1
|
Zhou X, El-Sappah AH, Khaskhoussi A, Huang Q, Atif AM, Elhamid MAA, Ihtisham M, El-Maati MFA, Soaud SA, Tahri W. Nanoparticles: a promising tool against environmental stress in plants. FRONTIERS IN PLANT SCIENCE 2025; 15:1509047. [PMID: 39931338 PMCID: PMC11808028 DOI: 10.3389/fpls.2024.1509047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025]
Abstract
With a focus on plant tolerance to environmental challenges, nanotechnology has emerged as a potent instrument for assisting crops and boosting agricultural production in the face of a growing worldwide population. Nanoparticles (NPs) and plant systems may interact molecularly to change stress response, growth, and development. NPs may feed nutrients to plants, prevent plant diseases and pathogens, and detect and monitor trace components in soil by absorbing their signals. More excellent knowledge of the processes of NPs that help plants survive various stressors would aid in creating more long-term strategies to combat these challenges. Despite the many studies on NPs' use in agriculture, we reviewed the various types of NPs and their anticipated molecular and metabolic effects upon entering plant cells. In addition, we discussed different applications of NPs against all environmental stresses. Lastly, we introduced agricultural NPs' risks, difficulties, and prospects.
Collapse
Affiliation(s)
- Xu Zhou
- International Faculty of Applied Technology, Yibin University, Yibin, Sichuan, China
| | - Ahmed H. El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Amani Khaskhoussi
- Key Laboratory for Green and Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha, China
| | - Qiulan Huang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Amr M. Atif
- Department of Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Muhammad Ihtisham
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Mohamed F. Abo El-Maati
- Agriculture Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Salma A. Soaud
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Walid Tahri
- International Faculty of Applied Technology, Yibin University, Yibin, Sichuan, China
| |
Collapse
|
2
|
Ashfaq M, Gupta G, Verma N. Carbon-based nanocarriers for plant growth promotion: fuelling when needed. NANOSCALE 2025; 17:616-634. [PMID: 39575969 DOI: 10.1039/d4nr03268c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Climate change (i.e., rising temperature and precipitation) due to global warming is affecting soil fertility, thereby significantly causing a decrease in agriculture production worldwide. At the same time, increasing demands for food supplies with the growing global population puts extra pressure to improve agricultural production. Indeed, chemical fertilizers and pesticides are a great help in fuelling agro-production, but their excess use could deteriorate the environment and human health. Nevertheless, nanomaterials, especially carbon-based nanostructured materials (CB-NMs), have revolutionized the agricultural sector in various ways including the on-demand supply of essential nutrients, biomolecules, and growth factors to plants. Carbon nanofibers (CNFs) are one such example that can be tuned to carry essential nutrients (i.e., Fe, Cu, Zn, and Mo) and deliver to plants when and what is in need. As a result, it not only improves the crop yield but also maintains the nutritional quality (protein, carbohydrate, and mineral contents) of plant products. This review discusses the most innovative development in CB-NM-based carriers (CNFs, carbon nanotubes (CNTs), and graphene as well as its derivatives) for plant growth applications including the approaches being used for their lab-scale synthesis. In addition, their application as the carrier of micronutrients and biomolecules and the successful delivery (and the underlying mechanism) of genes, nucleic acids, microbes, and their components in plants are discussed.
Collapse
Affiliation(s)
- Mohammad Ashfaq
- Department of Biotechnology, University Centre for Research & Development (UCRD), Chandigarh University, Gharaun, Mohali, Punjab, 140413, India
| | - Govind Gupta
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St Gallen, 9014 Switzerland.
| | - Nishith Verma
- Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
3
|
Wang P, Chen C, Zheng R, Peng L, Zhou Z, Wang Q. Complexity of influences on atrazine phytoremediation of coexisting graphene oxide in water: Mitigating its phytotoxicity while decreasing plant removal contribution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122807. [PMID: 39368390 DOI: 10.1016/j.jenvman.2024.122807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Phytoremediation is an efficient technology for the removal of herbicide atrazine (ATZ) contamination in water bodies, but its ability to reduce ATZ under combined pollution remains unclear, especially ATZ co-existing with the emerging pollutant graphene oxide (GO) that may have potential effects on ATZ fate, plants and microbes. Herein, we investigated the phytoremediation potential of an emergent plant (Iris pseudacorus) for ATZ and the response of bacteria in a hydroponic system with and without GO. The results showed that plants enhanced ATZ dissipation in water with the increased removal rate by a factor of 1.7-4.0. GO restricted ATZ uptake by plants, but favored ATZ bioconcentration in cell walls. The plant contributed most to changes in the bacterial communities, decreasing the alpha diversity, while enriching the functional categories involving in amino acid and carbohydrate metabolisms. These findings indicated that I. pseudacorus can be employed as an effective candidate of phytoremediation for ATZ co-existing with GO at environmentally relevant concentrations, tending to recruit bacteria with plant stress tolerance and growth-promotion activities more than with ATZ degradation activities; GO exerted a mitigating effect on ATZ stress improving the barrier function of cell walls, but decreased the contribution of plants to ATZ removal.
Collapse
Affiliation(s)
- Peixin Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Chuansheng Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ruilun Zheng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Lei Peng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zixin Zhou
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Qinghai Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
4
|
Farooq A, Khan I, Shehzad J, Hasan M, Mustafa G. Proteomic insights to decipher nanoparticle uptake, translocation, and intercellular mechanisms in plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18313-18339. [PMID: 38347361 DOI: 10.1007/s11356-024-32121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
Advent of proteomic techniques has made it possible to identify a broad spectrum of proteins in living systems. Studying the impact of nanoparticle (NP)-mediated plant protein responses is an emerging field. NPs are continuously being released into the environment and directly or indirectly affect plant's biochemistry. Exposure of plants to NPs, especially crops, poses a significant risk to the food chain, leading to changes in underlying metabolic processes. Once absorbed by plants, NPs interact with cellular proteins, thereby inducing changes in plant protein patterns. Based on the reactivity, properties, and translocation of nanoparticles, NPs can interfere with proteins involved in various cellular processes in plants such as energy regulation, redox metabolism, and cytotoxicity. Such interactions of NPs at the subcellular level enhance ROS scavenging activity, especially under stress conditions. Although higher concentrations of NPs induce ROS production and hinder oxidative mechanisms under stress conditions, NPs also mediate metabolic changes from fermentation to normal cellular processes. Although there has been lots of work conducted to understand the different effects of NPs on plants, the knowledge of proteomic responses of plants toward NPs is still very limited. This review has focused on the multi-omic analysis of NP interaction mechanisms with crop plants mainly centering on the proteomic perspective in response to both stress and non-stressed conditions. Furthermore, NP-specific interaction mechanisms with the biological pathways are discussed in detail.
Collapse
Affiliation(s)
- Atikah Farooq
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Ilham Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Junaid Shehzad
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Murtaza Hasan
- Department of Biotechnology, The Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Punjab, 63100, Pakistan
- Faculty of Medicine, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui, 323000, China.
- State Agricultural Ministry Laboratory of Horticultural Crop Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Németh I, László K, Bulátkó A, Vaszita E, Molnár M. Ecotoxicity Assessment of Graphene Oxides Using Test Organisms from Three Hierarchical Trophic Levels to Evaluate Their Potential Environmental Risk. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2858. [PMID: 37947703 PMCID: PMC10649827 DOI: 10.3390/nano13212858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
After more than a decade of studying the ecotoxicity of graphene oxide nanomaterials (nGOs), it has been concluded that there is limited information available regarding the environmental risk of graphene-based materials. Since existing ecotoxicological studies of nanomaterials have produced contradictory results, it is recommended that case-by-case studies should be conducted to evaluate their effects. This can be carried out by employing several methods, testing species from different trophic levels, and conducting community studies. Our goal was to evaluate the toxicity effects of two GOs (AF 96/97 and PM 995) derived from different graphite precursors on various test organisms from diverse trophic levels (bacteria, protozoa, a freshwater microbial community, plants, and invertebrate animals) in aquatic environments. We compared the effects of both nGO types and estimated the predicted no-effect environmental concentration (PNEC) values to determine their potential environmental risk. Our findings demonstrated the need for a complex ecotoxicity toolkit since the ecotoxicity results varied based on the test organism, the selected endpoints, and the test method used. Additionally, we found that toxicity effects were dependent on the concentration and characteristics of the specific nGO type used, as well as the exposure time. We estimated the PNEC values for GO AF 96/97 and GO PM 995 in the aquatic compartment to be 8 ng/L and 4 ng/L, respectively. Even after applying the worst-case scenario approach, the tested nGOs pose no environmental risk.
Collapse
Affiliation(s)
- Imre Németh
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (I.N.); (E.V.)
| | - Krisztina László
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (K.L.); (A.B.)
| | - Anna Bulátkó
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (K.L.); (A.B.)
| | - Emese Vaszita
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (I.N.); (E.V.)
| | - Mónika Molnár
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (I.N.); (E.V.)
| |
Collapse
|
6
|
Silva PMMD, Alkimin GDD, Camparotto NG, Prediger P, Nunes B. Toxicological effects resulting from co-exposure to nanomaterials and to a β-blocker pharmaceutical drug in the non-target macrophyte species Lemna minor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121166. [PMID: 36738879 DOI: 10.1016/j.envpol.2023.121166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The wide use of carbon-based materials for various purposes leads to their discharge in the aquatic systems, and simultaneous occurrence with other environmental contaminants, such as pharmaceutical drugs. This co-occurrence can adversely affect exposed aquatic organisms. Up to now, few studies have considered the simultaneous toxicity of nanomaterials, and organic contaminants, including pharmaceutical drugs, towards aquatic plants. Thus, this study aimed to assess the toxic effects of the co-exposure of propranolol (PRO), and nanomaterials based on cellulose nanocrystal, and graphene oxide in the aquatic macrophyte Lemna minor. The observed effects included reduction of growth rate in 13% in co-exposure 1 (nanomaterials + PRO 5 μg L-1), and 52-64% in co-exposure 2 (nanomaterials + PRO 51.3 mg L-1), fresh weight reduction of 94-97% in co-exposure 2 compared to control group, and increased pigment production caused by co-exposure treatments. The analysis of PCA showed that co-exposure 1 (nanomaterials + PRO 5 μg L-1) positively affected growth, and fresh weight, and co-exposure 2 positively affected pigments content. The results suggested that the presence of nanomaterials enhanced the overall toxicity of PRO, exerting deleterious effects in the freshwater plant L. minor, suggesting that this higher toxicity resulting from co-exposure was a consequence of the interaction between nanomaterials and PRO.
Collapse
Affiliation(s)
| | | | | | - Patricia Prediger
- Faculdade de Tecnologia, Universidade Estadual de Campinas, Campus De Limeira, Limeira, Brazil
| | - Bruno Nunes
- Centro de Estudos Do Ambiente e Do Mar (CESAM), Universidade De Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; Departamento De Biologia, Universidade De Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
7
|
Kazlauskas M, Jurgelėnė Ž, Šemčuk S, Jokšas K, Kazlauskienė N, Montvydienė D. Effect of graphene oxide on the uptake, translocation and toxicity of metal mixture to Lepidium sativum L. plants: Mitigation of metal phytotoxicity due to nanosorption. CHEMOSPHERE 2023; 312:137221. [PMID: 36403815 DOI: 10.1016/j.chemosphere.2022.137221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Due to its unique structure and exceptional properties, graphene oxide (GO) is increasingly used in various fields of industry and therefore is inevitably released into the environment, where it interacts with different contaminants. However, the information relating to the ability of GO to affect the toxicity of contaminants is still limited. Therefore, the aim of our study was to synthesize GO, to examine the phytotoxicity of different concentrations of GO and its co-exposure with the metal mixture using garden cress (Lepidium sativum L.) as a test organism and to evaluate the potential of GO to affect toxicity of metals and their uptake by plants. The metal mixture (MIX) containing Ni (II), Zn (II), Cr (III) and Cu (II) was prepared in accordance with the maximum-permissible-concentrations (MPC) accepted for the inland waters in the EU. Additionally, the capacity of GO to adsorb metals was studied in specific conditions of the phytotoxicity test and assessed using adsorption isotherms. Our data indicate that in most cases the tested concentrations of MIX, GO and MIX + GO did not affect seed germination, root growth and biomass of roots and seedlings, however, they were found to alter photosynthesis processes, enhance production of carotenoids and H2O2 as well as to activate lipid peroxidation. Additionally, our study revealed that GO affects the accumulation of tested metals in roots and shoots of the MIX-exposed L. sativum. This is due to the capacity of GO to adsorb metals from the growth medium. Therefore, low concentrations of GO can be used for water decontamination.
Collapse
Affiliation(s)
- M Kazlauskas
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | - Ž Jurgelėnė
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | - S Šemčuk
- SRI Center for Physical Sciences and Technology, Savanorių Ave. 231, LT-02300, Vilnius, Lithuania
| | - K Jokšas
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania; Vilnius University, Faculty of Chemistry and Geosciences, Naugarduko St. 24, LT-03225, Vilnius, Lithuania
| | - N Kazlauskienė
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | - D Montvydienė
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania.
| |
Collapse
|
8
|
Zhang X, Cao H, Wang H, Zhao J, Gao K, Qiao J, Li J, Ge S. The Effects of Graphene-Family Nanomaterials on Plant Growth: A Review. NANOMATERIALS 2022; 12:nano12060936. [PMID: 35335748 PMCID: PMC8949508 DOI: 10.3390/nano12060936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023]
Abstract
Numerous reports of graphene-family nanomaterials (GFNs) promoting plant growth have opened up a wide range of promising potential applications in agroforestry. However, several toxicity studies have raised growing concerns about the biosafety of GFNs. Although these studies have provided clues about the role of GFNs from different perspectives (such as plant physiology, biochemistry, cytology, and molecular biology), the mechanisms by which GFNs affect plant growth remain poorly understood. In particular, a systematic collection of data regarding differentially expressed genes in response to GFN treatment has not been conducted. We summarize here the fate and biological effects of GFNs in plants. We propose that soil environments may be conducive to the positive effects of GFNs but may be detrimental to the absorption of GFNs. Alterations in plant physiology, biochemistry, cytological structure, and gene expression in response to GFN treatment are discussed. Coincidentally, many changes from the morphological to biochemical scales, which are caused by GFNs treatment, such as affecting root growth, disrupting cell membrane structure, and altering antioxidant systems and hormone concentrations, can all be mapped to gene expression level. This review provides a comprehensive understanding of the effects of GFNs on plant growth to promote their safe and efficient use.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China; (X.Z.); (J.Z.); (J.Q.); (J.L.); (S.G.)
| | - Huifen Cao
- College of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China;
- Correspondence: (H.C.); (H.W.)
| | - Haiyan Wang
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
- Correspondence: (H.C.); (H.W.)
| | - Jianguo Zhao
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China; (X.Z.); (J.Z.); (J.Q.); (J.L.); (S.G.)
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Kun Gao
- College of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China;
| | - Jun Qiao
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China; (X.Z.); (J.Z.); (J.Q.); (J.L.); (S.G.)
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Jingwei Li
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China; (X.Z.); (J.Z.); (J.Q.); (J.L.); (S.G.)
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Sai Ge
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China; (X.Z.); (J.Z.); (J.Q.); (J.L.); (S.G.)
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| |
Collapse
|
9
|
Zhao D, Fang Z, Tang Y, Tao J. Graphene Oxide as an Effective Soil Water Retention Agent Can Confer Drought Stress Tolerance to Paeonia ostii without Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8269-8279. [PMID: 32545957 DOI: 10.1021/acs.est.0c02040] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graphene oxide (GO) is considered to be an emerging environmental pollutant with its inevitable release into the environment. Thus, its potential environmental risks and biosafety are receiving increased attention. In this study, Paeonia ostii was exposed to GO under drought stress. The results demonstrated that GO prevented soil water from evaporating due to its hydrophilic oxygen-containing functional groups and did not change the soil pH. Moreover, GO treatment resulted in lower increases in reactive oxygen species, relative electrical conductivity and free proline content, and greater increases in the antioxidant enzyme activities of P. ostii under drought stress compared with those in the control. And under drought stress, higher photosynthesis, more intact mesophyll cells and organelles and open stomata were found in P. ostii under GO treatment. Furthermore, GO treatment induced greater changes in the expression patterns of genes required for lignin biosynthesis, photosynthesis-antenna proteins, carbon fixation in photosynthetic organisms, and glyoxylate and dicarboxylate metabolism. Additionally, GO did not accumulate in P. ostii due to the soil environment and the electrostatic repulsion between GO and the roots. GO did not have toxic effects on P. ostii and was an effective soil water retention agent; therefore, it could be economically beneficial for the production of plants under drought stress.
Collapse
Affiliation(s)
- Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Ziwen Fang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Yuhan Tang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, P. R. China
| |
Collapse
|
10
|
Candotto Carniel F, Fortuna L, Nepi M, Cai G, Del Casino C, Adami G, Bramini M, Bosi S, Flahaut E, Martín C, Vázquez E, Prato M, Tretiach M. Beyond graphene oxide acidity: Novel insights into graphene related materials effects on the sexual reproduction of seed plants. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122380. [PMID: 32126426 DOI: 10.1016/j.jhazmat.2020.122380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Graphene related materials (GRMs) are currently being used in products and devices of everyday life and this strongly increases the possibility of their ultimate release into the environment as waste items. GRMs have several effects on plants, and graphene oxide (GO) in particular, can affect pollen germination and tube growth due to its acidic properties. Despite the socio-economic importance of sexual reproduction in seed plants, the effect of GRMs on this process is still largely unknown. Here, Corylus avellana L. (common Hazel) pollen was germinated in-vitro with and without 1-100 μg mL-1 few-layer graphene (FLG), GO and reduced GO (rGO) to identify GRMs effects alternative to the acidification damage caused by GO. At 100 μg mL-1 both FLG and GO decreased pollen germination, however only GO negatively affected pollen tube growth. Furthermore, GO adsorbed about 10 % of the initial Ca2+ from germination media accounting for a further decrease in germination of 13 % at the pH created by GO. In addition, both FLG and GO altered the normal tip-focused reactive oxygen species (ROS) distribution along the pollen tube. The results provided here help to understand GRMs effect on the sexual reproduction of seed plants and to address future in-vivo studies.
Collapse
Affiliation(s)
- Fabio Candotto Carniel
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, I-34127, Trieste, Italy.
| | - Lorenzo Fortuna
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, I-34127, Trieste, Italy.
| | - Massimo Nepi
- Department of Life Sciences, University of Siena, via P. A. Mattioli 4, I-53100, Siena, Italy.
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via P. A. Mattioli 4, I-53100, Siena, Italy.
| | - Cecilia Del Casino
- Department of Life Sciences, University of Siena, via P. A. Mattioli 4, I-53100, Siena, Italy.
| | - Giampiero Adami
- Department of Chemical and Pharmaceutical Science, University of Trieste, via L. Giorgieri 1, I-34127, Trieste, Italy.
| | - Mattia Bramini
- Center for Synaptic Neuroscience, Italian Institute of Technology, Largo Rosanna Benzi 10, I-16132, Genova, Italy.
| | - Susanna Bosi
- Department of Chemical and Pharmaceutical Science, University of Trieste, via L. Giorgieri 1, I-34127, Trieste, Italy.
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N° 5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, 118, route de Narbonne, F-31062, Toulouse cedex 9, France.
| | - Cristina Martín
- Department of Organic Chemistry, Faculty of Chemical Science and Technology, University of Castilla-La Mancha, Av. Camilo José Cela, s/n, E-13005, Ciudad Real, Spain.
| | - Ester Vázquez
- Department of Organic Chemistry, Faculty of Chemical Science and Technology, University of Castilla-La Mancha, Av. Camilo José Cela, s/n, E-13005, Ciudad Real, Spain; Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, E-13071, Ciudad Real, Spain.
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Science, University of Trieste, via L. Giorgieri 1, I-34127, Trieste, Italy; Carbon Nanobiotechnology Laboratory CIC BiomaGUNE, Paseo de Miramón 182, E-20009, Donostia-San Sebastian, Spain.
| | - Mauro Tretiach
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, I-34127, Trieste, Italy.
| |
Collapse
|
11
|
Ren W, Chang H, Li L, Teng Y. Effect of Graphene Oxide on Growth of Wheat Seedlings: Insights from Oxidative Stress and Physiological Flux. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:139-145. [PMID: 32458034 DOI: 10.1007/s00128-020-02888-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
In this study, the responses of wheat seedlings to graphene oxide (GO) were investigated at a wide concentration range of 0-1000 mg L-1, including oxidative stress, real-time membrane potential as well as proton and calcium ion fluxes. The results show that GO induced a hormesis effect on root growth (low concentration (100 mg L-1) promotion and high concentration (1000 mg L-1) inhibition. Oxidative stress was responsible for the growth inhibition at GO concentration of 1000 mg L-1, as suggested from great stimulation in the activities of antioxidant enzymes and MDA content in roots or leaves. Superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) activities were highly correlated with MDA levels (r2 = 0.963, 0.984, and 0.960, respectively). GO exposure caused significant concentration-dependent membrane depolarization in roots, and significantly inhibited H+ efflux and extracellular Ca2+ influx in root cap.
Collapse
Affiliation(s)
- Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Haiwei Chang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Lina Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- Yunnan Institute of Environmental Science, Kunming, 650034, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
12
|
Zhang P, Guo Z, Luo W, Monikh FA, Xie C, Valsami-Jones E, Lynch I, Zhang Z. Graphene Oxide-Induced pH Alteration, Iron Overload, and Subsequent Oxidative Damage in Rice ( Oryza sativa L.): A New Mechanism of Nanomaterial Phytotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3181-3190. [PMID: 32083855 DOI: 10.1021/acs.est.9b05794] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The mechanism of graphene-based nanomaterial (GBM)-induced phytotoxicity and its association with the GBM physicochemical properties are not yet fully understood. The present study compared the effects of graphene oxide (GO) and reduced GO (rGO) on rice seedling growth under hydroponic conditions for 3 weeks. GO at 100 and 250 mg/L reduced shoot biomass (by 25 and 34%, respectively) and shoot elongation (by 17 and 43%, respectively) and caused oxidative damage, while rGO exhibited no overt effect except for the enhancement of the antioxidant enzyme activities, suggesting that the surface oxygen content is a critical factor affecting the biological impacts of GBMs. GO treatments (100 and 250 mg/L) enhanced the iron (Fe) translocation and caused excessive Fe accumulation in shoots (2.2 and 3.6 times higher than control), which was found to be the main reason for the oxidative damage in shoots. GO-induced acidification of the nutrient solution was the main driver for the Fe overload in plants. In addition to the antioxidant regulators, the plants triggered other pathways to defend against the Fe toxicity via downregulation of the Fe transport associated metabolites (mainly coumarins and flavonoids). Plant root exudates facilitated the reduction of toxic GO to nontoxic rGO, acting as another route for plant adaption to GO-induced phytotoxicity. This study provides new insights into the mechanism of the phytotoxicity of GBMs. It also provides implications for the agricultural application of GBM that the impacts of GBMs on the uptake of multiple nutrients in plants should be assessed simultaneously and reduced forms of GBMs are preferential to avoid toxicity.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Geography, Earth and Environmental Science, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K
| | - Zhiling Guo
- School of Geography, Earth and Environmental Science, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K
| | - Wenhe Luo
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | | | - Changjian Xie
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Science, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K
| | - Iseult Lynch
- School of Geography, Earth and Environmental Science, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K
| | - Zhiyong Zhang
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Karupannan SK, Dowlath MJH, Arunachalam KD. Phytonanotechnology: Challenges and future perspectives. PHYTONANOTECHNOLOGY 2020:303-322. [DOI: 10.1016/b978-0-12-822348-2.00015-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
14
|
Vochita G, Oprica L, Gherghel D, Mihai CT, Boukherroub R, Lobiuc A. Graphene oxide effects in early ontogenetic stages of Triticum aestivum L. seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:345-352. [PMID: 31202935 DOI: 10.1016/j.ecoenv.2019.06.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 06/05/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Nanomaterials are being used increasingly in various areas such as electronic devices manufacture, medicine, mechanical devices production, and even food industry. Therefore, the evaluation of their toxicity is mandatory. Graphene oxide (GO) has been shown to have both positive as well as negative impact on different crop plants, depending on species, dose, and duration of exposure. The current study evaluated the impact of GO sheets at different concentrations (500, 1000 and 2000 mg/L) on physiological, biochemical and genetic levels to determine the possible toxic action. Wheat caryopses were treated with GO for 48 h and 7 days. The germination rate and roots elongation decreased in a dose-response manner, except the sample treated with GO at a concentration of 1000 mg/L. Mitotic index has ascendant trend; its increase may be due to the accumulation of prophases GO induced significant accumulation of the cells with aberrations, their presence suggests a clastogenic/aneugenic effect of these carbon nanomaterials. Regarding enzymatic and non-enzymatic antioxidant system defence, the activity varied depending on the dose of GO. Thus, chlorophyll a pigments content decreased significantly at high dose (2000 mg/L), while the carotenoid pigments had lower content at 500 mg/L of GO, and no statistical difference encountered in case of chlorophyll b amount. The antioxidant enzyme activity (CAT, POD, and SOD) was higher at low dose of GO, indicating the presence of oxidative stress generated as a response to the GO treatment. Also, the free radical scavenging activity of the polyphenolic compounds was enhanced upon GO exposure. The GO accumulation has been identified by transmission electron microscopy only at plumules level, near the intercellular space.
Collapse
Affiliation(s)
- Gabriela Vochita
- NIRDBS, Branch Institute of Biological Research Iasi, Lascar Catargi Str. 47, 700107, Iasi, Romania.
| | - Lacramioara Oprica
- Alexandru Ioan Cuza" University, Faculty of Biology, Carol I Bd. 20A, Iasi, 700505, Romania.
| | - Daniela Gherghel
- NIRDBS, Branch Institute of Biological Research Iasi, Lascar Catargi Str. 47, 700107, Iasi, Romania
| | - Cosmin-Teodor Mihai
- NIRDBS, Branch Institute of Biological Research Iasi, Lascar Catargi Str. 47, 700107, Iasi, Romania; Gr.T.Popa" Medicine and Pharmacy University of Iasi, Advanced Center for Research and Development in Experimental Medicine (CEMEX), 9-13. M. Kogalniceanu, Iasi, Romania
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000, Lille, France
| | - Andrei Lobiuc
- CERNESIM Research Center, "Alexandru Ioan Cuza" University of Iasi, Carol I Boulevard 20A, 700506, Iasi, Romania
| |
Collapse
|
15
|
Verma SK, Das AK, Gantait S, Kumar V, Gurel E. Applications of carbon nanomaterials in the plant system: A perspective view on the pros and cons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:485-499. [PMID: 30833247 DOI: 10.1016/j.scitotenv.2019.02.409] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 05/20/2023]
Abstract
With the remarkable development in the field of nanotechnology, carbon-based nanomaterials (CNMs) have been widely used for numerous applications in different areas of the plant system. The current understanding about the CNMs' accumulation, translocation, plant growth responses, and stress modulations in the plant system is far from complete. There have been relentless efforts by the researchers worldwide in order to acquire newer insights into the plant-CNMs interactions and the consequences. The present review intends to update the reader with the status of the impacts of the different CNMs on plant growth. Research reports from the plant biotechnologists have documented mixed effects (which are dependent on CNMs' concentration) of the CNMs' exposure on plants ranging from enhanced crop yield to acute cytotoxicity. The growth and yield pattern vary from species to species and are dependent on the dosage of the CNMs applied. Studies found an increase in vegetative growth and yield of fruit/seed at lower concentration of CNMs, but a decrease in these observables were also noted when higher concentrations of CNMs were used. In general, at lower concentrations, CNMs were found to be effective in enhancing (water uptake, water transport, seed germination, nitrogenase, photosystem and antioxidant activities), activating (water channels proteins) and promoting (nutrition absorption); all these change when concentrations are raised. All these aspects have been reviewed thoroughly in this article, with a focus on the recent updates on the role of the CNMs in augmenting or retarding plant growth. Sections have been devoted to the various features of the CNMs and their roles in inducing plant growth, phytotoxic responses of the plants and overall crop improvement. Concluding remarks have been added to propose future directions of research on the CNMs-plant interactions and also to sound a warning on the use of CNMs in agriculture.
Collapse
Affiliation(s)
- Sandeep Kumar Verma
- Institute of Biological Science, SAGE University, Baypass Road, Kailod Kartal, Indore 452020, Madhya Pradesh, India; Biotechnology Laboratory, Department of Biology, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey.
| | - Ashok Kumar Das
- Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Science and Technology University, Addis Ababa 16417, Ethiopia
| | - Saikat Gantait
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, Maharashtra, India
| | - Ekrem Gurel
- Biotechnology Laboratory, Department of Biology, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey
| |
Collapse
|
16
|
Fadeel B, Bussy C, Merino S, Vázquez E, Flahaut E, Mouchet F, Evariste L, Gauthier L, Koivisto AJ, Vogel U, Martín C, Delogu LG, Buerki-Thurnherr T, Wick P, Beloin-Saint-Pierre D, Hischier R, Pelin M, Candotto Carniel F, Tretiach M, Cesca F, Benfenati F, Scaini D, Ballerini L, Kostarelos K, Prato M, Bianco A. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS NANO 2018; 12:10582-10620. [PMID: 30387986 DOI: 10.1021/acsnano.8b04758] [Citation(s) in RCA: 332] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Graphene and its derivatives are heralded as "miracle" materials with manifold applications in different sectors of society from electronics to energy storage to medicine. The increasing exploitation of graphene-based materials (GBMs) necessitates a comprehensive evaluation of the potential impact of these materials on human health and the environment. Here, we discuss synthesis and characterization of GBMs as well as human and environmental hazard assessment of GBMs using in vitro and in vivo model systems with the aim to understand the properties that underlie the biological effects of these materials; not all GBMs are alike, and it is essential that we disentangle the structure-activity relationships for this class of materials.
Collapse
Affiliation(s)
- Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine , Karolinska Institutet , 17777 Stockholm , Sweden
| | - Cyrill Bussy
- Nanomedicine Laboratory, Faculty of Biology, Medicine & Health , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Sonia Merino
- Faculty of Chemical Science and Technology , University of Castilla-La Mancha , 13071 Ciudad Real , Spain
| | - Ester Vázquez
- Faculty of Chemical Science and Technology , University of Castilla-La Mancha , 13071 Ciudad Real , Spain
| | | | | | | | - Laury Gauthier
- CNRS, Université Paul Sabatier , 31062 Toulouse , France
| | - Antti J Koivisto
- National Research Centre for the Working Environment , 2100 Copenhagen , Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment , 2100 Copenhagen , Denmark
| | - Cristina Martín
- University of Strasbourg, CNRS , Immunology, Immunopathology and Therapeutic Chemistry , 67000 Strasbourg , France
| | - Lucia G Delogu
- Department of Chemistry and Pharmacy University of Sassari , Sassari 7100 , Italy
- Istituto di Ricerca Pediatrica , Fondazione Città della Speranza , 35129 Padova , Italy
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | - Peter Wick
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | | | - Roland Hischier
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | - Marco Pelin
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy
| | | | - Mauro Tretiach
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology , Istituto Italiano di Tecnologia , 16132 Genova , Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology , Istituto Italiano di Tecnologia , 16132 Genova , Italy
| | - Denis Scaini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) , 34136 Trieste , Italy
| | - Laura Ballerini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) , 34136 Trieste , Italy
| | - Kostas Kostarelos
- Nanomedicine Laboratory, Faculty of Biology, Medicine & Health , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences , University of Trieste , 34127 Trieste , Italy
- Carbon Nanobiotechnology Laboratory , CIC BiomaGUNE , 20009 San Sebastian , Spain
- Basque Foundation for Science, Ikerbasque , 48013 Bilbao , Spain
| | - Alberto Bianco
- University of Strasbourg, CNRS , Immunology, Immunopathology and Therapeutic Chemistry , 67000 Strasbourg , France
| |
Collapse
|
17
|
Lu N, Wang L, Lv M, Tang Z, Fan C. Graphene-based nanomaterials in biosystems. NANO RESEARCH 2018; 12:247-264. [PMID: 32218914 PMCID: PMC7090610 DOI: 10.1007/s12274-018-2209-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 05/23/2023]
Abstract
Graphene-based nanomaterials have emerged as a novel type of materials with exceptional physicochemical properties and numerous applications in various areas. In this review, we summarize recent advances in studying interactions between graphene and biosystems. We first provide a brief introduction on graphene and its derivatives, and then discuss on the toxicology and biocompatibility of graphene, including the extracellular interactions between graphene and biomacromolecules, cellular studies of graphene, and in vivo toxicological effects. Next, we focus on various graphene-based practical applications in antibacterial materials, wound addressing, drug delivery, and water purification. We finally present perspectives on challenges and future developments in these exciting fields.
Collapse
Affiliation(s)
- Na Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620 China
| | - Liqian Wang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Min Lv
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Zisheng Tang
- Department of Endodontics, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
- National Clinical Research Center of Oral Diseases, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011 China
| | - Chunhai Fan
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
18
|
Chen J, Yang L, Li S, Ding W. Various Physiological Response to Graphene Oxide and Amine-Functionalized Graphene Oxide in Wheat ( Triticum aestivum). Molecules 2018; 23:E1104. [PMID: 29735929 PMCID: PMC6100068 DOI: 10.3390/molecules23051104] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 12/12/2022] Open
Abstract
An increasing number of investigations have been performed on the phytotoxicity of carbon-based nanomaterials duo to their extensive use in various fields. In the present study, we investigated the phytotoxicity of unfunctionalized graphene oxide (GO) and amine-functionalized graphene oxide (G-NH₂) on wheat (Triticum aestivum) in the concentration range from 125 to 2000 μg/mL after 9 days of hydroponic culture. Our results found that the incubation with both nanomaterials did not affect the final seed germination rate, despite some influence in the initial stage. Transmission electron microscopy (TEM) observations indicated that exposure to GO at a high concentration (above 1000 μg/mL) resulted in a severe loss of morphology of seedlings, and a decrease in root length, shoot length and relative biomass, along with obvious damage to plant tissue structures (root, stem and leaf) when compared with the control. GO induced increased damage to root cells, which were determined by electrolyte leakage. Conversely, the plant growth was enhanced under G-NH₂ exposure, and the root and stem lengths were increased by 19.27% and 19.61% at 2000 μg/mL, respectively. The plant tissue structures were not affected, and neither GO nor G-NH₂ were observed to accumulate in the wheat plant root cells. The present investigations provide important information for evaluation of the environmental safety of GO and better understanding plant-nanoparticle interactions.
Collapse
Affiliation(s)
- Juanni Chen
- Laboratory of Natural Product Pesticide, College of Plant protection, Southwest University, Chongqing 400715, China.
| | - Liang Yang
- Laboratory of Natural Product Pesticide, College of Plant protection, Southwest University, Chongqing 400715, China.
| | - Shili Li
- Laboratory of Natural Product Pesticide, College of Plant protection, Southwest University, Chongqing 400715, China.
| | - Wei Ding
- Laboratory of Natural Product Pesticide, College of Plant protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
19
|
Ren W, Chang H, Teng Y. Sulfonated graphene-induced hormesis is mediated through oxidative stress in the roots of maize seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:926-934. [PMID: 27503631 DOI: 10.1016/j.scitotenv.2016.07.214] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 05/24/2023]
Abstract
The present study investigated the impact of sulfonated graphene (SG) on the growth of maize seedlings at a concentration range of 0-500mgL-1. Stress-related parameters including reactive oxygen species (ROS), intracellular Ca2+, antioxidant enzyme activities, lipid peroxidation, membrane leakage, cell death and root morphology were examined to reveal the potential mechanisms. The results indicate that SG induced a hormesis effect on plant height, i.e., low-concentration (50mgL-1) stimulation and high-concentration (500mgL-1) inhibition. The hormesis effect of SG on plant height was directly correlated with ROS levels in roots. A low concentration (50mgL-1) of SG promoted ROS scavenging, alleviated oxidative stress, enhanced the soluble protein (SP) content, and decreased intracellular Ca2+ and cell death in the roots. At a higher concentration (500mgL-1), SG stimulated the generation of ROS in the roots, decreased SP content in the leaves, increased antioxidant enzyme activities, intracellular Ca2+, electrolyte leakage and cell death in the roots, and increased the malondialdehyde (MDA) content in both roots and leaves. Different changes were observed for root morphology at SG concentrations of 50 and 500mgL-1, and a larger amount of SG was deposited onto the root surface at a concentration of 500mgL-1 compared with 50mgL-1.
Collapse
Affiliation(s)
- Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Haiwei Chang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
20
|
Zhang P, Zhang R, Fang X, Song T, Cai X, Liu H, Du S. Toxic effects of graphene on the growth and nutritional levels of wheat (Triticum aestivum L.): short- and long-term exposure studies. JOURNAL OF HAZARDOUS MATERIALS 2016; 317:543-551. [PMID: 27343870 DOI: 10.1016/j.jhazmat.2016.06.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 05/24/2023]
Abstract
Increased use of graphene materials might lead to their release into the environment. However, only a few studies have investigated the impact of graphene-based materials on green plants. In the present study, effects of graphene on plant roots and shoots after 48h or 30days of hydroponic culture were evaluated to determine its phytotoxicity. Results showed that although exposure to graphene (250, 500, 1000 and 1500mgL(-1)) significantly improved root elongation, root hair production was impaired. These observations might be associated with graphene induced-oxidative stress (indicated by nitroblue tetrazolium (NBT) and Evans blue staining, malondialdehyde (MDA) estimation, and antioxidant enzyme activity assay). After 30days of graphene exposure, shoot biomass, chlorophyll content, PSII activity and levels of several nutrient elements (N, K, Ca, Mg, Fe, Zn and Cu) were reduced, indicating that graphene inhibited plant growth and photosynthesis, and caused an imbalance of nutrient homeostasis. Based on these findings, we conclude that graphene has growth-limiting effects on plants, including root hair reduction, oxidative burst, photosynthesis inhibition, and nutritional disorder.
Collapse
Affiliation(s)
- Peng Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ranran Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xianzhi Fang
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Tianqi Song
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiaodan Cai
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shaoting Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
21
|
Zhao Y, Jia R, Qiao Y, Wang D. Glycyrrhizic acid, active component from Glycyrrhizae radix , prevents toxicity of graphene oxide by influencing functions of microRNAs in nematode Caenorhabditis elegans. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:735-744. [DOI: 10.1016/j.nano.2015.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/07/2015] [Accepted: 10/10/2015] [Indexed: 10/22/2022]
|
22
|
Gene expression changes in plants and microorganisms exposed to nanomaterials. Curr Opin Biotechnol 2015; 33:206-19. [DOI: 10.1016/j.copbio.2015.03.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/15/2015] [Accepted: 03/06/2015] [Indexed: 12/15/2022]
|
23
|
Zhao Y, Wu Q, Wang D. A microRNAs–mRNAs network involved in the control of graphene oxide toxicity in Caenorhabditis elegans. RSC Adv 2015. [DOI: 10.1039/c5ra16142h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A microRNAs–mRNAs network involved in the control of graphene oxide toxicity was raised in nematodes.
Collapse
Affiliation(s)
- Yunli Zhao
- Medical School
- Southeast University
- Nanjing 210009
- China
| | - Qiuli Wu
- Medical School
- Southeast University
- Nanjing 210009
- China
| | - Dayong Wang
- Medical School
- Southeast University
- Nanjing 210009
- China
| |
Collapse
|