dioxide-decorated single-walled carbon nanohorn nanocomposite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121548. [PMID: 35763945 DOI: 10.1016/j.saa.2022.121548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
This paper presents a new fluorescent approach for the detection of protein tyrosine phosphatase 1B (PTP1B) based on titanium dioxide-decorated single-wall carbon nanohorns (TiO2-SWCNHs). The novel TiO2-SWCNHs nanocomposite was synthesized and characterized for the first time and the phosphorylated peptide as the substrate of PTP1B was designed. Properties of SWCNHs and TiO2 were combined by growing nano-sized TiO2 particles on SWCNHs, resulting in TiO2-SWCNHs. TiO2 provides SWCNHs a large adsorption surface area and can specifically bind to phosphopeptide substrate. TiO2-SWCNHs effectively quenched the fluorescence of the phosphorylated peptide substrate labeled by the fluorophore, and the system had a low fluorescence background. In the presence of PTP1B, dephosphorylation of the peptide occurred owing to the reaction between PTP1B and the peptide, causing the separation of the dye-labeled peptide from TiO2-SWCNHs, which resulted in fluorescence enhancement of the reaction system. Thus, a simple and rapid strategy for the detection of PTP1B activity was developed, with a detection limit of 0.01 ng/mL and linear range of 0-10 ng/mL. The system can be used to detect PTP1B in serum using the standard addition method. This system provides a new approach for screening PTP1B inhibitors.
Collapse
Affiliation(s)
- Tingting Feng
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China.
| | - Shuzhu Yan
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Shanshan Hou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
45
|
Ghorai N, Bhunia S, Burai S, Ghosh HN, Purkayastha P, Mondal S. Ultrafast insights into full-colour light-emitting C-Dots. NANOSCALE 2022; 14:15812-15820. [PMID: 36255011 DOI: 10.1039/d2nr04642c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Designing carbon dots (C-Dots) in a controlled way requires a profound understanding of their photophysical properties, such as the origin of their fluorescence and excitation wavelength-dependent emission properties, which has been a perennial problem in the last few decades. Herein, we synthesized three different C-Dots (blue, green, and red-emitting C-Dots) from the same starting materials via a hydrothermal method and separated them by silica column chromatography. All the purified C-Dots exhibited three different emission maxima after a certain range of different excitations, showing a high optical uniformity in their emission properties. It was also observed that the average distributions of the particle size in all the C-Dots were the same with a typical size of 4 nm and the same interplanar d spacing of ∼0.21 nm. Here, we tried to establish a well-defined conclusive answer to the puzzling optical properties of C-Dots via successfully investigating the carrier dynamics of their core and surface state with a myriad use of steady-state, time-resolved photoluminescence, and ultrafast transient absorbance spectroscopy techniques. The ultrafast charge-carrier dynamics of the core and surface state clearly indicated that the graphitic nitrogen in the core state and the oxygen-containing functional group in the surface state predominately contribute to controlling their wide range of emission properties. We believe that these findings will give the C-Dots their own designation in the fluorophore world and create a new avenue for designing and developing C-Dot-based new architectures.
Collapse
Affiliation(s)
- Nandan Ghorai
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Soumyadip Bhunia
- Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, WB, India
| | - Subham Burai
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna, Maharashtra 431203, India.
| | - Hirendra N Ghosh
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
- Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Pradipta Purkayastha
- Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, WB, India
| | - Somen Mondal
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna, Maharashtra 431203, India.
| |
Collapse
|
46
|
Santonocito R, Tuccitto N, Cantaro V, Carbonaro AB, Pappalardo A, Greco V, Buccilli V, Maida P, Zavattaro D, Sfuncia G, Nicotra G, Maccarrone G, Gulino A, Giuffrida A, Trusso Sfrazzetto G. Smartphone-Assisted Sensing of Trinitrotoluene by Optical Array. ACS OMEGA 2022; 7:37122-37132. [PMID: 36312398 PMCID: PMC9609071 DOI: 10.1021/acsomega.2c02958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Here we report the design and fabrication of an array-based sensor, containing functionalized Carbon Dots, Bodipy's and Naphthalimide probes, that shows high fluorescence emissions and sensitivity in the presence of low amounts of TNT explosive. In particular, we have fabricated the first sensor device based on an optical array for the detection of TNT in real samples by using a smartphone as detector. The possibility to use a common smartphone as detector leads to a prototype that can be also used in a real-life field application. The key benefit lies in the possibility of even a nonspecialist operator in the field to simply collect and send data (photos) to the trained artificial intelligence server for rapid diagnosis but also directly to the bomb disposal unit for expert evaluation. This new array sensor contains seven different fluorescent probes that are able to interact via noncovalent interactions with TNT. The interaction of each probe with TNT has been tested in solution by fluorescence titrations. The solid device has been tested in terms of selectivity and linearity toward TNT concentration. Tests performed with other explosives and other nitrogen-based analytes demonstrate the high selectivity for TNT molecules, thus supporting the reliability of this sensor. In addition, TNT can be detected in the range of 98 ng∼985 μg, with a clear different response of each probe to the different amounts of TNT.
Collapse
Affiliation(s)
- Rossella Santonocito
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
| | - Nunzio Tuccitto
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
- Laboratory
for Molecular Surfaces and Nanotechnology, CSGI, 95125Catania, Italy
| | - Valentina Cantaro
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
| | | | - Andrea Pappalardo
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
- National
Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.)Research Unit of Catania, 95125Catania, Italy
| | - Valentina Greco
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
| | - Valeria Buccilli
- Reparto
Carabinieri Investigazioni Scientifiche Messina, Via Monsignor D’Arrigo 5, 98122Messina, Italy
| | - Pietro Maida
- Reparto
Carabinieri Investigazioni Scientifiche Messina, Via Monsignor D’Arrigo 5, 98122Messina, Italy
| | - Davide Zavattaro
- Reparto
Carabinieri Investigazioni Scientifiche Messina, Via Monsignor D’Arrigo 5, 98122Messina, Italy
| | - Gianfranco Sfuncia
- Consiglio
Nazionale delle Ricerche, Istituto per la
Microelettronica e Microsistemi, I-95121Catania, Italy
| | - Giuseppe Nicotra
- Consiglio
Nazionale delle Ricerche, Istituto per la
Microelettronica e Microsistemi, I-95121Catania, Italy
| | - Giuseppe Maccarrone
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
| | - Antonino Gulino
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
- National
Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.)Research Unit of Catania, 95125Catania, Italy
| | - Alessandro Giuffrida
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
- National
Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.)Research Unit of Catania, 95125Catania, Italy
| |
Collapse
|
47
|
Camilus N, Gao S, Mitti M, Macairan JR, Naccache R, Martic S. Selective detection of nitrotyrosine using dual-fluorescent carbon dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121444. [PMID: 35660143 DOI: 10.1016/j.saa.2022.121444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The post-translational modification of amino acid plays a critical role in normal and diseased biological states. Specifically, nitrotyrosine (nTyr) has been linked to diseases, including neurodegeneration, among others. Hence, alternative methods are required for detection and differentiation of nTyr from other structurally similar analogues, such as Tyrosine (Tyr) or phosphotyrosine (pTyr). Herein, the selective detection of nTyr, over other congeners, was achieved by using dual-fluorescent carbon dots (CDs) in buffered solution, artificial saliva, bovine serum albumin and diluted equine serum. The nTyr induced fluorescence quenching of the blue and red emissions of CDs, in the 20-105 μM linear range, and with the limit of detection (LOD) at 34 μM, which was well below the physiological concentration required for detection. The sensor was functional at biological pH values, with optimal quenching efficiency at basic pH. The sensor was highly selective for nTyr even in the presence of common biological interferences (metal cations, organic anions, amino acids, nucleosides and other biologicals). The mechanism of quenching (a combination of static and dynamic) was ascribed to the nonradiative energy transfer, due to electronic overlap between nTyr absorbance and CDs fluorescence emission, and electron transfer from excited CDs state to nTyr as an electron acceptor. The dual-fluorescent CDs represent viable sensors for key biological modifications, and their selectivity and sensitivity may be further improved through tailored chemical synthesis of CDs, such as tunable surface chemistry to promote selective recognition of analyte of interest.
Collapse
Affiliation(s)
- Nayomi Camilus
- Department of Forensic Science, Environmental and Life Sciences, Trent University, Canada
| | - Stephanie Gao
- Department of Forensic Science, Environmental and Life Sciences, Trent University, Canada
| | - Musonda Mitti
- Department of Forensic Science, Environmental and Life Sciences, Trent University, Canada
| | - Jun-Ray Macairan
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Canada
| | - Rafik Naccache
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Canada
| | - Sanela Martic
- Department of Forensic Science, Environmental and Life Sciences, Trent University, Canada.
| |
Collapse
|
48
|
Karthik V, Selvakumar P, Senthil Kumar P, Satheeskumar V, Godwin Vijaysunder M, Hariharan S, Antony K. Recent advances in electrochemical sensor developments for detecting emerging pollutant in water environment. CHEMOSPHERE 2022; 304:135331. [PMID: 35709842 DOI: 10.1016/j.chemosphere.2022.135331] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/07/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
In the latest times, considerable studies have been performed closer to detecting emerging pollutant such as paracetamol in wastewater. Electrochemical sensor developments have recently started to determine in fewer concentrations effectively. The detection of paracetamol using standard protocols corresponding to electroanalytical techniques has a greater impact noticed in directing the detecting process toward biosensors. Non-enzymatic sensors are the peak of all electro analysis approaches. Functionalized materials, such as metal oxide nanoparticles, conducting polymers, and carbon-based materials for electrode surface functionalization have been used to create a fortification for distributing passive enzyme-free biosensors. Synergic effects are possible by enhancing loading capacity and mass transfer of reactants for attaining high analytical sensitivity using a variety of nanomaterials with large surface areas. The main focus of this study is to address the prevailing issues in the identification of paracetamol with the tasks in the non-enzymatic sensors field, followed by the useful methods of electro analysis studies.
Collapse
Affiliation(s)
- V Karthik
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - P Selvakumar
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama, 1888, Ethiopia
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
| | - V Satheeskumar
- Department of Civil Engineering, Government College of Technology, Coimbatore, 641013, India
| | - M Godwin Vijaysunder
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - S Hariharan
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - K Antony
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| |
Collapse
|
49
|
Ji G, Tian J, Xing F, Feng Y. Optical Biosensor Based on Graphene and Its Derivatives for Detecting Biomolecules. Int J Mol Sci 2022; 23:10838. [PMID: 36142748 PMCID: PMC9500660 DOI: 10.3390/ijms231810838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
Graphene and its derivatives show great potential for biosensing due to their extraordinary optical, electrical and physical properties. In particular, graphene and its derivatives have excellent optical properties such as broadband and tunable absorption, fluorescence bursts, and strong polarization-related effects. Optical biosensors based on graphene and its derivatives make nondestructive detection of biomolecules possible. The focus of this paper is to review the preparation of graphene and its derivatives, as well as recent advances in optical biosensors based on graphene and its derivatives. The working principle of face plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), fluorescence resonance energy transfer (FRET) and colorimetric sensors are summarized, and the advantages and disadvantages of graphene and its derivatives applicable to various types of sensors are analyzed, and the methods of surface functionalization of graphene and its derivatives are introduced; these optical biosensors can be used for the detection of a range of biomolecules such as single cells, cellular secretions, proteins, nucleic acids, and antigen-antibodies; these new high-performance optical sensors are capable of detecting changes in surface structure and biomolecular interactions with the advantages of ultra-fast detection, high sensitivity, label-free, specific recognition, and the ability to respond in real-time. Problems in the current stage of application are discussed, as well as future prospects for graphene and its biosensors. Achieving the applicability, reusability and low cost of novel optical biosensors for a variety of complex environments and achieving scale-up production, which still faces serious challenges.
Collapse
Affiliation(s)
- Guangmin Ji
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Jingkun Tian
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Fei Xing
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yu Feng
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
50
|
Jeevika A, Alagarsamy G, Celestina JJ. Biogenic synthesis of carbon quantum dots from garlic peel bio-waste for use as a fluorescent probe for sensing of quercetin. LUMINESCENCE 2022; 37:1991-2001. [PMID: 36063384 DOI: 10.1002/bio.4381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/14/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022]
Abstract
Highly fluorescent and water-soluble carbon quantum dots (CQDs) were synthesized from the bio-waste source of garlic peels (renovation of bio-waste into bio-asset) using a controlled carbonization method. Synthesized CQDs were characterized by various analytical methods and explored as a fluorogenic probe for the recognition of quercetin (QT). UV-Vis result shows an absorption maximum at 275 nm attributed to the conjugation of C=C and C=O of CQDs and demonstrates a blue emission in the range of 330-410 nm. Selectivity was performed with various biomolecules, except for QT, all other do not exhibit any considerable change in the fluorescence of CQDs. On the interaction with QT, emission was completely quenched due to FET, confirming the high selective to QT. Effect of pH, sensitivity, and stability studies displayed excellent results under optimized conditions. The LOD fluorescent probe was found to be 6.73 μM. Our approach may suggest a new platform for the development of quick and low-cost CQDs-based sensors for environmental and biological purposes.
Collapse
Affiliation(s)
- Alagan Jeevika
- PG and Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India
| | | | - Joseph Jone Celestina
- PG and Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India
| |
Collapse
|