1
|
Karati D, Meur S, Das S, Adak A, Mukherjee S. Peptide-based drugs in immunotherapy: current advances and future prospects. Med Oncol 2025; 42:177. [PMID: 40266466 DOI: 10.1007/s12032-025-02739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
In immunotherapy, peptide-based medications are showing great promise as a new class of therapies that can be used to treat autoimmune diseases, cancer, and other immune-related conditions. Peptides are being created for use in immunotherapy as vaccines, immunological modulators, and adjuvants because of their capacity to precisely alter immune responses. They can imitate endogenous signals or interact with immune cells, improving the body's capacity to identify and combat malignancies or reestablishing immunological tolerance in autoimmune disorders. Notably, peptide-based treatments have demonstrated promise in promoting tumor-specific immune responses and improving the effectiveness of already available immunotherapies, such as immune checkpoint inhibitors. Notwithstanding its potential, peptide-based medications' clinical translation is fraught with difficulties, such as those pertaining to immunogenicity, bioavailability, and peptide stability. Overcoming these obstacles has been made possible by developments in peptide engineering, including pharmacokinetic optimization, receptor-binding affinity enhancement, and the creation of innovative delivery systems. The targeted distribution and effectiveness of peptide medications can be improved by using liposomes, nanoparticles, and other delivery methods, increasing their therapeutic utility. With an emphasis on recent scientific developments, mechanisms of action, and therapeutic uses, this review examines the present status of peptide-based medications in immunotherapy. We also look at the obstacles that still need to be overcome in order to get peptide-based treatments from the lab to the clinic and offer suggestions for future research initiatives. By tackling these important problems, we hope to demonstrate how peptide-based medications have the ability to revolutionize immunotherapeutic treatment approaches.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University-TIU, Kolkata, West Bengal, 700091, India
| | - Shreyasi Meur
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, Kolkata, West Bengal, 700053, India
| | - Soumi Das
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Arpan Adak
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, Kolkata, West Bengal, 700053, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
2
|
Liu M, Wang Y, Zhang Y, Hu D, Tang L, Zhou B, Yang L. Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines. Signal Transduct Target Ther 2025; 10:73. [PMID: 40059188 PMCID: PMC11891339 DOI: 10.1038/s41392-024-02112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 03/17/2025] Open
Abstract
The ability of small nucleic acids to modulate gene expression via a range of processes has been widely explored. Compared with conventional treatments, small nucleic acid therapeutics have the potential to achieve long-lasting or even curative effects via gene editing. As a result of recent technological advances, efficient small nucleic acid delivery for therapeutic and biomedical applications has been achieved, accelerating their clinical translation. Here, we review the increasing number of small nucleic acid therapeutic classes and the most common chemical modifications and delivery platforms. We also discuss the key advances in the design, development and therapeutic application of each delivery platform. Furthermore, this review presents comprehensive profiles of currently approved small nucleic acid drugs, including 11 antisense oligonucleotides (ASOs), 2 aptamers and 6 siRNA drugs, summarizing their modifications, disease-specific mechanisms of action and delivery strategies. Other candidates whose clinical trial status has been recorded and updated are also discussed. We also consider strategic issues such as important safety considerations, novel vectors and hurdles for translating academic breakthroughs to the clinic. Small nucleic acid therapeutics have produced favorable results in clinical trials and have the potential to address previously "undruggable" targets, suggesting that they could be useful for guiding the development of additional clinical candidates.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yibing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bailing Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Harini K, Girigoswami K, Thirumalai A, Girigoswami A. Polymer-Based Antimicrobial Peptide Mimetics for Treating Multi-drug Resistant Infections: Therapy and Toxicity Evaluation. Int J Pept Res Ther 2024; 30:64. [DOI: 10.1007/s10989-024-10648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 01/03/2025]
|
4
|
Dai J, Ashrafizadeh M, Aref AR, Sethi G, Ertas YN. Peptide-functionalized, -assembled and -loaded nanoparticles in cancer therapy. Drug Discov Today 2024; 29:103981. [PMID: 38614161 DOI: 10.1016/j.drudis.2024.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
The combination of peptides and nanoparticles in cancer therapy has shown synergistic results. Nanoparticle functionalization with peptides can increase their targeting ability towards tumor cells. In some cases, the peptides can develop self-assembled nanoparticles, in combination with drugs, for targeted cancer therapy. The peptides can be loaded into nanoparticles and can be delivered by other drugs for synergistic cancer removal. Multifunctional types of peptide-based nanoparticles, including pH- and redox-sensitive classes, have been introduced in cancer therapy. The tumor microenvironment remolds, and the acceleration of immunotherapy and vaccines can be provided by peptide nanoparticles. Moreover, the bioimaging and labeling of cancers can be mediated by peptide nanoparticles. Therefore, peptides can functionalize nanoparticles in targeted cancer therapy.
Collapse
Affiliation(s)
- Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, Maryville, MO, USA
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey; Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
5
|
Trimaille T, Verrier B. Copolymer Micelles: A Focus on Recent Advances for Stimulus-Responsive Delivery of Proteins and Peptides. Pharmaceutics 2023; 15:2481. [PMID: 37896241 PMCID: PMC10609739 DOI: 10.3390/pharmaceutics15102481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Historically used for the delivery of hydrophobic drugs through core encapsulation, amphiphilic copolymer micelles have also more recently appeared as potent nano-systems to deliver protein and peptide therapeutics. In addition to ease and reproducibility of preparation, micelles are chemically versatile as hydrophobic/hydrophilic segments can be tuned to afford protein immobilization through different approaches, including non-covalent interactions (e.g., electrostatic, hydrophobic) and covalent conjugation, while generally maintaining protein biological activity. Similar to many other drugs, protein/peptide delivery is increasingly focused on stimuli-responsive nano-systems able to afford triggered and controlled release in time and space, thereby improving therapeutic efficacy and limiting side effects. This short review discusses advances in the design of such micelles over the past decade, with an emphasis on stimuli-responsive properties for optimized protein/peptide delivery.
Collapse
Affiliation(s)
- Thomas Trimaille
- Ingénierie des Matériaux Polymères, Univ Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, CEDEX, 69622 Villeurbanne, France
| | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, Univ Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5305, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France;
| |
Collapse
|
6
|
Wang F, Xia W, Zhang M, Wu R, Song X, Hao Y, Feng Y, Zhang L, Li D, Kang W, Liu C, Liu L. Engineering of antimicrobial peptide fibrils with feedback degradation of bacterial-secreted enzymes. Chem Sci 2023; 14:10914-10924. [PMID: 37829030 PMCID: PMC10566480 DOI: 10.1039/d3sc01089a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
Proteins and peptides can assemble into functional amyloid fibrils with distinct architectures. These amyloid fibrils can fulfil various biological functions in living organisms, and then be degraded. By incorporating an amyloidogenic segment and enzyme-cleavage segment together, we designed a peptide (enzyme-cleavage amyloid peptides (EAP))-based functional fibril which could be degraded specifically by gelatinase. To gain molecular insights into the assembly and degradation of EAP fibrils, we determined the atomic structure of the EAP fibril using cryo-electron microscopy. The amyloidogenic segment of EAP adopted a β-strand conformation and mediated EAP-fibril formation mainly via steric zipper-like interactions. The enzyme-cleavage segment was partially involved in self-assembly, but also exhibited high flexibility in the fibril structure, with accessibility to gelatinase binding and degradation. Moreover, we applied the EAP fibril as a tunable scaffold for developing degradable self-assembled antimicrobial fibrils (SANs) by integrating melittin and EAP together. SANs exhibited superior activity for killing bacteria, and significantly improved the stability and biocompatibility of melittin. SANs were eliminated automatically by the gelatinase secreted from targeted bacteria. Our work provides a new strategy for rational design of functional fibrils with a feedback regulatory loop for optimizing the biocompatibility and biosafety of designed fibrils. Our work may aid further developments of "smart" peptide-based biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Fenghua Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
- College of Aeronautical Engineering, Jiangsu Aviation Vocational and Technical College Zhenjiang Jiangsu 212134 China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 201210 China
| | - Mingming Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 201210 China
| | - Rongrong Wu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Xiaolu Song
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Yun Hao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Yonghai Feng
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Liwei Zhang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University Shanghai 200030 China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Wenyan Kang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
- Department of Neurology, Ruijin Hainan Hospital, Shanghai Jiao Tong University School of Medicine (Boao Research Hospital) Hainan 571434 China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 201210 China
- Department of Neurology, Ruijin Hainan Hospital, Shanghai Jiao Tong University School of Medicine (Boao Research Hospital) Hainan 571434 China
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences Shanghai 200032 China
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| |
Collapse
|
7
|
Nhàn NTT, Yamada T, Yamada KH. Peptide-Based Agents for Cancer Treatment: Current Applications and Future Directions. Int J Mol Sci 2023; 24:12931. [PMID: 37629112 PMCID: PMC10454368 DOI: 10.3390/ijms241612931] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Peptide-based strategies have received an enormous amount of attention because of their specificity and applicability. Their specificity and tumor-targeting ability are applied to diagnosis and treatment for cancer patients. In this review, we will summarize recent advancements and future perspectives on peptide-based strategies for cancer treatment. The literature search was conducted to identify relevant articles for peptide-based strategies for cancer treatment. It was performed using PubMed for articles in English until June 2023. Information on clinical trials was also obtained from ClinicalTrial.gov. Given that peptide-based strategies have several advantages such as targeted delivery to the diseased area, personalized designs, relatively small sizes, and simple production process, bioactive peptides having anti-cancer activities (anti-cancer peptides or ACPs) have been tested in pre-clinical settings and clinical trials. The capability of peptides for tumor targeting is essentially useful for peptide-drug conjugates (PDCs), diagnosis, and image-guided surgery. Immunomodulation with peptide vaccines has been extensively tested in clinical trials. Despite such advantages, FDA-approved peptide agents for solid cancer are still limited. This review will provide a detailed overview of current approaches, design strategies, routes of administration, and new technological advancements. We will highlight the success and limitations of peptide-based therapies for cancer treatment.
Collapse
Affiliation(s)
- Nguyễn Thị Thanh Nhàn
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Richard & Loan Hill Department of Biomedical Engineering, University of Illinois College of Engineering, Chicago, IL 60607, USA
| | - Kaori H. Yamada
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Department of Ophthalmology & Visual Sciences, University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Kumar V, Ozguney B, Vlachou A, Chen Y, Gazit E, Tamamis P. Peptide Self-Assembled Nanocarriers for Cancer Drug Delivery. J Phys Chem B 2023; 127:1857-1871. [PMID: 36812392 PMCID: PMC10848270 DOI: 10.1021/acs.jpcb.2c06751] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/24/2022] [Indexed: 02/24/2023]
Abstract
The design of novel cancer drug nanocarriers is critical in the framework of cancer therapeutics. Nanomaterials are gaining increased interest as cancer drug delivery systems. Self-assembling peptides constitute an emerging novel class of highly attractive nanomaterials with highly promising applications in drug delivery, as they can be used to facilitate drug release and/or stability while reducing side effects. Here, we provide a perspective on peptide self-assembled nanocarriers for cancer drug delivery and highlight the aspects of metal coordination, structure stabilization, and cyclization, as well as minimalism. We review particular challenges in nanomedicine design criteria and, finally, provide future perspectives on addressing a portion of the challenges via self-assembling peptide systems. We consider that the intrinsic advantages of such systems, along with the increasing progress in computational and experimental approaches for their study and design, could possibly lead to novel classes of single or multicomponent systems incorporating such materials for cancer drug delivery.
Collapse
Affiliation(s)
- Vijay
Bhooshan Kumar
- The
Shmunis School of Biomedicine and Cancer Research, George S. Wise
Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Busra Ozguney
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Anastasia Vlachou
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Yu Chen
- The
Shmunis School of Biomedicine and Cancer Research, George S. Wise
Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- The
Shmunis School of Biomedicine and Cancer Research, George S. Wise
Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department
of Materials Science and Engineering, Iby and Aladar Fleischman Faculty
of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol
School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Phanourios Tamamis
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77843-3003, United States
| |
Collapse
|
9
|
Wei J, Zhu L, Lu Q, Li G, Zhou Y, Yang Y, Zhang L. Recent progress and applications of poly(beta amino esters)-based biomaterials. J Control Release 2023; 354:337-353. [PMID: 36623697 DOI: 10.1016/j.jconrel.2023.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
Poly(beta-amino esters, PBAEs) are a promising class of cationic polymers synthesized from diacrylates and amines via Michael addition. Recently, PBAEs have been widely developed for drug delivery, immunotherapy, gene therapy, antibacterial, tissue engineering and other applications due to their convenient synthesis, good bio-compatibility and degradation properties. Herein, we mainly summarize the recent progress in the PBAEs synthesis and their applications. The amine groups of PBAEs could be protonated in low pH environment, exhibiting proton sponge and pH-sensitive abilities. Furthermore, the positive PBAEs can interact with negative genes via electrostatic interactions for efficient delivery of nucleic acids. Moreover, positive PBAEs could also directly kill bacteria by disrupting their membranes at high doses. Finally, PBAEs can augment the immune responses, and improve the bioactivity of hydrogels in tissue engineering.
Collapse
Affiliation(s)
- Jingjing Wei
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Linglin Zhu
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Qiuyun Lu
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Guicai Li
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Youlang Zhou
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Yumin Yang
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China.
| | - Luzhong Zhang
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China.
| |
Collapse
|
10
|
Hunting for Novel Routes in Anticancer Drug Discovery: Peptides against Sam-Sam Interactions. Int J Mol Sci 2022; 23:ijms231810397. [PMID: 36142306 PMCID: PMC9499636 DOI: 10.3390/ijms231810397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 01/10/2023] Open
Abstract
Among the diverse protein binding modules, Sam (Sterile alpha motif) domains attract attention due to their versatility. They are present in different organisms and play many functions in physiological and pathological processes by binding multiple partners. The EphA2 receptor contains a Sam domain at the C-terminus (EphA2-Sam) that is able to engage protein regulators of receptor stability (including the lipid phosphatase Ship2 and the adaptor Odin). Ship2 and Odin are recruited by EphA2-Sam through heterotypic Sam-Sam interactions. Ship2 decreases EphA2 endocytosis and consequent degradation, producing chiefly pro-oncogenic outcomes in a cellular milieu. Odin, through its Sam domains, contributes to receptor stability by possibly interfering with ubiquitination. As EphA2 is upregulated in many types of tumors, peptide inhibitors of Sam-Sam interactions by hindering receptor stability could function as anticancer therapeutics. This review describes EphA2-Sam and its interactome from a structural and functional perspective. The diverse design strategies that have thus far been employed to obtain peptides targeting EphA2-mediated Sam-Sam interactions are summarized as well. The generated peptides represent good initial lead compounds, but surely many efforts need to be devoted in the close future to improve interaction affinities towards Sam domains and consequently validate their anticancer properties.
Collapse
|
11
|
Ni XW, Chen K, Qiao SL. Photocontrollable thermosensitive chemical spatiotemporally destabilizes mitochondrial membranes for cell fate manipulation. Biomater Sci 2022; 10:2550-2556. [DOI: 10.1039/d2bm00212d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Perturbations in mitochondrial membrane stability lead to cytochrome c release and induce caspase-dependent apoptosis. Using synthetic smart chemicals that with changeable physicochemical properties to interfere the mitochondrial membrane stability has...
Collapse
|
12
|
Novel Peptide Therapeutic Approaches for Cancer Treatment. Cells 2021; 10:cells10112908. [PMID: 34831131 PMCID: PMC8616177 DOI: 10.3390/cells10112908] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Peptides are increasingly being developed for use as therapeutics to treat many ailments, including cancer. Therapeutic peptides have the advantages of target specificity and low toxicity. The anticancer effects of a peptide can be the direct result of the peptide binding its intended target, or the peptide may be conjugated to a chemotherapy drug or radionuclide and used to target the agent to cancer cells. Peptides can be targeted to proteins on the cell surface, where the peptide–protein interaction can initiate internalization of the complex, or the peptide can be designed to directly cross the cell membrane. Peptides can induce cell death by numerous mechanisms including membrane disruption and subsequent necrosis, apoptosis, tumor angiogenesis inhibition, immune regulation, disruption of cell signaling pathways, cell cycle regulation, DNA repair pathways, or cell death pathways. Although using peptides as therapeutics has many advantages, peptides have the disadvantage of being easily degraded by proteases once administered and, depending on the mode of administration, often have difficulty being adsorbed into the blood stream. In this review, we discuss strategies recently developed to overcome these obstacles of peptide delivery and bioavailability. In addition, we present many examples of peptides developed to fight cancer.
Collapse
|
13
|
Lv S, Sylvestre M, Prossnitz AN, Yang LF, Pun SH. Design of Polymeric Carriers for Intracellular Peptide Delivery in Oncology Applications. Chem Rev 2021; 121:11653-11698. [PMID: 33566580 DOI: 10.1021/acs.chemrev.0c00963] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent decades, peptides, which can possess high potency, excellent selectivity, and low toxicity, have emerged as promising therapeutics for cancer applications. Combined with an improved understanding of tumor biology and immuno-oncology, peptides have demonstrated robust antitumor efficacy in preclinical tumor models. However, the translation of peptides with intracellular targets into clinical therapies has been severely hindered by limitations in their intrinsic structure, such as low systemic stability, rapid clearance, and poor membrane permeability, that impede intracellular delivery. In this Review, we summarize recent advances in polymer-mediated intracellular delivery of peptides for cancer therapy, including both therapeutic peptides and peptide antigens. We highlight strategies to engineer polymeric materials to increase peptide delivery efficiency, especially cytosolic delivery, which plays a crucial role in potentiating peptide-based therapies. Finally, we discuss future opportunities for peptides in cancer treatment, with an emphasis on the design of polymer nanocarriers for optimized peptide delivery.
Collapse
Affiliation(s)
| | | | - Alexander N Prossnitz
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | | | | |
Collapse
|
14
|
Wang Y, Zhang X, Wan K, Zhou N, Wei G, Su Z. Supramolecular peptide nano-assemblies for cancer diagnosis and therapy: from molecular design to material synthesis and function-specific applications. J Nanobiotechnology 2021; 19:253. [PMID: 34425823 PMCID: PMC8381530 DOI: 10.1186/s12951-021-00999-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/15/2021] [Indexed: 01/10/2023] Open
Abstract
Peptide molecule has high bioactivity, good biocompatibility, and excellent biodegradability. In addition, it has adjustable amino acid structure and sequence, which can be flexible designed and tailored to form supramolecular nano-assemblies with specific biomimicking, recognition, and targeting properties via molecular self-assembly. These unique properties of peptide nano-assemblies made it possible for utilizing them for biomedical and tissue engineering applications. In this review, we summarize recent progress on the motif design, self-assembly synthesis, and functional tailoring of peptide nano-assemblies for both cancer diagnosis and therapy. For this aim, firstly we demonstrate the methodologies on the synthesis of various functional pure and hybrid peptide nano-assemblies, by which the structural and functional tailoring of peptide nano-assemblies are introduced and discussed in detail. Secondly, we present the applications of peptide nano-assemblies for cancer diagnosis applications, including optical and magnetic imaging as well as biosensing of cancer cells. Thirdly, the design of peptide nano-assemblies for enzyme-mediated killing, chemo-therapy, photothermal therapy, and multi-therapy of cancer cells are introduced. Finally, the challenges and perspectives in this promising topic are discussed. This work will be useful for readers to understand the methodologies on peptide design and functional tailoring for highly effective, specific, and targeted diagnosis and therapy of cancers, and at the same time it will promote the development of cancer diagnosis and therapy by linking those knowledges in biological science, nanotechnology, biomedicine, tissue engineering, and analytical science.
Collapse
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, People's Republic of China
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Keming Wan
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, People's Republic of China
| | - Nan Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, People's Republic of China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China.
| |
Collapse
|
15
|
Singh A, Malhotra S, Bimal D, Bouchet LM, Wedepohl S, Calderón M, Prasad AK. Synthesis, Self-Assembly, and Biological Activities of Pyrimidine-Based Cationic Amphiphiles. ACS OMEGA 2021; 6:103-112. [PMID: 33458463 PMCID: PMC7807463 DOI: 10.1021/acsomega.0c03623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/12/2020] [Indexed: 05/08/2023]
Abstract
Pyrimidine-based cationic amphiphiles (PCAms), i.e., di-trifluoroacetic acid salts of N1-[1'-(1″,3″-diglycinatoxy-propane-2″-yl)-1',2',3'-triazole-4'-yl]methyl-N3-alkylpyrimidines have been synthesized utilizing naturally occurring biocompatible precursors, like glycerol, glycine, and uracil/ thymine in good yields. Synthesized PCAms consist of a hydrophilic head group comprising TFA salt of glyceryl 1,3-diglycinate and hydrophobic tail comprising of C-7 and C-12 N3-alkylated uracil or thymine conjugated via a 4-methylene-1,2,3-triazolyl linker. The physicochemical properties of all PCAms, such as critical aggregation concentration, hydrodynamic diameter, shape, and zeta potential (surface charge) were analyzed. These PCAms were also evaluated for their anti-proliferative and anti-tubercular activities. One of the synthesized PCAm exhibited 4- to 75-fold more activity than first-line anti-tubercular drugs streptomycin and isoniazid, respectively, against the multidrug resistant clinical isolate 591 of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Ankita Singh
- Bioorganic
Laboratory, Department of Chemistry, University
of Delhi, Delhi 110007, India
| | - Shashwat Malhotra
- Bioorganic
Laboratory, Department of Chemistry, University
of Delhi, Delhi 110007, India
- Kirori
Mal College, Department of Chemistry, University
of Delhi, Delhi 110007, India
| | - Devla Bimal
- Bioorganic
Laboratory, Department of Chemistry, University
of Delhi, Delhi 110007, India
| | - Lydia M. Bouchet
- Freie
Universität Berlin, Institute of
Chemistry and Biochemistry, Berlin 14195, Germany
| | - Stefanie Wedepohl
- Freie
Universität Berlin, Institute of
Chemistry and Biochemistry, Berlin 14195, Germany
| | - Marcelo Calderón
- POLYMAT
and Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Bilbao 48013, Spain
| | - Ashok K Prasad
- Bioorganic
Laboratory, Department of Chemistry, University
of Delhi, Delhi 110007, India
- . Tel. +91-11-27662486
| |
Collapse
|
16
|
Synthesis and in vitro biological evaluations of novel tetrapeptide as therapeutic agent for wound treatment. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2020.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Yang J, An HW, Wang H. Self-Assembled Peptide Drug Delivery Systems. ACS APPLIED BIO MATERIALS 2020; 4:24-46. [DOI: 10.1021/acsabm.0c00707] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jia Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
18
|
|
19
|
Conibear AC, Schmid A, Kamalov M, Becker CFW, Bello C. Recent Advances in Peptide-Based Approaches for Cancer Treatment. Curr Med Chem 2020; 27:1174-1205. [PMID: 29173146 DOI: 10.2174/0929867325666171123204851] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Peptide-based pharmaceuticals have recently experienced a renaissance due to their ability to fill the gap between the two main classes of available drugs, small molecules and biologics. Peptides combine the high potency and selectivity typical of large proteins with some of the characteristic advantages of small molecules such as synthetic accessibility, stability and the potential of oral bioavailability. METHODS In the present manuscript we review the recent literature on selected peptide-based approaches for cancer treatment, emphasizing recent advances, advantages and challenges of each strategy. RESULTS One of the applications in which peptide-based approaches have grown rapidly is cancer therapy, with a focus on new and established targets. We describe, with selected examples, some of the novel peptide-based methods for cancer treatment that have been developed in the last few years, ranging from naturally-occurring and modified peptides to peptidedrug conjugates, peptide nanomaterials and peptide-based vaccines. CONCLUSION This review brings out the emerging role of peptide-based strategies in oncology research, critically analyzing the advantages and limitations of these approaches and the potential for their development as effective anti-cancer therapies.
Collapse
Affiliation(s)
- Anne C Conibear
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Alanca Schmid
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Meder Kamalov
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Christian F W Becker
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Claudia Bello
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria.,Department of Chemistry "Ugo Schiff", University of Florence, Laboratory of Peptide and Protein Chemistry and Biolology-PeptLab, Via della Lastruccia 13, 50019 Sesto, Fiorentino, Italy
| |
Collapse
|
20
|
Shimizu T, Ding W, Kameta N. Soft-Matter Nanotubes: A Platform for Diverse Functions and Applications. Chem Rev 2020; 120:2347-2407. [PMID: 32013405 DOI: 10.1021/acs.chemrev.9b00509] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Self-assembled organic nanotubes made of single or multiple molecular components can be classified into soft-matter nanotubes (SMNTs) by contrast with hard-matter nanotubes, such as carbon and other inorganic nanotubes. To date, diverse self-assembly processes and elaborate template procedures using rationally designed organic molecules have produced suitable tubular architectures with definite dimensions, structural complexity, and hierarchy for expected functions and applications. Herein, we comprehensively discuss every functions and possible applications of a wide range of SMNTs as bulk materials or single components. This Review highlights valuable contributions mainly in the past decade. Fifteen different families of SMNTs are discussed from the viewpoints of chemical, physical, biological, and medical applications, as well as action fields (e.g., interior, wall, exterior, whole structure, and ensemble of nanotubes). Chemical applications of the SMNTs are associated with encapsulating materials and sensors. SMNTs also behave, while sometimes undergoing morphological transformation, as a catalyst, template, liquid crystal, hydro-/organogel, superhydrophobic surface, and micron size engine. Physical functions pertain to ferro-/piezoelectricity and energy migration/storage, leading to the applications to electrodes or supercapacitors, and mechanical reinforcement. Biological functions involve artificial chaperone, transmembrane transport, nanochannels, and channel reactors. Finally, medical functions range over drug delivery, nonviral gene transfer vector, and virus trap.
Collapse
Affiliation(s)
- Toshimi Shimizu
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Wuxiao Ding
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| |
Collapse
|
21
|
Guo RC, Zhang XH, Ji L, Wei ZJ, Duan ZY, Qiao ZY, Wang H. Recent progress of therapeutic peptide based nanomaterials: from synthesis and self-assembly to cancer treatment. Biomater Sci 2020; 8:6175-6189. [DOI: 10.1039/d0bm01358g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review has described the synthesis, self-assembly and the anti-cancer application of therapeutic peptides and their conjugates, particularly polymer–peptide conjugates (PPCs).
Collapse
Affiliation(s)
- Ruo-Chen Guo
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
| | - Xue-Hao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Lei Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Zi-Jin Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Zhong-Yu Duan
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| |
Collapse
|
22
|
Wang Q, Jiang N, Fu B, Huang F, Liu J. Self-assembling peptide-based nanodrug delivery systems. Biomater Sci 2019; 7:4888-4911. [PMID: 31509120 DOI: 10.1039/c9bm01212e] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Self-assembling peptide-based nanodrug delivery systems (NDDs), consisting of naturally occurring amino acids, not only share the advantages of traditional nanomedicine but also possess the unique properties of excellent biocompatibility, biodegradability, flexible responsiveness, specific biological function, and synthetic feasibility. Physical methods, enzymatic reaction, chemical reaction, and biosurface induction can yield versatile peptide-based NDDs; flexible responsiveness is their main advantage. Different functional peptides and abundant covalent modifications endow such systems with precise controllability and multifunctionality. Inspired by the above merits, researchers have taken advantage of the self-assembling peptide-based NDDs and achieved the accurate delivery of drugs to the lesion site. The present review outlines the methods for designing self-assembling peptide-based NDDs for small-molecule drugs, with an emphasis on the different drug delivery strategies and their applications in using peptides and peptide conjugates.
Collapse
Affiliation(s)
- Qian Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Nan Jiang
- Tianjin chest hospital, Tianjin 300051, P. R. China
| | - Bo Fu
- Tianjin chest hospital, Tianjin 300051, P. R. China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China. and Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
23
|
Wang Y, Lin YX, Wang J, Qiao SL, Liu YY, Dong WQ, Wang J, An HW, Yang C, Mamuti M, Wang L, Huang B, Wang H. In Situ Manipulation of Dendritic Cells by an Autophagy-Regulative Nanoactivator Enables Effective Cancer Immunotherapy. ACS NANO 2019; 13:7568-7577. [PMID: 31260255 DOI: 10.1021/acsnano.9b00143] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Cellular immunotherapeutics aim to employ immune cells as anticancer agents. Ex vivo engineering of dendritic cells (DCs), the initial role of an immune response, benefits tumor elimination by boosting specific antitumor responses. However, directly activating DCs in vivo is less efficient and therefore quite challenging. Here, we designed a nanoactivator that manufactures DCs through autophagy upregulating in vivo directly, which lead to a high-efficiency antigen presention of DCs and antigen-specific T cells generation. The nanoactivator significantly enhances tumor antigen cross-presentation and subsequent T cell priming. Consequently, in vivo experiments show that the nanoactivators successfully reduce tumor growth and prolong murine survival. Taken together, these results indicate in situ DCs manipulation by autophagy induction is a promising strategy for antigen presentation enhancement and tumor elimination.
Collapse
Affiliation(s)
- Yi Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Yao-Xin Lin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P.R. China
- Center for Nanomedicine and Department of Anesthesiology , Brigham and Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Jie Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Sheng-Lin Qiao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Yu-Ying Liu
- National Key Laboratory of Medical Molecular Biology and Department of Immunology , Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences , Beijing 100005 , P.R. China
| | - Wen-Qian Dong
- National Key Laboratory of Medical Molecular Biology and Department of Immunology , Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences , Beijing 100005 , P.R. China
| | - Junqing Wang
- Center for Nanomedicine and Department of Anesthesiology , Brigham and Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P.R. China
- Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100149 , P.R. China
| | - Chao Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P.R. China
| | - Muhetaerjiang Mamuti
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P.R. China
| | - Bo Huang
- National Key Laboratory of Medical Molecular Biology and Department of Immunology , Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences , Beijing 100005 , P.R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| |
Collapse
|
24
|
Li J, Du X, Powell DJ, Zhou R, Shi J, He H, Feng Z, Xu B. Down-regulating Proteolysis to Enhance Anticancer Activity of Peptide Nanofibers. Chem Asian J 2018; 13:3464-3468. [PMID: 29897657 PMCID: PMC6242746 DOI: 10.1002/asia.201800875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 06/12/2018] [Indexed: 11/12/2022]
Abstract
Nanofibers of short peptides are emerging as a promising type of agents for inhibiting cancer cells. But the proteolysis of peptides decreases the anticancer efficacy of the peptide nanofibers. Here we show that decreasing the activity of proteasomes enhance the activity of peptide nanofibers for inhibiting cancer cells. Based on the structure of galactin-3, we designed a heptapeptide, which self-assembles to form nanofibers. The nanofibers of the heptapeptide exhibit moderate cytotoxicity to three representative cancer cell lines (HeLa, MCF-7, and HepG2), largely due to the proteolysis of the peptides. Using a clinically approved proteasome inhibitor, bortezomib, to treat the cancer cells significantly decreases the proteolysis of the peptides and enhances the activity of the peptide nanofibers for inhibiting the cancer cells. This work illustrates a promising approach for enhancing the anticancer efficacy of peptide nanofibers by modulating intracellular protein degradation machinery, as well as provides insights for understanding the cytotoxicity of aberrant protein or peptide aggregates in complicated cellular environment.
Collapse
Affiliation(s)
- Jie Li
- Department of Chemistry, Brandeis University, 415 South St, Waltham, MA, 02454, USA
| | - Xuewen Du
- Department of Chemistry, Brandeis University, 415 South St, Waltham, MA, 02454, USA
| | - Devon J Powell
- Department of Chemistry, Brandeis University, 415 South St, Waltham, MA, 02454, USA
| | - Rong Zhou
- Department of Chemistry, Brandeis University, 415 South St, Waltham, MA, 02454, USA
| | - Junfeng Shi
- Department of Chemistry, Brandeis University, 415 South St, Waltham, MA, 02454, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South St, Waltham, MA, 02454, USA
| | - Zhaoqianqi Feng
- Department of Chemistry, Brandeis University, 415 South St, Waltham, MA, 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St, Waltham, MA, 02454, USA
| |
Collapse
|
25
|
Bingol HB, Demir Duman F, Yagci Acar H, Yagci MB, Avci D. Redox-responsive phosphonate-functionalized poly(β-amino ester) gels and cryogels. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
26
|
Liu FH, Cong Y, Qi GB, Ji L, Qiao ZY, Wang H. Near-Infrared Laser-Driven in Situ Self-Assembly as a General Strategy for Deep Tumor Therapy. NANO LETTERS 2018; 18:6577-6584. [PMID: 30251542 DOI: 10.1021/acs.nanolett.8b03174] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanotherapeutics have encountered some bottleneck problems in cancer therapy, such as poor penetration and inefficient accumulation in tumor site. We herein developed a novel strategy for deep tissue penetration in molecular level and near-infrared (NIR) laser guided in situ self-assembly to solve these challenges. For the proof-of-concept study, we synthesized the polymer-peptide conjugates (PPCs) composed of (i) poly(β-thioester) as thermoresponsive backbone, (ii) functional peptides (cytotoxic peptide and cell-penetrating peptide), and (iii) the NIR molecule with photothermal property. The PPCs in the molecular level with small size (<10 nm) can penetrate deeply into the interior of the tumor at body temperature. Under the irradiation of NIR laser, the temperature rise induced by photothermal molecules led to the intratumoral self-assembly of thermoresponsive PPCs. The resultant spherical nanoparticles can accumulate in tumor and enter cells effectively, inducing cell apoptosis by destroying mitochondria membrane. Through the site-specific size control, a variety of merits of PPCs are realized including deep tumor penetration, enhanced accumulation, and cellular internalization in vivo. Taking advantage of the NIR guided in situ assembly strategy, numerous polymeric or nanoscaled therapeutics with high anticancer activity can be exploited.
Collapse
Affiliation(s)
- Fu-Hua Liu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
| | - Yong Cong
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
| | - Guo-Bin Qi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
| | - Lei Ji
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
| |
Collapse
|
27
|
Ran M, Xie P, Tang X, Zeng G, Yang J. Determination of adriamycin content in pectin–adriamycin conjugate in a two-phase reaction system by high-performance liquid chromatography. ACTA CHROMATOGR 2018. [DOI: 10.1556/1326.2017.00201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Maosheng Ran
- Laboratory of Cancer Biotherapy, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
- Chongqing Lummy Pharmaceutical Co., Ltd., Chongqing 401336, China
| | - Ping Xie
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaohai Tang
- Chongqing Lummy Pharmaceutical Co., Ltd., Chongqing 401336, China
| | - Guangfu Zeng
- Chongqing Lummy Pharmaceutical Co., Ltd., Chongqing 401336, China
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Jinliang Yang
- Laboratory of Cancer Biotherapy, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Qi GB, Gao YJ, Wang L, Wang H. Self-Assembled Peptide-Based Nanomaterials for Biomedical Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703444. [PMID: 29460400 DOI: 10.1002/adma.201703444] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/22/2017] [Indexed: 05/22/2023]
Abstract
Peptide-based materials are one of the most important biomaterials, with diverse structures and functionalities. Over the past few decades, a self-assembly strategy is introduced to construct peptide-based nanomaterials, which can form well-controlled superstructures with high stability and multivalent effect. More recently, peptide-based functional biomaterials are widely utilized in clinical applications. However, there is no comprehensive review article that summarizes this growing area, from fundamental research to clinic translation. In this review, the recent progress of peptide-based materials, from molecular building block peptides and self-assembly driving forces, to biomedical and clinical applications is systematically summarized. Ex situ and in situ constructed nanomaterials based on functional peptides are presented. The advantages of intelligent in situ construction of peptide-based nanomaterials in vivo are emphasized, including construction strategy, nanostructure modulation, and biomedical effects. This review highlights the importance of self-assembled peptide nanostructures for nanomedicine and can facilitate further knowledge and understanding of these nanosystems toward clinical translation.
Collapse
Affiliation(s)
- Guo-Bin Qi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yu-Juan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
29
|
Liu FH, Hou CY, Zhang D, Zhao WJ, Cong Y, Duan ZY, Qiao ZY, Wang H. Enzyme-sensitive cytotoxic peptide–dendrimer conjugates enhance cell apoptosis and deep tumor penetration. Biomater Sci 2018; 6:604-613. [DOI: 10.1039/c7bm01182b] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cytotoxic peptide conjugated PAMAM dendrimers with MMP2-sensitive PEG for efficient tumor penetration, cellular internalization and mitochondria disruption.
Collapse
Affiliation(s)
- Fu-Hua Liu
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
- CAS Center for Excellence in Nanoscience
| | - Chun-Yuan Hou
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- 100190
| | - Di Zhang
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- 100190
| | - Wen-Jing Zhao
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
- CAS Center for Excellence in Nanoscience
| | - Yong Cong
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- 100190
| | - Zhong-Yu Duan
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| | - Zeng-Ying Qiao
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
- CAS Center for Excellence in Nanoscience
| | - Hao Wang
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
- CAS Center for Excellence in Nanoscience
| |
Collapse
|
30
|
Kameta N, Ding W, Dong J. Soft Nanotubes Derivatized with Short PEG Chains for Thermally Controllable Extraction and Separation of Peptides. ACS OMEGA 2017; 2:6143-6150. [PMID: 30023764 PMCID: PMC6044993 DOI: 10.1021/acsomega.7b00838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/13/2017] [Indexed: 06/08/2023]
Abstract
By means of a two-step self-assembly process involving three components, including short poly(ethylene glycol) (PEG) chains, we produced two different types of molecular monolayer nanotubes: nanotubes densely functionalized with PEG chains on the outer surface and nanotubes densely functionalized with PEG chains in the nanochannel. Turbidity measurements and fluorescence spectroscopy with an environmentally responsive probe suggested that the PEG chains underwent dehydration when the nanotubes were heated above 44-57 °C and rehydration when they were cooled back to 25 °C. Dehydration of the exterior or interior PEG chains rendered them hydrophobic and thus able to effectively extract hydrophobic amino acids from the bulk solution. Rehydration of the PEG chains restored their hydrophilicity, thus allowing the extracted amino acids to be squeezed out into the bulk solutions. The nanotubes with exterior PEG chains exhibited selectivity for all of the hydrophobic amino acids, whereas the interior PEG chains were selective for hydrophobic amino acids with an aliphatic side chain over hydrophobic amino acids with an aromatic side chain. The higher selectivity of the latter system is attributable that the extraction and back-extraction processes involve encapsulation and transportation of the amino acids in the nanotube channel. As the result, the latter system was useful for separation of peptides that differed by only a single amino acid, whereas the former system showed no such separation ability.
Collapse
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science
and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Wuxiao Ding
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science
and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Jiuchao Dong
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science
and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
31
|
Qiao ZY, Zhao WJ, Gao YJ, Cong Y, Zhao L, Hu Z, Wang H. Reconfigurable Peptide Nanotherapeutics at Tumor Microenvironmental pH. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30426-30436. [PMID: 28828864 DOI: 10.1021/acsami.7b09033] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Peptide nanomaterials have recently attracted considerable interest in the biomedical field. However, their poor bioavailability and less powerful therapeutic efficacy hamper their further applications. Herein, we discovered reconfigurable and activated nanotherapeutics in the tumor microenvironment. Two peptides, that is, a pH-responsive peptide HLAH and a matrix metalloprotease-2 (MMP2)-sensitive peptide with a poly(ethylene glycol) (PEG) terminal were conjugated onto the hydrophobic poly(β-thioester)s backbones to gain the copolymer P-S-H. The therapeutic activity of the HLAH peptide could be activated in tumors owing to its reconfiguration under microenvironmental pH. The resultant copolymers self-assembled into nanoparticles under physiological condition, with HLAH in cores protected by PEG shells. The moderate size (∼100 nm) and negative potential enabled the stable circulation of P-S-H in the bloodstream. Once arrived at the tumor site, the P-S-H nanoparticles were stimulated by overexpressed MMP2 and acidic pH, and subsequently the shedding of the PEG shell and protonation of the HLAH peptide induced the reassembly of nanoparticles, resulting in the formation of nanoparticles with activated cytotoxic peptides on the surface. In vivo experiments demonstrated that the reorganized nanoassembly contained three merits: (1) effective accumulation in the tumor site, (2) enhanced antitumor capacity, and (3) no obvious toxic effect at the treatment dose. This on-site reorganization strategy provides an avenue for developing high-performance peptide nanomaterials in cancer treatment.
Collapse
Affiliation(s)
- Zeng-Ying Qiao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| | - Wen-Jing Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| | - Yu-Juan Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| | - Yong Cong
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| | - Lina Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Zhiyuan Hu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| | - Hao Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| |
Collapse
|
32
|
Qi GB, Zhang D, Liu FH, Qiao ZY, Wang H. An "On-Site Transformation" Strategy for Treatment of Bacterial Infection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703461. [PMID: 28782856 DOI: 10.1002/adma.201703461] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 05/22/2023]
Abstract
To date, numerous nanosystems have been developed as antibiotic replacements for bacterial infection treatment. However, these advanced systems are limited owing to their nontargeting accumulation and the consequent side effects. Herein, transformable polymer-peptide biomaterials have been developed that enable specific accumulation in the infectious site and long-term retention, resulting in enhanced binding capability and killing efficacy toward bacteria. The polymer-peptide conjugates are composed of a chitosan backbone and two functional peptides, i.e., an antimicrobial peptide and a poly(ethylene glycol)-tethered enzyme-cleavable peptide (CPC-1). The CPC-1 initially self-assembles into nanoparticles with pegylated coronas. Upon the peptides are cleaved by the gelatinase secreted by a broad spectrum of bacterial species, the resultant compartments of nanoparticles spontaneously transformed into fibrous nanostructures that are stabilized by enhanced chain-chain interaction, leading to exposure of antimicrobial peptide residues for multivalent cooperative electrostatic interactions with bacterial membranes. Intriguingly, the in situ morphological transformation also critically improves the accumulation and retention of CPC-1 in infectious sites in vivo, which exhibits highly efficient antibacterial activity. This proof-of-concept study demonstrates that pathological environment-driven smart self-assemblies may provide a new idea for design of high-performance biomaterials for disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Guo-Bin Qi
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Di Zhang
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Fu-Hua Liu
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| |
Collapse
|
33
|
Gok O, Erturk P, Sumer Bolu B, Gevrek TN, Sanyal R, Sanyal A. Dendrons and Multiarm Polymers with Thiol-Exchangeable Cores: A Reversible Conjugation Platform for Delivery. Biomacromolecules 2017. [PMID: 28648044 DOI: 10.1021/acs.biomac.7b00619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Disulfide exchange reaction has emerged as a powerful tool for reversible conjugation of proteins, peptides and thiol containing molecules to polymeric supports. In particular, the pyridyl disulfide group provides an efficient handle for the site-specific conjugation of therapeutic peptides and proteins bearing cysteine moieties. In this study, novel biodegradable dendritic platforms containing a pyridyl disulfide unit at their focal point were designed. Presence of hydroxyl groups at the periphery of these dendrons allows their elaboration to multivalent initiators that yield poly(ethylene glycol) based multiarm star polymers via controlled radical polymerization. The pyridyl disulfide unit at the core of these star polymers undergoes efficient reaction with thiol functional group containing molecules such as a hydrophobic dye, namely, Bodipy-SH, glutathione, and KLAK sequence containing peptide. While conjugation of the hydrophobic fluorescent dye to the PEG-based multiarm polymer renders it water-soluble, it can be cleaved off the construct through thiol-disulfide exchange in the presence of an external thiol such as dithiothreitol. The multiarm polymer was conjugated with a thiol group containing apoptotic peptide to increase its solubility and cellular transport. In vitro cytotoxicity and apoptosis assays demonstrated that the resultant peptide-polymer conjugate had almost five times more apoptotic potential primarily through triggering apoptosis by disrupting mitochondrial membranes of human breast cancer cell line (MDA-MB-231) compared to naked peptide. The novel dendritic platform disclosed here offers an attractive template that can be modified to multiarm polymeric constructs bearing a "tag and release" characteristic.
Collapse
Affiliation(s)
- Ozgul Gok
- Department of Chemistry, Bogazici University , Bebek 34342, Istanbul, Turkey
| | - Pelin Erturk
- Department of Chemistry, Bogazici University , Bebek 34342, Istanbul, Turkey
| | - Burcu Sumer Bolu
- Department of Chemistry, Bogazici University , Bebek 34342, Istanbul, Turkey
| | - Tugce Nihal Gevrek
- Department of Chemistry, Bogazici University , Bebek 34342, Istanbul, Turkey
| | - Rana Sanyal
- Department of Chemistry, Bogazici University , Bebek 34342, Istanbul, Turkey.,Center for Life Sciences and Technologies, Bogazici University , Istanbul, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University , Bebek 34342, Istanbul, Turkey.,Center for Life Sciences and Technologies, Bogazici University , Istanbul, Turkey
| |
Collapse
|
34
|
Qiao ZY, Lai WJ, Lin YX, Li D, Nan XH, Wang Y, Wang H, Fang QJ. Polymer–KLAK Peptide Conjugates Induce Cancer Cell Death through Synergistic Effects of Mitochondria Damage and Autophagy Blockage. Bioconjug Chem 2017; 28:1709-1721. [DOI: 10.1021/acs.bioconjchem.7b00176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | | | - Yao-Xin Lin
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dan Li
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao-Hui Nan
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yi Wang
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | | - Qiao-Jun Fang
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
35
|
Cheng DB, Qi GB, Wang JQ, Cong Y, Liu FH, Yu H, Qiao ZY, Wang H. In Situ Monitoring Intracellular Structural Change of Nanovehicles through Photoacoustic Signals Based on Phenylboronate-Linked RGD-Dextran/Purpurin 18 Conjugates. Biomacromolecules 2017; 18:1249-1258. [PMID: 28269979 DOI: 10.1021/acs.biomac.6b01922] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The stimuli-responsive polymeric nanocarriers have been studied extensively, and their structural changes in cells are important for the controlled intracellular drug release. The present work reported RGD-dextran/purpurin 18 conjugates with pH-responsive phenylboronate as spacer for monitoring the structural change of nanovehicles through ratiometric photoacoustic (PA) signal. Phenylboronic acid modified purpurin 18 (NPBA-P18) could attach onto the RGD-decorated dextran (RGD-Dex), and the resulting RGD-Dex/NPBA-P18 (RDNP) conjugates with different molar ratios of RGD-Dex and NPBA-P18 were prepared. When the moles of NPBA-P18 were equivalent to more than triple of RGD-Dex, the single-stranded RDNP conjugates could self-assemble into nanoparticles in aqueous solution due to the fairly strong hydrophobicity of NPBA-P18. The pH-responsive aggregations of NPBA-P18 were investigated by UV-vis, fluorescence, and circular dichroism spectra, as well as transmission electron microscope. Based on distinct PA signals between monomeric and aggregated state, ratiometric PA signal of I750/I710 could be presented to trace the structural change progress. Compared with RDNP single chains, the nanoparticles exhibited effective cellular internalization through endocytosis pathway. Furthermore, the nanoparticles could form well-ordered aggregates responding to intracellular acidic environment, and the resulting structural change was also monitored by ratiometric PA signal. Therefore, the noninvasive PA approach could provide a deep insight into monitoring the intracellular structural change process of stimuli-responsive nanocarriers.
Collapse
Affiliation(s)
- Dong-Bing Cheng
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| | - Guo-Bin Qi
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| | - Jing-Qi Wang
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| | - Yong Cong
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| | - Fu-Hua Liu
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| | - Haijun Yu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| |
Collapse
|
36
|
Suma T, Cui J, Müllner M, Fu S, Tran J, Noi KF, Ju Y, Caruso F. Modulated Fragmentation of Proapoptotic Peptide Nanoparticles Regulates Cytotoxicity. J Am Chem Soc 2017; 139:4009-4018. [PMID: 28286953 DOI: 10.1021/jacs.6b11302] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Peptides perform a diverse range of physiologically important functions. The formulation of nanoparticles directly from functional peptides would therefore offer a versatile and robust platform to produce highly functional therapeutics. Herein, we engineered proapoptotic peptide nanoparticles from mitochondria-disrupting KLAK peptides using a template-assisted approach. The nanoparticles were designed to disassemble into free native peptides via the traceless cleavage of disulfide-based cross-linkers. Furthermore, the cytotoxicity of the nanoparticles was tuned by controlling the kinetics of disulfide bond cleavage, and the rate of regeneration of the native peptide from the precursor species. In addition, a small molecule drug (i.e., doxorubicin hydrochloride) was loaded into the nanoparticles to confer synergistic cytotoxic activity, further highlighting the potential application of KLAK particles in therapeutic delivery.
Collapse
Affiliation(s)
- Tomoya Suma
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Jiwei Cui
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney , Sydney, NSW 2006, Australia
| | - Shiwei Fu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Jenny Tran
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Ka Fung Noi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
37
|
Wang Y, Lin YX, Qiao SL, An HW, Ma Y, Qiao ZY, Rajapaksha RYJ, Wang H. Polymeric nanoparticles promote macrophage reversal from M2 to M1 phenotypes in the tumor microenvironment. Biomaterials 2017; 112:153-163. [DOI: 10.1016/j.biomaterials.2016.09.034] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 01/03/2023]
|
38
|
Bakhshi H, Agarwal S. Hyperbranched polyesters as biodegradable and antibacterial additives. J Mater Chem B 2017; 5:6827-6834. [DOI: 10.1039/c7tb01301a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we present novel hyperbranched poly(amino-ester)s functionalized with quaternary ammonium salts.
Collapse
Affiliation(s)
- Hadi Bakhshi
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces
- University of Bayreuth
- Bayreuth
- Germany
| | - Seema Agarwal
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces
- University of Bayreuth
- Bayreuth
- Germany
| |
Collapse
|
39
|
Cheng DB, Yang PP, Cong Y, Liu FH, Qiao ZY, Wang H. One-pot synthesis of pH-responsive hyperbranched polymer–peptide conjugates with enhanced stability and loading efficiency for combined cancer therapy. Polym Chem 2017. [DOI: 10.1039/c7py00101k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanoparticles as drug-delivery systems have received significant attention due to their merits such as prolonged circulation time and passive targeting of a tumor site.
Collapse
Affiliation(s)
- Dong-Bing Cheng
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Pei-Pei Yang
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Yong Cong
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Fu-Hua Liu
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| |
Collapse
|
40
|
Gao YJ, Qiao ZY, Wang H. Polymers with tertiary amine groups for drug delivery and bioimaging. Sci China Chem 2016. [DOI: 10.1007/s11426-015-0516-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Lin YX, Wang Y, Qiao SL, An HW, Zhang RX, Qiao ZY, Rajapaksha RPYJ, Wang L, Wang H. pH-Sensitive Polymeric Nanoparticles Modulate Autophagic Effect via Lysosome Impairment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2921-31. [PMID: 27120078 DOI: 10.1002/smll.201503709] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/02/2016] [Indexed: 05/23/2023]
Abstract
In drug delivery systems, pH-sensitive polymers are commonly used as drug carriers, and significant efforts have been devoted to the aspects of controlled delivery and release of drugs. However, few studies address the possible autophagic effects on cells. Here, for the first time, using a fluorescent autophagy-reporting cell line, this study evaluates the autophagy-induced capabilities of four types of pH-sensitive polymeric nanoparticles (NPs) with different physical properties, including size, surface modification, and pH-sensitivity. Based on experimental results, this study concludes that pH-sensitivity is one of the most important factors in autophagy induction. In addition, this study finds that variation of concentration of NPs could cause different autophagic effect, i.e., low concentration of NPs induces autophagy in an mTOR-dependent manner, but high dose of NPs leads to autophagic cell death. Identification of this tunable autophagic effect offers a novel strategy for enhancing therapeutic effect in cancer therapy through modulation of autophagy.
Collapse
Affiliation(s)
- Yao-Xin Lin
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, China
- University of Chinese Academy of Science (UCAS), No.19A Yuquan Road, Beijing, China
| | - Yi Wang
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, China
- University of Chinese Academy of Science (UCAS), No.19A Yuquan Road, Beijing, China
| | - Sheng-Lin Qiao
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, China
- University of Chinese Academy of Science (UCAS), No.19A Yuquan Road, Beijing, China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, China
- University of Chinese Academy of Science (UCAS), No.19A Yuquan Road, Beijing, China
| | - Ruo-Xin Zhang
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, China
| | - R P Y J Rajapaksha
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, China
| |
Collapse
|
42
|
Qiao ZY, Zhao WJ, Cong Y, Zhang D, Hu Z, Duan ZY, Wang H. Self-Assembled ROS-Sensitive Polymer-Peptide Therapeutics Incorporating Built-in Reporters for Evaluation of Treatment Efficacy. Biomacromolecules 2016; 17:1643-52. [PMID: 27023216 DOI: 10.1021/acs.biomac.6b00041] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One of the major challenges in current cancer therapy is to maximize therapeutic effect and evaluate tumor progression under the scheduled treatment protocol. To address these challenges, we synthesized the cytotoxic peptide (KLAKLAK)2 (named KLAK) conjugated amphiphilic poly(β-thioester)s copolymers (H-P-K) composed of reactive oxygen species (ROS) sensitive backbones and hydrophilic polyethylene glycol (PEG) side chains. H-P-K could self-assemble into micelle-like nanoparticles by hydrophobic interaction with copolymer backbones as cores and PEG and KLAK as shells. The assembled polymer-peptide nanoparticles remarkably improved cellular internalization and accumulation of therapeutic KLAK in cells. Compared to free KLAK peptide, the antitumor activity of H-P-K was significantly enhanced up to ∼400 times, suggesting the effectiveness of the nanoscaled polymer-peptide conjugation as biopharmaceuticals. The higher antitumor activity of nanoparticles was attributed to the efficient disruption of mitochondrial membranes and subsequent excessive ROS production in cells. To realize the ROS monitoring and treatment evaluation, we encapsulated squaraine (SQ) dyes as built-in reporters in ROS-sensitive H-P-K micelles. The overgenerated ROS around mitochondria stimulated the swelling of nanoparticles and subsequent release of SQ, which formed H-aggregates and significantly increased the photoacoustic (PA) signal. We believed that this self-assembled polymer-peptide nanotherapeutics incorporating built-in reporters has great potential for high antitumor performance and in situ treatment evaluation.
Collapse
Affiliation(s)
- Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| | - Wen-Jing Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China.,School of Chemical Engineering and Technology, Hebei University of Technology , Tianjin, 300130, China
| | - Yong Cong
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| | - Di Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| | - Zhiyuan Hu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| | - Zhong-Yu Duan
- School of Chemical Engineering and Technology, Hebei University of Technology , Tianjin, 300130, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| |
Collapse
|
43
|
Qiao ZY, Lin YX, Lai WJ, Hou CY, Wang Y, Qiao SL, Zhang D, Fang QJ, Wang H. A General Strategy for Facile Synthesis and In Situ Screening of Self-Assembled Polymer-Peptide Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1859-1867. [PMID: 26698326 DOI: 10.1002/adma.201504564] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/18/2015] [Indexed: 06/05/2023]
Abstract
A universal strategy for efficient, mild, and purification-free synthesis and in situ screening of functional polymer-peptide nanomaterials is described. More than 1000 polymer-peptide conjugates (PPCs) with various chemical structures, compositions, and therapeutic efficacy are created. According to this strategy, the structure-function relationship of the PPCs is revealed, and the antitumor efficacies of the top performing PPCs are evaluated in vivo.
Collapse
Affiliation(s)
- Zeng-Ying Qiao
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yao-Xin Lin
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Wen-Jia Lai
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Chun-Yuan Hou
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yi Wang
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Sheng-Lin Qiao
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Di Zhang
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Qiao-Jun Fang
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Wang
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
44
|
Yang PP, Zhao XX, Xu AP, Wang L, Wang H. Reorganization of self-assembled supramolecular materials controlled by hydrogen bonding and hydrophilic–lipophilic balance. J Mater Chem B 2016; 4:2662-2668. [DOI: 10.1039/c6tb00097e] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The process of in situ morphology transformation of the polymeric peptide (BKP) from nanoparticles to nanofibers controlled by H-bonds and hydrophobic interactions is explored. Increasing hydrophilic chain length of the molecule accelerates the morphology transformation.
Collapse
Affiliation(s)
- Pei-Pei Yang
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing
- China
| | - Xiao-Xiao Zhao
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing
- China
| | - An-Ping Xu
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing
- China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing
- China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing
- China
| |
Collapse
|
45
|
Kameta N, Matsuzawa T, Yaoi K, Masuda M. Short polyethylene glycol chains densely bound to soft nanotube channels for inhibition of protein aggregation. RSC Adv 2016. [DOI: 10.1039/c6ra06793j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Specific thermal dehydration/rehydration of short polyethylene glycol (PEG) chains densely bound to nanotube channels was useful for aggregation suppression and refolding acceleration of proteins.
Collapse
Affiliation(s)
- N. Kameta
- Research Institute for Sustainable Chemistry
- Department of Materials and Chemistry
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| | - T. Matsuzawa
- Bioproduction Research Institute
- Department of Life Science and Biotechnology
- AIST
- Tsukuba
- Japan
| | - K. Yaoi
- Bioproduction Research Institute
- Department of Life Science and Biotechnology
- AIST
- Tsukuba
- Japan
| | - M. Masuda
- Research Institute for Sustainable Chemistry
- Department of Materials and Chemistry
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| |
Collapse
|
46
|
Li N, Shen Y, Qi L, Li Z, Qiao J, Chen Y. Preparation of an amino acid-based polymer monolith for trimodal liquid chromatography. RSC Adv 2015. [DOI: 10.1039/c5ra12203a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A versatile method for preparing a trimodal polymer monolith was proposed by direct copolymerization of amino acid-based monomer and methylenebisacrylamide. Moreover, separation of a protein mixture could be achieved on the resultant monolith.
Collapse
Affiliation(s)
- Nan Li
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- 100190 Beijing
| | - Yong Shen
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- 100190 Beijing
| | - Li Qi
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- 100190 Beijing
| | - Zhibo Li
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- 100190 Beijing
| | - Juan Qiao
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- 100190 Beijing
| | - Yi Chen
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- 100190 Beijing
| |
Collapse
|
47
|
Qiao ZY, Hou CY, Zhao WJ, Zhang D, Yang PP, Wang L, Wang H. Synthesis of self-reporting polymeric nanoparticles for in situ monitoring of endocytic microenvironmental pH. Chem Commun (Camb) 2015; 51:12609-12. [DOI: 10.1039/c5cc03752b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultra-sensitive self-reporting nanoparticles for in situ monitoring of microenvironmental pH in the endocytosis process based on dual wavelength fluorescence changes.
Collapse
Affiliation(s)
- Zeng-Ying Qiao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- China
| | - Chun-Yuan Hou
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- China
| | - Wen-Jing Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- China
| | - Di Zhang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- China
| | - Pei-Pei Yang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- China
| | - Lei Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- China
| | - Hao Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- China
| |
Collapse
|
48
|
Qiao ZY, Zhang D, Hou CY, Zhao SM, Liu Y, Gao YJ, Tan NH, Wang H. A pH-responsive natural cyclopeptide RA-V drug formulation for improved breast cancer therapy. J Mater Chem B 2015; 3:4514-4523. [PMID: 32262395 DOI: 10.1039/c5tb00445d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The co-encapsulation of RA-V cyclopeptide and SQ molecules in pH-sensitive PAE micelles for efficient tumor therapy and imaging in vitro and in vivo.
Collapse
Affiliation(s)
- Zeng-Ying Qiao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Di Zhang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Chun-Yuan Hou
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Si-Meng Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- China
| | - Ya Liu
- College of Marine Life Science
- Ocean University of China
- Qingdao
- China
| | - Yu-Juan Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Ning-Hua Tan
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- China
| | - Hao Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| |
Collapse
|