1
|
Bhardwaj S, Badiyal A, Dhiman S, Bala J, Walia A. Exploring Halophiles for Reclamation of Saline Soils: Biotechnological Interventions for Sustainable Agriculture. J Basic Microbiol 2025:e70048. [PMID: 40357706 DOI: 10.1002/jobm.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/22/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025]
Abstract
Soil salinization is a major constraint on agricultural productivity, particularly in arid and semi-arid regions where limited rainfall cannot wash salts from plant root zones. This leads to disruptions in water uptake, ion balance, photosynthesis, respiration, nutrient absorption, hormone regulation and rhizosphere microbiome disturbances in plants. Chemical and biological methods can help mitigate soil salinity, but biological approaches, like using halophytes and salt-tolerant microorganisms, are preferred for environmental sustainability. Halophytes, however, represent only about 1% of flora and are habitat specific, so halophilic plant growth-promoting (PGP) microbes have emerged as a key eco-friendly solution. Halophilic PGP bacteria have shown promise in remediating saline soils, enhancing fertility and boosting crop resilience by inducing salinity tolerance (IST) and promoting plant growth traits. In the era of modern agriculture where chemical inputs are at their peak of application rendering the soil infertile, halophilic PGP bacteria represent a promising, sustainable approach to support food security, aligning with Sustainable Development Goals for zero hunger.
Collapse
Affiliation(s)
- Shiwani Bhardwaj
- Department of Microbiology, College of Basic Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Anila Badiyal
- Department of Microbiology, College of Basic Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Shailja Dhiman
- Department of Plant Breeding and Genetics, College of Agriculture, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Jyoti Bala
- Department of Organic Agriculture and Natural Farming, College of Agriculture, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Abhishek Walia
- Department of Microbiology, College of Basic Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| |
Collapse
|
2
|
Kumari S, Rajput VD, Sushkova S, Minkina T. Microbial electrochemical system: an emerging technology for remediation of polycyclic aromatic hydrocarbons from soil and sediments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9451-9467. [PMID: 35962926 DOI: 10.1007/s10653-022-01356-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Worldwide industrialization and other human activities have led to a frightening stage of release of hazardous, highly persistent, toxic, insoluble, strongly adsorbed to the soil and high molecular weight ubiquitous polycyclic aromatic hydrocarbons (PAHs) in soils and sediments. The various conventional remediation methods are being used to remediate PAHs with certain drawbacks. Time taking process, high expenditure, excessive quantities of sludge generation, and various chemical requirements do not only make these methods outdated but produce yet much resistant and toxic intermediate metabolites. These disadvantages may be overcome by using a microbial electrochemical system (MES), a booming technology in the field of bioremediation. MES is a green remediation approach that is regulated by electrochemically active microorganisms at the electrode in the system. The key advantage of the system over the conventional methods is it does not involve any additional chemicals, takes less time, and generates minimal sludge or waste during the remediation of PAHs in soils. However, a comprehensive review of the MES towards bioremediation of PAHs adsorbed in soil and sediment is still lacking. Therefore, the present review intended to summarize the recent information on PAHs bioremediation, application, risks, benefits, and challenges based on sediment microbial fuel cell and microbial fuel cell to remediate mount-up industrial sludge, soil, and sediment rich in PAHs. Additionally, bio-electrochemically active microbes, mechanisms, and future perspectives of MES have been discussed.
Collapse
Affiliation(s)
- Smita Kumari
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.
| | | | | | | |
Collapse
|
3
|
Lan J, Wen F, Ren Y, Liu G, Jiang Y, Wang Z, Zhu X. An overview of bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100278. [PMID: 37251519 PMCID: PMC10220241 DOI: 10.1016/j.ese.2023.100278] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/31/2023]
Abstract
The global problem of petroleum contamination in soils seriously threatens environmental safety and human health. Current studies have successfully demonstrated the feasibility of bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils due to their easy implementation, environmental benignity, and enhanced removal efficiency compared to bioremediation. This paper reviewed recent progress and development associated with bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils. The working principles, removal efficiencies, affecting factors, and constraints of the two technologies were thoroughly summarized and discussed. The potentials, challenges, and future perspectives were also deliberated to shed light on how to overcome the barriers and realize widespread implementation on large scales of these two technologies.
Collapse
Affiliation(s)
- Jun Lan
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Fang Wen
- Xinjiang Academy of Environmental Protection Science, Urumqi, 830011, China
| | - Yongxiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiuping Zhu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
4
|
Han T, Wang K, Rushimisha IE, Ye H, Sun Y, Zhao L, Weng L, Li Y, Li X. Influence of biocurrent self-generated by indigenous microorganisms on soil quality. CHEMOSPHERE 2022; 307:135864. [PMID: 35948105 DOI: 10.1016/j.chemosphere.2022.135864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The redox process driven by anaerobic respiration is a link between matter conversion and energy exchange in soil biogeochemistry. Microbial extracellular electron transfer forming biocurrents is a force in element cycling and community living in soil. However, the effect of indigenous microorganisms generating biocurrents on soil quality is unclear. We found that soil biocurrent showed little adverse influence on soil pH, cation exchange capacity, and available nitrogen, phosphorus and potassium and deblocked sequestered organic matter (29%). In addition, the bioelectric field derived from biocurrent obviously forced the migration of mineral elements, which was a supplement to the theory of water-salt transport, providing a new perspective on element transport. Moreover, the soil biocurrent directly regulated the availability of Ca and Fe (increase of 7-fold), indicating that electron transfer plays an important role in weathering and mineralization and thus pedogenesis. From a microbial ecology point of view, the soil bacterial richness and diversity were perfectly restored to their original state when the biocurrent stopped; including bacterial functions; although a temporary enrichment of certain species was observed. The above results provide new insights into the interactions between electron transfer and soil quality and confirm the safety of soil bioelectrochemical technology.
Collapse
Affiliation(s)
- Ting Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Kai Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Iranzi Emile Rushimisha
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Huike Ye
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China.
| |
Collapse
|
5
|
Abbas SZ, Wang JY, Wang H, Wang JX, Wang YT, Yong YC. Recent advances in soil microbial fuel cells based self-powered biosensor. CHEMOSPHERE 2022; 303:135036. [PMID: 35609665 DOI: 10.1016/j.chemosphere.2022.135036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The soil microbial fuel cell (SMFC) is a new device that was originally designed to generate electricity from organic matter in soil using microorganisms. Currently, SMFC based biosensors are emerging as a new and promising research direction for real-time and rapid monitoring of soil quality or soil pollution. Compared to conventional biosensors, SMFC based biosensors exhibit advantages such as low-cost, simple design, in-situ, and long-term self-powering monitoring, which makes it become attractive devices for in-situ long-term soil quality or soil pollution monitoring. Thus, this review aims to provide a comprehensive overview of SMFC based biosensors. In this review, different prototypes of SMFC based biosensors developed in recent years are introduced, the biosensing mechanisms and the roles of SMFC are highlighted, and the emerging applications of these SMFC based biosensors are discussed. Since the SMFC based biosensors are applied in open-air conditions, the effects of different environmental factors on the biosensing response are also summarized. Finally, to further expand the understanding and boost the practical application of the SMFC based biosensors, future perspectives including fundamental mechanism exploration and investigation of the full-scale application are proposed.
Collapse
Affiliation(s)
- Syed Zaghum Abbas
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Jia-Yi Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Hongcheng Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Jing-Xian Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Yi-Ting Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China.
| |
Collapse
|
6
|
He Y, Zhou Q, Mo F, Li T, Liu J. Bioelectrochemical degradation of petroleum hydrocarbons: A critical review and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119344. [PMID: 35483484 DOI: 10.1016/j.envpol.2022.119344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
As typical pollutants, petroleum hydrocarbons that are widely present in various environmental media such as soil, water, sediments, and air, seriously endanger living organisms and human health. In the meantime, as a green environmental technology that integrates pollutant removal and resource recovery, bioelectrochemical systems (BESs) have been extensively applied to the removal of petroleum hydrocarbons from the environment. This review introduces working principles of BESs, following which it discusses the different reactor structures, application progresses, and key optimization factors when treating water, sewage sludges, sediments, and soil. Furthermore, bibliometrics was first used in this field to analyze the evolution of knowledge structure and forecast future hot topics. The research focus has shifted from the early generation of bioelectric energy to exploring mechanisms of soil remediation and microbial metabolisms, which will be closely integrated in the future. Finally, the future prospects of this field are proposed. This review focuses on the research status of bioelectrochemical degradation of petroleum hydrocarbons and provides a scientific reference for subsequent research.
Collapse
Affiliation(s)
- Yuqing He
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Fan Mo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Tian Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jianv Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
7
|
Tabassum N, Islam N, Ahmed S. Progress in microbial fuel cells for sustainable management of industrial effluents. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
8
|
Abbas SZ, Rafatullah M. Recent advances in soil microbial fuel cells for soil contaminants remediation. CHEMOSPHERE 2021; 272:129691. [PMID: 33573807 DOI: 10.1016/j.chemosphere.2021.129691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
The cost-effective and eco-friendly approaches are needed for decontamination of polluted soils. The bio-electrochemical system, especially microbial fuel cells (MFCs) offer great promise as a technology for remediation of soil, sediment, sludge and wastewater. Recently, soil MFCs (SMFCs) have been attracting increasing amounts of interest in environmental remediation, since they are capable of providing a clean and inexhaustible source of electron donors or acceptors and can be easily controlled by adjusting the electrochemical parameters. In this review, we comprehensively covered the principle of SMFCs including the mechanisms of electron releasing and electron transportation, summarized the applications for soil contaminants remediation by SMFCs with highlights on organic contaminants degradation and heavy metal ions removal. In addition, the main factors that affected the performance of SMFCs were discussed in details which would be helpful for performance optimization of SMFCs as well as the efficiency improvement for soil remediation. Moreover, the key issues need to be addressed and future perspectives are presented.
Collapse
Affiliation(s)
- Syed Zaghum Abbas
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China.
| | - Mohd Rafatullah
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| |
Collapse
|
9
|
A Novel Design Portable Plugged-Type Soil Microbial Fuel Cell for Bioelectricity Generation. ENERGIES 2021. [DOI: 10.3390/en14030553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Soil microbial fuel cells (SMFCs) are a promising cost-effective power source for on-demand electricity generation applications. So far, reported SMFC configurations are usually bulky and hard to setup. In this study, a low-cost portable plugged-type SMFC (PSMFC) was designed and fabricated for on-demand micropower generation. The PSMFC can be activated just by plugging into natural wet soil, which is easy to access in the natural condition. The PSMFC uses carbon-based electrodes for cost-effectiveness. After setting the PSMFC into the soil to activate, it started to produce electricity after 1 h and reached the power density of 7.3 mW/m2 after 48 h. The proposed PSMFC can potentially generate electricity for remote sensors or soil sensing systems.
Collapse
|
10
|
Yu B, Feng L, He Y, Yang L, Xun Y. Effects of anode materials on the performance and anode microbial community of soil microbial fuel cell. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123394. [PMID: 32659585 DOI: 10.1016/j.jhazmat.2020.123394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Five soil microbial fuel cells (SMFCs) with graphite felt, aluminium sheet, activated carbon fibre felt, graphite paper and carbon cloth as anodes were constructed using the petroleum hydrocarbon polluted soils as substrates. After 115 days of operation, the SMFC with graphite felt anode performed the best in both bioelectricity output and removal of target pollutants, with the bioelectricity output parameters of 345 mV for stable voltage, 24.0 mW/m2 for power density and 774 Ω for internal resistance, and the removal rates of 59.14 % for total petroleum hydrocarbon, 61.65 % for anthracene, and 55.92 % for pyrene, respectively. The conductivity of the material was the key factor affecting the electron transfer rate of the anode, which determined the electric acclimation and screening intensity of SMFC to soil microbes, leading to the growth and succession of the electricigens-dominanted anode microbial community with various abundances of phyla and genera. The surface structure of the anode material played a critical role in the internal resistance of SMFC through affecting the mass transfer of substrate and metabolites, and it might also change the abundance of microbes especially those non-electricigens on the community through different adhesion.
Collapse
Affiliation(s)
- Bao Yu
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, PR China
| | - Liu Feng
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Yali He
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Lei Yang
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yu Xun
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
11
|
Hao DC, Li XJ, Xiao PG, Wang LF. The Utility of Electrochemical Systems in Microbial Degradation of Polycyclic Aromatic Hydrocarbons: Discourse, Diversity and Design. Front Microbiol 2020; 11:557400. [PMID: 33193139 PMCID: PMC7644954 DOI: 10.3389/fmicb.2020.557400] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/25/2020] [Indexed: 12/27/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs), especially high molecular weight PAHs, are carcinogenic and mutagenic organic compounds that are difficult to degrade. Microbial remediation is a popular method for the PAH removal in diverse environments and yet it is limited by the lack of electron acceptors. An emerging solution is to use the microbial electrochemical system, in which the solid anode is used as an inexhaustible electron acceptor and the microbial activity is stimulated by biocurrent in situ to ensure the PAH removal and avoid the defects of bioremediation. Based on the extensive investigation of recent literatures, this paper summarizes and comments on the research progress of PAH removal by the microbial electrochemical system of diversified design, enhanced measures and functional microorganisms. First, the bioelectrochemical degradation of PAHs is reviewed in separate and mixed PAH degradation, and the removal performance of PAHs in different system configurations is compared with the anode modification, the enhancement of substrate and electron transfer, the addition of chemical reagents, and the combination with phytoremediation. Second, the key functional microbiota including PAH degrading microbes and exoelectrogens are overviewed as well as the reduced microbes without competitive advantage. Finally, the typical representations of electrochemical activity especially the internal resistance, power density and current density of systems and influence factors are reviewed with the correlation analysis between PAH removal and energy generation. Presently, most studies focused on the anode modification in the bioelectrochemical degradation of PAHs and actually more attentions need to be paid to enhance the mass transfer and thus larger remediation radius, and other smart designs are also proposed, especially that the combined use of phytoremediation could be an eco-friendly and sustainable approach. Additionally, exoelectrogens and PAH degraders are partially overlapping, but the exact functional mechanisms of interaction network are still elusive, which could be revealed with the aid of advanced bioinformatics technology. In order to optimize the efficacy of functional community, more advanced techniques such as omics technology, photoelectrocatalysis and nanotechnology should be considered in the future research to improve the energy generation and PAH biodegradation rate simultaneously.
Collapse
Affiliation(s)
- Da-Cheng Hao
- School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian, China
| | - Xiao-Jing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, China
| | - Lian-Feng Wang
- School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian, China
| |
Collapse
|
12
|
Cai X, Yuan Y, Yu L, Zhang B, Li J, Liu T, Yu Z, Zhou S. Biochar enhances bioelectrochemical remediation of pentachlorophenol-contaminated soils via long-distance electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122213. [PMID: 32045806 DOI: 10.1016/j.jhazmat.2020.122213] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
The soil bioelectrochemical system (SBES) is a promising biotechnology for the remediation of contaminated soils. However, the effective distance of pollutant removal in the SBES was usually limited in a few centimeters near the electrode surface. In this study, we used biochar as the model conductor to construct a conductive network with microbes in the soil matrix to extend the effective distance of pollutant removal in the SBES. Pentachlorophenol (PCP) was used as the representative contaminant to probe long-distance electron transfer facilitated by the networks. The removal of PCP and microbial community analyses at different distances toward the electrode were monitored. The results showed that PCP transformation in the SBES without biochar amendment mainly occurred within 4 cm around the electrode. However, the effective distance of ∼ 16 cm toward the electrode could be achieved for efficient PCP degradation in the SBES amended with highly conductive biochar. Microbial community analysis confirmed the establishment of bacteria-biochar networks, where Desulfitobacterium and Geobacter were enriched and spatially distributed in the biochar-amended SBES. The results demonstrate that long-distance electron transfer can be achieved in the biochar-amended soil matrix, and shed light on the development of bioelectrochemical strategy for efficient organic pollutant degradation in soils.
Collapse
Affiliation(s)
- Xixi Cai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Sciences and Technology, Guangzhou 510650, China
| | - Yong Yuan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Linpeng Yu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Beiping Zhang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ting Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Sciences and Technology, Guangzhou 510650, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
13
|
Zhang X, Li X, Zhao X, Chen X, Zhou B, Weng L, Li Y. Bioelectric field accelerates the conversion of carbon and nitrogen in soil bioelectrochemical systems. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121790. [PMID: 31818651 DOI: 10.1016/j.jhazmat.2019.121790] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/19/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Soil bioelectrochemical systems (BESs) utilize indigenous microorganisms to generate biocurrent/electric fields that stimulate the degradation of organic pollutants, exhibiting great potential in the removal of petroleum hydrocarbons from soils. In this study, a horizontal bioelectric field was constructed to investigate the conversion of carbon and nitrogen in a soil BES. After 182 days, the degradation rates of total petroleum hydrocarbons, alkanes, and aromatics were promoted by 52 %, 38% and 136%, respectively. Meanwhile, the bioelectric field accelerated NH4+-N production near the cathode, whereas NH4+-N consumption near the anode indicated that the bioelectric field promoted the cathode-dominated ammoniation process and the anode-dominated denitrification process. Additionally, a distinctive microbial community was formed under the bioelectric field, and the improved degradation on the cathode and the anode relied on special functional bacteria (typically, cathode, Alcanivorax; anode, Marinobacter). The dramatic enrichment in anodic denitrifying bacteria, including Pontibacillus, Sediminimonas, Georgenia, etc., explained the enhanced denitrification process under the bioelectric field. This study simultaneously clarified the carbon and nitrogen conversion processes and corresponding bacterial community occurring under the bioelectric field for the first time, helping to form regulation strategies in the practical application of soil BESs and providing a new perspective for removing petroleum hydrocarbons from soils.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| | - Xiaodong Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xiaodong Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Bin Zhou
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
14
|
Liang Y, Zhai H, Liu B, Ji M, Li J. Carbon nanomaterial-modified graphite felt as an anode enhanced the power production and polycyclic aromatic hydrocarbon removal in sediment microbial fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136483. [PMID: 31954253 DOI: 10.1016/j.scitotenv.2019.136483] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Sediment microbial fuel cells (SMFCs) can be used to generate electricity and remove organic contaminants. For electricity generation and contaminant removal, the anode material is one of important factors influencing the performance of SMFCs. In this study, graphene (GR), graphene oxide (GO) and carbon nanotubes (CNTs) were applied to modify the graphite felt (GF) anode in SMFCs during 110 d operation. An economical and easy modification method with the carbon nanomaterials was applied. The carbon nanomaterials increased the electrochemically active surface areas and biomass content of the anodes and correspondingly effectively enhanced the generation of electricity and the removal rates of loss on ignition (LOI) and polycyclic aromatic hydrocarbons (phenanthrene and pyrene). During the steady period from 50 d to 110 d, the GO-SMFCs favored the enrichment of EAB and thus output the highest voltages of 30.60-48.61 mV. The GR-SMFCs and GO-SMFCs generated high electric power of approximate 0.98 ± 0.14 kJ and 0.87 ± 0.04 kJ, followed by CNT-SMFCs (0.57 ± 0.06 kJ) and GF-SMFCs (0.49 ± 0.07 kJ) during the 110 d operation. The PAH degradation was not directly related to the electric current in the SMFCs. Near the anodes, the order of the phenanthrene removal rates was CNT-SMFCs (78.1%) > GR-SMFCs (73.0%) ≈ GO-SMFCs (71.2%) > GF-SMFCs (45.6%), and the order of the pyrene removal rates was GO-SMFCs (69.6%) ≈ GR-SMFCs (68.2%) ≈ CNT-SMFCs (66.7%) > GF-SMFCs (42.3%). The three carbon nanomaterials increased the microbial community diversity and slightly changed the microbial community distribution of biofilms on the anodes. Correlation analysis indicated that the degradation of phenanthrene was positively correlated with the abundances of Pseudomonas, Thauera, Diaphorobacter, Tumebacillus and Lysobacter. Pyrene degradation was strongly correlated with LOI degradation.
Collapse
Affiliation(s)
- Yinxiu Liang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Boyue Liu
- School of Environment and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jie Li
- College of Light Industry Science and Technology, Tianjin University of Science and Technology, Tianjin 300222, China
| |
Collapse
|
15
|
Khoshkholgh Sima NA, Ebadi A, Reiahisamani N, Rasekh B. Bio-based remediation of petroleum-contaminated saline soils: Challenges, the current state-of-the-art and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109476. [PMID: 31476519 DOI: 10.1016/j.jenvman.2019.109476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/17/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Exploiting synergism between plants and microbes offers a potential means of remediating soils contaminated with petroleum hydrocarbons (PHCs). Salinity alters the physicochemical characteristics of soils and suppresses the growth of both plants and soil microbes, so the bioremediation of saline soils requires the use of plants and in microbes which can tolerate salinity. This review focuses on the management of PHC-contaminated saline soils, surveying what is currently known with respect to the potential of halophytes (plants adapted to saline environments) acting in concert with synergistic microbes to degrade PHCs. The priority is to identify optimal combinations of halophyte(s) and the bacteria present as endophytes and/or associated with the rhizosphere, and to determine what are the factors which most strongly affect their viability.
Collapse
Affiliation(s)
- Nayer Azam Khoshkholgh Sima
- Agricultural Biotechnology Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Ali Ebadi
- Agricultural Biotechnology Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Narges Reiahisamani
- Agricultural Biotechnology Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Behnam Rasekh
- Microbiology and Biotechnology Research Group, Research Institute of Petroleum Industry, Tehran, Iran.
| |
Collapse
|
16
|
Yu B, Li Y, Feng L. Enhancing the performance of soil microbial fuel cells by using a bentonite-Fe and Fe 3O 4 modified anode. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:70-77. [PMID: 31151042 DOI: 10.1016/j.jhazmat.2019.05.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/17/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
To improve the performance of soil microbial fuel cells (SMFCs), Fe3O4 and bentonite-Fe were selected as anode modifiers, and correspondingly, graphite felt (GF), GF + Fe3O4 (GFF), and GF + bentonite-Fe (GFB) anodes were created and applied to the SMFCs system. The stable voltages of SMFCs were 249 mV for GFF and 324 mV for GFB, thus representing an increase by 8.26% (GFF) and 40.87% (GFB) in comparison with those of GF. Moreover, the maximum power density in the modified treatment increased from 10.6 mW·m-2 to 18.28 mW·m-2 (GFF) and 29.98 mW·m-2 (GFB), and the internal resistance was reduced to 395 Ω for GFF and 219 Ω for GFB. The degradation efficiency clearly improved after being modified, especially by bentonite-Fe, and the removal ratios of the total petroleum hydrocarbon (TPH), anthracene, phenanthrene and pyrene reached 31.42%, 36.62%, 32.48% and 26.24%, respectively, after the SMFCs had run for 45 days. Both modifications contributed to the enrichment of electricigens on the anodes; however, there was minimal difference between them, which resulted in a similar microbial community on the modified anodes. The results demonstrated that Fe3O4 and bentonite-Fe could enhance the potential of SMFCs in soil remediation, and bentonite-Fe outperformed Fe3O4.
Collapse
Affiliation(s)
- Bao Yu
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, PR China
| | - Yanhong Li
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Liu Feng
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
17
|
Li X, Zheng R, Zhang X, Liu Z, Zhu R, Zhang X, Gao D. A novel exoelectrogen from microbial fuel cell: Bioremediation of marine petroleum hydrocarbon pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 235:70-76. [PMID: 30677657 DOI: 10.1016/j.jenvman.2019.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
In the past decades, the microbial fuel cell (MFC) technology has caught the attention of the scientific community for its potential in transforming petroleum hydrocarbon (PHC) pollutants directly into electricity through microbial catalyzed anodic. The microbe was one of the most important factors that both influence MFCs and PHC degradation. Here we aimed to identify new microbes to expand the list of microbial species which are both electrogenic and diesel hydrocarbon degrading. In this text, we depicted a strain of microbe named E2, isolated from on the anode surface of MFC, and using diesel as sole carbon source. E2 exhibited electrochemical activity in cyclic voltammetry curve, implicating that it had electrogenic ability. E2 degraded about 50% diesel (3.26 g/L) in maximum during 8 days. Pyrosequencing of 16S rRNA gene of E2 revealed E2 was a sub-strain of Vibrio. Corresponding to salt and alkali tolerant properties of vibrio, the optimal condition for E2 in degrading diesel was 3%-4% in salinity, and pH 8-9 in mineral medium. Collectively, as a member of Gammaproteobacteria class, E2 was novel marine microbe both electricity generation and diesel degradation, which may attract its future application toward artificial microbial community construction in MFC in promoting the PHC pollution removal.
Collapse
Affiliation(s)
- Xiaoling Li
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, China
| | - Ruiyu Zheng
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, China
| | - Xuwu Zhang
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhiwei Liu
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, China
| | - Ruiyan Zhu
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, China; Asparagus Industry Technology Research Institute of Hebei Province, Qinhuangdao 066004, China
| | - Xiaoyu Zhang
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, China
| | - Dawei Gao
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, China; Asparagus Industry Technology Research Institute of Hebei Province, Qinhuangdao 066004, China.
| |
Collapse
|
18
|
Li X, Li Y, Zhao X, Zhang X, Zhao Q, Wang X, Li Y. Restructured fungal community diversity and biological interactions promote metolachlor biodegradation in soil microbial fuel cells. CHEMOSPHERE 2019; 221:735-749. [PMID: 30682662 DOI: 10.1016/j.chemosphere.2019.01.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/01/2018] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
Soil microbial fuel cells (MFCs) provide an inexhaustible electron acceptor for the removal of metolachlor and in situ biocurrent stimulation for fungal activity was investigated. The metolachlor degradation rates enhanced by 33%-36% upon the introduction of electrodes after 23 d. In closed MFCs, the abundance of Mortierella as the most dominant genus increased to 43%-54% from 17% in the original soil, whereas those of Aphanoascus and Penicillium decreased to 0.24%-0.39% and 0.38-0.72% from 14% to 11%, respectively. Additionally, a 10-fold amplification of unique OTUs was observed, mainly from increase on the electrode surface. The different treatments were clustered, especially samples near the cathode. The linear discriminant analysis showed that Aphanoascus fulvescens acted as a biomarker between the original and treated soils. The co-occurrence networks demonstrated that Mortierella universally competed for growth with coexisting species while Cladosporium exhibited the most affiliations with species from the 36 other genera present. The correlation analysis indicated that the species associated with degradation belonged to Mortierella, Kernia, Chaetomium and Trichosporon, while the species associated with electrogenesis were Debaryomyces hansenii and Mortierella polycephala. Importantly, this study is the first to reveal fungal community structure in soil MFCs with degrading pollutants and producing electricity.
Collapse
Affiliation(s)
- Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| | - Yue Li
- Agro-Environmental Protection Institute, Ministry of Agriculture / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xiaodong Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xiaolin Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Qian Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Xin Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Li X, Li Y, Zhang X, Zhao X, Sun Y, Weng L, Li Y. Long-term effect of biochar amendment on the biodegradation of petroleum hydrocarbons in soil microbial fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:796-806. [PMID: 30253361 DOI: 10.1016/j.scitotenv.2018.09.098] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/07/2018] [Accepted: 09/08/2018] [Indexed: 05/24/2023]
Abstract
Biochar is extensively applied in amendment of contaminated soils. However, the effect of biochar on the biodegradation of petroleum hydrocarbons and electricity generation in soil microbial fuel cells (MFCs) remains unclear. Here, three biochars respectively derived from poultry (chicken manure, CB), agriculture (wheat straw, SB) and forestry industries (wood sawdust, WB) were investigated after 223 days of amendment. Consequently, high removal for alkanes was in CB with the mineral nutrition and phosphorus while aromatics were in SB with the most N content and the highest molecular polarity. The lowest removal efficiency of total petroleum hydrocarbons was observed in WB with the highest surface area, whereas the most charge was obtained. The different performance of soil MFCs was due to physicochemical properties of biochar and colonized microbial communities of bacteria and archaea. The abundance of Actinotalea increased by 144-263% in SB and CB while that of Desulfatitalea distinctly increased in WB. Meanwhile, species from Methanosarcina, Methanoculleus, Halovivax and Natronorubrum exerted probably a methanogenic degrading role. This study revealed that the degrader, azotobacter and electricigens exhibited a close relationship in order to degrade hydrocarbons and generate electricity in soil bioelectrochemical remediation systems.
Collapse
Affiliation(s)
- Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin 300191, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Yue Li
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin 300191, China
| | - Xiaolin Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin 300191, China
| | - Xiaodong Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin 300191, China
| | - Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin 300191, China
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin 300191, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
20
|
Zhao X, Li X, Li Y, Sun Y, Zhang X, Weng L, Ren T, Li Y. Shifting interactions among bacteria, fungi and archaea enhance removal of antibiotics and antibiotic resistance genes in the soil bioelectrochemical remediation. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:160. [PMID: 31249623 PMCID: PMC6589883 DOI: 10.1186/s13068-019-1500-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/15/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND Antibiotics and antibiotic resistance genes (ARGs) are two pollutants in soil, especially ARGs as one of the top three threats to human health. The performance of soil microbial fuel cells (MFCs) fuelled with antibiotics was investigated. RESULTS In this study, soil MFCs spiked with tetracycline exhibited optimal bioelectricity generation, which was 25% and 733% higher than those of MFCs spiked with sulfadiazine and control, respectively. Compared with the non-electrode treatment, not only did functional micro-organisms change in open- and closed-circuit treatments, but also the microbial affinities, respectively, increased by 50% and 340% to adapt to higher removal of antibiotics. For the open-circuit treatment, the ineffective interspecific relation of micro-organisms was reduced to assist the removal efficiency of antibiotics by 7-27%. For the closed-circuit treatment, an intensive metabolic network capable of bioelectricity generation, degradation and nitrogen transformation was established, which led to 10-35% higher removal of antibiotics. Importantly, the abundances of ARGs and mobile genetic element (MGE) genes decreased after the introduction of electrodes; especially in the closed-circuit treatment, the highest reduction of 47% and 53% was observed, respectively. CONCLUSIONS Soil MFCs possess advantages for the elimination of antibiotics and ARGs with sevenfold to eightfold higher electricity generation than that of the control treatment. Compared with sulphonamides, the enhancement removal of tetracycline is higher, while both potential ARG propagation risk is reduced in soil MFCs. This study firstly synchronously reveals the relationships among bacteria, fungi and archaea and with ARGs and MGE genes in soil bioelectrochemical systems.
Collapse
Affiliation(s)
- Xiaodong Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191 China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191 China
| | - Yue Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191 China
| | - Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191 China
| | - Xiaolin Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191 China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191 China
| | - Tianzhi Ren
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191 China
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191 China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
21
|
Wu Y, Jing X, Gao C, Huang Q, Cai P. Recent advances in microbial electrochemical system for soil bioremediation. CHEMOSPHERE 2018; 211:156-163. [PMID: 30071427 DOI: 10.1016/j.chemosphere.2018.07.089] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Soil contamination poses a serious threat to ecosystem and human well-being. Compared to conventional physical and chemical treatment, the microbial electrochemical system (MES) offers a sustainable and environment-friendly solution for soil bioremediation. In principle, soil microbe degrades organic substrate and releases electron in anode region. The electron flows through electric circuit to the cathode and finally is accepted by oxygen or oxidized metals. With various inherent advantages, MES has been applied in petroleum hydrocarbon, chlorinated organics and heavy metals bioremediation in soils. This paper aims to review the recent advances of MES in soil bioremediation, including main mechanisms of contaminant removal with MES, configurations of soil MES and current development in bioremediation of soil contaminated by organic and inorganic pollutants. Moreover, challenges and future prospects of soil MES are discussed.
Collapse
Affiliation(s)
- Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| | - Xinxin Jing
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| | - Chunhui Gao
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
22
|
Li Y, Li X, Sun Y, Zhao X, Li Y. Cathodic microbial community adaptation to the removal of chlorinated herbicide in soil microbial fuel cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16900-16912. [PMID: 29623641 DOI: 10.1007/s11356-018-1871-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
The microbial fuel cell (MFC) that uses a solid electrode as the inexhaustible electron acceptor is an innovative remediation technology that simultaneously generates bioelectricity. Chlorinated pollutants are better metabolized by reductive dechlorination in proximity to the cathode. Here, the removal efficiency of the herbicide metolachlor (ML) increased by 262 and 176% in soil MFCs that were spiked with 10 (C10) and 20 mg/kg (C20) of ML, respectively, relative to the non-electrode controls. The bioelectricity output of the C10 and C20 increased by over two- and eightfold, respectively, compared to that of the non-ML control, with maximum current densities of 49.6 ± 2.5 (C10) and 78.9 ± 0.6 mA/m2 (C20). Based on correlations between ML concentrations and species abundances in the MFCs, it was inferred that Azohydromonas sp., Sphingomonas sp., and Pontibacter sp. play a major role in ML removal around the cathode, with peak removal efficiencies of 56 ± 1% (C10) and 58 ± 1% (C20). Moreover, Clostridium sp., Geobacter sp., Bacillus sp., Romboutsia sp., and Terrisporobacter sp. may be electricigens or closely related microbes due to the significant positive correlation between the bioelectricity generation levels and their abundances around the anode. This study suggests that a directional adaptation of the microbial community has taken place to increase both the removal of chlorinated herbicides around the cathode and the generation of bioelectricity around the anode in bioelectrochemical remediation systems.
Collapse
Affiliation(s)
- Yue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin, 300191, People's Republic of China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin, 300191, People's Republic of China.
| | - Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin, 300191, People's Republic of China
| | - Xiaodong Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin, 300191, People's Republic of China
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin, 300191, People's Republic of China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| |
Collapse
|
23
|
Li X, Zhao Q, Wang X, Li Y, Zhou Q. Surfactants selectively reallocated the bacterial distribution in soil bioelectrochemical remediation of petroleum hydrocarbons. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:23-32. [PMID: 29028494 DOI: 10.1016/j.jhazmat.2017.09.050] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/30/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
Soil contaminated by aged petroleum hydrocarbons is faced with scarcity of electron acceptors, low activity of functional microbes and inefficient electron transfer, which hinder the bioremediation application. The soil microbial fuel cell (MFC) simultaneously solves these problems with bioelectricity production. In this study, five types of surfactants were introduced to enhance the bioavailability of aged petroleum hydrocarbon in soils. The ampholytic surfactant (lecithos) was optimal due to the highest bioelectricity generation (0.321Cd-1g-1) and promoted hydrocarbon degradation (328%), while the nonionic (glyceryl monostearate) and cationic (cetyltrimethylammonium bromide) surfactants were inefficient. The surfactants induced a special microbial enrichment affiliated with Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Chloroflexi, Planctomycetes and Acidobacteria (93%-99% of total) in soil MFCs. The anionic surfactant (sodium dodecyl sulfate) exhibited the strongest selectivity, and α-proteobacteria and γ-proteobacteria abundances decreased while Clostridia increased, much like the result obtained with the biosurfactant β-cyclodextrin. Furthermore, Bacillus abundance was increased in connected soil MFCs, except addition of lecithos in which Clostridium increased to 14.88% from 3.61% in the control. The high correlations among Bacillus, Phenylobacterium, Solibacillus (0.9162-0.9577) and among Alcaligenes, Dysgonomonas, Sedimentibacter (0.9538-0.9966) indicated a metabolic network of microorganisms in the soil bioelectrochemical remediation system.
Collapse
Affiliation(s)
- Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, No. 31 Fukang Road, Nankai District, Tianjin 300191, China.
| | - Qian Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, No. 31 Fukang Road, Nankai District, Tianjin 300191, China.
| | - Xin Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, No. 31 Fukang Road, Nankai District, Tianjin 300191, China.
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
24
|
Kronenberg M, Trably E, Bernet N, Patureau D. Biodegradation of polycyclic aromatic hydrocarbons: Using microbial bioelectrochemical systems to overcome an impasse. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:509-523. [PMID: 28841503 DOI: 10.1016/j.envpol.2017.08.048] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hardly biodegradable carcinogenic organic compounds. Bioremediation is a commonly used method for treating PAH contaminated environments such as soils, sediment, water bodies and wastewater. However, bioremediation has various drawbacks including the low abundance, diversity and activity of indigenous hydrocarbon degrading bacteria, their slow growth rates and especially a limited bioavailability of PAHs in the aqueous phase. Addition of nutrients, electron acceptors or co-substrates to enhance indigenous microbial activity is costly and added chemicals often diffuse away from the target compound, thus pointing out an impasse for the bioremediation of PAHs. A promising solution is the adoption of bioelectrochemical systems. They guarantee a permanent electron supply and withdrawal for microorganisms, thereby circumventing the traditional shortcomings of bioremediation. These systems combine biological treatment with electrochemical oxidation/reduction by supplying an anode and a cathode that serve as an electron exchange facility for the biocatalyst. Here, recent achievements in polycyclic aromatic hydrocarbon removal using bioelectrochemical systems have been reviewed. This also concerns PAH precursors: total petroleum hydrocarbons and diesel. Removal performances of PAH biodegradation in bioelectrochemical systems are discussed, focussing on configurational parameters such as anode and cathode designs as well as environmental parameters like porosity, salinity, adsorption and conductivity of soil and sediment that affect PAH biodegradation in BESs. The still scarcely available information on microbiological aspects of bioelectrochemical PAH removal is summarised here. This comprehensive review offers a better understanding of the parameters that affect the removal of PAHs within bioelectrochemical systems. In addition, future experimental setups are proposed in order to study syntrophic relationships between PAH degraders and exoelectrogens. This synopsis can help as guide for researchers in their choices for future experimental designs aiming at increasing the power densities and PAH biodegradation rates using microbial bioelectrochemistry.
Collapse
Affiliation(s)
| | - Eric Trably
- LBE, INRA, 102 avenue des Etangs, 11100 Narbonne, France
| | - Nicolas Bernet
- LBE, INRA, 102 avenue des Etangs, 11100 Narbonne, France
| | | |
Collapse
|
25
|
Daghio M, Aulenta F, Vaiopoulou E, Franzetti A, Arends JBA, Sherry A, Suárez-Suárez A, Head IM, Bestetti G, Rabaey K. Electrobioremediation of oil spills. WATER RESEARCH 2017; 114:351-370. [PMID: 28279880 DOI: 10.1016/j.watres.2017.02.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/27/2017] [Accepted: 02/14/2017] [Indexed: 05/20/2023]
Abstract
Annually, thousands of oil spills occur across the globe. As a result, petroleum substances and petrochemical compounds are widespread contaminants causing concern due to their toxicity and recalcitrance. Many remediation strategies have been developed using both physicochemical and biological approaches. Biological strategies are most benign, aiming to enhance microbial metabolic activities by supplying limiting inorganic nutrients, electron acceptors or donors, thus stimulating oxidation or reduction of contaminants. A key issue is controlling the supply of electron donors/acceptors. Bioelectrochemical systems (BES) have emerged, in which an electrical current serves as either electron donor or acceptor for oil spill bioremediation. BES are highly controllable and can possibly also serve as biosensors for real time monitoring of the degradation process. Despite being promising, multiple aspects need to be considered to make BES suitable for field applications including system design, electrode materials, operational parameters, mode of action and radius of influence. The microbiological processes, involved in bioelectrochemical contaminant degradation, are currently not fully understood, particularly in relation to electron transfer mechanisms. Especially in sulfate rich environments, the sulfur cycle appears pivotal during hydrocarbon oxidation. This review provides a comprehensive analysis of the research on bioelectrochemical remediation of oil spills and of the key parameters involved in the process.
Collapse
Affiliation(s)
- Matteo Daghio
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km 29,300, 00015 Monterotondo, RM, Italy
| | - Eleni Vaiopoulou
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Jan B A Arends
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Angela Sherry
- School of Civil Engineering & Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Ana Suárez-Suárez
- School of Civil Engineering & Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Ian M Head
- School of Civil Engineering & Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Giuseppina Bestetti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium.
| |
Collapse
|
26
|
Liu B, Liu J, Ju M, Li X, Wang P. Bacteria-white-rot fungi joint remediation of petroleum-contaminated soil based on sustained-release of laccase. RSC Adv 2017. [DOI: 10.1039/c7ra06962f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This research adopted a new way for white-rot fungi to play a full part in the degradation ability of both bacteria and fungi.
Collapse
Affiliation(s)
- Boqun Liu
- Laboratory of Environmental Protection in Water Transport Engineering
- Tianjin Research Institute of Water Transport Engineering
- Tianjin 300456
- China
| | - Jinpeng Liu
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300350
- PR China
| | - Meiting Ju
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300350
- PR China
| | - Xiaojing Li
- Agro-Environmental Protection Institute
- Ministry of Agriculture
- Tianjin 300191
- PR China
| | - Ping Wang
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300350
- PR China
| |
Collapse
|
27
|
Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells. Biosens Bioelectron 2016; 85:135-141. [DOI: 10.1016/j.bios.2016.05.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/14/2016] [Accepted: 05/01/2016] [Indexed: 11/18/2022]
|
28
|
Li X, Wang X, Zhang Y, Zhao Q, Yu B, Li Y, Zhou Q. Salinity and Conductivity Amendment of Soil Enhanced the Bioelectrochemical Degradation of Petroleum Hydrocarbons. Sci Rep 2016; 6:32861. [PMID: 27597387 PMCID: PMC5011858 DOI: 10.1038/srep32861] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/16/2016] [Indexed: 11/17/2022] Open
Abstract
The extreme salinity and high internal resistance of saline-alkali soil contaminated by petroleum hydrocarbons were two key limitations for using the bioelectrochemical remediation. In order to solve two problems, we simply rinsed soil, added carbon fiber to polluted soil. The charge output was enhanced by 110% with increase of the maximum current densities from 81 to 304 mA·m(-2) while hydrocarbons degradation rate enhanced by 484%, especially the high molecular weight fractions (C28-C36 of n-alkanes and 4-6 rings of PAHs). These effects were possibly due to the selective enrichment of species belonged to δ-Proteobacteria (Proteobacteria), Flavobacteriia (Bacteroidetes) or Clostridia (Firmicutes), the activities of biological electron transfer and enzymes. As we know, oxygenase gene that directly decided the process of degradation, was surveyed for the first time in soil bioelectrochemical remediation system. The results confirmed that the bio-current stimulated the activities of naphthalene dioxygenase and xylene monooxygenase and thus the hydrocarbons degradation and the electricity generation. Given that electricity generation and the remediation performance are governed by multiple factors, understanding of microbial community and enzyme gene is crucial to promote the power yield and the bioelectrochemical remediation applicability.
Collapse
Affiliation(s)
- Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yueyong Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Binbin Yu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
29
|
Liu B, Liu J, Ju M, Li X, Yu Q. Purification and characterization of biosurfactant produced by Bacillus licheniformis Y-1 and its application in remediation of petroleum contaminated soil. MARINE POLLUTION BULLETIN 2016; 107:46-51. [PMID: 27114088 DOI: 10.1016/j.marpolbul.2016.04.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
In our previous research, a petroleum degrading bacteria strain Bacillus licheniformis Y-1 was obtained in Dagang Oilfield which had the capability of producing biosurfactant. This biosurfactant was isolated and purified in this work. The biosurfactant produced by strain Y-1 had the capability to decrease the surface tension of water from 74.66 to 27.26mN/m, with the critical micelle concentration (CMC) of 40mg/L. The biosurfactant performed not only excellent stabilities against pH, temperature and salinity, but also great emulsifying activities to different kinds of oil, especially the crude oil. According to the results of FT-IR spectrum and (1)H NMR spectrum detection, the surfactant was determined to be a cyclic lipopeptide. Furthermore, through the addition of surfactant, the effect of petroleum contaminated soil remediation by fungi got a significant improvement.
Collapse
Affiliation(s)
- Boqun Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Jinpeng Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
| | - Meiting Ju
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, PR China
| | - Qilin Yu
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
30
|
Zhou L, Deng D, Zhang D, Chen Q, Kang J, Fan N, Liu Y. Microbial Electricity Generation and Isolation of Exoelectrogenic Bacteria Based on Petroleum Hydrocarbon-contaminated Soil. ELECTROANAL 2016. [DOI: 10.1002/elan.201501052] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lei Zhou
- College of Life Sciences; Northwest A&F University; Yangling, Shaanxi PR China 712100
| | - Dandan Deng
- College of Life Sciences; Northwest A&F University; Yangling, Shaanxi PR China 712100
| | - Di Zhang
- College of Life Sciences; Northwest A&F University; Yangling, Shaanxi PR China 712100
| | - Qi Chen
- College of Life Sciences; Northwest A&F University; Yangling, Shaanxi PR China 712100
| | - Jingquan Kang
- College of Life Sciences; Northwest A&F University; Yangling, Shaanxi PR China 712100
| | - Ningjuan Fan
- College of Life Sciences; Northwest A&F University; Yangling, Shaanxi PR China 712100
| | - Ying Liu
- College of Life Sciences; Northwest A&F University; Yangling, Shaanxi PR China 712100
| |
Collapse
|
31
|
Li X, Wang X, Ren ZJ, Zhang Y, Li N, Zhou Q. Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil. CHEMOSPHERE 2015; 141:62-70. [PMID: 26135976 DOI: 10.1016/j.chemosphere.2015.06.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/04/2015] [Accepted: 06/06/2015] [Indexed: 06/04/2023]
Abstract
Bioelectrochemical system is an emerging technology for the remediation of soils contaminated by petroleum hydrocarbons. However, performance of such systems can be limited by the inefficient mass transport in soil. Here we report a new method of sand amendment, which significantly increases both oxygen and proton transports, resulting to increased soil porosity (from 44.5% to 51.3%), decreased Ohmic resistance (by 46%), and increased charge output (from 2.5 to 3.5Cg(-1)soil). The degradation rates of petroleum hydrocarbons increased by up to 268% in 135d. The degradation of n-alkanes and polycyclic aromatic hydrocarbons with high molecular weight was accelerated, and denaturing gradient gel electrophoresis showed that the microbial community close to the air-cathode was substantially stimulated by the induced current, especially the hydrocarbon degrading bacteria Alcanivorax. The bioelectrochemical stimulation imposed a selective pressure on the microbial community of anodes, including that far from the cathode. These results suggested that sand amendment can be an effective approach for soil conditioning that will enhances the bioelectrochemical removal of hydrocarbons in contaminated soils.
Collapse
Affiliation(s)
- Xiaojing Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Zhiyong Jason Ren
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Yueyong Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Nan Li
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
32
|
Wang H, Luo H, Fallgren PH, Jin S, Ren ZJ. Bioelectrochemical system platform for sustainable environmental remediation and energy generation. Biotechnol Adv 2015; 33:317-34. [DOI: 10.1016/j.biotechadv.2015.04.003] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 03/29/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
|
33
|
Stimulating sediment bioremediation with benthic microbial fuel cells. Biotechnol Adv 2015; 33:1-12. [DOI: 10.1016/j.biotechadv.2014.12.011] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 12/29/2014] [Accepted: 12/29/2014] [Indexed: 12/30/2022]
|