1
|
Mo N, Tai C, Yang Y, Ling C, Zhang B, Wei L, Yao C, Wang H, Chen C. MT2A promotes angiogenesis in chronically ischemic brains through a copper-mitochondria regulatory mechanism. J Transl Med 2025; 23:162. [PMID: 39915841 PMCID: PMC11800420 DOI: 10.1186/s12967-025-06163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/22/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Approximately half of patients with chronic ischemic cerebrovascular disease (CICD) exhibit poor revascularization. Metallothionein 2 A (MT2A) has a high affinity for metal ions and is potentially capable of chelating toxic copper ions to alleviate the impairment of angiogenesis. Therefore, we hypothesized that MT2A could promote angiogenesis in chronically ischemic brains by neutralizing excessive copper ions during copper overload (CPO). METHODS We first collected dura matter (DM) samples from CICD patients and examined the expression of cuproptosis-related genes (DLAT, FDX1, and SDHB) to confirm the inhibitory effect of CPO on angiogenesis. Then, we treated human umbilical vein endothelial cells (HUVECs) with different concentrations of elesclomol and CuCl2 to determine the optimal concentration for inducing CPO. HUVEC activity and mitochondrial structure and function were detected to explore the ability of MT2A to alleviate CPO-induced damage. Finally, a rat model of 2-vessel occlusion plus encephalo-myo-synangiosis (2VO + EMS) with CPO was established to test the proangiogenic effect of MT2A through the copper-mitochondria regulatory mechanism in chronically ischemic brains. RESULTS Compared with those from Matsushima grade A patients, DM samples from Matsushima grade C patients presented significantly greater DLAT and FDX1 expression and significantly lower SDHB expression. The optimal drug concentration for inducing CPO was subsequently determined, and in vitro experiments revealed that HUVEC activity was significantly decreased in the CPO group under hypoxic culture, accompanied by increased DLAT oligomerization, decreased SDHB expression, increased HSP70 expression. Moreover, significantly more common mitochondrial aberrations and significantly lower mitochondrial activity were detected in the CPO group compare with the control group. Additionally, MT2A overexpression alleviated CPO-induced mitochondrial dysfunction and cytotoxicity, improving HUVEC viability. In vivo, a CPO rat model was established, and CPO inhibited cerebral angiogenesis in 2VO + EMS model rats. Moreover, significantly greater CD31 expression, less DLAT accumulation, more mitochondria, and fewer mitochondrial abnormalities were observed in the CPOMT2A+ group than in the CPO group, accompanied by significantly improved cerebral blood perfusion and cognitive function. CONCLUSION MT2A can promote angiogenesis in chronically ischemic brains by neutralizing excessive copper ions and rescuing CPO-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ni Mo
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, PR China
| | - Chuyang Tai
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, PR China
| | - Yang Yang
- Department of Radiology, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, PR China
| | - Cong Ling
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, PR China
| | - Baoyu Zhang
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, PR China
| | - Lei Wei
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, PR China
| | - Cian Yao
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, PR China
| | - Hui Wang
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, PR China.
| | - Chuan Chen
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
2
|
Virych P, Virych P, Prokopiuk V, Onishchenko A, Ischenko M, Doroschuk V, Kurovska V, Tkachenko A, Kutsevol N. Dextran-Graft-Polyacrylamide/Zinc Oxide Nanoparticles Inhibit of Cancer Cells in vitro and in vivo. Int J Nanomedicine 2024; 19:11719-11743. [PMID: 39553459 PMCID: PMC11566607 DOI: 10.2147/ijn.s485106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/03/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction Tumor drug resistance and systemic toxicity are major challenges of modern anticancer therapy. Nanotechnology makes it possible to create new materials with the required properties for anticancer therapy. Methods In this research, Dextran-graft-Polyacrylamide/ZnO nanoparticles were used. The study was carried out using prostate (DU-145, LNCaP, PC-3), breast (MDA-MB-231, MCF-7, MCF-7 Dox) cancer cells and non-malignant (MAEC, BALB/3T3 clone A31) cells. Zinc was visualized with fluorescence in vitro and in vivo. ROS and apoptotic markers were identified by cytometry. Zinc accumulation and histopathological changes in the tumor, liver, kidney, and spleen were evaluated in a rat model. Results ZnO nanoparticles dissociation and release of Zn2+ into the cytosol occurs in 2-3 hours for cancerous and non-cancerous cells. ROS upregulation was detected in all cells. For non-malignant cells, the difference between the initial ROS level was insignificant. The rate of carbohydrate metabolism in cancer cells was reduced by nanosystems. Zinc level in the tumor was upregulated by 25% and 39% after treatment with nanosystems and doxorubicin combined, respectively. The tumor Walker-256 carcinosarcoma volume was reduced twice following mono-treatment with the nanocomplex and 65-fold lower when the nanocomplex was combined with doxorubicin compared with controls. In the liver, kidney and spleen, the zinc level increased by 10-15% but no significant pathological alterations in the tissues were detected. Conclusion D-PAA/ZnO NPs nanosystems were internalized by prostate, breast cancer cells and non-malignant cells via endocytosis after short time, but cytotoxicity against non-cancer cells were significantly lower in vitro and in vivo. D-PAA/ZnO NPs nanocomplex efficiently promoted cell death of tumor cells without showing cytotoxicity against non-malignant cells making it a promising anti-cancer agent.
Collapse
Affiliation(s)
- Petro Virych
- Laboratory of Mechanisms of Drug Resistance, R.E. Kavetsky Institute for Experimental Pathology, Oncology and Radiobiology, Kyiv, Ukraine
| | - Pavlo Virych
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Volodymyr Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Mykola Ischenko
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Volodymyr Doroschuk
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Valentyna Kurovska
- Educational and Scientific Center “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Anton Tkachenko
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Nataliya Kutsevol
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
3
|
Navratil J, Kratochvilova M, Raudenska M, Balvan J, Vicar T, Petrlakova K, Suzuki K, Jadrna L, Bursa J, Kräter M, Kim K, Masarik M, Gumulec J. Long-term zinc treatment alters the mechanical properties and metabolism of prostate cancer cells. Cancer Cell Int 2024; 24:313. [PMID: 39261823 PMCID: PMC11389562 DOI: 10.1186/s12935-024-03495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
The failure of intracellular zinc accumulation is a key process in prostate carcinogenesis. Although prostate cancer cells can accumulate zinc after long-term exposure, chronic zinc oversupply may accelerate prostate carcinogenesis or chemoresistance. Because cancer progression is associated with energetically demanding cytoskeletal rearrangements, we investigated the effect of long-term zinc presence on biophysical parameters, ATP production, and EMT characteristics of two prostate cancer cell lines (PC-3, 22Rv1). Prolonged exposure to zinc increased ATP production, spare respiratory capacity, and induced a response in PC-3 cells, characterized by remodeling of vimentin and a shift of cell dry mass density and caveolin-1 to the perinuclear region. This zinc-induced remodeling correlated with a greater tendency to maintain actin architecture despite inhibition of actin polymerization by cytochalasin. Zinc partially restored epithelial characteristics in PC-3 cells by decreasing vimentin expression and increasing E-cadherin. Nevertheless, the expression of E-cadherin remained lower than that observed in predominantly oxidative, low-invasive 22Rv1 cells. Following long-term zinc exposure, we observed an increase in cell stiffness associated with an increased refractive index in the perinuclear region and an increased mitochondrial content. The findings of the computational simulations indicate that the mechanical response cannot be attributed exclusively to alterations in cytoskeletal composition. This observation suggests the potential involvement of an additional, as yet unidentified, mechanical contributor. These findings indicate that long-term zinc exposure alters a group of cellular parameters towards an invasive phenotype, including an increase in mitochondrial number, ATP production, and cytochalasin resistance. Ultimately, these alterations are manifested in the biomechanical properties of the cells.
Collapse
Affiliation(s)
- Jiri Navratil
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Monika Kratochvilova
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jan Balvan
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Tomas Vicar
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Katerina Petrlakova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Kanako Suzuki
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lucie Jadrna
- Department of Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 61669, Brno, Czech Republic
| | - Jiri Bursa
- Department of Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 61669, Brno, Czech Republic
| | - Martin Kräter
- Max Planck Institute for the Science of Light, and Max-Planck-Zentrum für Physik Und Medizin, Staudtstraße 2, 91058, Erlangen, Germany
- Rivercyte GmbH, Henkestraße 91, 91052, Erlangen, Germany
| | - Kyoohyun Kim
- Max Planck Institute for the Science of Light, and Max-Planck-Zentrum für Physik Und Medizin, Staudtstraße 2, 91058, Erlangen, Germany
| | - Michal Masarik
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Jaromir Gumulec
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
4
|
Dong H, Song H, Liu Y, Zou H. Zinc-Mediated Endoplasmic Reticulum Stress and Metallothionein Alleviate Arsenic-Induced Cardiotoxicity in Cyprinus Carpio. Biol Trace Elem Res 2024; 202:4203-4215. [PMID: 38032437 DOI: 10.1007/s12011-023-03975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Arsenic (As) is a natural component of the Earth's crust, and its inorganic form is highly toxic. The problem of As pollution in water is extremely urgent, and its impact on aquatic organisms should be widely considered. Here, 120 common carp were selected as the test subjects and were exposed to environmentally relevant concentrations of As (2.83 mg L- 1) for 30 days. Histomorphological observations showed the adverse effects of As on the heart: irregular arrangement of myocardial fibers, rupture of muscle fiber bundles, inflammatory infiltration, and hemorrhages. Mechanistically, abnormal expression of factors related to As-induced inflammation (TLR4/MYD88/NF-κB pathway), endoplasmic reticulum stress (CHOP, GRP78, ATF6, PERK, IRE1) and oxidative stress (SOD, CAT, Nrf2, HO-1) was observed. Then, we tried to find a protective agent against As-induced myocardial injury. As one of the important metal elements for maintaining cell growth and immunity, zinc (Zn, 1 mg L- 1) significantly alleviated the pathological abnormalities induced by As, and the changes in physiological and biochemical indices in response to As exposure were significantly alleviated by Zn administration, which was accompanied by the restoration of metallothionein (ZIP8, Znt1, Znt5, Znt7) and heat shock protein (HSP60, HSP70, HSP90) expression. These results suggest for the possibilty of developing Zn as a candidate therapeutic agent for As induced aquatic toxicology.
Collapse
Affiliation(s)
- Haiyan Dong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Hongwei Song
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Hongfei Zou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
5
|
Gutiérrez-González E, Pastor-Barriuso R, Castelló A, Castaño-Vinyals G, Fernández de Larrea-Baz N, Dierssen-Sotos T, Jiménez-Moleón JJ, Molina-Barceló A, Fernández-Tardón G, Zumel-Marne Á, Moreno V, Gómez-Ariza JL, Sierra MÁ, García-Barrera T, Espinosa A, Plans-Beriso E, Gómez-Acebo I, Aragonés N, Kogevinas M, Pollán M, Pérez-Gómez B. Toenail zinc and risk of prostate cancer in the MCC-Spain case-control study. ENVIRONMENTAL RESEARCH 2024; 245:118065. [PMID: 38159663 DOI: 10.1016/j.envres.2023.118065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/08/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Some researchers have suggested that zinc (Zn) could reduce the risk of prostate cancer (PC). However, research from observational studies on the relationship between PC risk and biomarkers of Zn exposure shows conflicting results. OBJECTIVES To evaluate the association between toenail Zn and PC, considering tumour extension and aggressiveness, along with a gene-environment approach, exploring the interaction of individual genetic susceptibility to PC in the relationship between toenail Zn and PC. METHODS In MCC-Spain study we invited all incident PC cases diagnosed in the study period (2008-2013) and recruited randomly selected general population controls. In this report we included 913 cases and 1198 controls with toenail Zn determined by inductively coupled plasma mass spectrometry. To measure individual genetic susceptibility, we constructed a polygenic risk score based on known PC-related single nucleotide polymorphisms. The association between toenail Zn and PC was explored with mixed logistic and multinomial regression models. RESULTS Men with higher toenail Zn had higher risk of PC (OR quartile 4 vs.1: 1.41; 95% CI: 1.07-1.85). This association was slightly higher in high-grade PC [(ISUP≤2 Relative risk ratio (RRR) quartile 4 vs.1: 1.36; 1.01-1.83) vs. (ISUP3-5 RRR quartile 4 vs.1: 1.64; 1.06-2.54)] and in advanced tumours [(cT1-cT2a RRR quartile 4 vs.1: 1.40; 95% CI: 1.05-1.89) vs. (cT2b-cT4 RRR quartile 4 vs.1: 1.59; 1.00-2.53)]. Men with lower genetic susceptibility to PC were those at higher risk of PC associated with high toenail Zn (OR quartile 4 vs.1: 2.18; 95% CI: 1.08-4.40). DISCUSSION High toenail Zn levels were related to a higher risk for PC, especially for more aggressive or advanced tumours. This effect was stronger among men with a lower genetic susceptibility to PC.
Collapse
Affiliation(s)
| | - Roberto Pastor-Barriuso
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Institute of Health Carlos III, Monforte de Lemos 5, 28029, Madrid, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain
| | - Adela Castelló
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Institute of Health Carlos III, Monforte de Lemos 5, 28029, Madrid, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain
| | - Gemma Castaño-Vinyals
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Barcelona Institute of Global Health (ISGlobal), Carrer Del Dr. Aiguader, 88, 08003, Barcelona, Spain; University Pompeu Fabra, Plaça de La Mercè, 10-12, 08002, Barcelona, Spain; Hospital Del Mar Medical Research Institute (IMIM), Carrer Del Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Nerea Fernández de Larrea-Baz
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Institute of Health Carlos III, Monforte de Lemos 5, 28029, Madrid, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain
| | - Trinidad Dierssen-Sotos
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Department of Medical and Surgical Sciences, Faculty of Medicine, University of Cantabria-IDIVAL, Calle Cardenal Herrera Oria, 39011, Santander, Spain
| | - José Juan Jiménez-Moleón
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Department of Preventive Medicine and Public Health, University of Granada, Av. de La Investigación, 11, 18016, Granada, Spain; Institute of Health Research IBS., Granada, Spain
| | - Ana Molina-Barceló
- Cancer and Public Health Area, The Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Av. de Catalunya, 21, 46020, Valencia, Spain
| | - Guillermo Fernández-Tardón
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Health Research Institute of Asturias (ISPA), University of Oviedo, Av. Del Hospital Universitario, 33011, Oviedo, Spain
| | - Ángela Zumel-Marne
- Research Centre for Natural Resources, Health and the Environment, University of Huelva, C/ Menéndez Pelayo, 21002, Huelva, Spain; Servei Cirurgia Ortopèdica i Traumatologia. Althaia Xarxa Assistencial Universitària de Manresa, 08243 Manresa, España; Public Health Research Group, University of Alicante, Avda. San Vicente Del Raspeig, 03080, Alicante, Spain
| | - Víctor Moreno
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), Avinguda de La Granvia de L'Hospitalet, 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, ONCOBELL Program, Institut de Recerca Biomedica de Bellvitge (IDIBELL), Avinguda de La Granvia de L'Hospitalet, 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Spain
| | - José Luis Gómez-Ariza
- Research Centre for Natural Resources, Health and the Environment, University of Huelva, C/ Menéndez Pelayo, 21002, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, C/ Menéndez Pelayo, 21002, Huelva, Spain
| | - M Ángeles Sierra
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Institute of Health Carlos III, Monforte de Lemos 5, 28029, Madrid, Spain
| | - Tamara García-Barrera
- Research Centre for Natural Resources, Health and the Environment, University of Huelva, C/ Menéndez Pelayo, 21002, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, C/ Menéndez Pelayo, 21002, Huelva, Spain
| | - Ana Espinosa
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Barcelona Institute of Global Health (ISGlobal), Carrer Del Dr. Aiguader, 88, 08003, Barcelona, Spain; University Pompeu Fabra, Plaça de La Mercè, 10-12, 08002, Barcelona, Spain
| | - Elena Plans-Beriso
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Institute of Health Carlos III, Monforte de Lemos 5, 28029, Madrid, Spain
| | - Inés Gómez-Acebo
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Department of Medical and Surgical Sciences, Faculty of Medicine, University of Cantabria-IDIVAL, Calle Cardenal Herrera Oria, 39011, Santander, Spain
| | - Nuria Aragonés
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Cancer Surveillance and Registry Unit, Division of Public Health, Department of Health, C. San Martín de Porres, 6, 28035, Madrid, Spain
| | - Manolis Kogevinas
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Barcelona Institute of Global Health (ISGlobal), Carrer Del Dr. Aiguader, 88, 08003, Barcelona, Spain; University Pompeu Fabra, Plaça de La Mercè, 10-12, 08002, Barcelona, Spain; Hospital Del Mar Medical Research Institute (IMIM), Carrer Del Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Marina Pollán
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Institute of Health Carlos III, Monforte de Lemos 5, 28029, Madrid, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain
| | - Beatriz Pérez-Gómez
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Institute of Health Carlos III, Monforte de Lemos 5, 28029, Madrid, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain.
| |
Collapse
|
6
|
Blaj LA, Cucu AI, Tamba BI, Turliuc MD. The Role of the NF-kB Pathway in Intracranial Aneurysms. Brain Sci 2023; 13:1660. [PMID: 38137108 PMCID: PMC10871091 DOI: 10.3390/brainsci13121660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The pathophysiology of intracranial aneurysms (IA) has been proven to be closely linked to hemodynamic stress and inflammatory pathways, most notably the NF-kB pathway. Therefore, it is a potential target for therapeutic intervention. In the present review, we investigated alterations in the vascular smooth muscle cells (VSMCs), extracellular matrix, and endothelial cells by the mediators implicated in the NF-kB pathway that lead to the formation, growth, and rupture of IAs. We also present an overview of the NF-kB pathway, focusing on stimuli and transcriptional targets specific to IAs, as well as a summary of the current strategies for inhibiting NF-kB activation in IAs. Our report adds to previously reported data and future research directions for treating IAs using compounds that can suppress inflammation in the vascular wall.
Collapse
Affiliation(s)
- Laurentiu Andrei Blaj
- Department of Neurosurgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.A.B.); (M.D.T.)
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Andrei Ionut Cucu
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
- Faculty of Medicine and Biological Sciences, University Stefan cel Mare of Suceava, 720229 Suceava, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Pharmacology, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihaela Dana Turliuc
- Department of Neurosurgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.A.B.); (M.D.T.)
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| |
Collapse
|
7
|
Willekens J, Runnels LW. Impact of Zinc Transport Mechanisms on Embryonic and Brain Development. Nutrients 2022; 14:2526. [PMID: 35745255 PMCID: PMC9231024 DOI: 10.3390/nu14122526] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
The trace element zinc (Zn) binds to over ten percent of proteins in eukaryotic cells. Zn flexible chemistry allows it to regulate the activity of hundreds of enzymes and influence scores of metabolic processes in cells throughout the body. Deficiency of Zn in humans has a profound effect on development and in adults later in life, particularly in the brain, where Zn deficiency is linked to several neurological disorders. In this review, we will summarize the importance of Zn during development through a description of the outcomes of both genetic and early dietary Zn deficiency, focusing on the pathological consequences on the whole body and brain. The epidemiology and the symptomology of Zn deficiency in humans will be described, including the most studied inherited Zn deficiency disease, Acrodermatitis enteropathica. In addition, we will give an overview of the different forms and animal models of Zn deficiency, as well as the 24 Zn transporters, distributed into two families: the ZIPs and the ZnTs, which control the balance of Zn throughout the body. Lastly, we will describe the TRPM7 ion channel, which was recently shown to contribute to intestinal Zn absorption and has its own significant impact on early embryonic development.
Collapse
Affiliation(s)
| | - Loren W. Runnels
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
8
|
Dejous C, Krishnan UM. Sensors for diagnosis of prostate cancer: Looking beyond the prostate specific antigen. Biosens Bioelectron 2020; 173:112790. [PMID: 33190047 DOI: 10.1016/j.bios.2020.112790] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/16/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022]
Abstract
Prostate cancer represents one of the most common forms of cancer affecting men across the globe. Due to late diagnosis of this disease, the mortality of this condition is very high. Conventional diagnostic methods like the direct rectal examination are uncomfortable and, in most cases, delayed, and further confirmation is required with biopsies and Gleason score. The most common biomarker approved by the FDA (United States Food and Drug Administration) is the prostate specific antigen (PSA) that is detected by conventional biochemical assays which require expensive reagents, is time-consuming and more often is only indicative and cannot be considered confirmative as it is susceptible to erroneous conclusions. The prostate health index employs quantification of PSA in its free and bound forms to enumerate the risk of prostate cancer and has found acceptance with clinicians though the methods used to determine these quantities are slow and require additional sensitivity. Search for novel biomarkers other than PSA has resulted in the identification of several promising candidates. However, their detection is still heavily dependent upon conventional biochemical assays that retain the challenges of being time-consuming, poorly sensitive and expensive. Development of specific sensor technologies integrating nanomaterials offers a viable alternative for rapid and sensitive determination of these non-PSA markers. This review summarizes the major advances in the development of sensors for diagnosis of prostate cancer using non-PSA markers. It also highlights some of the emerging paradigms in cancer diagnosis that may transform the diagnostic field in the context of prostate cancer.
Collapse
Affiliation(s)
- Corinne Dejous
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, F-33400, France
| | - Uma Maheswari Krishnan
- School of Arts, Science & Humanities, SASTRA Deemed-to-be University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed-to-be University, Thanjavur, India; School of Chemical & Biotechnology, SASTRA Deemed-to-be University, Thanjavur, India.
| |
Collapse
|
9
|
Białkowska K, Marciniak W, Muszyńska M, Baszuk P, Gupta S, Jaworska-Bieniek K, Sukiennicki G, Durda K, Gromowski T, Prajzendanc K, Cybulski C, Huzarski T, Gronwald J, Dębniak T, Scott RJ, Lubiński J, Jakubowska A. Association of zinc level and polymorphism in MMP-7 gene with prostate cancer in Polish population. PLoS One 2018; 13:e0201065. [PMID: 30036379 PMCID: PMC6056054 DOI: 10.1371/journal.pone.0201065] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/07/2018] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Prostate cancer is one of the most commonly diagnosed malignancies among men in Western populations. Evidence reported in the literature suggests that zinc may be related to prostate cancer. In this study we evaluated the association of serum zinc levels and polymorphisms in genes encoding zinc-dependent proteins with prostate cancer in Poland. METHODS The study group consisted of 197 men affected with prostate cancer and 197 healthy men. Serum zinc levels were measured and 5 single nucleotide polymorphisms in MMP-1, MMP-2, MMP-7, MMP-13, MT2A genes were genotyped. RESULTS The mean serum zinc level was higher in prostate cancer patients than in healthy controls (898.9±12.01 μg/l vs. 856.6±13.05 μg/l, p<0.01). When compared in quartiles a significant association of higher zinc concentration with the incidence of prostate cancer was observed. The highest OR (OR = 4.41, 95%CI 2.07-9.37, p<0.01) was observed in 3rd quartile (>853.0-973.9 μg/l). Among five analyzed genetic variants, rs11568818 in MMP-7 appeared to be correlated with 2-fold increased prostate cancer risk (OR = 2.39, 95% CI = 1.19-4.82, p = 0.015). CONCLUSION Our results suggest a significant correlation of higher serum zinc levels with the diagnosis of prostate cancer. The polymorphism rs11568818 in MMP-7 gene was also associated with an increased prostate cancer risk in Poland.
Collapse
Affiliation(s)
- Katarzyna Białkowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | | | | | - Piotr Baszuk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Satish Gupta
- Strand Life Sciences, Bangalore, Karnataka, India
| | - Katarzyna Jaworska-Bieniek
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Grzegorz Sukiennicki
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Katarzyna Durda
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Gromowski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Karolina Prajzendanc
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Huzarski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Rodney J Scott
- School of Biomedical Sciences, University of Newcastle, Newcastle, Australia.,Division of Molecular Medicine, NSW Health Pathology, Newcastle, Australia
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.,Read-Gene S.A., Grzepnica, Poland
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.,Independent laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
10
|
Wetherell D, Baldwin GS, Shulkes A, Bolton D, Ischia J, Patel O. Zinc ion dyshomeostasis increases resistance of prostate cancer cells to oxidative stress via upregulation of HIF1α. Oncotarget 2018; 9:8463-8477. [PMID: 29492208 PMCID: PMC5823553 DOI: 10.18632/oncotarget.23893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022] Open
Abstract
Zinc ions (Zn2+) are known to influence cell survival and proliferation. However the homeostatic regulation of Zn2+ and their role in prostate cancer (PC) progression is poorly understood. Therefore the subcellular distribution and uptake of Zn2+ in PC cells were investigated. Inductively coupled plasma mass spectroscopy and fluorescent microscopy with the Zn2+-specific fluorescent probe FluoZin-3 were used to quantify total and free Zn2+, respectively, in the normal prostate epithelial cell line (PNT1A) and three human PC cell lines (PC3, DU145 and LNCaP). The effects of Zn2+ treatment on proliferation and survival were measured in vitro using MTT assays and in vivo using mouse xenografts. The ability of Zn2+ to protect against oxidative stress via a HIF1α-dependent mechanism was investigated using a HIF1α knock-down PC3 model. Our results demonstrate that the total Zn2+ concentration in normal PNT1A and PC cells is similar, but PC3 cells contain significantly higher free Zn2+ than PNT1A cells (p < 0.01). PNT1A cells can survive better in the presence of high concentrations of Zn2+ than PC3 cells. Exposure to 10 µM Zn2+ over 72 hours significantly reduces PC3 cell proliferation in vitro but not in vivo. Zn2+ increases PC3 cell survival up to 2.3-fold under oxidative stress, and this protective effect is not seen in PNT1A cells or in a HIF1α-KD PC3 cell model. A state of Zn2+ dyshomeostasis exists in PC. HIF1α is an integral component of a Zn2+-dependent protective mechanism present in PC3 cells. This pathway may be clinically significant through its contribution to castrate-resistant PC survival.
Collapse
Affiliation(s)
- David Wetherell
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Graham S Baldwin
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Arthur Shulkes
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Damien Bolton
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Joseph Ischia
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Oneel Patel
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia
| |
Collapse
|
11
|
Vella V, Malaguarnera R, Lappano R, Maggiolini M, Belfiore A. Recent views of heavy metals as possible risk factors and potential preventive and therapeutic agents in prostate cancer. Mol Cell Endocrinol 2017; 457:57-72. [PMID: 27773847 DOI: 10.1016/j.mce.2016.10.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 11/19/2022]
Abstract
Prostate cancer is the most common cancer in men in many industrialized countries. A role for androgens in prostate tumor progression is well recognized, while estrogens may cooperate with androgens in prostate carcinogenesis. The incidence of prostate cancer is highly variable in the different countries, suggesting an important role of environmental factors. Heavy metals are common environmental contaminants and some of them are confirmed or suspected human carcinogens. Some metals are endowed with estrogenic and/or androgenic activities and may play a role as cancer risk factors through this mechanism. Moreover, prostate cancer may present alterations in the intracellular balance of trace metals, such as zinc and copper, which are involved in several regulatory proteins. Herein, we review the possible role of environmental heavy metals and of metal-dyshomeostasis in prostate cancer development and promotion as well as the potential use of some metals in the prevention and therapy of prostate cancer.
Collapse
Affiliation(s)
- Veronica Vella
- School of Human and Social Science, Motor Sciences, University "Kore" of Enna, Enna, Italy
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy.
| |
Collapse
|
12
|
Kratochvilova M, Raudenska M, Heger Z, Richtera L, Cernei N, Adam V, Babula P, Novakova M, Masarik M, Gumulec J. Amino Acid Profiling of Zinc Resistant Prostate Cancer Cell Lines: Associations With Cancer Progression. Prostate 2017; 77:604-616. [PMID: 28101932 DOI: 10.1002/pros.23304] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/22/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Failure in intracellular zinc accumulation is a key process in prostate carcinogenesis. Nevertheless, epidemiological studies of zinc administration have provided contradicting results. In order to examine the impact of the artificial intracellular increase of zinc(II) ions on prostate cancer metabolism, PNT1A, 22Rv1, and PC-3 prostatic cell lines-depicting different stages of cancer progression-and their zinc-resistant counterparts were used. To determine "benign" and "malignant" metabolic profiles, amino acid patterns, gene expression, and antioxidant capacity of these cell lines were assessed. METHODS Amino acid profiles were examined using an ion-exchange liquid chromatography. Intracellular zinc content was measured by atomic absorption spectrometry. Metallothionein was quantified using differential pulse voltammetry. The content of reduced glutathione was determined using high performance liquid chromatography coupled with an electrochemical detector. Cellular antioxidant capacity was determined by the ABTS test and gene expression analysis was performed by qRT-PCR. RESULTS AND CONCLUSIONS Long-term zinc treatment was shown to reroute cell metabolism from benign to more malignant type. Long-term application of high concentration of zinc(II) significantly enhanced cisplatin resistance, invasiveness, cellular antioxidant capacity, synthesis of glutathione, and expression of treatment resistance- and stemness-associated genes (SOX2, POU5F1, BIRC5). Tumorous cell lines universally displayed high accumulation of aspartate and sarcosine and depletion of essential amino acids. Increased aspartate/threonine, aspartate/methionine, and sarcosine/serine ratios were associated with cancer phenotype with high levels of sensitivity and specificity. Prostate 77: 604-616, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Monika Kratochvilova
- Faculty of Medicine, Department of Physiology, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Martina Raudenska
- Faculty of Medicine, Department of Physiology, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Lukas Richtera
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Natalia Cernei
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Petr Babula
- Faculty of Medicine, Department of Physiology, Masaryk University, Brno, Czech Republic
| | - Marie Novakova
- Faculty of Medicine, Department of Physiology, Masaryk University, Brno, Czech Republic
| | - Michal Masarik
- Faculty of Medicine, Department of Physiology, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
- Faculty of Medicine, Department of Pathological Physiology, Masaryk University, Brno, Czech Republic
| | - Jaromir Gumulec
- Faculty of Medicine, Department of Physiology, Masaryk University, Brno, Czech Republic
- Faculty of Medicine, Department of Pathological Physiology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
13
|
Sztalmachova M, Gumulec J, Raudenska M, Polanska H, Holubova M, Balvan J, Hudcova K, Knopfova L, Kizek R, Adam V, Babula P, Masarik M. Molecular response of 4T1-induced mouse mammary tumours and healthy tissues to zinc treatment. Int J Oncol 2015; 46:1810-8. [PMID: 25672434 DOI: 10.3892/ijo.2015.2883] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/29/2014] [Indexed: 11/06/2022] Open
Abstract
Breast cancer patients negative for the nuclear oestrogen receptor α have a particularly poor prognosis. Therefore, the 4T1 cell line (considered as a triple-negative model) was chosen to induce malignancy in mice. The aim of the present study was to assess if zinc ions, provided in excess, may significantly modify the process of mammary oncogenesis. Zn(II) ions were chosen because of their documented antitumour effects. Zn(II) is also known to induce the expression of metallothioneins (MT) and glutathion (GSH). A total dose of zinc sulphate per one gram of mouse weight used in the experiment was 0.15 mg. We studied the expression of MT1, MT2, TP53 and MTF-1 genes and also examined the effect of the tumour on antioxidant capacity. Tumour-free mice had significantly higher expression levels of the studied genes (p<0.003). Significant differences were also revealed in the gene expression between the tissues (p<0.001). The highest expression levels were observed in the liver. As compared to brain, lung and liver, significantly lower concentrations of MT protein were found in the primary tumour; an inverse trend was observed in the concentration of Zinc(II). In non-tumour mice, the amount of hepatic hydrosulphuryl groups significantly increased by the exposure to Zn(II), but the animals with tumour induction showed no similar trend. The primary tumour size of zinc-treated animals was 20% smaller (p=0.002); however, no significant effect on metastasis progression due to the zinc treatment was discovered. In conclusion, Zn(II) itself may mute the growth of primary breast tumours especially at their early stages.
Collapse
Affiliation(s)
- Marketa Sztalmachova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Jaromir Gumulec
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Hana Polanska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Monika Holubova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Kristyna Hudcova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Lucia Knopfova
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Rene Kizek
- Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| |
Collapse
|
14
|
Multimodal holographic microscopy: distinction between apoptosis and oncosis. PLoS One 2015; 10:e0121674. [PMID: 25803711 PMCID: PMC4372376 DOI: 10.1371/journal.pone.0121674] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/03/2015] [Indexed: 01/30/2023] Open
Abstract
Identification of specific cell death is of a great value for many scientists. Predominant types of cell death can be detected by flow-cytometry (FCM). Nevertheless, the absence of cellular morphology analysis leads to the misclassification of cell death type due to underestimated oncosis. However, the definition of the oncosis is important because of its potential reversibility. Therefore, FCM analysis of cell death using annexin V/propidium iodide assay was compared with holographic microscopy coupled with fluorescence detection - “Multimodal holographic microscopy (MHM)”. The aim was to highlight FCM limitations and to point out MHM advantages. It was shown that the annexin V+/PI− phenotype is not specific of early apoptotic cells, as previously believed, and that morphological criteria have to be necessarily combined with annexin V/PI for the cell death type to be ascertained precisely. MHM makes it possible to distinguish oncosis clearly from apoptosis and to stratify the progression of oncosis.
Collapse
|