1
|
Chen Q, Zhan Y, Gardiner MG, Khalil ZG, Dewa AA, Sritharan T, Capon RJ, Lan P, Tan S, Banwell MG. Studies Concerned with the Structure and Synthesis of the Anti-viral Tropolone Glycoside Liriosmaside A. ChemistryOpen 2025:e202500011. [PMID: 40200666 DOI: 10.1002/open.202500011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/31/2025] [Indexed: 04/10/2025] Open
Abstract
A bromotropone corresponding to the agylcone of the glycosylated sesquiterpenoid natural product liriosmaside A has been prepared over ten steps and in a fully regio-controlled manner through the gem-dibromocyclopropane-mediated ring-expansion of a readily accessible decalenone. A Pd[0]-mediated glucosylation reaction applied to this bromotropone afforded a product mixture from which an enantiomerically pure cross-coupling product could be obtained and its structure confirmed through single-crystal X-ray analysis of a derivative. Various (unsuccessful) attempts are described to selectively acylate the last compound and thereby install the 3-hydroxy-3-methylglutaric acid or HMGA-containing side chain of the title natural product. A literature survey of other natural products embodying the HMGA motif suggest that liriosmaside A and its co-metabolite liriosmaside B could be S-configured at C3". The evaluation of the glucosylated tropone in a series of anti-bacterial, anti-fungal and cytotoxicity assays reveals that it is inactive in all of these and so emphasizing the prospect that this and related troponoids, including the natural products liriosmaside A and B, can serve as useful models for new anti-viral agents.
Collapse
Affiliation(s)
- Qi Chen
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yaping Zhan
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Michael G Gardiner
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT, 2601, Australia
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Amila A Dewa
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Thulasi Sritharan
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Anhui Jinhe Industrial Co. Ltd, Chuzhou, 239200, China
| | - Shen Tan
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
2
|
Moffat AD, Höing L, Santos-Aberturas J, Markwalder T, Malone JG, Teufel R, Truman AW. Understanding the biosynthesis, metabolic regulation, and anti-phytopathogen activity of 3,7-dihydroxytropolone in Pseudomonas spp. mBio 2024; 15:e0102224. [PMID: 39207110 PMCID: PMC11481866 DOI: 10.1128/mbio.01022-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
The genus Pseudomonas is a prolific source of specialized metabolites with significant biological activities, including siderophores, antibiotics, and plant hormones. These molecules play pivotal roles in environmental interactions, influencing pathogenicity, inhibiting microorganisms, responding to nutrient limitation and abiotic challenges, and regulating plant growth. These properties mean that pseudomonads are suitable candidates as biological control agents against plant pathogens. Multiple transposon-based screens have identified a Pseudomonas biosynthetic gene cluster (BGC) associated with potent antibacterial and antifungal activities, which produces 7-hydroxytropolone (7-HT). In this study, we show that this BGC also makes 3,7-dihydroxytropolone (3,7-dHT), which has strong antimicrobial activity toward Streptomyces scabies, a potato pathogen. Through metabolomics and reporter assays, we unveil the involvement of cluster-situated genes in generating phenylacetyl-coenzyme A, a key precursor for tropolone biosynthesis via the phenylacetic acid catabolon. The clustering of these phenylacetic acid genes within tropolone BGCs is unusual in other Gram-negative bacteria. Our findings support the interception of phenylacetic acid catabolism via an enoyl-CoA dehydratase encoded in the BGC, as well as highlighting an essential role for a conserved thioesterase in biosynthesis. Biochemical assays were used to show that this thioesterase functions after a dehydrogenation-epoxidation step catalyzed by a flavoprotein. We use this information to identify diverse uncharacterized BGCs that encode proteins with homology to flavoproteins and thioesterases involved in tropolone biosynthesis. This study provides insights into tropolone biosynthesis in Pseudomonas, laying the foundation for further investigations into the ecological role of tropolone production.IMPORTANCEPseudomonas bacteria produce various potent chemicals that influence interactions in nature, such as metal-binding molecules, antibiotics, or plant hormones. This ability to synthesize bioactive molecules means that Pseudomonas bacteria may be useful as biological control agents to protect plants from agricultural pathogens, as well as a source of antibiotic candidates. We have identified a plant-associated Pseudomonas strain that can produce 3,7-dihydroxytropolone, which has broad biological activity and can inhibit the growth of Streptomyces scabies, a bacterium that causes potato scab. Following the identification of this molecule, we used a combination of genetic, chemical, and biochemical experiments to identify key steps in the production of tropolones in Pseudomonas species. Understanding this biosynthetic process led to the discovery of an array of diverse pathways that we predict will produce new tropolone-like molecules. This work should also help us shed light on the natural function of antibiotics in nature.
Collapse
Affiliation(s)
- Alaster D. Moffat
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Lars Höing
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Tim Markwalder
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jacob G. Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Robin Teufel
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Andrew W. Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
3
|
Chen Q, Banwell MG, Gardiner MG, Lan P, Tan S. Total Syntheses of the Tropolone-Containing Sesquiterpene Olaximbriside A and Its Decarbonylated Counterpart Olaximbriside B. J Org Chem 2024; 89:13530-13539. [PMID: 39264267 DOI: 10.1021/acs.joc.4c01738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The racemic modification of the α-tropolone-containing sesquiterpene olaximbriside A [viz. (±)-4)] has been prepared over 12 steps from the readily accessible decalin derivative 12. The last two of these steps involve a fully regiocontrolled substitution reaction of bromotropone 24. The aromatization of a stereoisomeric and co-produced form of compound 12 has provided (±)-olaximbriside B [(±)-5)].
Collapse
Affiliation(s)
- Qi Chen
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Michael G Gardiner
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Anhui Jinhe Industrial Co. Ltd, Chuzhou 239200, China
| | - Shen Tan
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Woodson ME, Mottaleb MA, Murelli RP, Tavis JE. In vitro evaluation of tropolone absorption, metabolism, and clearance. Antiviral Res 2023; 220:105762. [PMID: 37996012 PMCID: PMC10843707 DOI: 10.1016/j.antiviral.2023.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Tropolone compounds can inhibit hepatitis B virus (HBV) replication at sub-micromolar levels and are synergistic upon co-treatment with nucleos(t)ide analog drugs. However, only a few compounds within this chemotype have been screened for their pharmacological properties. Here, we chose 36 structurally diverse tropolones from six subclasses to characterize their in vitro pharmacological parameters. All compounds were more soluble in pHs that reflect the gastrointestinal tract (pH 5 and 6.5) than plasma (pH 7.4). Those compounds that had solubility limits >100 μM were tested in a passive permeability assay, and there was no general trend in the compounds' passive permeability at any pH. Twenty-nine compounds with the best absorption parameters were tested in HEK293 cells to assess potential cytotoxicity; measured toxicities were similar to those in the hepatic HepDES19 cells used for screening (R2 = 0.55). Sixteen representative compounds were tested against five major CYP450 isoforms and there was no substantial inhibition by any compound against any of the enzymes tested (<50%). The t1/2 values of 15 compounds were determined in the microsome stability assay and 12 compounds were evaluated in plasma protein binding assays to assess factors affecting their rate of clearance. All compounds with detectable analyte peaks had t1/2 > 30 min, and while 4 of 12 had statistically significant decreased potency in conditions with increased albumin concentrations, only one compound's potency was biologically significant. These data indicate that the tropolones have pharmacological characteristics that reflect approved drugs and inform future structure activity relationships during drug design.
Collapse
Affiliation(s)
- Molly E Woodson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA; Institute for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, MO, USA
| | - M Abdul Mottaleb
- Institute for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, MO, USA
| | - Ryan P Murelli
- Department of Chemistry and Biochemistry, Brooklyn College, City University of New York, Brooklyn, NY, USA; The Graduate Center, City University of New York, New York, NY, USA
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA; Institute for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
5
|
Schiavone DV, Gallardo J, Kapkayeva DM, Baucom JC, Murelli RP. Lactam-fused tropolones: a new tunable, environmentally sensitive fluorophore class. Org Biomol Chem 2023; 21:7900-7907. [PMID: 37750360 DOI: 10.1039/d3ob01263h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Fluorescent small-molecules capable of altering their profiles in response to environmental changes are exceptionally valuable tool compounds throughout the scientific community. The following manuscriipt describes a new class of fluorescent small molecules based on lactam-fused tropolones that are responsive to a dynamic range of environmental changes. These molecules can be easily obtained through a rapid annulation procedure between appropriately functionalized tropolones and primary amines, which is often complete within minutes at room temperature. Molecules generated through this approach have been identified with fluoresence emission across the visible light spectra, and can be tuned based on either the tropolone or amine component. They are also highly responsive to changes in solvent, pH, and certain divalent metal ions. Tropolone-fused lactams thus represent a new class of tunable fluorescent small molecules that could find value throughout the scientific community.
Collapse
Affiliation(s)
- Daniel V Schiavone
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA.
- PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, NY, USA
| | - Joel Gallardo
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA.
- PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, NY, USA
| | - Diana M Kapkayeva
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA.
| | - John-Charles Baucom
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA.
- PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, NY, USA
| | - Ryan P Murelli
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA.
- PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, NY, USA
- PhD Program in Biochemistry, The Graduate Center, The City University of New York, New York, NY, USA
| |
Collapse
|
6
|
Wang P, Xiao Y, Gao D, Long Y, Xie Z. The Gene paaZ of the Phenylacetic Acid (PAA) Catabolic Pathway Branching Point and ech outside the PAA Catabolon Gene Cluster Are Synergistically Involved in the Biosynthesis of the Iron Scavenger 7-Hydroxytropolone in Pseudomonas donghuensis HYS. Int J Mol Sci 2023; 24:12632. [PMID: 37628812 PMCID: PMC10454607 DOI: 10.3390/ijms241612632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The newly discovered iron scavenger 7-hydroxytropolone (7-HT) is secreted by Pseudomonas donghuensis HYS. In addition to possessing an iron-chelating ability, 7-HT has various other biological activities. However, 7-HT's biosynthetic pathway remains unclear. This study was the first to report that the phenylacetic acid (PAA) catabolon genes in cluster 2 are involved in the biosynthesis of 7-HT and that two genes, paaZ (orf13) and ech, are synergistically involved in the biosynthesis of 7-HT in P. donghuensis HYS. Firstly, gene knockout and a sole carbon experiment indicated that the genes orf17-21 (paaEDCBA) and orf26 (paaG) were involved in the biosynthesis of 7-HT and participated in the PAA catabolon pathway in P. donghuensis HYS; these genes were arranged in gene cluster 2 in P. donghuensis HYS. Interestingly, ORF13 was a homologous protein of PaaZ, but orf13 (paaZ) was not essential for the biosynthesis of 7-HT in P. donghuensis HYS. A genome-wide BLASTP search, including gene knockout, complemented assays, and site mutation, showed that the gene ech homologous to the ECH domain of orf13 (paaZ) is essential for the biosynthesis of 7-HT. Three key conserved residues of ech (Asp39, His44, and Gly62) were identified in P. donghuensis HYS. Furthermore, orf13 (paaZ) could not complement the role of ech in the production of 7-HT, and the single carbon experiment indicated that paaZ mainly participates in PAA catabolism. Overall, this study reveals a natural association between PAA catabolon and the biosynthesis of 7-HT in P. donghuensis HYS. These two genes have a synergistic effect and different functions: paaZ is mainly involved in the degradation of PAA, while ech is mainly related to the biosynthesis of 7-HT in P. donghuensis HYS. These findings complement our understanding of the mechanism of the biosynthesis of 7-HT in the genus Pseudomonas.
Collapse
Affiliation(s)
| | | | | | - Yan Long
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; (P.W.); (Y.X.); (D.G.)
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; (P.W.); (Y.X.); (D.G.)
| |
Collapse
|
7
|
Gazquez Casals A, Berkowitz AJ, Yu AJ, Waters HE, Schiavone DV, Kapkayeva DM, Morrison LA, Murelli RP. Antiviral activity of amide-appended α-hydroxytropolones against herpes simplex virus-1 and -2. RSC Adv 2023; 13:8743-8752. [PMID: 36936842 PMCID: PMC10016935 DOI: 10.1039/d2ra06749h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
α-Hydroxytropolones (αHTs) have potent antiviral activity against herpes simplex virus-1 and -2 (HSV-1 and HSV-2) in cell culture, including against acyclovir-resistant mutants, and as a result have the potential to be developed as antiviral drugs targeting these viruses. We recently described a convenient final-step amidation strategy to their synthesis, and this was used to generate 57 amide-substituted αHTs that were tested against hepatitis B virus. The following manuscript describes the evaluation of this library against HSV-1, as well as a subset against HSV-2. The structure-function analysis obtained from these studies demonstrates the importance of lipophilicity and rigidity to αHT-based anti-HSV potency, consistent with our prior work on smaller libraries. We used this information to synthesize and test a targeted library of 4 additional amide-appended αHTs. The most potent of this new series had a 50% effective concentration (EC50) for viral inhibition of 72 nM, on par with the most potent αHT antivirals we have found to date. Given the ease of synthesis of amide-appended αHTs, this new class of antiviral compounds and the chemistry to make them should be highly valuable in future anti-HSV drug development.
Collapse
Affiliation(s)
- Andreu Gazquez Casals
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine St. Louis MO USA
| | - Alex J Berkowitz
- Department of Chemistry, Brooklyn College, The City University of New York Brooklyn NY USA
- PhD Program in Chemistry, The Graduate Center, The City University of New York New York NY USA
| | - Alice J Yu
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine St. Louis MO USA
| | - Hope E Waters
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine St. Louis MO USA
| | - Daniel V Schiavone
- Department of Chemistry, Brooklyn College, The City University of New York Brooklyn NY USA
- PhD Program in Chemistry, The Graduate Center, The City University of New York New York NY USA
| | - Diana M Kapkayeva
- Department of Chemistry, Brooklyn College, The City University of New York Brooklyn NY USA
| | - Lynda A Morrison
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine St. Louis MO USA
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, The City University of New York Brooklyn NY USA
- PhD Program in Chemistry, The Graduate Center, The City University of New York New York NY USA
- PhD Program in Biochemistry, The Graduate Center, The City University of New York New York NY USA
| |
Collapse
|
8
|
Chen Q, Lan P, Tan S, Banwell MG. The Palladium-Catalyzed Glycosylation of Halotropones. Org Lett 2023; 25:384-388. [PMID: 36606750 DOI: 10.1021/acs.orglett.2c04099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A range of mono- and disaccharides, including glucose derivative 10, has been cleanly coupled, in the presence of a Pd catalyst, with various halogenated and structurally distinctive tropones, including "parent" compound 11, to afford the corresponding α- and β-anomeric forms of the tropolone glycosides, e.g., 12 and 13, respectively. Varying the ligand used influences the anomer distribution significantly and such that either the α- or β-form predominates. Notable chemo- and regioselectivities are observed when dihalogenated troponoids are employed as coupling partners.
Collapse
Affiliation(s)
- Qi Chen
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong510632, China
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong510632, China
| | - Shen Tan
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong510632, China
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong510632, China.,Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University,Zhanjiang, Guangdong524023, China
| |
Collapse
|
9
|
Murelli RP, Berkowitz AJ, Zuschlag DW. Carbocycloaddition Strategies for Troponoid Synthesis. Tetrahedron 2023; 130:133175. [PMID: 36777111 PMCID: PMC9910567 DOI: 10.1016/j.tet.2022.133175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Tropone is the prototypical aromatic 7-membered ring, and can be found in virtually any undergraduate textbook as a key example of non-benzenoid aromaticity. Aside from this important historical role, tropone is also of high interest as a uniquely reactive synthon in complex chemical synthesis as well as a valuable chemotype in drug design. More recently, there has been growing interest in the utility of tropones for catalysis and material science. Thus, synthetic strategies capable of synthesizing functional tropones are key to fully exploiting the potential of this aromatic ring system. Cycloaddition reactions are particularly powerful methods for constructing carbocycles, and these strategies in turn have proven to be powerful for generating troponoids. The following review article provides an overview of strategies for troponoids wherein the 7-membered carbocycle is generated through a cycloaddition reaction. Representative examples of each strategy are also provided.
Collapse
Affiliation(s)
- Ryan P Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States
| | - Alex J Berkowitz
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States
| | - Daniel W Zuschlag
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States
| |
Collapse
|
10
|
Geerling E, Murphy V, Mai MC, Stone ET, Casals AG, Hassert M, O’Dea AT, Cao F, Donlin MJ, Elagawany M, Elgendy B, Pardali V, Giannakopoulou E, Zoidis G, Schiavone DV, Berkowitz AJ, Agyemang NB, Murelli RP, Tavis JE, Pinto AK, Brien JD. Metal coordinating inhibitors of Rift Valley fever virus replication. PLoS One 2022; 17:e0274266. [PMID: 36112605 PMCID: PMC9481026 DOI: 10.1371/journal.pone.0274266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a veterinary and human pathogen and is an agent of bioterrorism concern. Currently, RVFV treatment is limited to supportive care, so new drugs to control RVFV infection are urgently needed. RVFV is a member of the order Bunyavirales, whose replication depends on the enzymatic activity of the viral L protein. Screening for RVFV inhibitors among compounds with divalent cation-coordinating motifs similar to known viral nuclease inhibitors identified 47 novel RVFV inhibitors with selective indexes from 1.1–103 and 50% effective concentrations of 1.2–56 μM in Vero cells, primarily α-Hydroxytropolones and N-Hydroxypyridinediones. Inhibitor activity and selective index was validated in the human cell line A549. To evaluate specificity, select compounds were tested against a second Bunyavirus, La Crosse Virus (LACV), and the flavivirus Zika (ZIKV). These data indicate that the α-Hydroxytropolone and N-Hydroxypyridinedione chemotypes should be investigated in the future to determine their mechanism(s) of action allowing further development as therapeutics for RVFV and LACV, and these chemotypes should be evaluated for activity against related pathogens, including Hantaan virus, severe fever with thrombocytopenia syndrome virus, Crimean-Congo hemorrhagic fever virus.
Collapse
Affiliation(s)
- Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Valerie Murphy
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Maria C. Mai
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - E. Taylor Stone
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Andreu Gazquez Casals
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Mariah Hassert
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Austin T. O’Dea
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Feng Cao
- John Cochran Division, Department of Veterans Affairs Medical Center, Saint Louis, Missouri, United States of America
| | - Maureen J. Donlin
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Mohamed Elagawany
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, Saint Louis, Missouri, United States of America
| | - Bahaa Elgendy
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, Saint Louis, Missouri, United States of America
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, Saint Louis, Missouri, United States of America
| | - Vasiliki Pardali
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Erofili Giannakopoulou
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Grigoris Zoidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Daniel V. Schiavone
- Department of Chemistry and The Graduate Center of The City University of New York, Brooklyn College, The City University of New York, Brooklyn, New York, United States of America
| | - Alex J. Berkowitz
- Department of Chemistry and The Graduate Center of The City University of New York, Brooklyn College, The City University of New York, Brooklyn, New York, United States of America
| | - Nana B. Agyemang
- Department of Chemistry and The Graduate Center of The City University of New York, Brooklyn College, The City University of New York, Brooklyn, New York, United States of America
| | - Ryan P. Murelli
- Department of Chemistry and The Graduate Center of The City University of New York, Brooklyn College, The City University of New York, Brooklyn, New York, United States of America
| | - John E. Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - James D. Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
11
|
Schiavone DV, Kapkayeva DM, Li Q, Woodson ME, Casals AG, Morrison LA, Tavis JE, Murelli RP. Synthesis of Polyoxygenated Tropolones and their Antiviral Activity against Hepatitis B Virus and Herpes Simplex Virus-1. Chemistry 2022; 28:e202104112. [PMID: 34984767 PMCID: PMC8858858 DOI: 10.1002/chem.202104112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 11/06/2022]
Abstract
Polyoxygenated tropolones possess a broad range of biological activity, and as a result are promising lead structures or fragments for drug development. However, structure-function studies and subsequent optimization have been challenging, in part due to the limited number of readily available tropolones and the obstacles to their synthesis. Oxidopyrylium [5+2] cycloaddition can effectively generate a diverse array of seven-membered ring carbocycles, and as a result can provide a highly general strategy for tropolone synthesis. Here, we describe the use of 3-hydroxy-4-pyrone-based oxidopyrylium cycloaddition chemistry in the synthesis of functionalized 3,7-dimethoxytropolones, 3,7-dihydroxytropolones, and isomeric 3-hydroxy-7-methoxytropolones through complementary benzyl alcohol-incorporating procedures. The antiviral activity of these molecules against herpes simplex virus-1 and hepatitis B virus is also described, highlighting the value of this approach and providing new structure-function insights relevant to their antiviral activity.
Collapse
Affiliation(s)
- Daniel V. Schiavone
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA,PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Diana M. Kapkayeva
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
| | - Qilan Li
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | - Molly E. Woodson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | - Andreu Gazquez Casals
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | - Lynda A. Morrison
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | - John E. Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | - Ryan P. Murelli
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA,PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| |
Collapse
|
12
|
New Inhibitors of Laccase and Tyrosinase by Examination of Cross-Inhibition between Copper-Containing Enzymes. Int J Mol Sci 2021; 22:ijms222413661. [PMID: 34948458 PMCID: PMC8707586 DOI: 10.3390/ijms222413661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
Coppers play crucial roles in the maintenance homeostasis in living species. Approximately 20 enzyme families of eukaryotes and prokaryotes are known to utilize copper atoms for catalytic activities. However, small-molecule inhibitors directly targeting catalytic centers are rare, except for those that act against tyrosinase and dopamine-β-hydroxylase (DBH). This study tested whether known tyrosinase inhibitors can inhibit the copper-containing enzymes, ceruloplasmin, DBH, and laccase. While most small molecules minimally reduced the activities of ceruloplasmin and DBH, aside from known inhibitors, 5 of 28 tested molecules significantly inhibited the function of laccase, with the Ki values in the range of 15 to 48 µM. Enzyme inhibitory kinetics classified the molecules as competitive inhibitors, whereas differential scanning fluorimetry and fluorescence quenching supported direct bindings. To the best of our knowledge, this is the first report on organic small-molecule inhibitors for laccase. Comparison of tyrosinase and DBH inhibitors using cheminformatics predicted that the presence of thione moiety would suffice to inhibit tyrosinase. Enzyme assays confirmed this prediction, leading to the discovery of two new dual tyrosinase and DBH inhibitors.
Collapse
|
13
|
Kumar D, Sharma P, Shabu, Kaur R, Lobe MMM, Gupta GK, Ntie-Kang F. In search of therapeutic candidates for HIV/AIDS: rational approaches, design strategies, structure-activity relationship and mechanistic insights. RSC Adv 2021; 11:17936-17964. [PMID: 35480193 PMCID: PMC9033207 DOI: 10.1039/d0ra10655k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
The HIV/AIDS pandemic is a serious threat to the health and development of mankind, which has affected about 37.9 million people worldwide. The increasing negative health, economic and social impacts of this disease have led to the search for new therapeutic candidates for the mitigation of AIDS/HIV. However, to date, there is still no treatment that can cure this disease. Furthermore, the clinically available drugs have numerous severe side effects. Hence, the synthesis of novel agents from natural leads is one of the rational approaches to obtain new drugs in modern medicinal chemistry. This review article is an effort to summarize recent developments with regards to the discovery of novel analogs with promising biological potential against HIV/AIDS. Herein, we also aim to discuss prospective directions on the progress of more credible and specific analogues. Besides presenting design strategies, the present communication also highlights the structure-activity relationship together with the structural features of the most promising molecules, their IC50 values, mechanistic insights and some interesting key findings revealed during their biological evaluation. The interactions with the amino acid residues of the enzymes responsible for HIV-1 inhibition are also discussed. This collection will be of great interest for researchers working in this area.
Collapse
Affiliation(s)
- Dinesh Kumar
- Sri Sai College of Pharmacy Manawala Amritsar-143001 Punjab India +91-9988902489
| | - Pooja Sharma
- Sri Sai College of Pharmacy Manawala Amritsar-143001 Punjab India +91-9988902489
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala India
| | - Shabu
- Indian Institute of Integrative Medicine (CSIR-IIIM) Canal Road Jammu 180001 India
| | - Ramandeep Kaur
- Sri Sai College of Pharmacy Manawala Amritsar-143001 Punjab India +91-9988902489
| | - Maloba M M Lobe
- Department of Chemistry, Faculty of Science, University of Buea P. O. Box 63 Buea Cameroon +237 685625811
| | - Girish K Gupta
- Department of Pharmaceutical Chemistry, Sri Sai College of Pharmacy Badhani Pathankot-145001 Punjab India
| | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, University of Buea P. O. Box 63 Buea Cameroon +237 685625811
- Institute for Pharmacy, Martin-Luther-Universität Halle-Wittenberg Kurt-Mothes-Str. 3 06120 Halle (Saale) Germany +49 3455525043
- Institute of Botany, Technical University of Dresden Zellescher Weg 20b 01062 Dresden Germany
| |
Collapse
|
14
|
Hobson C, Chan AN, Wright GD. The Antibiotic Resistome: A Guide for the Discovery of Natural Products as Antimicrobial Agents. Chem Rev 2021; 121:3464-3494. [PMID: 33606500 DOI: 10.1021/acs.chemrev.0c01214] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of life-saving antibiotics has long been plagued by the ability of pathogenic bacteria to acquire and develop an array of antibiotic resistance mechanisms. The sum of these resistance mechanisms, the antibiotic resistome, is a formidable threat to antibiotic discovery, development, and use. The study and understanding of the molecular mechanisms in the resistome provide the basis for traditional approaches to combat resistance, including semisynthetic modification of naturally occurring antibiotic scaffolds, the development of adjuvant therapies that overcome resistance mechanisms, and the total synthesis of new antibiotics and their analogues. Using two major classes of antibiotics, the aminoglycosides and tetracyclines as case studies, we review the success and limitations of these strategies when used to combat the many forms of resistance that have emerged toward natural product-based antibiotics specifically. Furthermore, we discuss the use of the resistome as a guide for the genomics-driven discovery of novel antimicrobials, which are essential to combat the growing number of emerging pathogens that are resistant to even the newest approved therapies.
Collapse
Affiliation(s)
- Christian Hobson
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Andrew N Chan
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Gerard D Wright
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
15
|
Metrano AJ, Chinn AJ, Shugrue CR, Stone EA, Kim B, Miller SJ. Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms. Chem Rev 2020; 120:11479-11615. [PMID: 32969640 PMCID: PMC8006536 DOI: 10.1021/acs.chemrev.0c00523] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Low molecular weight synthetic peptides have been demonstrated to be effective catalysts for an increasingly wide array of asymmetric transformations. In many cases, these peptide-based catalysts have enabled novel multifunctional substrate activation modes and unprecedented selectivity manifolds. These features, along with their ease of preparation, modular and tunable structures, and often biomimetic attributes make peptides well-suited as chiral catalysts and of broad interest. Many examples of peptide-catalyzed asymmetric reactions have appeared in the literature since the last survey of this broad field in Chemical Reviews (Chem. Rev. 2007, 107, 5759-5812). The overarching goal of this new Review is to provide a comprehensive account of the numerous advances in the field. As a corollary to this goal, we survey the many different types of catalytic reactions, ranging from acylation to C-C bond formation, in which peptides have been successfully employed. In so doing, we devote significant discussion to the structural and mechanistic aspects of these reactions that are perhaps specific to peptide-based catalysts and their interactions with substrates and/or reagents.
Collapse
Affiliation(s)
- Anthony J. Metrano
- AstraZeneca Oncology R&D, 35 Gatehouse Dr., Waltham, MA 02451, United States
| | - Alex J. Chinn
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Christopher R. Shugrue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elizabeth A. Stone
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| | - Byoungmoo Kim
- Department of Chemistry, Clemson University, Clemson, SC 29634, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| |
Collapse
|
16
|
Bak E, Miller JT, Noronha A, Tavis J, Gallicchio E, Murelli RP, Le Grice SFJ. 3,7-Dihydroxytropolones Inhibit Initiation of Hepatitis B Virus Minus-Strand DNA Synthesis. Molecules 2020; 25:molecules25194434. [PMID: 32992516 PMCID: PMC7583054 DOI: 10.3390/molecules25194434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 02/07/2023] Open
Abstract
Initiation of protein-primed (-) strand DNA synthesis in hepatitis B virus (HBV) requires interaction of the viral reverse transcriptase with epsilon (ε), a cis-acting regulatory signal located at the 5' terminus of pre-genomic RNA (pgRNA), and several host-encoded chaperone proteins. Binding of the viral polymerase (P protein) to ε is necessary for pgRNA encapsidation and synthesis of a short primer covalently attached to its terminal domain. Although we identified small molecules that recognize HBV ε RNA, these failed to inhibit protein-primed DNA synthesis. However, since initiation of HBV (-) strand DNA synthesis occurs within a complex of viral and host components (e.g., Hsp90, DDX3 and APOBEC3G), we considered an alternative therapeutic strategy of allosteric inhibition by disrupting the initiation complex or modifying its topology. To this end, we show here that 3,7-dihydroxytropolones (3,7-dHTs) can inhibit HBV protein-primed DNA synthesis. Since DNA polymerase activity of a ribonuclease (RNase H)-deficient HBV reverse transcriptase that otherwise retains DNA polymerase function is also abrogated, this eliminates direct involvement of RNase (ribonuclease) H activity of HBV reverse transcriptase and supports the notion that the HBV initiation complex might be therapeutically targeted. Modeling studies also provide a rationale for preferential activity of 3,7-dHTs over structurally related α-hydroxytropolones (α-HTs).
Collapse
Affiliation(s)
- Ellen Bak
- Basic Research Laboratory National Cancer Institute, Frederick, MD 21702, USA; (E.B.); (J.T.M.); (A.N.)
| | - Jennifer T. Miller
- Basic Research Laboratory National Cancer Institute, Frederick, MD 21702, USA; (E.B.); (J.T.M.); (A.N.)
| | - Andrea Noronha
- Basic Research Laboratory National Cancer Institute, Frederick, MD 21702, USA; (E.B.); (J.T.M.); (A.N.)
| | - John Tavis
- Department of Molecular Microbiology and Immunology, St. Louis University, St. Louis, MO 63104, USA;
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY 11210, USA; (E.G.); (R.P.M.)
- PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, NY 10016, USA
- PhD Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY 10016, USA
| | - Ryan P. Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY 11210, USA; (E.G.); (R.P.M.)
- PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, NY 10016, USA
- PhD Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY 10016, USA
| | - Stuart F. J. Le Grice
- Basic Research Laboratory National Cancer Institute, Frederick, MD 21702, USA; (E.B.); (J.T.M.); (A.N.)
- Correspondence:
| |
Collapse
|
17
|
Pseudomonas donghuensis HYS 7-hydroxytropolone contributes to pathogenicity toward Caenorhabditis elegans and is influenced by pantothenic acid. Biochem Biophys Res Commun 2020; 533:50-56. [PMID: 32921415 DOI: 10.1016/j.bbrc.2020.08.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022]
Abstract
Pseudomonas donghuensis HYS, a bacterial strain identified from Donghu Lake, has tremendous toxicity toward Caenorhabditis elegans and is characterized by high 7-hydroxytropolone siderophore production. Here, the relationship between pathogenic siderophore production and pantothenic acid was evaluated. The pathogenicity of P. donghuensis HYS was illustrated using C. elegans as a host. Based on slow-killing assay findings, a 7-hydroxytropolone deficiency-causing mutation attenuated P. donghuensis HYS pathogenicity, which was restored by the addition of extracted 7-hydroxytropolone. Moreover, data from real-time qPCR analysis and characteristic absorption assays indicated that pantothenic acid deficiency repressed transcriptional levels of orf9, which further reduced 7-hydroxytropolone production. Furthermore, slow-killing assays indicated that panB and pantothenic acid affected the virulence of P. donghuensis. These results indicate that a 7-hydroxytropolone siderophore-producing strain is virulent toward C. elegans. Our findings demonstrate that pantothenic acid is associated with P. donghuensis siderophore production-related pathogenicity.
Collapse
|
18
|
Li Q, Lomonosova E, Donlin MJ, Cao F, O'Dea A, Milleson B, Berkowitz AJ, Baucom JC, Stasiak JP, Schiavone DV, Abdelmessih RG, Lyubimova A, Fraboni AJ, Bejcek LP, Villa JA, Gallicchio E, Murelli RP, Tavis JE. Amide-containing α-hydroxytropolones as inhibitors of hepatitis B virus replication. Antiviral Res 2020; 177:104777. [PMID: 32217151 PMCID: PMC7199283 DOI: 10.1016/j.antiviral.2020.104777] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022]
Abstract
The Hepatitis B Virus (HBV) ribonuclease H (RNaseH) is a promising but unexploited drug target. Here, we synthesized and analyzed a library of 57 amide-containing α-hydroxytropolones (αHTs) as potential leads for HBV drug development. Fifty percent effective concentrations ranged from 0.31 to 54 μM, with selectivity indexes in cell culture of up to 80. Activity against the HBV RNaseH was confirmed in semi-quantitative enzymatic assays with recombinant HBV RNaseH. The compounds were overall poorly active against human ribonuclease H1, with 50% inhibitory concentrations of 5.1 to >1,000 μM. The αHTs had modest activity against growth of the fungal pathogen Cryptococcus neoformans, but had very limited activity against growth of the Gram - bacterium Escherichia coli and the Gram + bacterium Staphylococcus aureus, indicating substantial selectivity for HBV. A molecular model of the HBV RNaseH templated against the Ty3 RNaseH was generated. Docking the compounds to the RNaseH revealed the anticipated binding pose with the divalent cation coordinating motif on the compounds chelating the two Mn++ ions modeled into the active site. These studies reveal that that amide αHTs can be strong, specific HBV inhibitors that merit further assessment toward becoming anti-HBV drugs.
Collapse
Affiliation(s)
- Qilan Li
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Elena Lomonosova
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO, 63104, USA.
| | - Maureen J Donlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO, 63104, USA.
| | - Feng Cao
- John Cochran Division, Department of Veterans Affairs Medical Center, Saint Louis, MO, USA.
| | - Austin O'Dea
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO, 63104, USA.
| | - Brienna Milleson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Alex J Berkowitz
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA; Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA.
| | - John-Charles Baucom
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA; Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA.
| | - John P Stasiak
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA.
| | - Daniel V Schiavone
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA; Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA.
| | - Rudolf G Abdelmessih
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA.
| | - Anastasiya Lyubimova
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA.
| | - Americo J Fraboni
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA.
| | - Lauren P Bejcek
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA; Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA.
| | - Juan A Villa
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO, 63104, USA.
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA; Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA; Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA.
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA; Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA; Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA.
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO, 63104, USA.
| |
Collapse
|
19
|
Muzio FM, Agaras BC, Masi M, Tuzi A, Evidente A, Valverde C. 7‐hydroxytropolone is the main metabolite responsible for the fungal antagonism of
Pseudomonas donghuensis
strain SVBP6. Environ Microbiol 2020; 22:2550-2563. [DOI: 10.1111/1462-2920.14925] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Federico M. Muzio
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas—Centro de Bioquímica y Microbiología del Suelo. Departamento de Ciencia y TecnologíaUniversidad Nacional de Quilmes—CONICET, Roque Sáenz Peña 352, Bernal B1876BXD Buenos Aires Argentina
| | - Betina C. Agaras
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas—Centro de Bioquímica y Microbiología del Suelo. Departamento de Ciencia y TecnologíaUniversidad Nacional de Quilmes—CONICET, Roque Sáenz Peña 352, Bernal B1876BXD Buenos Aires Argentina
| | - Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli “Federico II”Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Naples Italy
| | - Angela Tuzi
- Dipartimento di Scienze Chimiche, Università di Napoli “Federico II”Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Naples Italy
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli “Federico II”Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Naples Italy
| | - Claudio Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas—Centro de Bioquímica y Microbiología del Suelo. Departamento de Ciencia y TecnologíaUniversidad Nacional de Quilmes—CONICET, Roque Sáenz Peña 352, Bernal B1876BXD Buenos Aires Argentina
| |
Collapse
|
20
|
Agyemang NB, Kukla CR, Edwards TC, Li Q, Langen MK, Schaal A, Franson AD, Casals AG, Donald KA, Yu AJ, Donlin MJ, Morrison LA, Tavis JE, Murelli RP. Divergent synthesis of a thiolate-based α-hydroxytropolone library with a dynamic bioactivity profile. RSC Adv 2019; 9:34227-34234. [PMID: 33042521 PMCID: PMC7543996 DOI: 10.1039/c9ra06383h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Here we describe a rapid and divergent synthetic route toward structurally novel αHTs functionalized with either one or two thioether or sulfonyl appendages. Evaluation of this library against hepatitis B and herpes simplex virus, as well as the pathogenic fungus Cryptococcus neoformans, and a human hepatoblastoma (HepDES19) revealed complementary biological profiles and new lead compounds with sub-micromolar activity against each pathogen.
Collapse
Affiliation(s)
- Nana B Agyemang
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States.,PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, New York 10016, United States
| | - Cassandra R Kukla
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Tiffany C Edwards
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Qilan Li
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Madison K Langen
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, 63104, United States
| | - Alexandra Schaal
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, 63104, United States
| | - Abaigeal D Franson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Andreu Gazquez Casals
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Katherine A Donald
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Alice J Yu
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Maureen J Donlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, 63104, United States
| | - Lynda A Morrison
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States.,Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, 63110, United States
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States.,PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, New York 10016, United States
| |
Collapse
|
21
|
Stasiak JP, Grigoryan A, Murelli RP. Spectrophotometric determination of α-hydroxytropolone p K a values: A structure-acidity relationship study. Tetrahedron Lett 2019; 60:1643-1645. [PMID: 32855576 PMCID: PMC7449261 DOI: 10.1016/j.tetlet.2019.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
α-Hydroxytropolones (αHTs) have a wealth of biological activity owing to their ability to serve as metalbinding fragments for many therapeutically valuable dinuclear metalloenzymes. They also have the potential to exist in as many as 4 protonation states under aqueous acidic or basic conditions. The following details how UV absorption can be used to generate pK a values on a series of αHTs. The studies also provide some knowledge into how the acidity and basicity change with some different functional groups. These studies thus provide new strategies and knowledge that could be valuable in leveraging αHTs as metal-binding fragments in drug-development pursuits.
Collapse
Affiliation(s)
- John P. Stasiak
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, United States
| | - Alexandre Grigoryan
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, United States
| | - Ryan P. Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States
| |
Collapse
|
22
|
Berkowitz AJ, Franson AD, Gazquez Cassals A, Donald KA, Yu AJ, Garimallaprabhakaran AK, Morrison LA, Murelli RP. Importance of lipophilicity for potent anti-herpes simplex virus-1 activity of α-hydroxytropolones. MEDCHEMCOMM 2019; 10:1173-1176. [PMID: 31391890 DOI: 10.1039/c9md00225a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/24/2019] [Indexed: 12/25/2022]
Abstract
We previously reported that troponoid compounds profoundly inhibit replication of herpes simplex virus (HSV)-1 and HSV-2 in cell culture, including acyclovir-resistant mutants. Synthesis of 26 alpha-hydroxylated tropolones (αHTs) led to a preliminary structure-activity relationship highlighting the potency of bi-phenyl side chains. Here, we explore the structure-activity relationship in more detail, with a focus on various biaryl and other lipophilic molecules. Along with our prior structure-function analysis, we present a refined structure-activity relationship that reveals the importance of the lipophilicity and nature of the side chain for potent anti-HSV-1 activity in cells. We expect this new information will help guide future optimization of αHTs as HSV antivirals.
Collapse
Affiliation(s)
- Alex J Berkowitz
- Department of Chemistry , Brooklyn College , The City University of New York , Brooklyn , NY , USA . .,Ph.D. Program in Chemistry , The Graduate Center , The City University of New York , New York , NY , USA
| | - Abaigeal D Franson
- Department of Molecular Microbiology and Immunology , Saint Louis University School of Medicine , St. Louis , MO , USA .
| | - Andreu Gazquez Cassals
- Department of Molecular Microbiology and Immunology , Saint Louis University School of Medicine , St. Louis , MO , USA .
| | - Katherine A Donald
- Department of Molecular Microbiology and Immunology , Saint Louis University School of Medicine , St. Louis , MO , USA .
| | - Alice J Yu
- Department of Molecular Microbiology and Immunology , Saint Louis University School of Medicine , St. Louis , MO , USA .
| | | | - Lynda A Morrison
- Department of Molecular Microbiology and Immunology , Saint Louis University School of Medicine , St. Louis , MO , USA . .,Department of Internal Medicine , Saint Louis University School of Medicine , St. Louis , MO , USA
| | - Ryan P Murelli
- Department of Chemistry , Brooklyn College , The City University of New York , Brooklyn , NY , USA . .,Ph.D. Program in Chemistry , The Graduate Center , The City University of New York , New York , NY , USA
| |
Collapse
|
23
|
Tavis JE, Zoidis G, Meyers MJ, Murelli RP. Chemical Approaches to Inhibiting the Hepatitis B Virus Ribonuclease H. ACS Infect Dis 2019; 5:655-658. [PMID: 29565562 DOI: 10.1021/acsinfecdis.8b00045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) chronically infects >250 million people and kills nearly a million annually, and current antivirals cannot clear the infection or adequately suppress disease. The virus replicates by reverse transcription, and the dominant antiviral drugs are nucleos(t)ide analogs that target the viral reverse transcriptase. We are developing antivirals targeting the other essential viral enzymatic activity, the ribonuclease H (RNaseH). HBV RNaseH inhibitors with efficacies in the low micromolar to nanomolar range against viral replication in culture have been identified in the α-hydroxytropolone and hydroxyimide chemotypes. Here, we review the promise of RNaseH inhibitors, their current structure-activity relationships, and challenges to optimizing the inhibitors into leads for clinical assessment.
Collapse
Affiliation(s)
- John E. Tavis
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, School of Medicine, Saint Louis University, 1100 S. Grand Blvd., Saint Louis, Missouri 63104, United States
| | - Grigoris Zoidis
- Department of Pharmaceutical Chemistry, School of Health Sciences, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens, GR-15771, Greece
| | - Marvin J. Meyers
- Department of Chemistry, Saint Louis University, Monsanto Hall 125, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Ryan P. Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
- PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, New York 10016, United States
| |
Collapse
|
24
|
Hirsch DR, Metrano AJ, Stone EA, Storch G, Miller SJ, Murelli RP. Troponoid Atropisomerism: Studies on the Configurational Stability of Tropone-Amide Chiral Axes. Org Lett 2019; 21:2412-2415. [PMID: 30869521 PMCID: PMC6504963 DOI: 10.1021/acs.orglett.9b00707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Configurationally stable, atropisomeric motifs are an important structural element in a number of molecules, including chiral ligands, catalysts, and molecular devices. Thus, understanding features that stabilize chiral axes is of fundamental interest throughout the chemical sciences. The following details the high rotational barriers about the Ar-C(O) bond of tropone amides, which significantly exceed those of analogous benzamides. These studies are supported by both experimental and computational rotational barrier measurements. We also report the resolution of an axially chiral α-hydroxytropolone amide into its individual atropisomers, and demonstrate its configurational stability at physiological pH and temperatures over 24 h.
Collapse
Affiliation(s)
- Danielle R. Hirsch
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016 United States
| | - Anthony J. Metrano
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Elizabeth A. Stone
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Golo Storch
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Ryan P. Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016 United States
| |
Collapse
|
25
|
Xu P, Ganaie SS, Wang X, Wang Z, Kleiboeker S, Horton NC, Heier RF, Meyers MJ, Tavis JE, Qiu J. Endonuclease Activity Inhibition of the NS1 Protein of Parvovirus B19 as a Novel Target for Antiviral Drug Development. Antimicrob Agents Chemother 2019; 63:e01879-18. [PMID: 30530599 PMCID: PMC6395930 DOI: 10.1128/aac.01879-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/30/2018] [Indexed: 12/27/2022] Open
Abstract
Human parvovirus B19 (B19V), a member of the genus Erythroparvovirus of the family Parvoviridae, is a small nonenveloped virus that has a single-stranded DNA (ssDNA) genome of 5.6 kb with two inverted terminal repeats (ITRs). B19V infection often results in severe hematological disorders and fetal death in humans. B19V replication follows a model of rolling hairpin-dependent DNA replication, in which the large nonstructural protein NS1 introduces a site-specific single-strand nick in the viral DNA replication origins, which locate at the ITRs. NS1 executes endonuclease activity through the N-terminal origin-binding domain. Nicking of the viral replication origin is a pivotal step in rolling hairpin-dependent viral DNA replication. Here, we developed a fluorophore-based in vitro nicking assay of the replication origin using the origin-binding domain of NS1 and compared it with the radioactive in vitro nicking assay. We used both assays to screen a set of small-molecule compounds (n = 96) that have potential antinuclease activity. We found that the fluorophore-based in vitro nicking assay demonstrates sensitivity and specificity values as high as those of the radioactive assay. Among the 96 compounds, we identified 8 which have an inhibition of >80% at 10 µM in both the fluorophore-based and radioactive in vitro nicking assays. We further tested 3 compounds that have a flavonoid-like structure and an in vitro 50% inhibitory concentration that fell in the range of 1 to 3 µM. Importantly, they also exhibited inhibition of B19V DNA replication in UT7/Epo-S1 cells and ex vivo-expanded human erythroid progenitor cells.
Collapse
Affiliation(s)
- Peng Xu
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Safder S Ganaie
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xiaomei Wang
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Zekun Wang
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Nancy C Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Richard F Heier
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Marvin J Meyers
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
- Department of Chemistry, Saint Louis University, St. Louis, Missouri, USA
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
26
|
Cao F, Orth C, Donlin MJ, Adegboyega P, Meyers MJ, Murelli RP, Elagawany M, Elgendy B, Tavis JE. Synthesis and Evaluation of Troponoids as a New Class of Antibiotics. ACS OMEGA 2018; 3:15125-15133. [PMID: 30533576 PMCID: PMC6275967 DOI: 10.1021/acsomega.8b01754] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/19/2018] [Indexed: 05/11/2023]
Abstract
Novel antibiotics are urgently needed. The troponoids [tropones, tropolones, and α-hydroxytropolones (α-HT)] can have anti-bacterial activity. We synthesized or purchased 92 troponoids and evaluated their antibacterial activities against Staphylococcus aureus, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa. Preliminary hits were assessed for minimum inhibitory concentrations (MIC80) and cytotoxicity (CC50) against human hepatoma cells. Sixteen troponoids inhibited S. aureus/E. coli/A. baumannii growth by ≥80% growth at <30 μM with CC50 values >50 μM. Two selected tropolones (63 and 285) inhibited 18 methicillin-resistant S. aureus (MRSA) strains with similar MIC80 values as against a reference strain. Two selected thiotropolones (284 and 363) inhibited multidrug-resistant (MDR) E. coli with MIC80 ≤30 μM. One α-HT (261) inhibited MDR-A. baumannii with MIC80 ≤30 μM. This study opens new avenues for development of novel troponoid antibiotics to address the critical need to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Feng Cao
- John
Cochran Division, Department of Veterans Affairs Medical Center, 915 North Grand Blvd., St. Louis, Missouri 63106, United States
- E-mail: . Phone: +1 (314) 289-6358. Fax: +1(314) 289-7920 (F.C.)
| | - Cari Orth
- John
Cochran Division, Department of Veterans Affairs Medical Center, 915 North Grand Blvd., St. Louis, Missouri 63106, United States
| | - Maureen J. Donlin
- Edward
A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Patrick Adegboyega
- John
Cochran Division, Department of Veterans Affairs Medical Center, 915 North Grand Blvd., St. Louis, Missouri 63106, United States
| | - Marvin J. Meyers
- Department
of Chemistry, Saint Louis University, St. Louis, Missouri 63104, United States
| | - Ryan P. Murelli
- Department
of Chemistry, Brooklyn College, The City
University of New York, Brooklyn, New York 11210, United States
- PhD
Program in Chemistry, The Graduate Center
of The City University of New York, New York 10016, United
States
| | - Mohamed Elagawany
- Center for
Clinical Pharmacology, Washington University
School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour 31111, Egypt
| | - Bahaa Elgendy
- Center for
Clinical Pharmacology, Washington University
School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States
- Chemistry
Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - John E. Tavis
- Department
of Molecular Microbiology and Immunology, The Saint Louis University Liver Center, Saint Louis University School
of Medicine, St. Louis, Missouri 63104, United
States
| |
Collapse
|
27
|
Berkowitz AJ, Abdelmessih RG, Murelli RP. Amidation Strategy for Final-Step α-Hydroxytropolone Diversification. Tetrahedron Lett 2018; 59:3026-3028. [PMID: 30872871 PMCID: PMC6411066 DOI: 10.1016/j.tetlet.2018.06.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
α-Hydroxytropolones (αHTs) are excellent metalloenzyme-inhibiting fragments that have been the basis for the development of potent inhibitors of various therapeutically important enzymes. The following manuscript describes a final-step amidation approach for αHT diversification. The method takes advantage of a scalable, chromatography-free synthesis of a carboxylic acid-appended αHT, and in the present manuscript we describe the synthesis of eight amide-containing αHTs, three of which we envision using as chemical probes. We expect that the general strategy will find widespread usage in both chemical biology and medicinal chemistry studies on αHTs.
Collapse
Affiliation(s)
- Alex J. Berkowitz
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY, 10016, United States
| | - Rudolf G. Abdelmessih
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, United States
| | - Ryan P. Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY, 10016, United States
| |
Collapse
|
28
|
A Complex Mechanism Involving LysR and TetR/AcrR That Regulates Iron Scavenger Biosynthesis in Pseudomonas donghuensis HYS. J Bacteriol 2018; 200:JB.00087-18. [PMID: 29686142 DOI: 10.1128/jb.00087-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/18/2018] [Indexed: 11/20/2022] Open
Abstract
7-Hydroxytropolone (7-HT) is a symmetrical seven-membered heteroatomic ring with a carboxyl group and two hydroxyl groups and was recently reported to be an iron scavenger of Pseudomonas donghuensis HYS. Cluster 1 includes 12 genes related to the synthesis of 7-HT; among these genes, those for two regulators, Orf1 and Orf12, were predicted to regulate 7-HT biosynthesis and to be LysR-type transcriptional regulators (LTTRs) and TetR/AcrR family transcriptional regulators, respectively. Data from real-time quantitative PCR and β-galactosidase and classical siderophore assays indicated that the transcription levels of orf1 and orf12, as well as those of crucial genes orf6 to orf9, were repressed under high-iron conditions. The deletion of orf1 and orf12 led to an absence of 7-HT and a decrease in orf6-orf9 expression. Orf1 and Orf12 were essential for the production of 7-HT through orf6-orf9 These two regulators are regulated by the Gac/Rsm system; Orf1 facilitates the expression of Orf12, and Orf12 concomitantly stimulates the expression of orf6-orf9 to synthesize 7-HT. The overexpression of Orf12 decreased 7-HT yields, possibly through decreased orf6-orf9 expression. This work thus outlines a complex mechanism regulating the biosynthesis of the iron scavenger 7-HT in P. donghuensis HYS. The synergy between Orf1 and Orf12 ensures that 7-HT acts as an iron chelator despite being toxic to bacteria and provides new ideas for the novel regulation of dual-functional secondary metabolism and research on 7-HT and its derivates in other bacteria.IMPORTANCE A complex regulation mechanism including two regulators, LysR and TetR/AcrR, in the biosynthesis of the novel iron scavenger 7-hydroxytropolone (7-HT) was verified in Pseudomonas donghuensis HYS. The coaction of LysR Orf1 and TetR/AcrR Orf12 may balance the toxicity and iron chelation of 7-HT in P. donghuensis HYS to overcome iron deficiency, as well as improve the bacterial competitiveness under iron-scarce conditions because of the toxicity of 7-HT toward other bacteria, making the accurate regulation of 7-HT biosynthesis indispensable. This regulation mechanism may be ubiquitous in the Pseudomonas putida group but may better explain the group's strong adaptability.
Collapse
|
29
|
Biosynthesis of Tropolones in Streptomyces spp.: Interweaving Biosynthesis and Degradation of Phenylacetic Acid and Hydroxylations on the Tropone Ring. Appl Environ Microbiol 2018; 84:AEM.00349-18. [PMID: 29654178 DOI: 10.1128/aem.00349-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/05/2018] [Indexed: 01/10/2023] Open
Abstract
Tropolonoids are important natural products that contain a unique seven-membered aromatic tropolone core and exhibit remarkable biological activities. 3,7-Dihydroxytropolone (DHT) isolated from Streptomyces species is a multiply hydroxylated tropolone exhibiting antimicrobial, anticancer, and antiviral activities. In this study, we determined the DHT biosynthetic pathway by heterologous expression, gene deletion, and biotransformation. Nine trl genes and some of the aerobic phenylacetic acid degradation pathway genes (paa) located outside the trl biosynthetic gene cluster are required for the heterologous production of DHT. The trlA gene encodes a single-domain protein homologous to the C-terminal enoyl coenzyme A (enoyl-CoA) hydratase domain of PaaZ. TrlA truncates the phenylacetic acid catabolic pathway and redirects it toward the formation of heptacyclic intermediates. TrlB is a 3-deoxy-d-arabino-heptulosonic acid-7-phosphate (DAHP) synthase homolog. TrlH is an unusual bifunctional protein bearing an N-terminal prephenate dehydratase domain and a C-terminal chorismate mutase domain. TrlB and TrlH enhanced de novo biosynthesis of phenylpyruvate, thereby providing abundant precursor for the prolific production of DHT in Streptomyces spp. Six seven-membered carbocyclic compounds were identified from the trlC, trlD, trlE, and trlF deletion mutants. Four of these chemicals, including 1,4,6-cycloheptatriene-1-carboxylic acid, tropone, tropolone, and 7-hydroxytropolone, were verified as key biosynthetic intermediates. TrlF is required for the conversion of 1,4,6-cycloheptatriene-1-carboxylic acid into tropone. The monooxygenases TrlE and TrlCD catalyze the regioselective hydroxylations of tropone to produce DHT. This study reveals a natural association of anabolism of chorismate and phenylpyruvate, catabolism of phenylacetic acid, and biosynthesis of tropolones in Streptomyces spp.IMPORTANCE Tropolonoids are promising drug lead compounds because of the versatile bioactivities attributed to their highly oxidized seven-membered aromatic ring scaffolds. Our present study provides clear insight into the biosynthesis of 3,7-dihydroxytropolone (DHT) through the identification of key genes responsible for the formation and modification of the seven-membered aromatic core. We also reveal the intrinsic mechanism of elevated production of DHT and related tropolonoids in Streptomyces spp. The study on DHT biosynthesis in Streptomyces exhibits a good example of antibiotic production in which both anabolic and catabolic pathways of primary metabolism are interwoven into the biosynthesis of secondary metabolites. Furthermore, our study sets the stage for metabolic engineering of the biosynthetic pathway for natural tropolonoid products and provides alternative synthetic biology tools for engineering novel tropolonoids.
Collapse
|
30
|
Bejcek LP, Murelli RP. Oxidopyrylium [5+2] Cycloaddition Chemistry: Historical Perspective and Recent Advances (2008-2018). Tetrahedron 2018; 74:2501-2521. [PMID: 30455508 PMCID: PMC6238658 DOI: 10.1016/j.tet.2018.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Lauren P Bejcek
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, NY, Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, NY, Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| |
Collapse
|
31
|
Yellow-Cedar, Callitropsis (Chamaecyparis) nootkatensis, Secondary Metabolites, Biological Activities, and Chemical Ecology. J Chem Ecol 2018; 44:510-524. [PMID: 29654493 DOI: 10.1007/s10886-018-0956-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
Yellow-cedar, Callitropsis nootkatensis, is prevalent in coastal forests of southeast Alaska, western Canada, and inland forests along the Cascades to northern California, USA. These trees have few microbial or animal pests, attributable in part to the distinct groups of biologically active secondary metabolites their tissues store for chemical defense. Here we summarize the new yellow-cedar compounds identified and their biological activities, plus new or expanded activities for tissues, extracts, essential oils and previously known compounds since the last review more than 40 years ago. Monoterpene hydrocarbons are the most abundant compounds in foliage, while heartwood contains substantial quantities of oxygenated monoterpenes and oxygenated sesquiterpenes, with one or more tropolones. Diterpenes occur in foliage and bark, whereas condensed tannins have been isolated from inner bark. Biological activities expressed by one or more compounds in these groups include fungicide, bactericide, sporicide, acaricide, insecticide, general cytotoxicity, antioxidant and human anticancer. The diversity of organisms impacted by whole tissues, essential oils, extracts, or individual compounds now encompasses ticks, fleas, termites, ants, mosquitoes, bacteria, a water mold, fungi and browsing animals. Nootkatone, is a heartwood component with sufficient activity against arthropods to warrant research focused toward potential development as a commercial repellent and biopesticide for ticks, mosquitoes and possibly other arthropods that vector human and animal pathogens.
Collapse
|
32
|
Abstract
α-Hydroxytropolones (αHTs) are troponoids that demonstrate inhibition against an array of therapeutically significant targets, making them potential drug leads for several human diseases. We have utilized a recently discovered one-pot three-component oxidopyrylium cycloaddition in a solid-supported synthesis of αHTs. Though the procedure is time efficient and generates assay-ready molecules, the system suffers from low yields and an inability to perform reaction modifications on resin-bound intermediates. In order to combat these issues with the solid-phase platform, we incorporated fluorous tags into our synthetic route. Through the implementation of fluorous phase chemistry, we demonstrate a substantial increase in the overall yield of αHTs, as well as an ability to execute metal-catalyzed cross coupling and amide coupling on fluorous tagged intermediates. We also show that tagged molecules can be separated from nonfluorous impurities, and vice versa, by utilizing fluorous liquid-liquid and solid-phase extractions. Hence, these proof-of-principle investigations describe the viability of a fluorous phase approach to αHT synthesis and its potential to serve as a combinatorial technique to produce structurally diverse substrates.
Collapse
Affiliation(s)
- Michael P. D’Erasmo
- Department of Chemistry, Brooklyn College, The City
University of New York, Brooklyn, New York 11210, United States
- PhD Program in Chemistry, The Graduate Center of The City
University of New York, New York, New York 10016, United States
| | - Ryan P. Murelli
- Department of Chemistry, Brooklyn College, The City
University of New York, Brooklyn, New York 11210, United States
- PhD Program in Chemistry, The Graduate Center of The City
University of New York, New York, New York 10016, United States
| |
Collapse
|
33
|
Dehghanpir SD, Birkenheuer CH, Yang K, Murelli RP, Morrison LA, Le Grice SFJ, Baines JD. Broad anti-herpesviral activity of α-hydroxytropolones. Vet Microbiol 2017; 214:125-131. [PMID: 29408023 DOI: 10.1016/j.vetmic.2017.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 01/02/2023]
Abstract
Herpesviruses are ubiquitous in animals and cause economic losses concomitant with many diseases. Most of the domestic animal herpesviruses are within the subfamily Alphaherpesvirinae, which includes human herpes simplex virus 1 (HSV-1). Suppression of HSV-1 replication has been reported with α-hydroxytropolones (αHTs), aromatic ring compounds that have broad bioactivity due to potent chelating activity. It is postulated that αHTs inhibit enzymes within the nucleotidyltransferase superfamily (NTS). These enzymes require divalent cations for nucleic acid cleavage activity. Potential targets include the nuclease component of the herpesvirus terminase (pUL15C), a highly conserved NTS-like enzyme that cleaves viral DNA into genomic lengths prior to packaging into capsids. Inhibition of pUL15C activity in biochemical assays by various αHTs previously revealed a spectrum of potencies. Interestingly, the most potent anti-pUL15C αHT inhibited HSV-1 replication to a limited extent in cell culture. The aim of this study was to evaluate three different αHT molecules with varying biochemical anti-pUL15C activity for a capacity to inhibit replication of veterinary herpesviruses (BoHV-1, EHV-1, and FHV-1) and HSV-1. Given the known discordant potencies between anti-pUL15C and HSV-1 replication inhibition, a second objective was to elucidate the mechanism of action of these compounds. The results show that αHTs broadly inhibit herpesviruses, with similar inhibitory effect against HSV-1, BoHV-1, EHV-1, and FHV-1. Based on immunoblotting, Southern blotting, and real-time qPCR, the compounds were found to specifically inhibit viral DNA replication. Thus, αHTs represent a new class of broadly active anti-herpesviral compounds with potential veterinary applications.
Collapse
Affiliation(s)
- Shannon D Dehghanpir
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Claire H Birkenheuer
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Kui Yang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, NY, United States
| | - Lynda A Morrison
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine,St. Louis, MO, United States
| | - Stuart F J Le Grice
- Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Joel D Baines
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States.
| |
Collapse
|
34
|
Hirsch DR, Schiavone DV, Berkowitz AJ, Morrison LA, Masaoka T, Wilson JA, Lomonosova E, Zhao H, Patel BS, Datla SH, Hoft SG, Majidi SJ, Pal RK, Gallicchio E, Tang L, Tavis JE, Le Grice SFJ, Beutler JA, Murelli RP. Synthesis and biological assessment of 3,7-dihydroxytropolones. Org Biomol Chem 2017; 16:62-69. [PMID: 29098212 PMCID: PMC5748270 DOI: 10.1039/c7ob02453c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
3,7-Dihydroxytropolones (3,7-dHTs) are highly oxygenated troponoids that have been identified as lead compounds for several human diseases. To date, structure-function studies on these molecules have been limited due to a scarcity of synthetic methods for their preparation. New synthetic strategies towards structurally novel 3,7-dHTs would be valuable in further studying their therapeutic potential. Here we describe the successful adaptation of a [5 + 2] oxidopyrilium cycloaddition/ring-opening for 3,7-dHT synthesis, which we apply in the synthesis of a plausible biosynthetic intermediate to the natural products puberulic and puberulonic acid. We have also tested these new compounds in several biological assays related to human immunodeficiency virus (HIV), hepatitis B virus (HBV) and herpes simplex virus (HSV) in order to gain insight into structure-functional analysis related to antiviral troponoid development.
Collapse
Affiliation(s)
- D R Hirsch
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, 11210, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
The Exonuclease Activity of Herpes Simplex Virus 1 UL12 Is Required for Production of Viral DNA That Can Be Packaged To Produce Infectious Virus. J Virol 2017; 91:JVI.01380-17. [PMID: 28956767 DOI: 10.1128/jvi.01380-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/21/2017] [Indexed: 01/23/2023] Open
Abstract
The herpes simplex virus (HSV) type I alkaline nuclease, UL12, has 5'-to-3' exonuclease activity and shares homology with nucleases from other members of the Herpesviridae family. We previously reported that a UL12-null virus exhibits a severe defect in viral growth. To determine whether the growth defect was a result of loss of nuclease activity or another function of UL12, we introduced an exonuclease-inactivating mutation into the viral genome. The recombinant virus, UL12 D340E (the D340E mutant), behaved identically to the null virus (AN-1) in virus yield experiments, exhibiting a 4-log decrease in the production of infectious virus. Furthermore, both viruses were severely defective in cell-to-cell spread and produced fewer DNA-containing capsids and more empty capsids than wild-type virus. In addition, DNA packaged by the viral mutants was aberrant, as determined by infectivity assays and pulsed-field gel electrophoresis. We conclude that UL12 exonuclease activity is essential for the production of viral DNA that can be packaged to produce infectious virus. This conclusion was bolstered by experiments showing that a series of natural and synthetic α-hydroxytropolones recently reported to inhibit HSV replication also inhibit the nuclease activity of UL12. Taken together, our results demonstrate that the exonuclease activity of UL12 is essential for the production of infectious virus and may be considered a target for development of antiviral agents.IMPORTANCE Herpes simplex virus is a major pathogen, and although nucleoside analogs such as acyclovir are highly effective in controlling HSV-1 or -2 infections in immunocompetent individuals, their use in immunocompromised patients is complicated by the development of resistance. Identification of additional proteins essential for viral replication is necessary to develop improved therapies. In this communication, we confirm that the exonuclease activity of UL12 is essential for viral replication through the analysis of a nuclease-deficient viral mutant. We demonstrate that the exonuclease activity of UL12 is essential for the production of viral progeny and thus provides an attractive, druggable enzymatic target.
Collapse
|
36
|
Antimalarial troponoids, puberulic acid and viticolins; divergent synthesis and structure-activity relationship studies. Sci Rep 2017; 7:7259. [PMID: 28775291 PMCID: PMC5543150 DOI: 10.1038/s41598-017-07718-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/03/2017] [Indexed: 11/29/2022] Open
Abstract
Divergent synthesis of antimalarial troponoids, including naturally occurring compounds, some of which were identified and isolated by our group, has been achieved utilizing the total synthetic route of puberulic acid. Structure-activity relationships of natural products and simple troponoids inspired us to explore more detailed properties of this class of compounds. Access to new derivatives was facilitated through intermediate compounds generated during the total synthesis of puberulic acid by a stepwise oxidation-aromatization sequence to provide 7-hydroxytropolones and bromination for conversion of the carboxylic acid moiety. The first total synthesis of viticolin A, as well as the synthesis of different methyl-substituted derivatives, has also been achieved. In vitro antimalarial activity and cytotoxicity of novel derivatives were evaluated and fundamental information to facilitate the discovery of more promising antimalarials was obtained.
Collapse
|
37
|
Lomonosova E, Daw J, Garimallaprabhakaran AK, Agyemang NB, Ashani Y, Murelli RP, Tavis JE. Efficacy and cytotoxicity in cell culture of novel α-hydroxytropolone inhibitors of hepatitis B virus ribonuclease H. Antiviral Res 2017. [PMID: 28633989 DOI: 10.1016/j.antiviral.2017.06.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chronic Hepatitis B virus (HBV) infection is a major worldwide public health problem. Current direct-acting anti-HBV drugs target the HBV DNA polymerase activity, but the equally essential viral ribonuclease H (RNaseH) activity is unexploited as a drug target. Previously, we reported that α-hydroxytropolone compounds can inhibit the HBV RNaseH and block viral replication. Subsequently, we found that our biochemical RNaseH assay underreports efficacy of the α-hydroxytropolones against HBV replication. Therefore, we conducted a structure-activity analysis of 59 troponoids against HBV replication in cell culture. These studies revealed that antiviral efficacy is diminished by larger substitutions on the tropolone ring, identified key components in the substitutions needed for high efficacy, and revealed that cytotoxicity correlates with increased lipophilicity of the α-hydroxytropolones. These data provide key guidance for further optimization of the α-hydroxytropolone scaffold as novel HBV RNaseH inhibitors.
Collapse
Affiliation(s)
- Elena Lomonosova
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA; Saint Louis University Liver Center, Saint Louis, MO, USA
| | - Jil Daw
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | | | - Nana B Agyemang
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, NY, USA
| | - Yashkumar Ashani
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, NY, USA
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, NY, USA; PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA; Saint Louis University Liver Center, Saint Louis, MO, USA.
| |
Collapse
|
38
|
Grillo AS, SantaMaria AM, Kafina MD, Cioffi AG, Huston NC, Han M, Seo YA, Yien YY, Nardone C, Menon AV, Fan J, Svoboda DC, Anderson JB, Hong JD, Nicolau BG, Subedi K, Gewirth AA, Wessling-Resnick M, Kim J, Paw BH, Burke MD. Restored iron transport by a small molecule promotes absorption and hemoglobinization in animals. Science 2017; 356:608-616. [PMID: 28495746 PMCID: PMC5470741 DOI: 10.1126/science.aah3862] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/30/2016] [Accepted: 03/21/2017] [Indexed: 12/15/2022]
Abstract
Multiple human diseases ensue from a hereditary or acquired deficiency of iron-transporting protein function that diminishes transmembrane iron flux in distinct sites and directions. Because other iron-transport proteins remain active, labile iron gradients build up across the corresponding protein-deficient membranes. Here we report that a small-molecule natural product, hinokitiol, can harness such gradients to restore iron transport into, within, and/or out of cells. The same compound promotes gut iron absorption in DMT1-deficient rats and ferroportin-deficient mice, as well as hemoglobinization in DMT1- and mitoferrin-deficient zebrafish. These findings illuminate a general mechanistic framework for small molecule-mediated site- and direction-selective restoration of iron transport. They also suggest that small molecules that partially mimic the function of missing protein transporters of iron, and possibly other ions, may have potential in treating human diseases.
Collapse
Affiliation(s)
- Anthony S Grillo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anna M SantaMaria
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martin D Kafina
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander G Cioffi
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicholas C Huston
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Murui Han
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Young Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Yvette Y Yien
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Nardone
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Archita V Menon
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - James Fan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Dillon C Svoboda
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jacob B Anderson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - John D Hong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bruno G Nicolau
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kiran Subedi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew A Gewirth
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marianne Wessling-Resnick
- Department of Genetic and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| | - Barry H Paw
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Division of Hematology-Oncology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Martin D Burke
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| |
Collapse
|
39
|
Troponoids Can Inhibit Growth of the Human Fungal Pathogen Cryptococcus neoformans. Antimicrob Agents Chemother 2017; 61:AAC.02574-16. [PMID: 28167553 DOI: 10.1128/aac.02574-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/01/2017] [Indexed: 12/18/2022] Open
Abstract
Cryptococcus neoformans is a pathogen that is common in immunosuppressed patients. It can be treated with amphotericin B and fluconazole, but the mortality rate remains 15 to 30%. Thus, novel and more effective anticryptococcal therapies are needed. The troponoids are based on natural products isolated from western red cedar, and have a broad range of antimicrobial activities. Extracts of western red cedar inhibit the growth of several fungal species, but neither western red cedar extracts nor troponoid derivatives have been tested against C. neoformans We screened 56 troponoids for their ability to inhibit C. neoformans growth and to assess whether they may be attractive candidates for development into anticryptococcal drugs. We determined MICs at which the compounds inhibited 80% of cryptococcal growth relative to vehicle-treated controls and identified 12 compounds with MICs ranging from 0.2 to 15 μM. We screened compounds with MICs of ≤20 μM for cytotoxicity in liver hepatoma cells. Fifty percent cytotoxicity values (CC50s) ranged from 4 to >100 μM. The therapeutic indexes (TI, CC50/MIC) for most of the troponoids were fairly low, with most being <8. However, two compounds had TI values that were >8, including a tropone with a TI of >300. These tropones are fungicidal and are not antagonistic when used in combination with fluconazole or amphotericin B. Inhibition by these two tropones remains unchanged under conditions favoring cryptococcal capsule formation. These data support the hypothesis that troponoids may be a productive scaffold for the development of novel anticryptococcal therapies.
Collapse
|
40
|
D'Erasmo MP, Masaoka T, Wilson JA, Hunte EM, Beutler JA, Le Grice SFJ, Murelli RP. Traceless Solid-Phase α-Hydroxytropolone Synthesis. MEDCHEMCOMM 2016; 7:1789-1792. [PMID: 28090282 DOI: 10.1039/c6md00237d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α-Hydroxytropolones are established inhibitors of several therapeutically relevant binuclear metalloenzymes, and thus lead drug targets for various human diseases. We have leveraged a recently-disclosed three-component oxidopyrylium cycloaddition in the first solid-phase synthesis of α-hydroxytropolones. We also showed that, while minor impurities exist after cleavage and aqueous wash, the semi-crude products display activity in HIV RT-associated RNaseH enzymatic and cell-based assays consistent with pure molecules made in solution phase. These proof-of-principle studies demonstrate the feasibility of solid-phase α-hydroxytropolone synthesis and its potential to serve as a powerful platform for α-hydroxytropolone-based drug discovery and development.
Collapse
Affiliation(s)
- Michael P D'Erasmo
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA; PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, USA
| | - Takashi Masaoka
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Jennifer A Wilson
- Molecular Targets Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Errol M Hunte
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA
| | - John A Beutler
- Molecular Targets Laboratory, National Cancer Institute, Frederick, MD, USA
| | | | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA; PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, USA
| |
Collapse
|
41
|
Murelli RP, D'Erasmo MP, Hirsch DR, Meck C, Masaoka T, Wilson JA, Zhang B, Pal RK, Gallicchio E, Beutler JA, Le Grice SFJ. Synthetic α-Hydroxytropolones as Inhibitors of HIV Reverse Transcriptase Ribonuclease H Activity. MEDCHEMCOMM 2016; 7:1783-1788. [PMID: 28093576 PMCID: PMC5234084 DOI: 10.1039/c6md00238b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HIV Reverse Transcriptase-associated ribonuclease H activity is a promising enzymatic target for drug development that has not been successfully targeted in the clinic. While the α-hydroxytropolone-containing natural products β-thujaplicinol and manicol have emerged as some of the most potent leads described to date, structure-function studies have been limited to the natural products and semi-synthetic derivatives of manicol. Thus, a library of α-hydroxytropolones synthesized through a convenient oxidopyrylium cycloaddition/ring-opening sequence have been tested in in vitro and cell-based assays, and have been analyzed using computational support. These studies reveal new synthetic α-hydroxytropolones that, unlike the natural product leads they are derived from, demonstrate protective antiviral activity in cellular assays.
Collapse
Affiliation(s)
- Ryan P Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA; PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, USA
| | - Michael P D'Erasmo
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA; PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, USA
| | - Danielle R Hirsch
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA; PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, USA
| | - Christine Meck
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA; PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, USA
| | - Takashi Masaoka
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Jennifer A Wilson
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Baofeng Zhang
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA
| | - Rajat K Pal
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA; PhD Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY, USA
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA; PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, USA; PhD Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY, USA
| | - John A Beutler
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Stuart F J Le Grice
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| |
Collapse
|
42
|
Jiang Z, Chen M, Yu X, Xie Z. 7-Hydroxytropolone produced and utilized as an iron-scavenger by Pseudomonas donghuensis. Biometals 2016; 29:817-26. [PMID: 27542164 DOI: 10.1007/s10534-016-9954-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/21/2016] [Indexed: 11/29/2022]
Abstract
Pseudomonas donghuensis can excrete large quantities of iron chelating substances in iron-restricted environments. At least two kinds of iron-chelator can be found in the culture supernatant: fluorescent siderophores pyoverdins, and an ethyl acetate-extractable non-fluorescent substance. The non-fluorescent substance was the dominant contributor to the iron chelating activity of the culture supernatant of P. donghuensis. Electron ionization mass spectrometry, NMR spectroscopy, and IR spectroscopy identified the non-fluorescent iron-chelator as 7-hydroxytropolone. The stoichiometry of 7-hydroxytropolone ferric complex was determined to be 2:1 by the continuous variation method. The production of 7-hydroxytropolone was repressible by iron in the medium. Moreover, the inhibited growth of doubly siderophore-deficient strain of P. donghuensis under iron-limiting conditions could be partly restored by 7-hydroxytropolone. Thus, 7-hydroxytropolone was considered to play a previously undiscovered role as an iron-scavenger for P. donghuensis.
Collapse
Affiliation(s)
- Zhen Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), State Key Laboratory of Virology, Wuhan University, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, 430072, Wuhan, People's Republic of China
| | - Min Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), State Key Laboratory of Virology, Wuhan University, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, 430072, Wuhan, People's Republic of China
| | - Xinyan Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), State Key Laboratory of Virology, Wuhan University, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, 430072, Wuhan, People's Republic of China
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), State Key Laboratory of Virology, Wuhan University, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, 430072, Wuhan, People's Republic of China.
| |
Collapse
|
43
|
D’Erasmo MP, Meck C, Lewis CA, Murelli RP. Discovery and Development of a Three-Component Oxidopyrylium [5 + 2] Cycloaddition. J Org Chem 2016; 81:3744-51. [PMID: 27018974 PMCID: PMC5095581 DOI: 10.1021/acs.joc.6b00394] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
α-Hydroxy-γ-pyrone-based oxidopyrylium cycloaddition reactions are useful methods for accessing a highly diverse range of oxabicyclo[3.2.1]octane products. Intermolecular variants of the reaction require the formation of a methyl triflate-based pre-ylide salt that upon treatment with base in the presence of alkenes or alkynes leads to α-methoxyenone-containing bicyclic products. Herein, we describe our discovery that the use of ethanol-stabilized chloroform as solvent leads to the generation of α-ethoxyenone-containing bicyclic byproducts. This three-component process was further optimized by gently heating a mixture of a purified version of the oxidopyrylium dimer in the presence of an alcohol prior to addition of a dipolarophile. Using this convenient procedure, several new oxidopyrylium cycloaddition products can be generated in moderate yields. We also highlight the method in a tandem ring-opening/debenzylation method for the generation of α-hydroxytropolones.
Collapse
Affiliation(s)
- Michael P. D’Erasmo
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA
- PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, USA
| | - Christine Meck
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA
- PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, USA
| | - Chad A. Lewis
- Department of Chemistry, Cornell University, Ithaca, NY, USA
| | - Ryan P. Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA
- PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, USA
| |
Collapse
|
44
|
Yongsheng Zheng, Ghazvini Zadeh EH, Yuan Y. One-Pot, Enantioselective Synthesis of 2,3-Dihydroazulen-6(1H)-one: A Concise Access to the Core Structure ofCephalotaxusNorditerpenes. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Synthetic α-Hydroxytropolones Inhibit Replication of Wild-Type and Acyclovir-Resistant Herpes Simplex Viruses. Antimicrob Agents Chemother 2016; 60:2140-9. [PMID: 26787704 DOI: 10.1128/aac.02675-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/14/2016] [Indexed: 12/18/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) and HSV-2 remain major human pathogens despite the development of anti-HSV therapeutics as some of the first antiviral drugs. Current therapies are incompletely effective and frequently drive the evolution of drug-resistant mutants. We recently determined that certain natural troponoid compounds such as β-thujaplicinol readily suppress HSV-1 and HSV-2 replication. Here, we screened 26 synthetic α-hydroxytropolones with the goals of determining a preliminary structure-activity relationship for the α-hydroxytropolone pharmacophore and providing a starting point for future optimization studies. Twenty-five compounds inhibited HSV-1 and HSV-2 replication at 50 μM, and 10 compounds inhibited HSV-1 and HSV-2 at 5 μM, with similar inhibition patterns and potencies against both viruses being observed. The two most powerful inhibitors shared a common biphenyl side chain, were capable of inhibiting HSV-1 and HSV-2 with a 50% effective concentration (EC50) of 81 to 210 nM, and also strongly inhibited acyclovir-resistant mutants. Moderate to low cytotoxicity was observed for all compounds (50% cytotoxic concentration [CC50] of 50 to >100 μM). Therapeutic indexes ranged from >170 to >1,200. These data indicate that troponoids and specifically α-hydroxytropolones are a promising lead scaffold for development as anti-HSV drugs provided that toxicity can be further minimized. Troponoid drugs are envisioned to be employed alone or in combination with existing nucleos(t)ide analogs to suppress HSV replication far enough to prevent viral shedding and to limit the development of or treat nucleos(t)ide analog-resistant mutants.
Collapse
|
46
|
Zhao H, Lin Z, Lynn AY, Varnado B, Beutler JA, Murelli RP, Le Grice SFJ, Tang L. Two distinct modes of metal ion binding in the nuclease active site of a viral DNA-packaging terminase: insight into the two-metal-ion catalytic mechanism. Nucleic Acids Res 2015; 43:11003-16. [PMID: 26450964 PMCID: PMC4678813 DOI: 10.1093/nar/gkv1018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/25/2015] [Indexed: 01/10/2023] Open
Abstract
Many dsDNA viruses encode DNA-packaging terminases, each containing a nuclease domain that resolves concatemeric DNA into genome-length units. Terminase nucleases resemble the RNase H-superfamily nucleotidyltransferases in folds, and share a two-metal-ion catalytic mechanism. Here we show that residue K428 of a bacteriophage terminase gp2 nuclease domain mediates binding of the metal cofactor Mg2+. A K428A mutation allows visualization, at high resolution, of a metal ion binding mode with a coupled-octahedral configuration at the active site, exhibiting an unusually short metal-metal distance of 2.42 Å. Such proximity of the two metal ions may play an essential role in catalysis by generating a highly positive electrostatic niche to enable formation of the negatively charged pentacovalent phosphate transition state, and provides the structural basis for distinguishing Mg2+ from Ca2+. Using a metal ion chelator β-thujaplicinol as a molecular probe, we observed a second mode of metal ion binding at the active site, mimicking the DNA binding state. Arrangement of the active site residues differs drastically from those in RNase H-like nucleases, suggesting a drifting of the active site configuration during evolution. The two distinct metal ion binding modes unveiled mechanistic details of the two-metal-ion catalysis at atomic resolution.
Collapse
Affiliation(s)
- Haiyan Zhao
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Zihan Lin
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Anna Y Lynn
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Brittany Varnado
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - John A Beutler
- Molecular Targets Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA
| | - Stuart F J Le Grice
- Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Liang Tang
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| |
Collapse
|
47
|
Song W, Xi BM, Yang K, Tang W. Synthesis of Substituted Tropones by Sequential Rh-Catalyzed [5+2] Cycloaddition and Elimination. Tetrahedron 2015; 71:5979-5984. [PMID: 26456984 PMCID: PMC4597182 DOI: 10.1016/j.tet.2015.04.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Highly substituted tropones are prepared from cycloheptatrienes derived from Rh-catalyzed intermolecular [5+2] cycloaddition of 3-acyloxy-1,4-enynes and propargylic alcohols. The intermolecular [5+2] cycloaddition is highly regioselective for a variety of propargylic alcohols. Elimination of the cycloaddition products afforded various substituted tropones.
Collapse
Affiliation(s)
- Wangze Song
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705-2222, USA
| | - Bao-min Xi
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705-2222, USA
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province, 510515, P. R. China
| | - Ka Yang
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705-2222, USA
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705-2222, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
48
|
Tavis JE, Lomonosova E. The hepatitis B virus ribonuclease H as a drug target. Antiviral Res 2015; 118:132-8. [PMID: 25862291 DOI: 10.1016/j.antiviral.2015.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is a leading cause of hepatitis, liver failure, and hepatocellular carcinoma. An outstanding vaccine is available; however, the number of infections remains high. Current anti-HBV treatments with interferon α and nucleos(t)ide analogs clear the infection in only a small minority of patients, and either induce serious side-effects or are of very long duration. HBV is a small, enveloped DNA virus that replicates by reverse transcription via an RNA intermediate. The HBV ribonuclease H (RNaseH) is essential for viral replication, but it has not been exploited as a drug target. Recent low-throughput screening of compound classes with anti-Human Immunodeficiency Virus RNaseH activity led to identification of HBV RNaseH inhibitors in three different chemical families that block HBV replication. These inhibitors are promising candidates for development into new anti-HBV drugs. The RNaseH inhibitors may help improve treatment efficacy enough to clear the virus from the liver when used in combination with existing anti-HBV drugs and/or with other novel inhibitors under development. This article forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B."
Collapse
Affiliation(s)
- John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University Liver Center, United States.
| | - Elena Lomonosova
- Department of Molecular Microbiology and Immunology, Saint Louis University Liver Center, United States
| |
Collapse
|
49
|
Liu N, Song W, Schienebeck CM, Zhang M, Tang W. Synthesis of Naturally Occurring Tropones and Tropolones. Tetrahedron 2014; 70:9281-9305. [PMID: 25400298 PMCID: PMC4228802 DOI: 10.1016/j.tet.2014.07.065] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Tropones and tropolones are an important class of seven-membered non-benzenoid aromatic compounds. They can be prepared directly by oxidation of seven-membered rings. They can also be derived from cyclization or cycloaddition of appropriate precursors followed by elimination or rearrangement. This review discusses the types of naturally occurring tropones and tropolones and outlines important methods developed for the synthesis of tropone and tropolone natural products.
Collapse
Affiliation(s)
- Na Liu
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705
| | - Wangze Song
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705
| | - Casi M. Schienebeck
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705
| | - Min Zhang
- Innovative Drug Discovery Centre, Chongqing University, 55 Daxuecheng South Rd, Shapingba, Chongqing, 401331, P. R. China
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706
| |
Collapse
|
50
|
Hydroxylated tropolones inhibit hepatitis B virus replication by blocking viral ribonuclease H activity. Antimicrob Agents Chemother 2014; 59:1070-9. [PMID: 25451058 DOI: 10.1128/aac.04617-14] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) remains a major human pathogen despite the development of both antiviral drugs and a vaccine, in part because the current therapies do not suppress HBV replication far enough to eradicate the virus. Here, we screened 51 troponoid compounds for their ability to suppress HBV RNaseH activity and HBV replication based on the activities of α-hydroxytropolones against HIV RNaseH, with the goal of determining whether the tropolone pharmacophore may be a promising scaffold for anti-HBV drug development. Thirteen compounds inhibited HBV RNaseH, with the best 50% inhibitory concentration (IC50) being 2.3 μM. Similar inhibition patterns were observed against HBV genotype D and C RNaseHs, implying limited genotype specificity. Six of 10 compounds tested against HBV replication in culture suppressed replication via blocking of viral RNaseH activity, with the best 50% effective concentration (EC50) being 0.34 μM. Eighteen compounds inhibited recombinant human RNaseH1, and moderate cytotoxicity was observed for all compounds (50% cytotoxic concentration [CC50]=25 to 79 μM). Therapeutic indexes ranged from 3.8 to 94. Efficient inhibition required an intact α-hydroxytropolone moiety plus one or more short appendages on the tropolone ring, but a wide variety of constituents were permissible. These data indicate that troponoids and specifically α-hydroxytropolones are promising lead candidates for development as anti-HBV drugs, providing that toxicity can be minimized. Potential anti-RNaseH drugs are envisioned to be employed in combination with the existing nucleos(t)ide analogs to suppress HBV replication far enough to block genomic maintenance, with the goal of eradicating infection.
Collapse
|