1
|
Song Y, Han N, Guo Z, Li H, Guo M, Dou M, Ye J, Peng Z, Lu X, Li M, Wang X, Bai J, Du S. Baicalein-modified chitosan nanofiber membranes with antioxidant and antibacterial activities for chronic wound healing. Int J Biol Macromol 2024; 279:134902. [PMID: 39168207 DOI: 10.1016/j.ijbiomac.2024.134902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Diabetic foot ulcers, burns and many other trauma can lead to the formation of skin wounds, which often remain open for a long period of time, seriously affecting the quality of patient's life. Oxidative stress and infection are the main factors affecting the healing of chronic wounds, so it is important to develop dressings with dual antioxidant and antimicrobial properties for wound management. In this study, functionalized chitosan was synthesized by modifying chitosan with antioxidant baicalein to enhance the antimicrobial and antioxidant activities of chitosan. Then the obtained baicalein-modified chitosan was prepared into nanofibrous membranes by electrospinning. The membrane structures were characterized, and the antioxidant and antibacterial activities were evaluated by in vivo and in vitro experiments. The results showed that the prepared wound dressings had excellent antioxidant and antibacterial activities and significantly accelerated the wound process. This study provided a reference for the development of novel dressing materials to promote wound healing.
Collapse
Affiliation(s)
- Yang Song
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Ning Han
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Zishuo Guo
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Huahua Li
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Mingxue Guo
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Minhang Dou
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Jinhong Ye
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Ziwei Peng
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Xinying Lu
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Minghui Li
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Xinran Wang
- Beijing university of Chinese Medicine, Beijing 102488, China.
| | - Jie Bai
- Beijing university of Chinese Medicine, Beijing 102488, China.
| | - Shouying Du
- Beijing university of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
2
|
Asadzadeh F, Ghorbanzadeh S, Poursattar Marjani A, Gholami R, Asadzadeh F, Lotfollahi L. Assessing polylactic acid nanofibers with cellulose and chitosan nanocapsules loaded with chamomile extract for treating gram-negative infections. Sci Rep 2024; 14:22336. [PMID: 39333220 PMCID: PMC11437081 DOI: 10.1038/s41598-024-72398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
This study presents the development and characterization of a novel nanocomposite wound dressing material based on polylactic acid (PLA) nanofibers incorporating chitosan nanocapsules loaded with chamomile extract and cellulose nanoparticles. The nanofibers were fabricated using a three-step synthesis and electrospinning techniques, resulting in uniform, bead-free fibers with an average diameter of 186 ± 56 nm. Fourier-transform infrared spectroscopy confirmed the successful incorporation of all components, while tensile strength tests demonstrated improved mechanical properties by adding nanoparticles. Water contact angle measurements revealed enhanced surface wettability of the PLA-Cellulose-Chitosan complex compared to pure PLA nanofibers. In vitro biocompatibility assessments using MTT assays showed excellent cell viability and proliferation, with the optimized composite exhibiting the best performance. Scanning electron microscopy imaging confirmed robust cell adhesion and interaction with the nanofibers. The nanocomposite demonstrated significant antimicrobial activity against Escherichia coli, with a 20 mm inhibition zone observed for chamomile extract-loaded samples. Additionally, the material showed superior hemostatic ability compared to commercial gauze and high hemocompatibility. These comprehensive results indicate that the developed nanocomposite is a promising candidate for advanced wound management applications, offering a multifunctional approach to wound healing by combining antimicrobial activity, cell compatibility, and hemostatic properties.
Collapse
Affiliation(s)
- Fatemeh Asadzadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Sadegh Ghorbanzadeh
- School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | | | - Reza Gholami
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, IUST, Tehran, Iran
| | - Faezeh Asadzadeh
- Haj Muhammad Talaaie Scientific Research Institute, Nanotechnology Research Institute, Salmas, Iran
| | - Lida Lotfollahi
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Wang Y, Lv H, Ren S, Zhang J, Liu X, Chen S, Zhai J, Zhou Y. Biological Functions of Macromolecular Protein Hydrogels in Constructing Osteogenic Microenvironment. ACS Biomater Sci Eng 2024; 10:5513-5536. [PMID: 39173130 DOI: 10.1021/acsbiomaterials.4c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Irreversible bone defects resulting from trauma, infection, and degenerative illnesses have emerged as a significant health concern. Structurally and functionally controllable hydrogels made by bone tissue engineering (BTE) have become promising biomaterials. Natural proteins are able to establish connections with autologous proteins through unique biologically active regions. Hydrogels based on proteins can simulate the bone microenvironment and regulate the biological behavior of stem cells in the tissue niche, making them candidates for research related to bone regeneration. This article reviews the biological functions of various natural macromolecular proteins (such as collagen, gelatin, fibrin, and silk fibroin) and highlights their special advantages as hydrogels. Then the latest research trends on cross-linking modified macromolecular protein hydrogels with improved mechanical properties and composite hydrogels loaded with exogenous micromolecular proteins have been discussed. Finally, the applications of protein hydrogels, such as 3D printed hydrogels, microspheres, and injectable hydrogels, were introduced, aiming to provide a reference for the repair of clinical bone defects.
Collapse
Affiliation(s)
- Yihan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sicong Ren
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sheng Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
4
|
Lee J, Kim H, Lim HR, Kim YS, Hoang TTT, Choi J, Jeong GJ, Kim H, Herbert R, Soltis I, Kim KR, Lee SH, Kwon Y, Lee Y, Jang YC, Yeo WH. Large-scale smart bioreactor with fully integrated wireless multivariate sensors and electronics for long-term in situ monitoring of stem cell culture. SCIENCE ADVANCES 2024; 10:eadk6714. [PMID: 38354246 PMCID: PMC10866562 DOI: 10.1126/sciadv.adk6714] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Achieving large-scale, cost-effective, and reproducible manufacturing of stem cells with the existing devices is challenging. Traditional single-use cell-bag bioreactors, limited by their rigid and single-point sensors, struggle with accuracy and scalability for high-quality cell manufacturing. Here, we introduce a smart bioreactor system that enables multi-spatial sensing for real-time, wireless culture monitoring. This scalable system includes a low-profile, label-free thin-film sensor array and electronics integrated with a flexible cell bag, allowing for simultaneous assessment of culture properties such as pH, dissolved oxygen, glucose, and temperature, to receive real-time feedback for up to 30 days. The experimental results show the accurate monitoring of time-dynamic and spatial variations of stem cells and myoblast cells with adjustable carriers from a plastic dish to a 2-liter cell bag. These advances open up the broad applicability of the smart sensing system for large-scale, lower-cost, reproducible, and high-quality engineered cell manufacturing for broad clinical use.
Collapse
Affiliation(s)
- Jimin Lee
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hojoong Kim
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hyo-Ryoung Lim
- Major of Human Biocovergence, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Yun Soung Kim
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thi Thai Thanh Hoang
- Department of Orthopaedics, Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA
- Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Jeongmoon Choi
- Department of Orthopaedics, Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA
- Altos Labs-San Diego Institute of Science, San Diego, CA 92121, USA
| | - Gun-Jae Jeong
- Department of Orthopaedics, Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hodam Kim
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Robert Herbert
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Ira Soltis
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ka Ram Kim
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sung Hoon Lee
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Electrical and Computer Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Youngjin Kwon
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yunki Lee
- Department of Orthopaedics, Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA
- Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Young Charles Jang
- Department of Orthopaedics, Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA
- Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Le Thi P, Tran DL, Park KM, Lee S, Oh DH, Park KD. Biocatalytic nitric oxide generating hydrogels with enhanced anti-inflammatory, cell migration, and angiogenic capabilities for wound healing applications. J Mater Chem B 2024; 12:1538-1549. [PMID: 38251728 DOI: 10.1039/d3tb01943h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Although wound healing is a normal physiological process in the human body, it is often impaired by bacterial infections, ischemia, hypoxia, and excess inflammation, which can lead to chronic and non-healing wounds. Recently, injectable hydrogels with controlled nitric oxide (NO) release behaviour have become potential wound healing therapeutic agents due to their excellent biochemical, mechanical, and biological properties. Here, we proposed novel multifunctional NO-releasing hydrogels that could regulate various wound healing processes, including hemostasis, inflammation, cell proliferation and angiogenesis. By incorporating the copper nanoparticles (NPs) in the network of dual enzymatically crosslinked gelatin hydrogels (GH/Cu), NO was in situ produced via the Cu-catalyzed decomposition of endogenous RSNOs available in the blood, thus resolving the intrinsic shortcomings of NO therapies, such as the short storage and release time, as well as the burst and uncontrollable release modes. We demonstrated that the NO-releasing gelatin hydrogels enhanced the proliferation and migration of endothelial cells, while promoting the M2 (anti-inflammatory) polarization of the macrophage. Furthermore, the effects of NO release on angiogenesis were evaluated using an in vitro tube formation assay and in ovo chicken chorioallantoic membrane (CAM) assay, which revealed that GH/Cu hydrogels could significantly facilitate neovascularization, consistent with the in vivo results. Therefore, we suggested that these hydrogel systems would significantly enhance the wound healing process through the synergistic effects of the hydrogels and NO, and hence could be used as advanced wound dressing materials.
Collapse
Affiliation(s)
- Phuong Le Thi
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, No. 1B - TL29 Street, Thanh Loc Ward, 12th District, Ho Chi Minh City 700000, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Dieu Linh Tran
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, No. 1A - TL29 Street, Thanh Loc Ward, 12th District, Ho Chi Minh City 700000, Vietnam.
| | - Kyung Min Park
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| | - Simin Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Dong Hwan Oh
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
6
|
Pandya AK, Vora LK, Umeyor C, Surve D, Patel A, Biswas S, Patel K, Patravale VB. Polymeric in situ forming depots for long-acting drug delivery systems. Adv Drug Deliv Rev 2023; 200:115003. [PMID: 37422267 DOI: 10.1016/j.addr.2023.115003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Polymeric in situ forming depots have emerged as highly promising drug delivery systems for long-acting applications. Their effectiveness is attributed to essential characteristics such as biocompatibility, biodegradability, and the ability to form a stable gel or solid upon injection. Moreover, they provide added versatility by complementing existing polymeric drug delivery systems like micro- and nanoparticles. The formulation's low viscosity facilitates manufacturing unit operations and enhances delivery efficiency, as it can be easily administered via hypodermic needles. The release mechanism of drugs from these systems can be predetermined using various functional polymers. To enable unique depot design, numerous strategies involving physiological and chemical stimuli have been explored. Important assessment criteria for in situ forming depots include biocompatibility, gel strength and syringeability, texture, biodegradation, release profile, and sterility. This review focuses on the fabrication approaches, key evaluation parameters, and pharmaceutical applications of in situ forming depots, considering perspectives from academia and industry. Additionally, insights about the future prospects of this technology are discussed.
Collapse
Affiliation(s)
- Anjali K Pandya
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India; School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Chukwuebuka Umeyor
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 422001, Anambra State, Nigeria
| | - Dhanashree Surve
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Akanksha Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana 500078, India
| | - Ketankumar Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India.
| |
Collapse
|
7
|
Tahri S, Maarof M, Masri S, Che Man R, Masmoudi H, Fauzi MB. Human epidermal keratinocytes and human dermal fibroblasts interactions seeded on gelatin hydrogel for future application in skin in vitro 3-dimensional model. Front Bioeng Biotechnol 2023; 11:1200618. [PMID: 37425369 PMCID: PMC10326847 DOI: 10.3389/fbioe.2023.1200618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction: Plenty of biomaterials have been studied for their application in skin tissue engineering. Currently, gelatin-hydrogel is used to support three-dimensional (3D) skin in vitro models. However, mimicking the human body conditions and properties remains a challenge and gelatin-hydrogels have low mechanical properties and undergo rapid degradation rendering them not suitable for 3D in vitro cell culture. Nevertheless, changing the concentration of hydrogels could overcome this issue. Thus, we aim to investigate the potential of gelatin hydrogel with different concentrations crosslinked with genipin to promote human epidermal keratinocytes and human dermal fibroblasts culture to develop a 3D-in vitro skin model replacing animal models. Methods: Briefly, the composite gelatin hydrogels were fabricated using different concentrations as follows 3%, 5%, 8%, and 10% crosslinked with 0.1% genipin or non-crosslinked. Both physical and chemical properties were evaluated. Results and discussion: The crosslinked scaffolds showed better properties, including porosity and hydrophilicity, and genipin was found to enhance the physical properties. Furthermore, no alteration was prominent in both formulations of CL_GEL 5% and CL_GEL8% after genipin modification. The biocompatibility assays showed that all groups promoted cell attachment, cell viability, and cell migration except for the CL_GEL10% group. The CL_GEL5% and CL_GEL8% groups were selected to develop a bi-layer 3D-in vitro skin model. The immunohistochemistry (IHC) and hematoxylin and eosin staining (H&E) were performed on day 7, 14, and 21 to evaluate the reepithelization of the skin constructs. However, despite satisfactory biocompatibility properties, neither of the selected formulations, CL_GEL 5% and CL_GEL 8%, proved adequate for creating a bi-layer 3D in-vitro skin model. While this study provides valuable insights into the potential of gelatin hydrogels, further research is needed to address the challenges associated with their use in developing 3D skin models for testing and biomedical applications.
Collapse
Affiliation(s)
- Safa Tahri
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Research Laboratory LR12SP18 “Autoimmunity, Cancer, and Immunogenetics”, University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Syafira Masri
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rohaina Che Man
- Pathology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hatem Masmoudi
- Research Laboratory LR12SP18 “Autoimmunity, Cancer, and Immunogenetics”, University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Mondal P, Chakraborty I, Chatterjee K. Injectable Adhesive Hydrogels for Soft tissue Reconstruction: A Materials Chemistry Perspective. CHEM REC 2022; 22:e202200155. [PMID: 35997710 DOI: 10.1002/tcr.202200155] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/30/2022] [Indexed: 11/09/2022]
Abstract
Injectable bioadhesives offer several advantages over conventional staples and sutures in surgery to seal and close incisions or wounds. Despite the growing research in recent years few injectable bioadhesives are available for clinical use. This review summarizes the key chemical features that enable the development and improvements in the use of polymeric injectable hydrogels as bioadhesives or sealants, their design requirements, the gelation mechanism, synthesis routes, and the role of adhesion mechanisms and strategies in different biomedical applications. It is envisaged that developing a deep understanding of the underlying materials chemistry principles will enable researchers to effectively translate bioadhesive technologies into clinically-relevant products.
Collapse
Affiliation(s)
- Pritiranjan Mondal
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - Indranil Chakraborty
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| |
Collapse
|
9
|
Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022; 8:267-295. [PMID: 34541401 PMCID: PMC8424393 DOI: 10.1016/j.bioactmat.2021.06.027] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Polymeric hydrogels are fascinating platforms as 3D scaffolds for tissue repair and delivery systems of therapeutic molecules and cells. Among others, methacrylated gelatin (GelMA) has become a representative hydrogel formulation, finding various biomedical applications. Recent efforts on GelMA-based hydrogels have been devoted to combining them with bioactive and functional nanomaterials, aiming to provide enhanced physicochemical and biological properties to GelMA. The benefits of this approach are multiple: i) reinforcing mechanical properties, ii) modulating viscoelastic property to allow 3D printability of bio-inks, iii) rendering electrical/magnetic property to produce electro-/magneto-active hydrogels for the repair of specific tissues (e.g., muscle, nerve), iv) providing stimuli-responsiveness to actively deliver therapeutic molecules, and v) endowing therapeutic capacity in tissue repair process (e.g., antioxidant effects). The nanomaterial-combined GelMA systems have shown significantly enhanced and extraordinary behaviors in various tissues (bone, skin, cardiac, and nerve) that are rarely observable with GelMA. Here we systematically review these recent efforts in nanomaterials-combined GelMA hydrogels that are considered as next-generation multifunctional platforms for tissue therapeutics. The approaches used in GelMA can also apply to other existing polymeric hydrogel systems.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, WC1X8LD, UK
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
10
|
Ryu SB, Park KM, Park KD. In situ graphene oxide-gelatin hydrogels with enhanced mechanical property for tissue adhesive and regeneration. Biochem Biophys Res Commun 2022; 592:24-30. [PMID: 35016148 DOI: 10.1016/j.bbrc.2022.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/01/2022]
Abstract
Extracellular matrix (ECM) is playing a critical role which is component of mammalian tissue that provide structural support to cells. In addition, ECM act as a local depot for growth factors that control cell phenotype and differentiation. In this regard, scaffold that mimicking the ECM structure is important to growth or wound healing process. Gelatin is natural polymer and derived from collagen which is a major component of ECM. Using gelatin as an ECM mimicking structure has advantage of providing three-dimensional growth or supporting to regulate the cell behavior, proliferation, migration, cell survival, and differentiation. In this study, we developed enzyme-mediated crosslinking gelatin-based hydrogels with robust mechanical property to mimicking ECM and effectively attach to the surrounding tissue with high adhesive property. The effect of different concentration of graphene oxide (GO) on the physico-chemical properties of gelatin hydrogels were investigated, particularly tissue adhesion strength. In vitro proteolytic degradation behavior and human dermal fibroblast proliferation study confirmed the hydrogels were biodegradable and promote cell proliferation. Overall, we suggest that GO incorporated gelatin hydrogels with additional interfacial interactions, showing a promising potential as an injectable tissue adhesive.
Collapse
Affiliation(s)
- Seung Bae Ryu
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, South Korea
| | - Kyung Min Park
- Division of Bioengineering, Incheon National University, Incheon, 406-772, South Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, South Korea.
| |
Collapse
|
11
|
Sakr MA, Sakthivel K, Hossain T, Shin SR, Siddiqua S, Kim J, Kim K. Recent trends in gelatin methacryloyl nanocomposite hydrogels for tissue engineering. J Biomed Mater Res A 2021; 110:708-724. [PMID: 34558808 DOI: 10.1002/jbm.a.37310] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/21/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022]
Abstract
Gelatin methacryloyl (GelMA), a photocrosslinkable gelatin-based hydrogel, has been immensely used for diverse applications in tissue engineering and drug delivery. Apart from its excellent functionality and versatile mechanical properties, it is also suitable for a wide range of fabrication methodologies to generate tissue constructs of desired shapes and sizes. Despite its exceptional characteristics, it is predominantly limited by its weak mechanical strength, as some tissue types naturally possess high mechanical stiffness. The use of high GelMA concentrations yields high mechanical strength, but not without the compromise in its porosity, degradability, and three-dimensional (3D) cell attachment. Recently, GelMA has been blended with various natural and synthetic biomaterials to reinforce its physical properties to match with the tissue to be engineered. Among these, nanomaterials have been extensively used to form a composite with GelMA, as they increase its biological and physicochemical properties without affecting the unique characteristics of GelMA and also introduce electrical and magnetic properties. This review article presents the recent advances in the formation of hybrid GelMA nanocomposites using a variety of nanomaterials (carbon, metal, polymer, and mineral-based). We give an overview of each nanomaterial's characteristics followed by a discussion of the enhancement in GelMA's physical properties after its incorporation. Finally, we also highlight the use of each GelMA nanocomposite for different applications, such as cardiac, bone, and neural regeneration.
Collapse
Affiliation(s)
- Mahmoud A Sakr
- School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Kabilan Sakthivel
- School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Towsif Hossain
- School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Cambridge, Massachusetts, USA
| | - Sumi Siddiqua
- School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Jaehwan Kim
- Advanced Geo-materials Research Department, Korea Institute of Geosciece and Mineral Resources, Pohang-si, South Korea
| | - Keekyoung Kim
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Fan F, Saha S, Hanjaya-Putra D. Biomimetic Hydrogels to Promote Wound Healing. Front Bioeng Biotechnol 2021; 9:718377. [PMID: 34616718 PMCID: PMC8488380 DOI: 10.3389/fbioe.2021.718377] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/13/2021] [Indexed: 01/13/2023] Open
Abstract
Wound healing is a common physiological process which consists of a sequence of molecular and cellular events that occur following the onset of a tissue lesion in order to reconstitute barrier between body and external environment. The inherent properties of hydrogels allow the damaged tissue to heal by supporting a hydrated environment which has long been explored in wound management to aid in autolytic debridement. However, chronic non-healing wounds require added therapeutic features that can be achieved by incorporation of biomolecules and supporting cells to promote faster and better healing outcomes. In recent decades, numerous hydrogels have been developed and modified to match the time scale for distinct stages of wound healing. This review will discuss the effects of various types of hydrogels on wound pathophysiology, as well as the ideal characteristics of hydrogels for wound healing, crosslinking mechanism, fabrication techniques and design considerations of hydrogel engineering. Finally, several challenges related to adopting hydrogels to promote wound healing and future perspectives are discussed.
Collapse
Affiliation(s)
- Fei Fan
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Sanjoy Saha
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Donny Hanjaya-Putra
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
13
|
Nike DU, Katas H, Mohd NF, Hiraoka Y, Tabata Y, Idrus RBH, Fauzi MB. Characterisation of Rapid In Situ Forming Gelipin Hydrogel for Future Use in Irregular Deep Cutaneous Wound Healing. Polymers (Basel) 2021; 13:3152. [PMID: 34578052 PMCID: PMC8468405 DOI: 10.3390/polym13183152] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022] Open
Abstract
The irregular deep chronic wound is a grand challenge to be healed due to multiple factors including slow angiogenesis that causing regenerated tissue failure. The narrow gap of deep wounds could hinder and slow down normal wound healing. Thus, the current study aimed to develop a polymerised genipin-crosslinked gelatin (gelipin) hydrogel (GNP_GH) as a potential biodegradable filler for the abovementioned limitations. Briefly, GNP_GH bioscaffolds have been developed successfully within three-minute polymerisation at room temperature (22-24 °C). The physicochemical and biocompatibility of GNP_GH bioscaffolds were respectively evaluated. Amongst GNP_GH groups, the 0.1%GNP_GH10% displayed the highest injectability (97.3 ± 0.6%). Meanwhile, the 0.5%GNP_GH15% degraded within more than two weeks with optimum swelling capacity (108.83 ± 15.7%) and higher mechanical strength (22.6 ± 3.9 kPa) than non-crosslinked gelatin hydrogel 15% (NC_GH15%). Furthermore, 0.1%GNP_GH15% offered higher porosity (>80%) and lower wettability (48.7 ± 0.3) than NC_GH15%. Surface and cross-section SEM photographs displayed an interconnected porous structure for all GNP_GH groups. The EDX spectra and maps represented no major changes after GNP modification. Moreover, no toxicity effect of GNP_GH against dermal fibroblasts was shown during the biocompatibility test. In conclusion, the abovementioned findings indicated that gelipin has excellent physicochemical properties and acceptable biocompatibility as an acellular rapid treatment for future use in irregular deep cutaneous wounds.
Collapse
Affiliation(s)
- Dewi Utami Nike
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (D.U.N.); (R.B.H.I.)
| | - Haliza Katas
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Nor Fatimah Mohd
- Kumpulan Perubatan Johor Ampang Puteri Specialist Hospital, Ampang, Kuala Lumpur 68000, Malaysia;
| | - Yosuke Hiraoka
- Biomaterial Group, R&D Center, Yao City 581-0000, Japan;
| | - Yasuhiko Tabata
- Department of Biomaterials, Sakyo-ku, Kyoto 606-8500, Japan;
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (D.U.N.); (R.B.H.I.)
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (D.U.N.); (R.B.H.I.)
| |
Collapse
|
14
|
Wang X, Qi J, Zhang W, Pu Y, Yang R, Wang P, Liu S, Tan X, Chi B. 3D-printed antioxidant antibacterial carboxymethyl cellulose/ε-polylysine hydrogel promoted skin wound repair. Int J Biol Macromol 2021; 187:91-104. [PMID: 34298048 DOI: 10.1016/j.ijbiomac.2021.07.115] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023]
Abstract
Developing a wound dressing for the treatment of large and irregular-shaped wounds remains a great challenge. Herein we developed novel printable bionic hydrogels with antibacterial and antioxidant properties which could effectively overcome the challenge by inhibiting inflammation and accelerating wound healing. The CMC/PL (CP) hydrogels were customized with glycidyl methacrylate (GMA) modified carboxymethyl cellulose (CMC) and ε-polylysine (ε-PL) via ultraviolet (UV) light polymerization using a 3D printer. Except for the high compression modulus (238 kPa), stable rheological properties, and effective degradability, these CP hydrogels also had an excellent inhibitory effect (95%) on both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Remarkably, CP hydrogels could remove the excessive reactive oxygen species (ROS) and protect the fibroblasts from damage. Compared with the commercial dressing (Tegaderm ™ film), CP hydrogels showed a better ability to increase the expression of VEGF and CD31, accelerate granulation tissue regeneration, and promote wound healing. This work provides a new strategy to fabricate on-demand multi-functional hydrogels in the field of skin tissue engineering.
Collapse
Affiliation(s)
- Xiaoxue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Jingjie Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yajie Pu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
15
|
Abstract
Polymeric tissue adhesives provide versatile materials for wound management and are widely used in a variety of medical settings ranging from minor to life-threatening tissue injuries. Compared to the traditional methods of wound closure (i.e., suturing and stapling), they are relatively easy to use, enable rapid application, and introduce minimal tissue damage. Furthermore, they can act as hemostats to control bleeding and provide a tissue-healing environment at the wound site. Despite their numerous current applications, tissue adhesives still face several limitations and unresolved challenges (e.g., weak adhesion strength and poor mechanical properties) that limit their use, leaving ample room for future improvements. Successful development of next-generation adhesives will likely require a holistic understanding of the chemical and physical properties of the tissue-adhesive interface, fundamental mechanisms of tissue adhesion, and requirements for specific clinical applications. In this review, we discuss a set of rational guidelines for design of adhesives, recent progress in the field along with examples of commercially available adhesives and those under development, tissue-specific considerations, and finally potential functions for future adhesives. Advances in tissue adhesives will open new avenues for wound care and potentially provide potent therapeutics for various medical applications.
Collapse
Affiliation(s)
- Sungmin Nam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States.,Wyss Institute for Biologically Inspired Engineering, Cambridge, Massachusetts 02115, United States
| | - David Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States.,Wyss Institute for Biologically Inspired Engineering, Cambridge, Massachusetts 02115, United States
| |
Collapse
|
16
|
Thi PL, Lee Y, Tran DL, Hoang Thi TT, Park KM, Park KD. Calcium peroxide-mediated in situ formation of multifunctional hydrogels with enhanced mesenchymal stem cell behaviors and antibacterial properties. J Mater Chem B 2020; 8:11033-11043. [PMID: 33196075 DOI: 10.1039/d0tb02119a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Injectable hydrogels can serve as therapeutic vehicles and implants for the treatment of various diseases as well as for tissue repair/regeneration. In particular, the horseradish peroxidase (HRP) and hydrogen peroxide (H2O2)-catalyzed hydrogelation system has attracted much attention, due to its ease of handling and controllable gel properties. In this study, we introduce calcium peroxide (CaO2) as a H2O2-generating reagent to gradually supply a radical source for the HRP-catalyzed crosslinking reaction. This novel therapy can create stiff hydrogels without compromising the cytocompatibility of the hydrogels due to the use of initially high concentrations of H2O2. The physico-chemical properties of the hydrogels can be controlled by varying the concentrations of HRP and CaO2. In addition, the controlled and sustained release of bioactive molecules, including H2O2, O2, and Ca2+ ions, from the hydrogels could stimulate the cellular behaviors (attachment, migration, and differentiation) of human mesenchymal stem cells. Moreover, the hydrogels exhibited killing efficacy against both Gram-negative and Gram-positive bacteria, dependent on the H2O2 and Ca2+ release amounts. These positive results suggest that hydrogels formed by HRP/CaO2 can be used as potential matrices for a wide range of biomedical applications, such as bone regeneration and infection treatment.
Collapse
Affiliation(s)
- Phuong Le Thi
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon 16499, Republic of Korea.
| | - Yunki Lee
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon 16499, Republic of Korea.
| | - Dieu Linh Tran
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon 16499, Republic of Korea.
| | - Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Kyung Min Park
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon 16499, Republic of Korea.
| |
Collapse
|
17
|
Bai Q, Han K, Dong K, Zheng C, Zhang Y, Long Q, Lu T. Potential Applications of Nanomaterials and Technology for Diabetic Wound Healing. Int J Nanomedicine 2020; 15:9717-9743. [PMID: 33299313 PMCID: PMC7721306 DOI: 10.2147/ijn.s276001] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
Diabetic wound shows delayed and incomplete healing processes, which in turn exposes patients to an environment with a high risk of infection. This article has summarized current developments of nanoparticles/hydrogels and nanotechnology used for promoting the wound healing process in either diabetic animal models or patients with diabetes mellitus. These nanoparticles/hydrogels promote diabetic wound healing by loading bioactive molecules (such as growth factors, genes, proteins/peptides, stem cells/exosomes, etc.) and non-bioactive substances (metal ions, oxygen, nitric oxide, etc.). Among them, smart hydrogels (a very promising method for loading many types of bioactive components) are currently favored by researchers. In addition, nanoparticles/hydrogels can be combined with some technology (including PTT, LBL self-assembly technique and 3D-printing technology) to treat diabetic wound repair. By reviewing the recent literatures, we also proposed new strategies for improving multifunctional treatment of diabetic wounds in the future.
Collapse
Affiliation(s)
- Que Bai
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Kai Han
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Kai Dong
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Caiyun Zheng
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Yanni Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Qianfa Long
- Mini-Invasive Neurosurgery and Translational Medical Center, Xi’an Central Hospital, Xi’an Jiaotong University, Xi’an710003, People’s Republic of China
| | - Tingli Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| |
Collapse
|
18
|
Xu S, Li Q, Pan H, Dai Q, Feng Q, Yu C, Zhang X, Liang Z, Dong H, Cao X. Tubular Silk Fibroin/Gelatin-Tyramine Hydrogel with Controllable Layer Structure and Its Potential Application for Tissue Engineering. ACS Biomater Sci Eng 2020; 6:6896-6905. [DOI: 10.1021/acsbiomaterials.0c01183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Sheng Xu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People’s Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510641, People’s Republic of China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, People’s Republic of China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, People’s Republic of China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People’s Republic of China
| | - Qingtao Li
- School of Medicine, South China University of Technology, Guangzhou 510641, People’s Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510641, People’s Republic of China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, People’s Republic of China
| | - Haotian Pan
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People’s Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510641, People’s Republic of China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, People’s Republic of China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, People’s Republic of China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People’s Republic of China
| | - Qiyuan Dai
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People’s Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510641, People’s Republic of China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, People’s Republic of China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, People’s Republic of China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People’s Republic of China
| | - Qi Feng
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People’s Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510641, People’s Republic of China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, People’s Republic of China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, People’s Republic of China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People’s Republic of China
| | - Chenxi Yu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People’s Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510641, People’s Republic of China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, People’s Republic of China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, People’s Republic of China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People’s Republic of China
| | - Xiaohua Zhang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People’s Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510641, People’s Republic of China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, People’s Republic of China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, People’s Republic of China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People’s Republic of China
| | - Zhibin Liang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People’s Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510641, People’s Republic of China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, People’s Republic of China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, People’s Republic of China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People’s Republic of China
| | - Hua Dong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People’s Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510641, People’s Republic of China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, People’s Republic of China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, People’s Republic of China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People’s Republic of China
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People’s Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510641, People’s Republic of China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, People’s Republic of China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, People’s Republic of China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
19
|
Optimising Hydrogel Release Profiles for Viro-Immunotherapy Using Oncolytic Adenovirus Expressing IL-12 and GM-CSF with Immature Dendritic Cells. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082872] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sustained-release delivery systems, such as hydrogels, significantly improve cancer therapies by extending the treatment efficacy and avoiding excess wash-out. Combined virotherapy and immunotherapy (viro-immunotherapy) is naturally improved by these sustained-release systems, as it relies on the continual stimulation of the antitumour immune response. In this article, we consider a previously developed viro-immunotherapy treatment where oncolytic viruses that are genetically engineered to infect and lyse cancer cells are loaded onto hydrogels with immature dendritic cells (DCs). The time-dependent release of virus and immune cells results in a prolonged cancer cell killing from both the virus and activated immune cells. Although effective, a major challenge is optimising the release profile of the virus and immature DCs from the gel so as to obtain a minimum tumour size. Using a system of ordinary differential equations calibrated to experimental results, we undertake a novel numerical investigation of different gel-release profiles to determine the optimal release profile for this viro-immunotherapy. Using a data-calibrated mathematical model, we show that if the virus is released rapidly within the first few days and the DCs are released for two weeks, the tumour burden can be significantly decreased. We then find the true optimal gel-release kinetics using a genetic algorithm and suggest that complex profiles present unnecessary risk and that a simple linear-release model is optimal. In this work, insight is provided into a fundamental problem in the growing field of sustained-delivery systems using mathematical modelling and analysis.
Collapse
|
20
|
Le Thi P, Lee Y, Tran DL, Hoang Thi TT, Park KD. Horseradish peroxidase-catalyzed hydrogelation of fish gelatin with tunable mechanical properties and biocompatibility. J Biomater Appl 2020; 34:1216-1226. [PMID: 31914843 DOI: 10.1177/0885328219899787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Horseradish peroxidase-catalyzed injectable gelatin hydrogels have attracted much attention in various biomedical fields because of their processability, biodegradability, and excellent biocompatibility in promoting cell adhesion and proliferation. However, gelatin derivatives are mainly obtained from mammalian sources (porcine, bovine) with thermal gelation at room temperature, leading to the potential problems in biofabrication applications. Here, we introduce a novel fish gelatin derivative that can be easily dissolved and cross-linked at room temperature by horseradish peroxidase. This system provides thermally stable fish gelatin hydrogels with tunable mechanical and biological properties, comparable to porcine gelatin hydrogels. The properties (gelation time, stiffness, degradation rate) of hydrogels prepared from fish gelatin-hydroxyphenyl propionic acid (FGH) are controllable for suitable applications. Moreover, FGH hydrogels allow human dermal fibroblast cells to adhere, proliferate, and produce the extracellular components. These results suggest horseradish peroxidase-cross-linked FGH as potential hydrogel matrices that can be used as an alternative for mammalian gelatin hydrogels in various biomedical applications.
Collapse
Affiliation(s)
- Phuong Le Thi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Yunki Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Dieu Linh Tran
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
21
|
Varaprasad K, Jayaramudu T, Kanikireddy V, Toro C, Sadiku ER. Alginate-based composite materials for wound dressing application:A mini review. Carbohydr Polym 2020; 236:116025. [PMID: 32172843 DOI: 10.1016/j.carbpol.2020.116025] [Citation(s) in RCA: 372] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/03/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Abstract
Alginate biopolymer has been used in the design and development of several wound dressing materials in order to improve the efficiency of wound healing. Mainly, alginate improves the hydrophilic nature of wound dressing materials in order to create the required moist wound environment, remove wound exudate and increase the speed of skin recovery of the wound. In addition, alginate can easily cross-link with other organic and inorganic materials and they can promote wound healing in clinical applications. This review article addresses the importance of alginates and the roles of derivative polymeric materials in wound dressing biomaterials. Additionally, studies on recent alginate-based wound dressing materials are discussed.
Collapse
Affiliation(s)
- Kokkarachedu Varaprasad
- Centro de Investigación de Polímeros Avanzados, CIPA, Avenida Collao 1202, Edificio de Laboratorios, Concepción, Chile.
| | - Tippabattini Jayaramudu
- Laboratory of Material Sciences, Instituto de Quimica de Recursos Naturales, Universidad de Talca, 747, Talca, Chile
| | - Vimala Kanikireddy
- Department of Chemistry, Osmania University, Hyderabad, 500 007, Telangana, India
| | - Claudio Toro
- Centro de Investigación de Polímeros Avanzados, CIPA, Avenida Collao 1202, Edificio de Laboratorios, Concepción, Chile
| | - Emmanuel Rotimi Sadiku
- Institute of NanoEngineering Research (INER), Department of Chemical, Metallurgical & Materials Engineering, (Polymer Division), Tshwane University of Technology, Pretoria West Campus, Staatsartillerie Rd, Pretoria, 0183, South Africa
| |
Collapse
|
22
|
Kim CW, Kim CJ, Park EH, Ryu S, Lee Y, Kim E, Kang K, Lee KY, Choo EH, Hwang BH, Youn HJ, Park KD, Chang K. MSC-Encapsulating in Situ Cross-Linkable Gelatin Hydrogels To Promote Myocardial Repair. ACS APPLIED BIO MATERIALS 2020; 3:1646-1655. [DOI: 10.1021/acsabm.9b01215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chan Woo Kim
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chan Joon Kim
- Division of Cardiology, Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu 11765, Republic of Korea
| | - Eun-Hye Park
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seungbae Ryu
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Yunki Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Eunmin Kim
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kwonyoon Kang
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kwan Yong Lee
- Division of Cardiology, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Republic of Korea
| | - Eun-Ho Choo
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Byung-Hee Hwang
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ho-Joong Youn
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Kiyuk Chang
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
23
|
In situ forming and reactive oxygen species-scavenging gelatin hydrogels for enhancing wound healing efficacy. Acta Biomater 2020; 103:142-152. [PMID: 31846801 DOI: 10.1016/j.actbio.2019.12.009] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/13/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
Abstract
The overexpression of reactive oxygen species (ROS) contributes to the pathogenesis of numerous diseases such as atherosclerosis, myocardial infarction, cancer, and chronic inflammation. Therefore, the development of materials that can locally control the adverse effects resulting from excessive ROS generation is of great significance. In this study, the antioxidant gallic acid-conjugated gelatin (GGA) was introduced into gelatin-hydroxyphenyl propionic (GH) hydrogels to create an injectable hydrogel with enhanced free radical scavenging properties compared to pure GH hydrogels. The modified hydrogels were rapidly formed by an HRP-catalyzed cross-linking reaction with high mechanical strength and biodegradability. The resulting GH/GGA hydrogels effectively scavenged the hydroxyl radicals and DPPH radicals, and the scavenging capacity could be modulated by varying GGA concentrations. Moreover, in an in vitro H2O2-induced ROS microenvironment, GH/GGA hydrogels significantly suppressed the oxidative damage of human dermal fibroblast (hDFBs) and preserved their viability by reducing intracellular ROS production. More importantly, the ROS scavenging hydrogel efficiently accelerated the wound healing process with unexpected regenerative healing characteristics, shown by hair follicle formation; promoted neovascularization; and highly ordered the alignment of collagen fiber in a full-thickness skin defect model. Therefore, we expect that injectable GH/GGA hydrogels can serve as promising biomaterials for tissue regeneration applications, including wound treatment and other tissue repair related to ROS overexpression. STATEMENT OF SIGNIFICANCE: Recently, many researchers have endeavored to develop injectable hydrogel matrices that can modulate the ROS level to normal physiological processes for the treatment of various diseases. Here, we designed an injectable gelatin hydrogel in which gallic acid, an antioxidant compound, was conjugated onto a gelatin polymer backbone. The hydrogels showed tunable properties and could scavenge the free radicals in a controllable manner. Because of the ROS scavenging properties, the hydrogels protected the cells from the oxidative damage of ROS microenvironment and effectively accelerated the wound healing process with high quality of healed skin. We believe that this injectable ROS scavenging hydrogel has great potential for wound treatment and tissue regeneration, where oxidative damage by ROS contributes to the pathogenesis.
Collapse
|
24
|
Zhong H, Zhu W, Yan Z, Xu C, Wei B, Wang H. A quantum dot-based fluorescence sensing platform for the efficient and sensitive monitoring of collagen self-assembly. NEW J CHEM 2020. [DOI: 10.1039/d0nj01346c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient and sensitive assay for monitoring collagen self-assembly is presented.
Collapse
Affiliation(s)
- Huaying Zhong
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Weizhe Zhu
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Zihan Yan
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Benmei Wei
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Haibo Wang
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| |
Collapse
|
25
|
Hoang Thi TT, Lee Y, Le Thi P, Park KD. Engineered horseradish peroxidase-catalyzed hydrogels with high tissue adhesiveness for biomedical applications. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.05.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Francesko A, Petkova P, Tzanov T. Hydrogel Dressings for Advanced Wound Management. Curr Med Chem 2019; 25:5782-5797. [PMID: 28933299 DOI: 10.2174/0929867324666170920161246] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/08/2017] [Accepted: 08/25/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Composed in a large extent of water and due to their nonadhesiveness, hydrogels found their way to the wound dressing market as materials that provide a moisture environment for healing while being comfortable to the patient. Hydrogels' exploitation is constantly increasing after evidences of their even broader therapeutic potential due to resemblance to dermal tissue and ability to induce partial skin regeneration. The innovation in advanced wound care is further directed to the development of so-called active dressings, where hydrogels are combined with components that enhance the primary purpose of providing a beneficial environment for wound healing. OBJECTIVE The objective of this review is to concisely describe the relevance of hydrogel dressings as platforms for delivery of active molecules for improved management of difficult- to-treat wounds. The emphasis is on the most recent advances in development of stimuli- responsive hydrogels, which allow for control over wound healing efficiency in response to different external modalities. Novel strategies for monitoring of the wound status and healing progress based on incorporation of sensor molecules into the hydrogel platforms are also discussed.
Collapse
Affiliation(s)
| | - Petya Petkova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain
| |
Collapse
|
27
|
Nezhad-Mokhtari P, Ghorbani M, Roshangar L, Soleimani Rad J. Chemical gelling of hydrogels-based biological macromolecules for tissue engineering: Photo- and enzymatic-crosslinking methods. Int J Biol Macromol 2019; 139:760-772. [DOI: 10.1016/j.ijbiomac.2019.08.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/26/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022]
|
28
|
Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev 2019; 146:209-239. [PMID: 30605737 DOI: 10.1016/j.addr.2018.12.014] [Citation(s) in RCA: 359] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/27/2018] [Accepted: 12/27/2018] [Indexed: 12/14/2022]
Abstract
Cutaneous injuries, especially chronic wounds, burns, and skin wound infection, require painstakingly long-term treatment with an immense financial burden to healthcare systems worldwide. However, clinical management of chronic wounds remains unsatisfactory in many cases. Various strategies including growth factor and gene delivery as well as cell therapy have been used to enhance the healing of non-healing wounds. Drug delivery systems across the nano, micro, and macroscales can extend half-life, improve bioavailability, optimize pharmacokinetics, and decrease dosing frequency of drugs and genes. Replacement of the damaged skin tissue with substitutes comprising cell-laden scaffold can also restore the barrier and regulatory functions of skin at the wound site. This review covers comprehensively the advanced treatment strategies to improve the quality of wound healing.
Collapse
|
29
|
Oxidized Alginate Supplemented Gelatin Hydrogels for the In Situ Formation of Wound Dressing with High Antibacterial Activity. Macromol Res 2019. [DOI: 10.1007/s13233-019-7115-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Kim SY, Park BJ, Lee Y, Park NJ, Park KM, Hwang YS, Park KD. Human hair keratin-based hydrogels as dynamic matrices for facilitating wound healing. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
31
|
Marques MS, Zepon ΚM, Heckler JM, Morisso FDP, da Silva Paula MM, Κanis LA. One-pot synthesis of gold nanoparticles embedded in polysaccharide-based hydrogel: Physical-chemical characterization and feasibility for large-scale production. Int J Biol Macromol 2019; 124:838-845. [DOI: 10.1016/j.ijbiomac.2018.11.231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/09/2018] [Accepted: 11/25/2018] [Indexed: 01/15/2023]
|
32
|
Tonda-Turo C, Ruini F, Ceresa C, Gentile P, Varela P, Ferreira AM, Fracchia L, Ciardelli G. Nanostructured scaffold with biomimetic and antibacterial properties for wound healing produced by ‘green electrospinning’. Colloids Surf B Biointerfaces 2018; 172:233-243. [DOI: 10.1016/j.colsurfb.2018.08.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023]
|
33
|
Guebitz GM, Nyanhongo GS. Enzymes as Green Catalysts and Interactive Biomolecules in Wound Dressing Hydrogels. Trends Biotechnol 2018; 36:1040-1053. [DOI: 10.1016/j.tibtech.2018.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 02/08/2023]
|
34
|
Wang D, Yang X, Liu Q, Yu L, Ding J. Enzymatically cross-linked hydrogels based on a linear poly(ethylene glycol) analogue for controlled protein release and 3D cell culture. J Mater Chem B 2018; 6:6067-6079. [PMID: 32254817 DOI: 10.1039/c8tb01949e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Injectable and enzyme-mediated cross-linked hydrogels are promising biomedical materials. However, although poly(ethylene glycol) (PEG) is a popular basic component of synthetic hydrogels, only a few PEG-based enzymatically cross-linked hydrogels have been developed based on branched PEG. Compared with branched PEG, linear PEGs with different molecular weights are readily available and low-cost, while the poor capacity for post-polymerization modifications of linear PEG limited its application on a greater scale. Herein, a linear PEG-based analogue functionalized with multiple phenolic hydroxyl moieties, PEGDA-DTT-HPA, was designed and synthesized via Michael-type polyaddition combined with Steglich esterification. Environmentally friendly hydrogels composed of PEGDA-DTT-HPA were facilely formed under the catalysis of horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H2O2). The gelation time and mechanical strengths of hydrogels were found to be adjusted independently by altering the concentrations of HRP and H2O2, respectively. The hydrogels were further demonstrated as protein drug and cell carriers using bovine serum albumin (BSA) and lentivirus-mediated LifeAct-EGFP overexpressed human mesenchymal stem cells (hMSCs-LifeAct-EGFP), respectively. The BSA-loaded hydrogel systems exhibited a sustained drug release over 3 weeks; the encapsulated hMSCs showed good viability over all time points assessed. Consequently, the current study opens new avenues for the design of PEG-based injectable hydrogels and the PEGDA-DTT-HPA hydrogel has great potential for applications in drug delivery, 3D cell culture and tissue regeneration.
Collapse
Affiliation(s)
- Danni Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | | | | | | | | |
Collapse
|
35
|
Kim G, Park YS, Lee Y, Jin YM, Choi DH, Ryu KH, Park YJ, Park KD, Jo I. Tonsil-derived mesenchymal stem cell-embedded in situ crosslinkable gelatin hydrogel therapy recovers postmenopausal osteoporosis through bone regeneration. PLoS One 2018; 13:e0200111. [PMID: 29975738 PMCID: PMC6033433 DOI: 10.1371/journal.pone.0200111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/19/2018] [Indexed: 12/23/2022] Open
Abstract
We investigated therapeutic potential of human tonsil-derived mesenchymal stem cells (TMSC) subcutaneously delivered to ovariectomized (OVX) mice for developing more safe and effective therapy for osteoporosis. TMSC were isolated from tonsil tissues of children undergoing tonsillectomy, and TMSC-embedded in situ crosslinkable gelatin-hydroxyphenyl propionic acid hydrogel (TMSC-GHH) or TMSC alone were delivered subcutaneously to the dorsa of OVX mice. After 3 months, three-dimensionally reconstructed micro-computed tomographic images revealed better recovery of the femoral heads in OVX mice treated with TMSC-GHH. Serum osteocalcin and alkaline phosphatase were also recovered, indicating bone formation only in TMSC-GHH-treated mice, and absence in hypercalcemia or other severe macroscopic deformities showed biocompatibility of TMSC-GHH. Additionally, visceral fat reduction effects by TMSC-GHH further supported their therapeutic potential. TMSC provided therapeutic benefits toward osteoporosis only when embedded in GHH, and showed potential as a supplement or alternative to current therapies.
Collapse
Affiliation(s)
- Gyungah Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Ewha Tonsil-derived mesenchymal Stem cells Research Center (ETSRC), College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yoon Shin Park
- Major in Microbiology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Yunki Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Yoon Mi Jin
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Ewha Tonsil-derived mesenchymal Stem cells Research Center (ETSRC), College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Da Hyeon Choi
- Major in Microbiology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyung-Ha Ryu
- Ewha Tonsil-derived mesenchymal Stem cells Research Center (ETSRC), College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yoon Jeong Park
- Department of Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Ewha Tonsil-derived mesenchymal Stem cells Research Center (ETSRC), College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
36
|
Zhu S, Yuan Q, Yin T, You J, Gu Z, Xiong S, Hu Y. Self-assembly of collagen-based biomaterials: preparation, characterizations and biomedical applications. J Mater Chem B 2018; 6:2650-2676. [DOI: 10.1039/c7tb02999c] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
By combining regulatory parameters with characterization methods, researchers can selectively fabricate collagenous biomaterials with various functional responses for biomedical applications.
Collapse
Affiliation(s)
- Shichen Zhu
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province
| | - Qijuan Yuan
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Tao Yin
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
| | - Juan You
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
| | - Zhipeng Gu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Shanbai Xiong
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province
| | - Yang Hu
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province
| |
Collapse
|
37
|
Cheng H, Li C, Jiang Y, Wang B, Wang F, Mao Z, Xu H, Wang L, Sui X. Facile preparation of polysaccharide-based sponges and their potential application in wound dressing. J Mater Chem B 2018; 6:634-640. [DOI: 10.1039/c7tb03000b] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A cellulose–chitosan hybrid sponge incorporating sustainability, desired functionality and stability was used as a wound dressing.
Collapse
Affiliation(s)
- Huan Cheng
- Key Lab of Science and Technology of Eco-textile
- Ministry of Education
- Donghua University
- China
| | - Chaojing Li
- Key Lab of Textile Science and Technology
- Ministry of Education
- Donghua University
- China
| | - Yujia Jiang
- Key Lab of Science and Technology of Eco-textile
- Ministry of Education
- Donghua University
- China
| | - Bijia Wang
- Key Lab of Science and Technology of Eco-textile
- Ministry of Education
- Donghua University
- China
| | - Fujun Wang
- Key Lab of Textile Science and Technology
- Ministry of Education
- Donghua University
- China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco-textile
- Ministry of Education
- Donghua University
- China
| | - Hong Xu
- Key Lab of Science and Technology of Eco-textile
- Ministry of Education
- Donghua University
- China
| | - Lu Wang
- Key Lab of Textile Science and Technology
- Ministry of Education
- Donghua University
- China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-textile
- Ministry of Education
- Donghua University
- China
| |
Collapse
|
38
|
Sakai S, Nakahata M. Horseradish Peroxidase Catalyzed Hydrogelation for Biomedical, Biopharmaceutical, and Biofabrication Applications. Chem Asian J 2017; 12:3098-3109. [DOI: 10.1002/asia.201701364] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Shinji Sakai
- Department of Materials Science and Engineering; Graduate School of Engineering Science; Osaka University; 1-3 Machikaneyama-cho Toyonaka Osaka Japan
| | - Masaki Nakahata
- Department of Materials Science and Engineering; Graduate School of Engineering Science; Osaka University; 1-3 Machikaneyama-cho Toyonaka Osaka Japan
| |
Collapse
|
39
|
Zhao L, Niu L, Liang H, Tan H, Liu C, Zhu F. pH and Glucose Dual-Responsive Injectable Hydrogels with Insulin and Fibroblasts as Bioactive Dressings for Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:37563-37574. [PMID: 28994281 DOI: 10.1021/acsami.7b09395] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
pH and glucose dual-responsive injectable hydrogels were prepared through the cross-linking of Schiff's base and phenylboronate ester using phenylboronic-modified chitosan, poly(vinyl alcohol) and benzaldehyde-capped poly(ethylene glycol). Protein drugs and live cells could be incorporated into the hydrogels during the in situ cross-linking, displaying sustained and pH/glucose-triggered drug release from the hydrogels and cell viability and proliferation in the three-dimensional hydrogel matrix as well. Hence, the hydrogels with insulin and fibroblasts were considered as bioactive dressings for diabetic wound healing. A streptozotocin-induced diabetic rat model was used to evaluate the efficacy of hydrogel dressings in wound repair. The results revealed that the incorporation of insulin and L929 in the hydrogels could promote neovascularization and collagen deposition and enhance the wound-healing process of diabetic wounds. Thus, the drug- and cell-loaded hydrogels have promising potential in wound healing as a medicated system for various therapeutic proteins and live cells.
Collapse
Affiliation(s)
- Lingling Zhao
- Faculty of Materials Science and Chemical Engineering, Ningbo University , Ningbo 315211, China
- Division of Surgery and Interventional Science, University College London , London HA7 4LP, U.K
| | - Lijing Niu
- Faculty of Materials Science and Chemical Engineering, Ningbo University , Ningbo 315211, China
| | - Hongze Liang
- Faculty of Materials Science and Chemical Engineering, Ningbo University , Ningbo 315211, China
| | - Hui Tan
- Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital , Shenzhen 518035, China
| | - Chaozong Liu
- Division of Surgery and Interventional Science, University College London , London HA7 4LP, U.K
| | - Feiyan Zhu
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital , Shenzhen 518035, China
| |
Collapse
|
40
|
Lee Y, Balikov DA, Lee JB, Lee SH, Lee SH, Lee JH, Park KD, Sung HJ. In Situ Forming Gelatin Hydrogels-Directed Angiogenic Differentiation and Activity of Patient-Derived Human Mesenchymal Stem Cells. Int J Mol Sci 2017; 18:E1705. [PMID: 28777301 PMCID: PMC5578095 DOI: 10.3390/ijms18081705] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 07/30/2017] [Accepted: 08/01/2017] [Indexed: 12/23/2022] Open
Abstract
Directing angiogenic differentiation of mesenchymal stem cells (MSCs) still remains challenging for successful tissue engineering. Without blood vessel formation, stem cell-based approaches are unable to fully regenerate damaged tissues due to limited support for cell viability and desired tissue/organ functionality. Herein, we report in situ cross-linkable gelatin-hydroxyphenyl propionic acid (GH) hydrogels that can induce pro-angiogenic profiles of MSCs via purely material-driven effects. This hydrogel directed endothelial differentiation of mouse and human patient-derived MSCs through integrin-mediated interactions at the cell-material interface, thereby promoting perfusable blood vessel formation in vitro and in vivo. The causative roles of specific integrin types (α₁ and αvβ₃) in directing endothelial differentiation were verified by blocking the integrin functions with chemical inhibitors. In addition, to verify the material-driven effect is not species-specific, we confirmed in vitro endothelial differentiation and in vivo blood vessel formation of patient-derived human MSCs by this hydrogel. These findings provide new insight into how purely material-driven effects can direct endothelial differentiation of MSCs, thereby promoting vascularization of scaffolds towards tissue engineering and regenerative medicine applications in humans.
Collapse
Affiliation(s)
- Yunki Lee
- Department of Biomedical Engineering, Vanderbilt University, Nasville, TN 37235, USA.
| | - Daniel A Balikov
- Department of Biomedical Engineering, Vanderbilt University, Nasville, TN 37235, USA.
| | - Jung Bok Lee
- Department of Biomedical Engineering, Vanderbilt University, Nasville, TN 37235, USA.
| | - Sue Hyun Lee
- Department of Biomedical Engineering, Vanderbilt University, Nasville, TN 37235, USA.
| | - Seung Hwan Lee
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 120-752, Korea.
| | - Jong Hun Lee
- Department of Urology, College of Medicine, Yonsei University, Seoul 120-752, Korea.
| | - Ki Dong Park
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Gyeonggi 443-742, Korea.
| | - Hak-Joon Sung
- Department of Biomedical Engineering, Vanderbilt University, Nasville, TN 37235, USA.
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| |
Collapse
|
41
|
Oh E, Oh JE, Hong J, Chung Y, Lee Y, Park KD, Kim S, Yun CO. Optimized biodegradable polymeric reservoir-mediated local and sustained co-delivery of dendritic cells and oncolytic adenovirus co-expressing IL-12 and GM-CSF for cancer immunotherapy. J Control Release 2017; 259:115-127. [DOI: 10.1016/j.jconrel.2017.03.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/04/2017] [Accepted: 03/17/2017] [Indexed: 12/22/2022]
|
42
|
Liang J, Struckhoff JJ, Du H, Hamilton PD, Ravi N. Synthesis and characterization of in situ forming anionic hydrogel as vitreous substitutes. J Biomed Mater Res B Appl Biomater 2017; 105:977-988. [PMID: 26873608 PMCID: PMC5654599 DOI: 10.1002/jbm.b.33632] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/14/2015] [Accepted: 01/16/2016] [Indexed: 02/06/2023]
Abstract
The natural vitreous is a biological hydrogel consisting primarily of a collagen and anionic hyaluronate. It is surgically removed in many ocular diseases and replaced with fluids, gases, or silicone oils. We have been interested in developing synthetic hydrogels as vitreous substitutes. In this study, we combined the stiffness and hydrophobicity of polymethacrylamide (PMAM) and the anionic nature of polymethacrylate (PMAA) to make copolymers that would mimic the natural vitreous. We used bis-methacryloyl cystamine (BMAC) to introduce thiol groups for reversible crosslink. The Mn of copolymers ranged from ∼100 k to ∼200 k Da (polydisperisty index of 1.47-2.63) and their composition as determined by titration, 1 H NMR and disulfide test were close to the feed ratio. The reactivities of monomers were as follows: MAM > MAA ∼ BMAC. Copolymers with higher MAA contents gelled faster, swelled more, and had higher storage modulus (1.5 to 100 Pa) comparable to that of the natural vitreous. We evaluated the biocompatibility of copolymers by electric cell-substrate impedance sensing (ECIS) using human retinal pigment epithelial cells, primary porcine retinal pigmented epithelial cells, human microvascular endothelial cells adult dermis, and a fibroblast line 3T3. The biocompatibility decreases as the content of BMAC increases. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 977-988, 2017.
Collapse
Affiliation(s)
- Jue Liang
- Department of Ophthalmology and Visual Sciences, WA University School of Medicine, Saint Louis, Missouri
| | - Jessica J Struckhoff
- Department of Ophthalmology and Visual Sciences, WA University School of Medicine, Saint Louis, Missouri
| | - Hongwei Du
- Department of Ophthalmology and Visual Sciences, WA University School of Medicine, Saint Louis, Missouri
| | - Paul D Hamilton
- Department of Ophthalmology and Visual Sciences, WA University School of Medicine, Saint Louis, Missouri
| | - Nathan Ravi
- Department of Ophthalmology and Visual Sciences, WA University School of Medicine, Saint Louis, Missouri
- Department of Energy, Environmental and Chemical Engineering, WA University in St. Louis, Saint Louis, Missouri
- Department of Research, Veterans Affairs Medical Center, Saint Louis, Missouri
| |
Collapse
|
43
|
Park YS, Lee Y, Jin YM, Kim G, Jung SC, Park YJ, Park KD, Jo I. Sustained release of parathyroid hormone via
in situ
cross‐linking gelatin hydrogels improves the therapeutic potential of tonsil‐derived mesenchymal stem cells for hypoparathyroidism. J Tissue Eng Regen Med 2017; 12:e1747-e1756. [DOI: 10.1002/term.2430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/25/2017] [Accepted: 02/23/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Yoon Shin Park
- Department of Molecular Medicine, School of MedicineEwha Womans University Seoul Republic of Korea
- Ewha Tonsil‐derived Mesenchymal Stem Cells Research Center (ETSRC), School of MedicineEwha Womans University Seoul Republic of Korea
- School of Biological Sciences, College of Natural SciencesChungbuk National University Cheongju Republic of Korea
| | - Yunki Lee
- Department of Molecular Science and TechnologyAjou University Suwon Republic of Korea
| | - Yoon Mi Jin
- Department of Molecular Medicine, School of MedicineEwha Womans University Seoul Republic of Korea
- Ewha Tonsil‐derived Mesenchymal Stem Cells Research Center (ETSRC), School of MedicineEwha Womans University Seoul Republic of Korea
| | - Gyungah Kim
- Department of Molecular Medicine, School of MedicineEwha Womans University Seoul Republic of Korea
- Ewha Tonsil‐derived Mesenchymal Stem Cells Research Center (ETSRC), School of MedicineEwha Womans University Seoul Republic of Korea
| | - Sung Chul Jung
- Ewha Tonsil‐derived Mesenchymal Stem Cells Research Center (ETSRC), School of MedicineEwha Womans University Seoul Republic of Korea
- Department of Biochemistry, School of MedicineEwha Womans University Seoul Republic of Korea
| | - Yoon Jeong Park
- Department of Dental Regenerative BiotechnologyDental Research Institute, School of Dentistry, Seoul National University Seoul Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and TechnologyAjou University Suwon Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, School of MedicineEwha Womans University Seoul Republic of Korea
- Ewha Tonsil‐derived Mesenchymal Stem Cells Research Center (ETSRC), School of MedicineEwha Womans University Seoul Republic of Korea
| |
Collapse
|
44
|
Lee Y, Choi KH, Park KM, Lee JM, Park BJ, Park KD. In Situ Forming and H 2O 2-Releasing Hydrogels for Treatment of Drug-Resistant Bacterial Infections. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16890-16899. [PMID: 28474514 DOI: 10.1021/acsami.7b03870] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Various types of commercialized wound dressings (e.g., films, foams, gels, and nanofiber meshes) have been clinically used as a physical barrier against bacterial invasion and as wound-healing materials. Although these dressings can protect the wounded tissue from the external environment, they cannot treat the wounds that are already infected with bacteria. Herein, we report in situ H2O2-releasing hydrogels as an active wound dressing with antibacterial properties for treatment of drug-resistant bacterial infection. In this study, H2O2 was used for two major purposes: (1) in situ gel formation via a horseradish peroxidase (HRP)/H2O2-triggered cross-linking reaction, and (2) antibacterial activity of the hydrogel via its oxidative effects. We found that there were residual H2O2 in the matrix after in situ HRP-catalyzed gelling, and varying the feed amount of H2O2 (1-10 mM; used to make hydrogels) enabled control of H2O2 release kinetics within a range of 2-509 μM. In addition, although the gelatin-hydroxyphenyl propionic acid (GH) gel called "GH 10" (showing the greatest H2O2 release, 509 μM) slightly decreased cell viability (to 82-84%) of keratinocyte (HaCaT) and fibroblast (L-929) cells in in vitro assays, none of the hydrogels showed significant cytotoxicity toward tissues in in vivo skin irritation tests. When the H2O2-releasing hydrogels that promote in vivo wound healing, were applied to various bacterial strains in vitro and ex vivo, they showed strong killing efficiency toward Gram-positive bacteria including Staphylococcus aureus, S. epidermidis, and clinical isolate of methicillin-resistant S. aureus (MRSA, drug-resistant bacteria), where the antimicrobial effect was dependent on the concentration of the H2O2 released. The present study suggests that our hydrogels have great potential as an injectable/sprayable antimicrobial dressing with biocompatibility and antibacterial activity against drug-resistant bacteria including MRSA for wound and infection treatment.
Collapse
Affiliation(s)
- Yunki Lee
- Department of Molecular Science and Technology, Ajou University , Suwon 443-749, Republic of Korea
| | - Kyong-Hoon Choi
- Department of Electrical and Biological Physics, Kwangwoon University , Seoul 138-701, Republic of Korea
| | - Kyung Min Park
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University , Incheon 22012, Republic of Korea
| | - Jong-Min Lee
- College of Medicine, Dongguk University , Goyang 10326, Republic of Korea
| | - Bong Joo Park
- Department of Electrical and Biological Physics, Kwangwoon University , Seoul 138-701, Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University , Suwon 443-749, Republic of Korea
| |
Collapse
|
45
|
Zhu F, Wang C, Yang S, Wang Q, Liang F, Liu C, Qiu D, Qu X, Hu Z, Yang Z. Injectable tissue adhesive composite hydrogel with fibroblasts for treating skin defects. J Mater Chem B 2017; 5:2416-2424. [PMID: 32264549 DOI: 10.1039/c7tb00384f] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this work, an injectable composite hydrogel was synthesized via a unique way of crosslinking glycol chitosan (GC) with silica nano-particles (SiNP) through non-chemical interactions, and was then applied as a kind of wound dressing. Gelation was achieved through the incorporation of SiNPs with the GC segments in aqueous solution, therefore strictly confining the movement of the solubilized polymer chains. Rheology tests showed that the sol-gel transition and the moduli of the hydrogel were influenced by the composition of the two components, the size of the nano-particles and the conformation of the polymers. Using such a strategy, tissue adhesion properties of GC were well-preserved in the GC/SiNP hydrogel and therefore it gains gluey properties toward biological tissues as demonstrated through the adhesion of two pieces of mouse skin, obtaining a lap-shear stretching force of ca. 90 kPa. This characteristic, together with the injectability, allowed the hydrogel to be administrated directly on the wound site and to fill the wound area. Meanwhile, the hydrogel also works as a carrier of protein and cells. The in situ encapsulation of fibroblasts enabled the promising properties of the GC/SiNP hydrogel to be used for treating full-thickness skin defects in a mouse model, resulting in the favorable growth of hair follicles and microvessels, hence reducing the risk of scar formation.
Collapse
Affiliation(s)
- Feiyan Zhu
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Le Thi P, Lee Y, Nguyen DH, Park KD. In situ forming gelatin hydrogels by dual-enzymatic cross-linking for enhanced tissue adhesiveness. J Mater Chem B 2017; 5:757-764. [DOI: 10.1039/c6tb02179d] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In situ forming hydrogels show promise as therapeutic implants and carriers in a wide range of biomedical applications.
Collapse
Affiliation(s)
- Phuong Le Thi
- Department of Molecular Science and Technology
- Ajou University
- Yeongtong
- Republic of Korea
| | - Yunki Lee
- Department of Molecular Science and Technology
- Ajou University
- Yeongtong
- Republic of Korea
| | - Dai Hai Nguyen
- Department of Molecular Science and Technology
- Ajou University
- Yeongtong
- Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology
- Ajou University
- Yeongtong
- Republic of Korea
| |
Collapse
|
47
|
Liang J, Karakoçak BB, Struckhoff JJ, Ravi N. Synthesis and Characterization of Injectable Sulfonate-Containing Hydrogels. Biomacromolecules 2016; 17:4064-4074. [PMID: 27936721 PMCID: PMC5654604 DOI: 10.1021/acs.biomac.6b01368] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sulfonate-containing hydrogels are of particular interest because of their tunable mechanical and swelling properties, as well as their biological effects. Polysulfonate copolymers were synthesized by reacting 2-acrylamido-2-methylpropanesulfonic acid (AMPS), acrylamide (AM), and acrylic acid (AA). We found that the incorporation rate of sulfonate-containing monomer and the molecular weight of the copolymer were significantly enhanced by increasing the ionic strength of the solution. We introduced thiol groups by modifying the pendant carboxylates or copolymerizing along with a disulfide-containing monomer. The thiol-containing copolymers were reacted with a 4-arm acrylamide-terminated poly(ethylene glycol) via a thiol-ene click reaction, which was mediated by a photoinitiator, a redox initiator, or a base-catalyzed Michael-Addition. We were able to tailor the storage modulus (33-1800 Pa) and swelling capacity (1-91 wt %) of the hydrogel by varying the concentration of the copolymers. We determined that the injectable sulfonate-containing hydrogels were biocompatible up to 20 mg/mL, as observed by an electric cell-substrate impedance sensing (ECIS) technique, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using three different cell lines: human retinal pigment epithelial cells (ARPE-19), fibroblasts (NIH 3T3), and Chinese hamster ovary cells (CHO).
Collapse
Affiliation(s)
- Jue Liang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Bedia Begüm Karakoçak
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Jessica J. Struckhoff
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Research, Veterans Affairs Medical Center, St. Louis, Missouri, United States
| | - Nathan Ravi
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States
- Department of Research, Veterans Affairs Medical Center, St. Louis, Missouri, United States
| |
Collapse
|
48
|
Abstract
Tissue engineering aims to repair the damaged tissue by transplantation of cells or introducing bioactive factors in a biocompatible scaffold. In recent years, biodegradable polymer scaffolds mimicking the extracellular matrix have been developed to promote the cell proliferation and extracellular matrix deposition. The biodegradable polymer scaffolds thus act as templates for tissue repair and regeneration. This article reviews the updated information regarding various types of natural and synthetic biodegradable polymers as well as their functions, physico-chemical properties, and degradation mechanisms in the development of biodegradable scaffolds for tissue engineering applications, including their combination with 3D printing.
Collapse
Affiliation(s)
- Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, ROC.
| | | | | |
Collapse
|
49
|
Nassira H, Sánchez-Ferrer A, Adamcik J, Handschin S, Mahdavi H, Taheri Qazvini N, Mezzenga R. Gelatin-Graphene Nanocomposites with Ultralow Electrical Percolation Threshold. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:6914-6920. [PMID: 27247052 DOI: 10.1002/adma.201601115] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/30/2016] [Indexed: 06/05/2023]
Abstract
Gelatin-graphene conductive biopolymer nanocomposites (CPCs) with ultralow percolation threshold are designed by reducing in situ graphene oxide nanosheets with ascorbic acid and suppressing the aggregation of the graphene nanosheets. The resulting conductive nanocomposites show a record-low electrical percolation threshold of 3.3 × 10(-2) vol%, which arises from the homogeneous dispersion of the graphene nanosheets within the gelatin matrix.
Collapse
Affiliation(s)
- Hoda Nassira
- ETH Zurich, Department of Health Sciences and Technology, Food and Soft Materials Science, IFNH, Schmelzbergstrasse 9, 8092, Zürich, Switzerland
- Polymer Division, School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Antoni Sánchez-Ferrer
- ETH Zurich, Department of Health Sciences and Technology, Food and Soft Materials Science, IFNH, Schmelzbergstrasse 9, 8092, Zürich, Switzerland
| | - Jozef Adamcik
- ETH Zurich, Department of Health Sciences and Technology, Food and Soft Materials Science, IFNH, Schmelzbergstrasse 9, 8092, Zürich, Switzerland
| | - Stephan Handschin
- ETH Zurich, Department of Health Sciences and Technology, Food and Soft Materials Science, IFNH, Schmelzbergstrasse 9, 8092, Zürich, Switzerland
| | - Hossein Mahdavi
- Polymer Division, School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Nader Taheri Qazvini
- Polymer Division, School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Sciences and Technology, Food and Soft Materials Science, IFNH, Schmelzbergstrasse 9, 8092, Zürich, Switzerland
| |
Collapse
|
50
|
Rezapour-Lactoee A, Yeganeh H, Ostad SN, Gharibi R, Mazaheri Z, Ai J. Thermoresponsive polyurethane/siloxane membrane for wound dressing and cell sheet transplantation: In-vitro and in-vivo studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:804-14. [PMID: 27612775 DOI: 10.1016/j.msec.2016.07.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/20/2016] [Accepted: 07/24/2016] [Indexed: 01/01/2023]
Abstract
Polyurethane/siloxane based wound dressing for transferring fibroblast cell sheet to wounded skin and ability to provide an optimum condition for cellular activity at damaged tissue was prepared in this research. The dressing was made thermoresponsive, via the introduction of a poly(N-isopropyl acrylamide) copolymer into the backbone of dressing. The ability of membrane for adhesion, growth, and proliferation of fibroblast cells was improved via surface modification with gelatin. The optimized dressing exhibited appropriate tensile strength (4.5MPa) and elongation at break (80%) to protect wound against physical forces. Due to controlled equilibrium water absorption of about 89% and water vapor transmission rate of 2040g/m(2)day, the dressing could maintain the favorable moist environment over moderate to high exuding wounds. The grown cell sheet on dressing membrane could easily roll up from the surface just with lowering the temperature. The in vivo study of the wound dressed with cell loaded membrane confirmed the accelerated healing and production of tissue with complete re-epithelization, enhanced vascularization, and increased collagen deposition on the damaged area.
Collapse
Affiliation(s)
- Alireza Rezapour-Lactoee
- Department of Tissue Engineering, School of Advanced Medical Technologies, Tehran University of Medical Sciences, 14177-55469 Tehran, Iran
| | - Hamid Yeganeh
- Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran.
| | - Seyed Nasser Ostad
- Department of Tissue Engineering, School of Advanced Medical Technologies, Tehran University of Medical Sciences, 14177-55469 Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, 16 Azar St, Enqelab Sq, Tehran 1417614411, Iran.
| | - Reza Gharibi
- Department of Tissue Engineering, School of Advanced Medical Technologies, Tehran University of Medical Sciences, 14177-55469 Tehran, Iran
| | - Zohreh Mazaheri
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Medical Technologies, Tehran University of Medical Sciences, 14177-55469 Tehran, Iran
| |
Collapse
|