1
|
Műller D, Krakowska A, Zontek-Wilkowska J, Paczosa-Bator B. Simple and hybrid materials for antimicrobial applications. Colloids Surf B Biointerfaces 2025; 253:114747. [PMID: 40347664 DOI: 10.1016/j.colsurfb.2025.114747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/14/2025] [Accepted: 04/27/2025] [Indexed: 05/14/2025]
Abstract
Simple and hybrid materials represent alternatives to traditional antibiotics in the ongoing effort to combat the growing issue of antibiotic-resistant bacterial strains, which have emerged due to the misuse of antibiotic treatments and improper disposal of antibiotic-related waste. First, after outlining the scale of the issue, multiple potential agents that may help address the problem are presented. Inorganic metal-based and metal oxide-based nanomaterials such as silver, gold, gallium, zinc/zinc oxide, copper/copper oxide, titanium dioxide, and magnesium oxide nanoparticles are characterized, their synthesis is described, and examples of their potential antimicrobial applications are provided. Subsequent sections in a similar vein, explore nonmetallic inorganic nanoparticles and characterize organic materials that may function either as antimicrobial agents themselves (e.g., antimicrobial peptides, chitosan) or as structural components and drug carriers (e.g., cellulose, SNLs, liposomes). The final chapter offers examples of combining inorganic and organic materials into hybrid solutions for specialized antimicrobial applications and treatments, aiming to enhance their inherent antimicrobial properties or reduce the required dosage of antibiotics in therapy.
Collapse
Affiliation(s)
- Dominik Műller
- Faculty of Materials Science and Ceramics, Department of Analytical Chemistry and Biochemistry, AGH University of Krakow, Al. Mickiewicza 30, Krakow 30-059, Poland
| | - Agata Krakowska
- Faculty of Materials Science and Ceramics, Department of Analytical Chemistry and Biochemistry, AGH University of Krakow, Al. Mickiewicza 30, Krakow 30-059, Poland; Department of Inorganic Chemistry and Pharmaceutical Analytics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, Kraków 30-688, Poland.
| | - Joanna Zontek-Wilkowska
- Department of Inorganic Chemistry and Pharmaceutical Analytics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, Kraków 30-688, Poland; Doctoral School of Medical and Health Science, Department of Inorganic Chemistry and Pharmaceutical Analytics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, Kraków 30-688, Poland; Pharmlab Czarneccy Sp. z o.o., Lubostroń 15 / 6 Street, Kraków 30-383, Poland
| | - Beata Paczosa-Bator
- Faculty of Materials Science and Ceramics, Department of Analytical Chemistry and Biochemistry, AGH University of Krakow, Al. Mickiewicza 30, Krakow 30-059, Poland
| |
Collapse
|
2
|
Moraes-de-Souza I, de Moraes BPT, Silva AR, Ferrarini SR, Gonçalves-de-Albuquerque CF. Tiny Green Army: Fighting Malaria with Plants and Nanotechnology. Pharmaceutics 2024; 16:699. [PMID: 38931823 PMCID: PMC11206820 DOI: 10.3390/pharmaceutics16060699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 06/28/2024] Open
Abstract
Malaria poses a global threat to human health, with millions of cases and thousands of deaths each year, mainly affecting developing countries in tropical and subtropical regions. Malaria's causative agent is Plasmodium species, generally transmitted in the hematophagous act of female Anopheles sp. mosquitoes. The main approaches to fighting malaria are eliminating the parasite through drug treatments and preventing transmission with vector control. However, vector and parasite resistance to current strategies set a challenge. In response to the loss of drug efficacy and the environmental impact of pesticides, the focus shifted to the search for biocompatible products that could be antimalarial. Plant derivatives have a millennial application in traditional medicine, including the treatment of malaria, and show toxic effects towards the parasite and the mosquito, aside from being accessible and affordable. Its disadvantage lies in the type of administration because green chemical compounds rapidly degrade. The nanoformulation of these compounds can improve bioavailability, solubility, and efficacy. Thus, the nanotechnology-based development of plant products represents a relevant tool in the fight against malaria. We aim to review the effects of nanoparticles synthesized with plant extracts on Anopheles and Plasmodium while outlining the nanotechnology green synthesis and current malaria prevention strategies.
Collapse
Affiliation(s)
- Isabelle Moraes-de-Souza
- Immunopharmacology Laboratory, Department of Physiological Sciences, Federal University of the State of Rio de Janeiro—UNIRIO, Rio de Janeiro 20211-010, Brazil; (I.M.-d.-S.); (B.P.T.d.M.)
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-361, Brazil;
| | - Bianca P. T. de Moraes
- Immunopharmacology Laboratory, Department of Physiological Sciences, Federal University of the State of Rio de Janeiro—UNIRIO, Rio de Janeiro 20211-010, Brazil; (I.M.-d.-S.); (B.P.T.d.M.)
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-361, Brazil;
| | - Adriana R. Silva
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-361, Brazil;
| | - Stela R. Ferrarini
- Pharmaceutical Nanotechnology Laboratory, Federal University of Mato Grosso of Sinop Campus—UFMT, Cuiabá 78550-728, Brazil;
| | - Cassiano F. Gonçalves-de-Albuquerque
- Immunopharmacology Laboratory, Department of Physiological Sciences, Federal University of the State of Rio de Janeiro—UNIRIO, Rio de Janeiro 20211-010, Brazil; (I.M.-d.-S.); (B.P.T.d.M.)
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-361, Brazil;
| |
Collapse
|
3
|
Alghamdi SQ, Alotaibi NF, Al-Ghamdi SN, Alqarni LS, Amna T, Moustafa SMN, Alsohaimi IH, Alruwaili IA, Nassar AM. High Antiparasitic and Antimicrobial Performance of Biosynthesized NiO Nanoparticles via Wasted Olive Leaf Extract. Int J Nanomedicine 2024; 19:1469-1485. [PMID: 38380146 PMCID: PMC10876883 DOI: 10.2147/ijn.s443965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Background Nowadays, recycling agricultural waste is of the utmost importance in the world for the production of valuable bioactive compounds and environmental protection. Olive leaf bioactive compounds have a significant potential impact on the pharmaceutical industry. These compounds possess remarkable biological characteristics, including antimicrobial, antiviral, anti-inflammatory, hypoglycemic, and antioxidant properties. Methods The present study demonstrates a green synthetic approach for the fabrication of nickel oxide nanoparticles (NiO-olive) using aqueous wasted olive leaf extract. Calcination of NiO-olive at 500°C led to the fabrication of pure NiO nanoparticles (NiO-pure). Different techniques, such as thermal gravimetric analysis (TGA), Fourier-transform infrared spectra (FTIR), ultraviolet-visible spectra (UV-Vis), X-ray diffraction (XRD), scanning electron microscopy (SEM) fitted with energy-dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM), were used to characterize both NiO-olive and NiO-pure. The extract and nanoparticles were assessed for antiparasitic activity against adult ticks (Hyalomma dromedarii) and antimicrobial activity against Bacillus cereus, Pseudomonas aeruginosa, Aspergillus niger, and Candida albicans. Results From XRD, the crystal sizes of NiO-olive and NiO-pure were 32.94 nm and 13.85 nm, respectively. TGA, FTIR, and EDX showed the presence of olive organic residues in NiO-olive and their absence in NiO-pure. SEM and TEM showed an asymmetrical structure of NiO-olive and a regular, semi-spherical structure of NiO-pure. UV-Vis spectra showed surface plasmon resonance of NPs. Antiparasitic activity showed the highest mortality rate of 95% observed at a concentration of 0.06 mg/mL after four days of incubation. The antimicrobial activity showed the largest inhibition zone diameter of 33 ± 0.2 mm against the Candida albicans strain. Conclusion Nanoparticles of NiO-olive outperformed nanoparticles of NiO-pure and olive leaf extract in both antiparasitic and antimicrobial tests. These findings imply that NiO-olive may be widely used as an eco-friendly and effective antiparasitic and disinfection of sewage.
Collapse
Affiliation(s)
- Samia Q Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha, 65799Saudi Arabia
| | - N F Alotaibi
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Sameera N Al-Ghamdi
- Chemistry Department, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | - Laila S Alqarni
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623Saudi Arabia
| | - Touseef Amna
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha, 65799Saudi Arabia
| | - Shaima M N Moustafa
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | | | - I A Alruwaili
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - A M Nassar
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
4
|
Abdelhakm LO, Kandil EI, Mansour SZ, El-Sonbaty SM. Chrysin Encapsulated Copper Nanoparticles with Low Dose of Gamma Radiation Elicit Tumor Cell Death Through p38 MAPK/NF-κB Pathways. Biol Trace Elem Res 2023; 201:5278-5297. [PMID: 36905557 PMCID: PMC10509080 DOI: 10.1007/s12011-023-03596-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 02/04/2023] [Indexed: 03/12/2023]
Abstract
Improving radiation effect on tumor cells using radiosensitizers is gaining traction for improving chemoradiotherapy. This study aimed to evaluate copper nanoparticles (CuNPs) synthesized using chrysin as radiosensitizer with γ-radiation on biochemical and histopathological approaches in mice bearing Ehrlich solid tumor. CuNPs were characterized with irregular round sharp shape with size range of 21.19-70.79 nm and plasmon absorption at 273 nm. In vitro study on MCF-7 cells detected cytotoxic effect of CuNPs with IC50 of 57.2 ± 3.1 μg. In vivo study was performed on mice transplanted with Ehrlich solid tumor (EC). Mice were injected with CuNPs (0.67 mg/kg body weight) and/or exposed to low dose of gamma radiation (0.5 Gy). EC mice exposed to combined treatment of CuNPs and radiation showed a marked reduction in tumor volume, ALT and CAT, creatinine, calcium, and GSH, along with elevation in MDA, caspase-3 in parallel with inhibition of NF-κB, p38 MAPK, and cyclin D1 gene expression. Comparing histopathological findings of treatment groups ends that combined treatment was of higher efficacy, showing tumor tissue regression and increase in apoptotic cells. In conclusion, CuNPs with a low dose of gamma radiation showed more powerful ability for tumor suppression via promoting oxidative state, stimulating apoptosis, and inhibiting proliferation pathway through p38MAPK/NF-κB and cyclinD1.
Collapse
Affiliation(s)
- Lubna O Abdelhakm
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Eman I Kandil
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Somaya Z Mansour
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Sawsan M El-Sonbaty
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
5
|
Bonser CAR, Astete CE, Sabliov CM, Davis JA. Elucidating the insecticidal mechanisms of zein nanoparticles on Anticarsia gemmatalis (Lepidoptera: Erebidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1196-1204. [PMID: 37229568 DOI: 10.1093/jee/toad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Previous research suggested that positively charged zein nanoparticles [(+)ZNP] were toxic to neonates of Anticarsia gemmatalis Hübner and deleterious to noctuid pests. However, specific modes of action for ZNP have not been elucidated. Diet overlay bioassays attempted to rule out the hypothesis that A. gemmatalis mortality was caused by surface charges from component surfactants. Overlay bioassays indicated that negatively charged zein nanoparticles [(-)ZNP] and its anionic surfactant, sodium dodecyl sulfate (SDS), exhibited no toxic effects when compared to the untreated check. Nonionic zein nanoparticles [(N)ZNP] appeared to increase mortality compared to the untreated check, though larval weights were unaffected. Overlay results for (+)ZNP and its cationic surfactant, didodecyldimethylammonium bromide (DDAB), were found to be consistent with former research indicating high mortalities, and thus, dosage response curves were conducted. Concentration response tests found the LC50 for DDAB on A. gemmatalis neonates was 208.82 a.i./ml. To rule out possible antifeedant capabilities, dual choice assays were conducted. Results indicated that neither DDAB nor (+)ZNP were antifeedants, while SDS reduced feeding when compared to other treatment solutions. Oxidative stress was tested as a possible mode of action, with antioxidant levels used as a proxy for reactive oxygen species (ROS) in A. gemmatalis neonates, which were fed diet treated with different concentrations of (+)ZNP and DDAB. Results indicated that both (+)ZNP and DDAB decreased antioxidant levels compared to the untreated check, suggesting that both (+)ZNP and DDAB may inhibit antioxidant levels. This paper adds to the literature on potential modes of action by biopolymeric nanoparticles.
Collapse
Affiliation(s)
- Colin A R Bonser
- Department of Entomology, LSU Agricultural Center, 404 Life Science Building, Baton Rouge, LA 70803, USA
| | - Carlos E Astete
- Department of Biological and Agricultural Engineering, LSU Agricultural Center, 149 E. B. Doran Building, Baton Rouge, LA 70803, USA
| | - Cristina M Sabliov
- Department of Biological and Agricultural Engineering, LSU Agricultural Center, 149 E. B. Doran Building, Baton Rouge, LA 70803, USA
| | - Jeffrey A Davis
- Department of Entomology, LSU Agricultural Center, 404 Life Science Building, Baton Rouge, LA 70803, USA
| |
Collapse
|
6
|
Bihal R, Al-Khayri JM, Banu AN, Kudesia N, Ahmed FK, Sarkar R, Arora A, Abd-Elsalam KA. Entomopathogenic Fungi: An Eco-Friendly Synthesis of Sustainable Nanoparticles and Their Nanopesticide Properties. Microorganisms 2023; 11:1617. [PMID: 37375119 DOI: 10.3390/microorganisms11061617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The agricultural industry could undergo significant changes due to the revolutionary potential of nanotechnology. Nanotechnology has a broad range of possible applications and advantages, including insect pest management using treatments based on nanoparticle insecticides. Conventional techniques, such as integrated pest management, are inadequate, and using chemical pesticides has negative consequences. As a result, nanotechnology would provide ecologically beneficial and effective alternatives for insect pest control. Considering the remarkable traits they exhibit, silver nanoparticles (AgNPs) are recognized as potential prospects in agriculture. Due to their efficiency and great biocompatibility, the utilization of biologically synthesized nanosilver in insect pest control has significantly increased nowadays. Silver nanoparticles have been produced using a wide range of microbes and plants, which is considered an environmentally friendly method. However, among all, entomopathogenic fungi (EPF) have the most potential to be used in the biosynthesis of silver nanoparticles with a variety of properties. Therefore, in this review, different ways to get rid of agricultural pests have been discussed, with a focus on the importance and growing popularity of biosynthesized nanosilver, especially silver nanoparticles made from fungi that kill insects. Finally, the review highlights the need for further studies so that the efficiency of bio-nanosilver could be tested for field application and the exact mode of action of silver nanoparticles against pests can be elucidated, which will eventually be a boon to the agricultural industry for putting a check on pest populations.
Collapse
Affiliation(s)
- Ritu Bihal
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - A Najitha Banu
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Natasha Kudesia
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Farah K Ahmed
- Biotechnology English Program, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Rudradeb Sarkar
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Akshit Arora
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Kamel A Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
7
|
Gowthami P, Kosiha A, Meenakshi S, Boopathy G, Ramu AG, Choi D. Biosynthesis of Co 3O 4 nanomedicine by using Mollugo oppositifolia L. aqueous leaf extract and its antimicrobial, mosquito larvicidal activities. Sci Rep 2023; 13:9002. [PMID: 37268654 DOI: 10.1038/s41598-023-35877-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
Nanotechnology is a relatively revolutionary area that generates day-to-day advancement. It makes a significant impact on our daily life. For example, in parasitology, catalysis and cosmetics, nanoparticles possess distinctive possessions that make it possible for them in a broad range of areas. We utilized Mollugo oppositifolia L. aqueous leaf extract assisted chemical reduction method to synthesize Co3O4 nanoparticles. Biosynthesized Co3O4 Nps were confirmed via UV-Vis spectroscopy, scanning electron microscope, X-ray diffraction, EDX, Fourier-transform infrared, and HR-TEM analysis. The crystallite size from XRD studies revealed around 22.7 nm. The biosynthesized Co3O4 nanoparticle was further assessed for mosquito larvicidal activity against south-urban mosquito larvae Culex quinquefasciatus, and antimicrobial activities. The synthesized Co3O4 particle (2) displayed significant larvicidal activity towards mosquito larvae Culex quinquefasciatus with the LD50 value of 34.96 µg/mL than aqueous plant extract (1) and control Permethrin with the LD50 value of 82.41 and 72.44 µg/mL. When compared to the standard antibacterial treatment, Ciprofloxacin, the Co3O4 nanoparticle (2) produced demonstrates significantly enhanced antibacterial action against the pathogens E. coli and B. cereus. The MIC for Co3O4 nanoparticles 2 against C. albicans was under 1 μg/mL, which was much lower than the MIC for the control drug, clotrimale, which was 2 µg per milliliter. Co3O4 nanoparticles 2, with a MIC of 2 μg/mL, has much higher antifungal activity than clotrimale, whose MIC is 4 μg/mL, against M. audouinii.
Collapse
Affiliation(s)
- P Gowthami
- PG Department of Chemistry, Shrimati Devkunvar Nanalal Bhatt Vaishnav College for Women, Chennai, India
- School of Basic Sciences, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Pallavaram, Chennai, India
| | - A Kosiha
- School of Basic Sciences, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Pallavaram, Chennai, India.
| | - S Meenakshi
- Department of Chemistry, SRM Institute of Science and Technology (SRMIST), Ramapuram Campus, Chennai, 600 089, India
| | - G Boopathy
- Peri College of Arts and Science, Mannivakkam, Chennai, 600048, India
| | - A G Ramu
- Department of Materials Science and Engineering, Hongik University, 2639, Sejong-ro, Jochiwon-eup, Sejong, 30016, Republic of Korea
| | - Dongjin Choi
- Department of Materials Science and Engineering, Hongik University, 2639, Sejong-ro, Jochiwon-eup, Sejong, 30016, Republic of Korea.
| |
Collapse
|
8
|
Du H, Wang X, Zhang H, Chen H, Deng X, He Y, Tang H, Deng F, Ren Z. Serum protein coating enhances the antisepsis efficacy of silver nanoparticles against multidrug-resistant Escherichia coli infections in mice. Front Microbiol 2023; 14:1153147. [PMID: 37293234 PMCID: PMC10244497 DOI: 10.3389/fmicb.2023.1153147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/24/2023] [Indexed: 06/10/2023] Open
Abstract
Antimicrobial resistance poses a significant threat to public health and social development worldwide. This study aimed to investigate the effectiveness of silver nanoparticles (AgNPs) in treating multidrug-resistant bacterial infections. Eco-friendly spherical AgNPs were synthesized using rutin at room temperature. The biocompatibility of both polyvinyl pyrrolidone (PVP) and mouse serum (MS)-stabilized AgNPs was evaluated at 20 μg/mL and showed a similar distribution in mice. However, only MS-AgNPs significantly protected mice from sepsis caused by the multidrug-resistant Escherichia coli (E. coli) CQ10 strain (p = 0.039). The data revealed that MS-AgNPs facilitated the elimination of Escherichia coli (E. coli) in the blood and the spleen, and the mice experienced only a mild inflammatory response, as interleukin-6, tumor necrosis factor-α, chemokine KC, and C-reactive protein levels were significantly lower than those in the control group. The results suggest that the plasma protein corona strengthens the antibacterial effect of AgNPs in vivo and may be a potential strategy for combating antimicrobial resistance.
Collapse
Affiliation(s)
- Huamao Du
- College of Biotechnology, Southwest University, Chongqing, China
| | - Xiaoling Wang
- Clinical Laboratory, Shanxi Academy of Traditional Chinese Medicine, Shanxi Traditional Chinese Medicine Hospital, Taiyuan, China
| | - Hongying Zhang
- College of Biotechnology, Southwest University, Chongqing, China
| | - Heming Chen
- College of Biotechnology, Southwest University, Chongqing, China
| | - Xiaoyu Deng
- College of Biotechnology, Southwest University, Chongqing, China
| | - Yujing He
- College of Biotechnology, Southwest University, Chongqing, China
| | - Huaze Tang
- College of Biotechnology, Southwest University, Chongqing, China
| | - Fuchang Deng
- College of Biotechnology, Southwest University, Chongqing, China
| | - Zhihong Ren
- Chinese Center for Disease Control and Prevention, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| |
Collapse
|
9
|
Onen H, Luzala MM, Kigozi S, Sikumbili RM, Muanga CJK, Zola EN, Wendji SN, Buya AB, Balciunaitiene A, Viškelis J, Kaddumukasa MA, Memvanga PB. Mosquito-Borne Diseases and Their Control Strategies: An Overview Focused on Green Synthesized Plant-Based Metallic Nanoparticles. INSECTS 2023; 14:221. [PMID: 36975906 PMCID: PMC10059804 DOI: 10.3390/insects14030221] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Mosquitoes act as vectors of pathogens that cause most life-threatening diseases, such as malaria, Dengue, Chikungunya, Yellow fever, Zika, West Nile, Lymphatic filariasis, etc. To reduce the transmission of these mosquito-borne diseases in humans, several chemical, biological, mechanical, and pharmaceutical methods of control are used. However, these different strategies are facing important and timely challenges that include the rapid spread of highly invasive mosquitoes worldwide, the development of resistance in several mosquito species, and the recent outbreaks of novel arthropod-borne viruses (e.g., Dengue, Rift Valley fever, tick-borne encephalitis, West Nile, yellow fever, etc.). Therefore, the development of novel and effective methods of control is urgently needed to manage mosquito vectors. Adapting the principles of nanobiotechnology to mosquito vector control is one of the current approaches. As a single-step, eco-friendly, and biodegradable method that does not require the use of toxic chemicals, the green synthesis of nanoparticles using active toxic agents from plant extracts available since ancient times exhibits antagonistic responses and broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on the different mosquito control strategies in general, and on repellent and mosquitocidal plant-mediated synthesis of nanoparticles in particular, has been reviewed. By doing so, this review may open new doors for research on mosquito-borne diseases.
Collapse
Affiliation(s)
- Hudson Onen
- Department of Entomology, Uganda Virus Research Institute, Plot 51/59 Nakiwogo Road, Entebbe P.O. Box 49, Uganda
| | - Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Stephen Kigozi
- Department of Biological Sciences, Faculty of Science, Kyambogo University, Kampala P.O. Box 1, Uganda
| | - Rebecca M. Sikumbili
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Department of Chemistry, Faculty of Science, University of Kinshasa, Kinshasa B.P. 190, Democratic Republic of the Congo
| | - Claude-Josué K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Sébastien N. Wendji
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Aristote B. Buya
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Aiste Balciunaitiene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania
| | - Jonas Viškelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania
| | - Martha A. Kaddumukasa
- Department of Biological Sciences, Faculty of Science, Kyambogo University, Kampala P.O. Box 1, Uganda
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
10
|
Synthesis, Characterization, and Evaluation of Antimicrobial Efficacy of Reduced Graphene-ZnO-Copper Nanocomplex. Antibiotics (Basel) 2023; 12:antibiotics12020246. [PMID: 36830156 PMCID: PMC9952439 DOI: 10.3390/antibiotics12020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The prevalence of antibiotic-resistant diseases drives a constant hunt for new substitutes. Metal-containing inorganic nanoparticles have broad-spectrum antimicrobial potential to kill Gram-negative and Gram-positive bacteria. In this investigation, reduced graphene oxide-coated zinc oxide-copper (rGO@ZnO-Cu) nanocomposite was prepared by anchoring Cu over ZnO nanorods followed by coating with graphene oxide (GO) and subsequent reduction of GO to rGO. The synthesized nanocomposite was characterized by scanning electron microscopy, transmission electron microscopy, elemental analysis, and elemental mapping. Morphologically, ZnO-Cu showed big, irregular rods, rectangular and spherical-shaped ZnO, and anchored clusters of aggregated Cu particles. The Cu aggregates are spread uniformly throughout the network. Most of the ZnO particles were partially covered with Cu aggregates, while some of the ZnO was fully covered with Cu. In the case of rGO@ZnO-Cu, a few layered rGO sheets were observed on the surface as well as deeply embedded inside the network of ZnO-Cu. The rGO@ZnO-Cu complex exhibited antimicrobial activity against Gram-positive and Gram-negative bacteria; however, it was more effective on Staphylococcus aureus than Escherichia coli. Thus, rGO@ZnO-Cu nanocomposites could be an effective alternative against Gram-positive and Gram-negative bacterial pathogens.
Collapse
|
11
|
Song J, Vikulina AS, Parakhonskiy BV, Skirtach AG. Hierarchy of hybrid materials. Part-II: The place of organics- on-inorganics in it, their composition and applications. Front Chem 2023; 11:1078840. [PMID: 36762189 PMCID: PMC9905839 DOI: 10.3389/fchem.2023.1078840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Hybrid materials or hybrids incorporating organic and inorganic constituents are emerging as a very potent and promising class of materials due to the diverse but complementary nature of their properties. This complementarity leads to a perfect synergy of properties of the desired materials and products as well as to an extensive range of their application areas. Recently, we have overviewed and classified hybrid materials describing inorganics-in-organics in Part-I (Saveleva, et al., Front. Chem., 2019, 7, 179). Here, we extend that work in Part-II describing organics-on-inorganics, i.e., inorganic materials modified by organic moieties, their structure and functionalities. Inorganic constituents comprise of colloids/nanoparticles and flat surfaces/matrices comprise of metallic (noble metal, metal oxide, metal-organic framework, magnetic nanoparticles, alloy) and non-metallic (minerals, clays, carbons, and ceramics) materials; while organic additives can include molecules (polymers, fluorescence dyes, surfactants), biomolecules (proteins, carbohydtrates, antibodies and nucleic acids) and even higher-level organisms such as cells, bacteria, and microorganisms. Similarly to what was described in Part-I, we look at similar and dissimilar properties of organic-inorganic materials summarizing those bringing complementarity and composition. A broad range of applications of these hybrid materials is also presented whose development is spurred by engaging different scientific research communities.
Collapse
Affiliation(s)
- Junnan Song
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anna S. Vikulina
- Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Bayreuth, Germany
| | - Bogdan V. Parakhonskiy
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Andre G. Skirtach
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Nie D, Li J, Xie Q, Ai L, Zhu C, Wu Y, Gui Q, Zhang L, Tan W. Nanoparticles: A Potential and Effective Method to Control Insect-Borne Diseases. Bioinorg Chem Appl 2023; 2023:5898160. [PMID: 37213220 PMCID: PMC10195175 DOI: 10.1155/2023/5898160] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
Insects act as vectors to carry a wide range of bacteria and viruses that can cause multiple vector-borne diseases in humans. Diseases such as dengue fever, epidemic encephalitis B, and epidemic typhus, which pose serious risks to humans, can be transmitted by insects. Due to the absence of effective vaccines for most arbovirus, insect control was the main strategy for vector-borne diseases control. However, the rise of drug resistance in the vectors brings a great challenge to the prevention and control of vector-borne diseases. Therefore, finding an eco-friendly method for vector control is essential to combat vector-borne diseases. Nanomaterials with the ability to resist insects and deliver drugs offer new opportunities to increase agent efficacy compared with traditional agents, and the application of nanoagents has expanded the field of vector-borne disease control. Up to now, the reviews of nanomaterials mainly focus on biomedicines, and the control of insect-borne diseases has always been a neglected field. In this study, we analyzed 425 works of the literature about different nanoparticles applied on vectors in PubMed around keywords, such as"nanoparticles against insect," "NPs against insect," and "metal nanoparticles against insect." Through these articles, we focus on the application and development of nanoparticles (NPs) for vector control, discussing the lethal mechanism of NPs to vectors, which can explore the prospect of applying nanotechnology in the prevention and control of vectors.
Collapse
Affiliation(s)
- Danyue Nie
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| | - Jiaqiao Li
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinghua Xie
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lele Ai
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| | - Changqiang Zhu
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| | - Yifan Wu
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| | - Qiyuan Gui
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| | - Lingling Zhang
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weilong Tan
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| |
Collapse
|
13
|
Wen H, Shi H, Jiang N, Qiu J, Lin F, Kou Y. Antifungal mechanisms of silver nanoparticles on mycotoxin producing rice false smut fungus. iScience 2022; 26:105763. [PMID: 36582831 PMCID: PMC9793317 DOI: 10.1016/j.isci.2022.105763] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Ustilaginoidea virens, which causes rice false smut disease, is a destructive filamentous fungal pathogen, attracting more attention to search for effective fungicides against U. virens. Here, the results showed that the inhibition of 2 nm AgNPs on U. virens growth and virulence displayed concentration-dependent manner. Abnormalities of fungal morphology were observed upon exposure to AgNPs. RNA-sequencing (RNA-seq) analysis revealed that AgNPs treatment up-regulated 1185 genes and down-regulated 937 genes, which significantly overlapped with the methyltransferase UvKmt6-regulated genes. Furthermore, we found that AgNPs reduced the UvKmt6-mediated H3K27me3 modification, resulting in the up-regulation of ustilaginoidin biosynthetic genes The decrease of H3K27me3 level was associated with the inhibition of mycelial growth by AgNPs treatment. These results suggested that AgNPs are an effective nano-fungicide for the control of rice false smut disease, but when using AgNPs, it needs to be combined with mycotoxin-reducing fungicides to reduce the risk of toxin pollution.
Collapse
Affiliation(s)
- Hui Wen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Huanbin Shi
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Nan Jiang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Fucheng Lin
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanjun Kou
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
- Corresponding author
| |
Collapse
|
14
|
Akintelu SA, Olabemiwo OM, Ibrahim AO, Oyebamiji JO, Oyebamiji AK, Olugbeko SC. Biosynthesized nanoparticles as a rescue aid for agricultural sustainability and development. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Amjad T, Afsheen S, Iqbal T. Nanocidal Effect of Rice Husk-Based Silver Nanoparticles on Antioxidant Enzymes of Aphid. Biol Trace Elem Res 2022; 200:4855-4864. [PMID: 34994949 DOI: 10.1007/s12011-021-03067-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/11/2021] [Indexed: 11/30/2022]
Abstract
Green synthesis of nanoparticles using plant-based extracts is momentously used in different fields of science because of their environment-friendly nature and cost-effectiveness. In the present study, silver nanoparticles were synthesized by using rice husk (non-toxic agricultural by-product) to determine their efficacy against aphid's (Sitobion avanae) mortality and antioxidant enzymes. UV-VIS spectroscopy of synthesized nanoparticles showed the maximum absorption peak at 440 nm, FTIR exhibited different peaks, and SEM confirmed the roughly spherical shape and 70-80 nm size of silver nanoparticles. Aphids were reared on wheat seedlings in the laboratory at 20-25 °C and 16:8 (light:dark) photoperiod. Insecticidal bioassays were conducted on aphids at three different concentrations (200 ppm, 400 ppm, 600 ppm) of nanoparticles for 2 days. Results showed the highest mortality of aphids being 93.3% at 600 ppm nanoparticle concentration after 2 days while the lowest mortality was observed at 200 ppm. Furthermore, the effect of silver nanoparticles on antioxidant enzymes was studied. Results of enzyme assays revealed that enzyme activities of catalase and glutathione-s-transferase increased in response to increased nanoparticle concentration. The current findings suggested that silver nanoparticles have probation for replacing commercially available insecticides for combating pests.
Collapse
Affiliation(s)
- Tabassum Amjad
- Department of Zoology, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Sumera Afsheen
- Department of Zoology, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan.
| | - Tahir Iqbal
- Department of Physics, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| |
Collapse
|
16
|
Blore K, Baldwin R, Batich CD, Koehler P, Pereira R, Jack CJ, Qualls WA, Xue RD. Efficacy of metal nanoparticles as a control tool against adult mosquito vectors: A review. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.969299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Presently, there is a need to develop effective and novel modes of control for mosquitoes, which remain a key driver of infectious disease transmission throughout the world. Control methods for these vectors have historically relied on a limited number of active ingredients (AIs) that have not experienced significant change in usage since the mid-20th century. The resulting development of widespread insecticide resistance has consequently increased the risk for future vector-borne disease outbreaks. Recently, metal nanoparticles have been explored for potential use in mosquito control due to their demonstrated toxicity against mosquitoes at all life stages. However, the majority of studies to date have focused on the larvicidal efficacy of metal nanoparticles with few studies examining their adulticidal potential. In this review, we analyze the current literature on green synthesized metal nanoparticles and their effect on adult mosquitoes.
Collapse
|
17
|
Mosquitocidal Activity of the Methanolic Extract of Annickiachlorantha and Its Isolated Compounds against Culex pipiens, and Their Impact on the Non-Target Organism Zebrafish, Danio rerio. INSECTS 2022; 13:insects13080676. [PMID: 36005300 PMCID: PMC9409109 DOI: 10.3390/insects13080676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023]
Abstract
In this study, the crude extract and its isolated compounds from the stem bark of Annickia chlorantha were tested for their larvicidal, developmental, and repellent activity against the mosquito vector, Culex pipiens, besides their toxicity to the non-target aquatic organism, the zebrafish (Danio rerio). The acute larvicidal activity of isolated compounds; namely, palmatine, jatrorrhizine, columbamine, β-sitosterol, and Annickia chlorantha methanolic extract (AC), was observed. Developmentally, the larval duration was significantly prolonged when palmatine and β-sitosterol were applied, whereas the pupal duration was significantly prolonged for almost all treatments except palmatine and jatrorrhizine, where it shortened from those in the control. Acetylcholinesterase (AChE) enzyme showed different activity patterns, where it significantly increased in columbamine and β-sitosterol, and decreased in (AC), palmatine, and jatrorrhizine treatments, whereas glutathione S-transferase (GST) enzyme was significantly increased when AC methanolic extract/isolated compounds were applied, compared to the control. The adult emergence percentages were significantly decreased in all treatments, whereas tested compounds revealed non-significant (p > 0.05) changes in the sex ratio percentages, with a slight female-to-male preference presented in the AC-treated group. Additionally, the tested materials revealed repellence action; interestingly, palmatine and jatrorrhizine recorded higher levels of protection, followed by AC, columbamine, and β-sitosterol for 7 consecutive hours compared to the negative and positive control groups. The non-target assay confirms that the tested materials have very low toxic activity compared to the reported toxicity against mosquito larvae. A docking simulation was employed to better understand the interaction of the isolated compounds with the enzymes, AChE and GST. Additionally, DFT calculations revealed that the reported larvicidal activity may be due to the differing electron distributions among tested compounds. Overall, this study highlights the potential of A. chlorantha extract and its isolated compounds as effective mosquitocidal agents with a very low toxic effect on non-target organisms.
Collapse
|
18
|
Insights into Nanopesticides for Ticks: The Superbugs of Livestock. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7411481. [PMID: 35720185 PMCID: PMC9200545 DOI: 10.1155/2022/7411481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/10/2022] [Indexed: 12/26/2022]
Abstract
Livestock is an integral part of agriculture countries where ticks play significant role as potent pests causing considerable losses to economy and health. Drug resistance has made these pests supersede conventional therapies and control programs Nanotechnology here comes as an advancing and significant candidate alternatively able to reverse drug resistance. Nanoparticles, hence, against ticks may better be considered as nanopesticides that act in ways other than conventional drug efficacies. The methods of nanoparticles production include green synthesis, chemical synthesis, and arthropod-based synthesis. Pros and cons of these nanopesticides are by no means neglectable. Studies are fewer than needed to comprehensively discuss nanopesticides. Current review thus systematically covers aspects of ticks as livestock pests, their drug resistance, advent of nanotechnology against pests, their production methodologies, mechanisms of actions of ticks, and current limitations. This review opens several avenues for further research on nanoparticles as nanopesticides against ticks.
Collapse
|
19
|
de Oliveira JG, Pilz-Júnior HL, de Lemos AB, da Silva da Costa FA, Fernandes M, Gonçalves DZ, Variza PF, de Moraes FM, Morisso FDP, Magnago RF, Zepon KM, Kanis LA, da Silva OS, Prophiro JS. Polymer-based nanostructures loaded with piperine as a platform to improve the larvicidal activity against Aedes aegypti. Acta Trop 2022; 230:106395. [PMID: 35278367 DOI: 10.1016/j.actatropica.2022.106395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/19/2022]
Abstract
Piperine is an alkaloid extracted from the seed of Piper spp., which has demonstrated a larvicidal effect against Ae. aegypti. The incorporation of piperine into nanostructured systems can increase the effectiveness of this natural product in the control of Ae. aegypti larvae. In this study, we evaluated the effectiveness of piperine loaded or not into two nanostructured systems (named NS-A and NS-B) prepared by the nanoprecipitation method. The Ae. aegypti larvae were exposed to different concentrations of piperine loaded or not (2 to 16 ppm) and the mortality was investigated after 24, 48, and 72 hours. The nanostructures prepared were spherical in shape with narrow size distribution and great encapsulation efficiency. The lethal concentration 50 (LC50) for non-loaded piperine were 13.015 ppm (24 hours), 8.098 ppm (48 hours), and 7.248 ppm (72 hours). The LC50 values found for NS-A were 35.378 ppm (24 hours), 12.091 ppm (48 hours), and 8.011 ppm (72 hours), whereas the values found for NS-B were 21.267 ppm (24 hours), 12.091 ppm (48 hours), and 8.011 ppm (72 hours). Collectively, these findings suggested that non-loaded piperine caused higher larval mortality in the first hours of exposure while the nanostructured systems promoted the slow release of piperine and thereby increased the larvicidal activity over time. Therefore, loading piperine into nanostructured systems might be an effective tool to improve the larval control of vector Ae. aegypti.
Collapse
Affiliation(s)
- Joice Guilherme de Oliveira
- Universidade do Sul de Santa Catarina - UNISUL. Programa de Pós-Graduação em Ciências da Saúde. Avenida José Acácio Moreira, 787, 88704-900, Tubarão, SC, Brazil
| | - Harry Luiz Pilz-Júnior
- Universidade Federal do Rio Grande do Sul - UFRGS. Instituto de Ciências Básicas da Saúde. Departamento de Microbiologia, Parasitologia e Imunologia. Rua Sarmento Leite, 500, 90050-170, Porto Alegre, RS, Brazil.
| | - Alessandra Bittencourt de Lemos
- Universidade Federal do Rio Grande do Sul - UFRGS. Instituto de Ciências Básicas da Saúde. Departamento de Microbiologia, Parasitologia e Imunologia. Rua Sarmento Leite, 500, 90050-170, Porto Alegre, RS, Brazil
| | - Felipe Allan da Silva da Costa
- Universidade do Sul de Santa Catarina - UNISUL. Programa de Pós-Graduação em Ciências da Saúde. Avenida José Acácio Moreira, 787, 88704-900, Tubarão, SC, Brazil
| | - Millena Fernandes
- Universidade do Sul de Santa Catarina - UNISUL. Programa de Pós-Graduação em Ciências Ambientais. Avenida José Acácio Moreira, 787, 88704-900, Tubarão, SC, Brazil
| | - Douglas Zelinger Gonçalves
- Universidade do Sul de Santa Catarina - UNISUL. Programa de Pós-Graduação em Ciências da Saúde. Avenida José Acácio Moreira, 787, 88704-900, Tubarão, SC, Brazil
| | - Paula Fassicolo Variza
- Universidade do Sul de Santa Catarina - UNISUL. Programa de Pós-Graduação em Ciências da Saúde. Avenida José Acácio Moreira, 787, 88704-900, Tubarão, SC, Brazil
| | - Fernanda Mendes de Moraes
- Universidade do Sul de Santa Catarina - UNISUL. Programa de Pós-Graduação em Ciências da Saúde. Avenida José Acácio Moreira, 787, 88704-900, Tubarão, SC, Brazil
| | - Fernando Dal Pont Morisso
- Universidade Feevale. Pós-Graduação em Tecnologia de Materiais e Processos Industriais. 93525-075, Novo Hamburgo, RS, Brazil
| | - Rachel Faverzani Magnago
- Universidade do Sul de Santa Catarina - UNISUL. Programa de Pós-Graduação em Ciências Ambientais. Avenida José Acácio Moreira, 787, 88704-900, Tubarão, SC, Brazil
| | - Karine Modolon Zepon
- Universidade do Sul de Santa Catarina - UNISUL. Programa de Pós-Graduação em Ciências Ambientais. Avenida José Acácio Moreira, 787, 88704-900, Tubarão, SC, Brazil
| | - Luiz Alberto Kanis
- Universidade do Sul de Santa Catarina - UNISUL. Programa de Pós-Graduação em Ciências da Saúde. Avenida José Acácio Moreira, 787, 88704-900, Tubarão, SC, Brazil
| | - Onilda Santos da Silva
- Universidade Federal do Rio Grande do Sul - UFRGS. Instituto de Ciências Básicas da Saúde. Departamento de Microbiologia, Parasitologia e Imunologia. Rua Sarmento Leite, 500, 90050-170, Porto Alegre, RS, Brazil
| | - Josiane Somariva Prophiro
- Universidade do Sul de Santa Catarina - UNISUL. Programa de Pós-Graduação em Ciências da Saúde. Avenida José Acácio Moreira, 787, 88704-900, Tubarão, SC, Brazil; Universidade do Sul de Santa Catarina - UNISUL. Programa de Pós-Graduação em Ciências Ambientais. Avenida José Acácio Moreira, 787, 88704-900, Tubarão, SC, Brazil.
| |
Collapse
|
20
|
Rodrigues JFV, de Souza GAP, Abrahão JS, Amaral RP, de Castro RFG, Malaquias LCC, Coelho LFL. Integrative transcriptome analysis of human cells treated with silver nanoparticles reveals a distinct cellular response and the importance of inorganic elements detoxification pathways. Biochim Biophys Acta Gen Subj 2022; 1866:130116. [DOI: 10.1016/j.bbagen.2022.130116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 02/21/2022] [Indexed: 01/01/2023]
|
21
|
Antitumor Activity against A549 Cancer Cells of Three Novel Complexes Supported by Coating with Silver Nanoparticles. Int J Mol Sci 2022; 23:ijms23062980. [PMID: 35328401 PMCID: PMC8950742 DOI: 10.3390/ijms23062980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/26/2022] Open
Abstract
A novel biologically active organic ligand L (N’-benzylidenepyrazine-2-carbohydrazonamide) and its three coordination compounds have been synthesized and structurally described. Their physicochemical and biological properties have been thoroughly studied. Cu(II), Zn(II), and Cd(II) complexes have been analyzed by F-AAS spectrometry and elemental analysis. The way of metal–ligand coordination was discussed based on FTIR spectroscopy and UV-VIS-NIR spectrophotometry. The thermal behavior of investigated compounds was studied in the temperature range 25–800 °C. All compounds are stable at room temperature. The complexes decompose in several stages. Magnetic studies revealed strong antiferromagnetic interaction. Their cytotoxic activity against A549 lung cancer cells have been studied with promising results. We have also investigated the biological effect of coating studied complexes with silver nanoparticles. The morphology of the surface was studied using SEM imaging.
Collapse
|
22
|
Li J, Chen C, Xia T. Understanding Nanomaterial-Liver Interactions to Facilitate the Development of Safer Nanoapplications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106456. [PMID: 35029313 PMCID: PMC9040585 DOI: 10.1002/adma.202106456] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Nanomaterials (NMs) are widely used in commercial and medical products, such as cosmetics, vaccines, and drug carriers. Exposure to NMs via various routes such as dermal, inhalation, and ingestion has been shown to gain access to the systemic circulation, resulting in the accumulation of NMs in the liver. The unique organ structures and blood flow features facilitate the liver sequestration of NMs, which may cause adverse effects in the liver. Currently, most in vivo studies are focused on NMs accumulation at the organ level and evaluation of the gross changes in liver structure and functions, however, cell-type-specific uptake and responses, as well as the molecular mechanisms at cellular levels leading to effects at organ levels are lagging. Herein, the authors systematically review diverse interactions of NMs with the liver, specifically on major liver cell types including Kupffer cells (KCs), liver sinusoidal endothelial cells (LSECs), hepatic stellate cells (HSCs), and hepatocytes as well as the detailed molecular mechanisms involved. In addition, the knowledge gained on nano-liver interactions that can facilitate the development of safer nanoproducts and nanomedicine is also reviewed.
Collapse
Affiliation(s)
- Jiulong Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
23
|
Toto NA, Elhenawy HI, Eltaweil AS, El-Ashram S, El-Samad LM, Moussian B, El Wakil A. Musca domestica (Diptera: Muscidae) as a biological model for the assessment of magnetite nanoparticles toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151483. [PMID: 34742953 DOI: 10.1016/j.scitotenv.2021.151483] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The use of nanoparticles (NPs) is rapidly expanding; there is a critical need for efficient assays to first determine the potential toxicity of NPs before their use in human applications. Magnetite nanoparticles (Fe3O4 NPs) have tremendous applications which include cell separation, arsenic removal from water and DNA separation. Spherically shaped Fe3O4 NPs with sizes ranging from 23 to 30 nm were used in this study. The housefly, Musca domestica is the most common fly species. It is present worldwide and considered to be an important medical insect which can carry and transmit over 100 human pathogens and zoonotic agents. It has been used in this study to assess Fe3O4NPs toxicity and give us an overview of their impact. The larvicidal activity of Fe3O4NPs was tested against the third instar larvae of M. domestica. We investigated the effects of six varying concentrations (15, 30, 45, 60, 75 and 90 μg/mL) used under laboratory conditions in two differential application assays: contact and feeding. The LC50 value for Fe3O4 NPs was 60 and 75 μg/mL by feeding and contact, respectively. To investigate the toxicity effects of Fe3O4 NPs on houseflies, morphological and histoarchitectural changes in larvae, pupae and adult flies were analyzed. NP exposure caused morphological abnormalities of larvae and pupae as well as larval pupal intermediates, and deformed adult with crumpled wings. Also, some adults couldn't emerge and remained in their puparia. The histological examinations showed that Fe3O4 NPs caused severe tissue damage especially in the cuticle and the digestive system. Thus, besides affecting the organ of first contact (digestive system), remote organs such as the integument are also targeted by Fe3O4 NPs suggesting a systemic impact on fly development and physiology.
Collapse
Affiliation(s)
- Noura A Toto
- Department of Zoology, Faculty of Science, Damanhour University, Egypt
| | - Hanan I Elhenawy
- Department of Zoology, Faculty of Science, Alexandria University, Egypt
| | | | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan 528231, Guangdong Province, China; Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Egypt
| | - Bernard Moussian
- Université Nice Sophia Antipolis, Parc Valrose, Nice Cedex, France
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Egypt.
| |
Collapse
|
24
|
Sellami H, Khan SA, Ahmad I, Alarfaj AA, Hirad AH, Al-Sabri AE. Green Synthesis of Silver Nanoparticles Using Olea europaea Leaf Extract for Their Enhanced Antibacterial, Antioxidant, Cytotoxic and Biocompatibility Applications. Int J Mol Sci 2021; 22:12562. [PMID: 34830442 PMCID: PMC8621457 DOI: 10.3390/ijms222212562] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Herein, we report the green synthesis of silver nanoparticles (OE-Ag NPs) by ecofriendly green processes using biological molecules of Olea europaea leaf extract. Green synthesized OE-Ag NPs were successfully characterized using different spectroscopic techniques. Antibacterial activity of OE-Ag NPs was assessed against four different bacteriological strains using the dilution serial method. The cytotoxic potential was determined against MCF-7 carcinoma cells using MTT assay in terms of cell viability percentage. Antioxidant properties were evaluated in terms of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging. Biocompatibility was further examined by incubating the synthesized NPs with hMSC cells for 24 h. The results were demonstrated that synthesized OE-Ag NPs presented excellent log10 reduction in the growth of all the tested bacterial strains, which as statistically equivalent (p > 0.05) to the standard antibiotic drug. Moreover, they also demonstrated excellent cytotoxic efficacy against the MCF-7 carcinoma cells compared to plant lead extract and Com-Ag NPs. Green synthesized OE-Ag NPs appeared more biocompatible to hMSC and 293T cells compared to Com-Ag NPs. Excellent biological results of the OE-Ag NPs might be attributed to the synergetic effect of NPs' properties and the adsorbed secondary metabolites of plant leaf extract. Hence, this study suggests that synthesized OE-Ag NPs can be a potential contender for their various biological and nutraceutical applications. Moreover, this study will open a new avenue to produce biocompatible nanoparticles with additional biological functionalities from the plants.
Collapse
Affiliation(s)
- Hanen Sellami
- Laboratory of Treatment and Valorization of Water Rejects, Water Research and Technologies Center (CERTE), Borj-Cedria Technopark, University of Carthage, Soliman 8020, Tunisia;
| | - Shakeel Ahmad Khan
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Ishaq Ahmad
- Department of Physics, The University of Hong Kong, Hong Kong 999077, China;
| | - Abdullah A. Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.H.H.); (A.E.A.-S.)
| | - Abdurahman H. Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.H.H.); (A.E.A.-S.)
| | - Ahmed E. Al-Sabri
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.H.H.); (A.E.A.-S.)
| |
Collapse
|
25
|
Mansoor S, Zahoor I, Baba TR, Padder SA, Bhat ZA, Koul AM, Jiang L. Fabrication of Silver Nanoparticles Against Fungal Pathogens. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.679358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The use of silver nanoparticles (AgNPs) against various pathogens is now being well recognized in the agriculture and health sector. Nanoparticles have been shown to exhibit various novel properties and these properties, on other hand, rely upon the size, shape, and morphology of these particles. Moreover, these physical characteristics enable them to interact with microbes, plants, and animals. Smaller-sized particles have shown more toxicity than larger-sized nanoparticles. AgNPs have shown growth inhibition of many fungi like Aspergillus fumigates, A. niger, A. flavus, Trichophyton rubrum, Candida albicans, and Penicillium species. According to the current hypothesis, AgNPs act by producing reactive oxygen species and free radicals, which cause protein denaturation, nucleic acid and proton pump damage, lipid peroxidation, and cell wall damage. Therefore, they alter the cell membrane permeability, causing cell death. This mini-review summarizes the use of silver nanoparticles against fungal pathogens and fungal biofilm in the agricultural sector.
Collapse
|
26
|
Saad AM, El-Saadony MT, El-Tahan AM, Sayed S, Moustafa MA, Taha AE, Taha TF, Ramadan MM. Polyphenolic extracts from pomegranate and watermelon wastes as substrate to fabricate sustainable silver nanoparticles with larvicidal effect against Spodoptera littoralis. Saudi J Biol Sci 2021; 28:5674-5683. [PMID: 34588879 PMCID: PMC8459111 DOI: 10.1016/j.sjbs.2021.06.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/18/2021] [Accepted: 06/02/2021] [Indexed: 01/28/2023] Open
Abstract
The agricultural wastes adversely affect the environment; however, they are rich in polyphenols; therefore, this study aimed to employ polyphenol-enriched waste extracts for silver nanoparticles synthesis, and study the larvicidal activity of silver nanoparticles fabricated by pomegranate and watermelon peels extracts (PPAgNPs and WPAgNPs) against all larval instars of Spodoptera littoralis. The polyphenol profile of pomegranate and watermelon peel extracts (PP and WP) and silver nanoparticles was detected by HPLC. The antioxidant activity was estimated by DPPH, and FARP assays and the antimicrobial activity was evaluated by disc assay. The Larvicidal activity of AgNPs against Egyptian leaf worm was performed by dipping technique. The obtained AgNPs were spherical with size ranged 15-85 nm and capped with proteins and polyphenols. The phenolic compounds in silver nanoparticles increased about extracts; therefore, they have the best performance in antioxidant/reducing activity, and inhibit the growth of tested bacteria and yeast. The PPAgNPs were the most effective against the first instar larvae instar (LC50 = 68.32 µg/ml), followed by pomegranate extract with (LC50 = 2852 µg/ml). The results indicated that obvious increase in polyphenols content in silver nanoparticles enhance their larvicidal effect and increasing mortality of 1st larval of S. littoralis Egyptian leafworms causing additive effect and synergism. We recommend recycling phenolic enriched agricultural wastes in producing green silver nanoprticles to control cotton leafworm that causes economic loses to crops.
Collapse
Affiliation(s)
- Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt
| | - Samy Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, B.O. Box 11099, Taif 21944, Saudi Arabia
| | - Moataz A.M. Moustafa
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22578, Egypt
| | - Taha F. Taha
- Biochemistry Department, Faculty of Agriculture Zagazig University, Zagazig 44511, Egypt
| | - Mahmoud M. Ramadan
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Egypt
| |
Collapse
|
27
|
Radiation-Assisted Green Synthesis and Characterization of Selenium Nanoparticles, and Larvicidal Effects on Culex pipiens complex. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Biochemical and histological alterations induced by nickel oxide nanoparticles in the ground beetle Blaps polychresta (Forskl, 1775) (Coleoptera: Tenebrionidae). PLoS One 2021; 16:e0255623. [PMID: 34559804 PMCID: PMC8462711 DOI: 10.1371/journal.pone.0255623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/30/2021] [Indexed: 12/03/2022] Open
Abstract
The present study evaluates the effect of nickel oxide nanoparticles on some biochemical parameters and midgut tissues in the ground beetle Blaps polychresta as an indicator organism for nanotoxicity. Serial doses of the NiO-NPs colloid (0.01, 0.02, 0.03, 0.04, 0.05, and 0.06 mg/g) were prepared for injecting into the adult beetles. Insect survival was reported daily for 30 days, and the sublethal dose of 0.02 mg/g NiO-NPs was selected for the tested parameters. After the treatment, nickel was detected in the midgut tissues by X-ray microanalysis. The treated group demonstrated a significant increase in aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities when compared to the untreated group. However, the treated group demonstrated a significant decrease in ascorbate peroxidase (APOX) activity when compared to the untreated group. Histological and ultrastructural changes in the midgut tissues of treated and untreated beetles were also observed. The current findings provide a precedent for describing the physiological and histological changes caused by NiO-NPs in the ground beetle B. polychresta.
Collapse
|
29
|
Ahamed A, Ge L, Zhao K, Veksha A, Bobacka J, Lisak G. Environmental footprint of voltammetric sensors based on screen-printed electrodes: An assessment towards "green" sensor manufacturing. CHEMOSPHERE 2021; 278:130462. [PMID: 33845436 DOI: 10.1016/j.chemosphere.2021.130462] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Voltammetric sensors based on screen-printed electrodes (SPEs) await diverse applications in environmental monitoring, food, agricultural and biomedical analysis. However, due to the single-use and disposable characteristics of SPEs and the scale of measurements performed, their environmental impacts should be considered. A life cycle assessment was conducted to evaluate the environmental footprint of SPEs manufactured using various substrate materials (SMs: cotton textile, HDPE plastic, Kraft paper, graphic paper, glass, and ceramic) and electrode materials (EMs: platinum, gold, silver, copper, carbon black, and carbon nanotubes (CNTs)). The greatest environmental impact was observed when cotton textile was used as SM. HDPE plastic demonstrated the least impact (13 out of 19 categories), followed by ceramic, glass and paper. However, considering the end-of-life scenarios and release of microplastics into the environment, ceramic, glass or paper could be the most suitable options for SMs. Amongst the EMs, the replacement of metals, especially noble metals, by carbon-based EMs greatly reduces the environmental footprint of SPEs. Compared with other materials, carbon black was the least impactful on the environment. On the other hand, copper and waste-derived CNTs (WCNTs) showed low impacts except for terrestrial ecotoxicity and human toxicity (non-cancer) potentials. In comparison to commercial CNTs (CCNTs), WCNTs demonstrated lower environmental footprint and comparable voltammetric performance in heavy metal detections, justifying the substitution of CCNTs with WCNTs in commercial applications. In conclusion, a combination of carbon black or WCNTs EMs with ceramic, glass or paper SMs represents the most environmentally friendly SPE configurations for voltammetric sensor arrangement.
Collapse
Affiliation(s)
- Ashiq Ahamed
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore; Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500, Turku/Åbo, Finland
| | - Liya Ge
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Ke Zhao
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Andrei Veksha
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Johan Bobacka
- Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500, Turku/Åbo, Finland
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
30
|
Cruz-Ramírez OU, Valenzuela-Salas LM, Blanco-Salazar A, Rodríguez-Arenas JA, Mier-Maldonado PA, García-Ramos JC, Bogdanchikova N, Pestryakov A, Toledano-Magaña Y. Antitumor Activity against Human Colorectal Adenocarcinoma of Silver Nanoparticles: Influence of [Ag]/[PVP] Ratio. Pharmaceutics 2021; 13:1000. [PMID: 34371692 PMCID: PMC8308985 DOI: 10.3390/pharmaceutics13071000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Silver nanoparticles (AgNPs) not only have shown remarkable results as antimicrobial and antiviral agents but also as antitumor agents. This work reports the complete characterization of five polyvinylpyrrolidone-coated AgNP (PVP-AgNP) formulations, their cytotoxic activity against human colon tumor cells (HCT-15), their cytotoxic effect on primary mouse cultures, and their lethal dose on BALB/c mice. The evaluated AgNP formulations have a composition within the ranges Ag: 1.14-1.32% w/w, PVP: 19.6-24.5% and H2O: 74.2-79.2% with predominant spherical shape within an average size range of 16-30 nm according to transmission electron microscopy (TEM). All formulations assessed increase mitochondrial ROS concentration and induce apoptosis as the leading death pathway on HCT-15 cells. Except for AgNP1, the growth inhibition potency of AgNP formulations of human colon tumor cancer cells (HCT-15) is 34.5 times higher than carboplatin, one of the first-line chemotherapy agents. Nevertheless, 5-10% of necrotic events, even at the lower concentration evaluated, were observed. The cytotoxic selectivity was confirmed by evaluating the cytotoxic effect on aorta, spleen, heart, liver, and kidney primary cultures from BALB/c mice. Despite the cytotoxic effects observed in vitro, the lethal dose and histopathological analysis showed the low toxicity of these formulations (all of them on Category 4 of the Globally Harmonized System of Classification and Labelling of Chemicals) and minor damage observed on analyzed organs. The results provide an additional example of the rational design of safety nanomaterials with antitumor potency and urge further experiments to complete the preclinical studies for these AgNP formulations.
Collapse
Affiliation(s)
- Omar Ulises Cruz-Ramírez
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada 22860, Mexico; (O.U.C.-R.); (N.B.)
| | - Lucía Margarita Valenzuela-Salas
- Facultad de Ciencias de la Salud Unidad Valle de las Palmas, Universidad Autónoma de Baja California, Tijuana 22260, Mexico; (L.M.V.-S.); (P.A.M.-M.)
| | - Alberto Blanco-Salazar
- Programa de Maestría y Doctorado en Ciencias e Ingeniería, Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada 22860, Mexico; (A.B.-S.); (J.A.R.-A.)
- Escuela de Ciencias de la Salud Unidad Valle Dorado, Universidad Autónoma de Baja California, Ensenada 22890, Mexico
| | - José Antonio Rodríguez-Arenas
- Programa de Maestría y Doctorado en Ciencias e Ingeniería, Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada 22860, Mexico; (A.B.-S.); (J.A.R.-A.)
- Escuela de Ciencias de la Salud Unidad Valle Dorado, Universidad Autónoma de Baja California, Ensenada 22890, Mexico
| | - Paris A. Mier-Maldonado
- Facultad de Ciencias de la Salud Unidad Valle de las Palmas, Universidad Autónoma de Baja California, Tijuana 22260, Mexico; (L.M.V.-S.); (P.A.M.-M.)
| | - Juan Carlos García-Ramos
- Escuela de Ciencias de la Salud Unidad Valle Dorado, Universidad Autónoma de Baja California, Ensenada 22890, Mexico
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada 22860, Mexico; (O.U.C.-R.); (N.B.)
| | - Alexey Pestryakov
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Yanis Toledano-Magaña
- Escuela de Ciencias de la Salud Unidad Valle Dorado, Universidad Autónoma de Baja California, Ensenada 22890, Mexico
| |
Collapse
|
31
|
Bhargava A, Dev A, Mohanbhai SJ, Pareek V, Jain N, Choudhury SR, Panwar J, Karmakar S. Pre-coating of protein modulate patterns of corona formation, physiological stability and cytotoxicity of silver nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144797. [PMID: 33578167 DOI: 10.1016/j.scitotenv.2020.144797] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Surface functionalization on silver nanoparticles greatly affects the dynamics of protein corona formation. In the present study, the implications of protein pre-coating on corona formation and nanoparticle's physiological stability, cellular uptake and toxicity were studied on similar sized alkaline protease coated nanoparticles of biological and chemical origin along with the uncoated nanoparticle as compared to the albumin coated nanoparticles. All four nanoparticle types invited serum protein adsorption on their surface. However, the presence of protein pre-coating on nanoparticle surface significantly reduced the extent of further protein binding. Moreover, corona formation on pristine nanoparticles significantly improved their stability in the biological medium. The effect was found to be diluted in protein pre-coated nanoparticles with due exception. Results obtained in the cell-based experiment suggested that the nanoparticles binding to the cell, its uptake, and toxicity in different cell lines can be directly linked to their physiological stability owing to corona formation.
Collapse
Affiliation(s)
- Arpit Bhargava
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali 160062, Punjab, India
| | - Atul Dev
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali 160062, Punjab, India
| | - Soni Jignesh Mohanbhai
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali 160062, Punjab, India
| | - Vikram Pareek
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Navin Jain
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali 160062, Punjab, India
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali 160062, Punjab, India.
| |
Collapse
|
32
|
Luna-Vázquez-Gómez R, Arellano-García ME, García-Ramos JC, Radilla-Chávez P, Salas-Vargas DS, Casillas-Figueroa F, Ruiz-Ruiz B, Bogdanchikova N, Pestryakov A. Hemolysis of Human Erythrocytes by Argovit™ AgNPs from Healthy and Diabetic Donors: An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2792. [PMID: 34073953 PMCID: PMC8197390 DOI: 10.3390/ma14112792] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
The use of nanomaterials is becoming increasingly widespread, leading to substantial research focused on nanomedicine. Nevertheless, the lack of complete toxicity profiles limits nanomaterials' uses, despite their remarkable diagnostic and therapeutic results on in vitro and in vivo models. Silver nanoparticles (AgNPs), particularly Argovit™, have shown microbicidal, virucidal, and antitumoral effects. Among the first-line toxicity tests is the hemolysis assay. Here, the hemolytic effect of Argovit™ AgNPs on erythrocytes from one healthy donor (HDE) and one diabetic donor (DDE) is evaluated by the hemolysis assay against AgNO3. The results showed that Argovit™, in concentrations ≤24 µg/mL of metallic silver, did not show a hemolytic effect on the HDE or DDE. On the contrary, AgNO3 at the same concentration of silver ions produces more than 10% hemolysis in both the erythrocyte types. In all the experimental conditions assessed, the DDE was shown to be more prone to hemolysis than the HDE elicited by Ag+ ions or AgNPs, but much more evident with Ag+ ions. The results show that Argovit™ is the least hemolytic compared with the other twenty-two AgNP formulations previously reported, probably due to the polymer mass used to stabilize the Argovit™ formulation. The results obtained provide relevant information that contributes to obtaining a comprehensive toxicological profile to design safe and effective AgNP formulations.
Collapse
Affiliation(s)
- Roberto Luna-Vázquez-Gómez
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC), Ensenada 22860, Baja California, Mexico; (R.L.-V.-G.); (F.C.-F.)
| | - María Evarista Arellano-García
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC), Ensenada 22860, Baja California, Mexico; (R.L.-V.-G.); (F.C.-F.)
| | - Juan Carlos García-Ramos
- Escuela de Ciencias de la Salud, Unidad Valle Dorado, Ensenada 22890, Baja California, Mexico; (P.R.-C.); (D.S.S.-V.)
| | - Patricia Radilla-Chávez
- Escuela de Ciencias de la Salud, Unidad Valle Dorado, Ensenada 22890, Baja California, Mexico; (P.R.-C.); (D.S.S.-V.)
| | - David Sergio Salas-Vargas
- Escuela de Ciencias de la Salud, Unidad Valle Dorado, Ensenada 22890, Baja California, Mexico; (P.R.-C.); (D.S.S.-V.)
| | - Francisco Casillas-Figueroa
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC), Ensenada 22860, Baja California, Mexico; (R.L.-V.-G.); (F.C.-F.)
| | - Balam Ruiz-Ruiz
- Departamento de Ciencias de la Salud, Unidad Regional Los Mochis, Universidad Autónoma de Occidente, Los Mochis 81223, Sinaloa, Mexico;
| | - Nina Bogdanchikova
- Nanoscience and Nanotechnology Center (CNyN), National Autonomous University of Mexico (UNAM), Mexico City 58089, Distrito Federal, Mexico;
| | - Alexey Pestryakov
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| |
Collapse
|
33
|
Hao Z, Li F, Liu R, Zhou X, Mu Y, Sharma VK, Liu J, Jiang G. Reduction of Ionic Silver by Sulfur Dioxide as a Source of Silver Nanoparticles in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5569-5578. [PMID: 33683864 DOI: 10.1021/acs.est.0c08790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The natural formation of silver nanoparticles (AgNPs) via biotic and abiotic pathways in water and soil media contributes to the biogeochemical cycle of silver metal in the environment. However, the formation of AgNPs in the atmosphere has not been reported. Here, we describe a previously unreported source of AgNPs via the reduction of Ag(I) by SO2 in the atmosphere, especially in moist environments, using multipronged advanced analytical and surface techniques. The rapid reduction of Ag(I) in the atmospheric aqueous phase was mainly caused by the sulfite ions formed from the dissolution of SO2 in water, which contributed to the formation of AgNPs and was consistent with the Finke-Watzky model with a major contribution of the reduction-nucleation process. Sunlight irradiation excited SO2 to form triplet SO2, which reacted with water to form H2SO3 and greatly enhanced Ag(I) reduction and AgNP formation. Different pH values affected the speciation of Ag(I) and S(IV), which were jointly involved in the reduction of Ag(I). The formation of AgNPs was also observed in the atmospheric gas phase via direct reduction of Ag(I) by SO2(gas), which occurred even in 50 ppbv SO2(gas). The natural occurrence of AgNPs in the atmosphere may also be involved in silver corrosion, AgNP transformation and regeneration, detoxification of gaseous pollutants, and the sulfur cycle in the environment.
Collapse
Affiliation(s)
- Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Fasong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, Anqing Normal University, Anqing, Anhui 246011, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Xiaoxia Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Virender K Sharma
- Department of Environment and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Road, 1266 TAMU, College Station, Texas 77843, United States
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| |
Collapse
|
34
|
Qian Z, Bai Y, Zhou J, Li L, Na J, Fan Y, Guo X, Liu H. A moisturizing chitosan-silk fibroin dressing with silver nanoparticles-adsorbed exosomes for repairing infected wounds. J Mater Chem B 2021; 8:7197-7212. [PMID: 32633312 DOI: 10.1039/d0tb01100b] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Refractory wounds caused by microbial infection impede wound healing, vascular regeneration, nerve system repair and the regeneration of other skin appendages. In addition, large-area infected wounds cause the appearance of multidrug-resistant (MDR) bacterial strains, which pose a major challenge both in clinical and scientific research. Although many stem cell-derived exosomes have been demonstrated to promote skin repair and regeneration, exosomes are seldom applied in the treatment of infective wounds due to the lack of antimicrobial function. In this study, we fabricated an asymmetric wettable dressing with a composite of exosomes and silver nanoparticles (CTS-SF/SA/Ag-Exo dressing) for promoting angiogenesis, nerve repair and infected wound healing. The CTS-SF/SA/Ag-Exo dressing possesses multifunctional properties including broad-spectrum antimicrobial activity, promoting wound healing, retaining moisture and maintaining electrolyte balance. It can effectively inhibit the growth of bacterial and promote the proliferation of human fibroblasts in vitro. Moreover, the in vivo results show that the CTS-SF/SA/Ag-Exo dressing enhanced wound healing by accelerating collagen deposition, angiogenesis and nerve repair in a P. aeruginosa infected mouse skin wound defect model. We hope that this dressing will provide a solution for the repair of infected wounds for treatments in the clinic.
Collapse
Affiliation(s)
- Zhiyong Qian
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, People's Republic of China.
| | - Yating Bai
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, People's Republic of China.
| | - Jin Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, People's Republic of China.
| | - Linhao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, People's Republic of China.
| | - Jing Na
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, People's Republic of China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, People's Republic of China.
| | - Ximin Guo
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, People's Republic of China.
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, People's Republic of China.
| |
Collapse
|
35
|
O' Sullivan C, O' Neill L, O' Leary ND, O' Gara JP, Crean AM, Ryan KB. Osteointegration, antimicrobial and antibiofilm activity of orthopaedic titanium surfaces coated with silver and strontium-doped hydroxyapatite using a novel blasting process. Drug Deliv Transl Res 2021; 11:702-716. [PMID: 33713316 DOI: 10.1007/s13346-021-00946-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 01/18/2023]
Abstract
Poor integration of orthopaedic devices with the host tissue owing to aseptic loosening and device-associated infections are two of the leading causes of implant failure, which represents a significant problem for both patients and the healthcare system. Novel strategies have focused on silver to combat antimicrobial infections as an alternative to drug therapeutics. In this study, we investigated the impact of increasing the % substitution (12% wt) of silver and strontium in hydroxyapatite (HA) coatings to enhance antimicrobial properties and stimulate osteoblasts, respectively. Additionally, we prepared a binary substituted coating containing both silver and strontium (AgSrA) at 12% wt as a comparison. All coatings were deposited using a novel blasting process, CoBlast, onto biomedical grade titanium (V). Surface physicochemical properties, cytocompatibility and antimicrobial functionality were determined. The anticolonising properties of the coatings were screened using Staphylococcus aureus ATCC 1448, and thereafter, the AgA coating was evaluated using clinically relevant strains. Strontium-doped surfaces demonstrated enhanced osteoblast viability; however, a lower inhibition of biofilm formation was observed compared with the other surfaces. A co-substituted AgSrA surface did not show enhanced osteoblast or anticolonising properties compared with the SrA and AgA surfaces, respectively. Due to its superior anticolonising performance in preliminary studies, AgA was chosen for further studies. The AgA coated surfaces demonstrated good antibacterial activity (eluted and immobilised ion) against methicillin-resistant S. aureus followed by methicillin-sensitive Staphylococcus aureus clinical isolates; however, the AgA surface displayed poor impact against Staphylococcus epidermidis. In conclusion, herein, we demonstrate that HA can be substituted with a range of ions to augment the properties of HA coatings on orthopaedic devices, which offer promising potential to combat orthopaedic device-associated infections and enhance device performance.
Collapse
Affiliation(s)
- Caroline O' Sullivan
- Department of Process, Energy and Transport Engineering, Munster Technological University, Cork, Ireland.,School of Pharmacy, University College Cork, Cork, Ireland
| | - Liam O' Neill
- TheraDep, Questum Innovation Centre, Co. Tipperary, Ireland
| | - Niall D O' Leary
- Department of Microbiology and Environmental Research Institute, University College Cork, Cork, Ireland
| | - James P O' Gara
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Abina M Crean
- School of Pharmacy, University College Cork, Cork, Ireland.,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland
| | - Katie B Ryan
- School of Pharmacy, University College Cork, Cork, Ireland. .,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland.
| |
Collapse
|
36
|
Ahamed A, Liang L, Lee MY, Bobacka J, Lisak G. Too small to matter? Physicochemical transformation and toxicity of engineered nTiO 2, nSiO 2, nZnO, carbon nanotubes, and nAg. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124107. [PMID: 33035908 DOI: 10.1016/j.jhazmat.2020.124107] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Engineered nanomaterials (ENMs) refer to a relatively novel class of materials that are increasingly prevalent in various consumer products and industrial applications - most notably for their superlative physicochemical properties when compared with conventional materials. However, consumer products inevitably degrade over the course of their lifetime, releasing ENMs into the environment. These ENMs undergo physicochemical transformations and subsequently accumulate in the environment, possibly leading to various toxic effects. As a result, a significant number of studies have focused on identifying the possible transformations and environmental risks of ENMs, with the objective of ensuring a safe and responsible application of ENMs in consumer products. This review aims to consolidate the results from previous studies related to each stage of the pathway of ENMs from being embodied in a product to disintegration/transformation in the environment. The scope of this work was defined to include the five most prevalent ENMs based on recent projected production market data, namely: nTiO2, nSiO2, nZnO, carbon nanotubes, and nAg. The review focuses on: (i) models developed to estimate environmental concentrations of ENMs; (ii) the possible physicochemical transformations; (iii) cytotoxicity and genotoxicity effects specific to each ENM selected; and (iv) a discussion to identify potential gaps in the studies conducted and recommend areas where further investigation is warranted.
Collapse
Affiliation(s)
- Ashiq Ahamed
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141 Singapore; Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Turku/Åbo, Finland
| | - Lili Liang
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141 Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Interdisciplinary Graduate Program, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141 Singapore
| | - Ming Yang Lee
- Asian School of the Environment, Nanyang Technological University, Singapore 639798, Singapore
| | - Johan Bobacka
- Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Turku/Åbo, Finland
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141 Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
37
|
Guimarães ATB, de Lima Rodrigues AS, Pereira PS, Silva FG, Malafaia G. Toxicity of polystyrene nanoplastics in dragonfly larvae: An insight on how these pollutants can affect bentonic macroinvertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141936. [PMID: 32889289 DOI: 10.1016/j.scitotenv.2020.141936] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Although nanoplastics (NPs) are known to be toxic to several groups of animals, the effects of such a toxicity on freshwater benthic macroinvertebrate communities remain unknown. Thus, the aim of the current study is to test the hypothesis that polystyrene nanoplastics (PS NPs) (34 μg/L - 48 h of exposure) lead to biochemical damage in Aphylla williamsoni larvae. Data have evidenced high bioaccumulation factor in the analyzed individuals; this finding indicates that, similar to sediments, water is also part of aquatic systems and favors PS NPs retention in dragonfly larvae. Despite the lack of evidence about the interference of these pollutants in the nutritional status of the analyzed animals, their bioaccumulation was associated with REDOX imbalance featured by concomitant increase in the number of evaluated oxidative stress biomarkers (nitric oxide and lipid peroxidation) and antioxidants (antioxidant activity against the DPPH radical and the superoxide dismutase enzyme). On the other hand, the reduced acetylcholinesterase activity observed in larvae exposed to PS NPs has suggested the neurotoxic effect of these pollutants, with potential impact on their nerve and neuromuscular functions. Therefore, the current study is pioneer in showing that PS NPs can affect the health of the investigated larvae, even at small concentrations, for short exposure-time; this outcome reinforces the ecotoxicological risk of these pollutants for freshwater benthic macroinvertebrates.
Collapse
Affiliation(s)
- Abraão Tiago Batista Guimarães
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil; Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil
| | - Paulo Sérgio Pereira
- Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil
| | - Fabiano Guimarães Silva
- Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil; Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil.
| |
Collapse
|
38
|
New Protein-Coated Silver Nanoparticles: Characterization, Antitumor and Amoebicidal Activity, Antiproliferative Selectivity, Genotoxicity, and Biocompatibility Evaluation. Pharmaceutics 2021; 13:pharmaceutics13010065. [PMID: 33430184 PMCID: PMC7825588 DOI: 10.3390/pharmaceutics13010065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Nanomaterials quickly evolve to produce safe and effective biomedical alternatives, mainly silver nanoparticles (AgNPs). The AgNPs' antibacterial, antiviral, and antitumor properties convert them into a recurrent scaffold to produce new treatment options. This work reported the full characterization of a highly biocompatible protein-coated AgNPs formulation and their selective antitumor and amoebicidal activity. The protein-coated AgNPs formulation exhibits a half-inhibitory concentration (IC50) = 19.7 µM (2.3 µg/mL) that is almost 10 times more potent than carboplatin (first-line chemotherapeutic agent) to inhibit the proliferation of the highly aggressive human adenocarcinoma HCT-15. The main death pathway elicited by AgNPs on HCT-15 is apoptosis, which is probably stimulated by reactive oxygen species (ROS) overproduction on mitochondria. A concentration of 111 µM (600 µg/mL) of metallic silver contained in AgNPs produces neither cytotoxic nor genotoxic damage on human peripheral blood lymphocytes. Thus, the AgNPs formulation evaluated in this work improves both the antiproliferative potency on HCT-15 cultures and cytotoxic selectivity ten times more than carboplatin. A similar mechanism is suggested for the antiproliferative activity observed on HM1-IMSS trophozoites (IC50 = 69.2 µM; 7.4 µg/mL). There is no change in cell viability on mice primary cultures of brain, liver, spleen, and kidney exposed to an AgNPs concentration range from 5.5 µM to 5.5 mM (0.6 to 600 µg/mL). The lethal dose was determined following the OECD guideline 420 for Acute Oral Toxicity Assay, obtaining an LD50 = 2618 mg of Ag/Kg body weight. All mice survived the observational period; the histopathology and biochemical analysis show no differences compared with the negative control group. In summary, all results from toxicological evaluation suggest a Category 5 (practically nontoxic) of the Globally Harmonized System of Classification and Labelling of Chemicals for that protein-coated AgNPs after oral administration for a short period and urge the completion of its preclinical toxicological profile. These findings open new opportunities in the development of selective, safe, and effective AgNPs formulations for the treatment of cancer and parasitic diseases with a significant reduction of side effects.
Collapse
|
39
|
Liu J, Liu J, Attarilar S, Wang C, Tamaddon M, Yang C, Xie K, Yao J, Wang L, Liu C, Tang Y. Nano-Modified Titanium Implant Materials: A Way Toward Improved Antibacterial Properties. Front Bioeng Biotechnol 2020; 8:576969. [PMID: 33330415 PMCID: PMC7719827 DOI: 10.3389/fbioe.2020.576969] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/22/2020] [Indexed: 01/01/2023] Open
Abstract
Titanium and its alloys have superb biocompatibility, low elastic modulus, and favorable corrosion resistance. These exceptional properties lead to its wide use as a medical implant material. Titanium itself does not have antibacterial properties, so bacteria can gather and adhere to its surface resulting in infection issues. The infection is among the main reasons for implant failure in orthopedic surgeries. Nano-modification, as one of the good options, has the potential to induce different degrees of antibacterial effect on the surface of implant materials. At the same time, the nano-modification procedure and the produced nanostructures should not adversely affect the osteogenic activity, and it should simultaneously lead to favorable antibacterial properties on the surface of the implant. This article scrutinizes and deals with the surface nano-modification of titanium implant materials from three aspects: nanostructures formation procedures, nanomaterials loading, and nano-morphology. In this regard, the research progress on the antibacterial properties of various surface nano-modification of titanium implant materials and the related procedures are introduced, and the new trends will be discussed in order to improve the related materials and methods.
Collapse
Affiliation(s)
- Jianqiao Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Youjiang Medical University for Nationalities, Baise, China
| | - Jia Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Shokouh Attarilar
- Department of Pediatric Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chong Wang
- College of Mechanical Engineering, Dongguan University of Technology, Dongguan, China
| | - Maryam Tamaddon
- Institute of Orthopaedic and Musculoskeletal Science, Division of Surgery & Orthopaedic Science, University College London, The Royal National National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Chengliang Yang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Kegong Xie
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jinguang Yao
- Youjiang Medical University for Nationalities, Baise, China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science, Division of Surgery & Orthopaedic Science, University College London, The Royal National National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Yujin Tang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
40
|
Youssif KA, Elshamy AM, Rabeh MA, Gabr N, Afifi WM, Salem MA, Albohy A, Abdelmohsen UR, Haggag EG. Cytotoxic Potential of Green Synthesized Silver Nanoparticles of
Lampranthus coccineus
Extracts, Metabolic Profiling and Molecular Docking Study. ChemistrySelect 2020. [DOI: 10.1002/slct.202002947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Khayrya A. Youssif
- Department of Pharmacognosy Faculty of Pharmacy Modern University for Technology and Information Cairo Egypt
| | - Ali M. Elshamy
- Department of Pharmacognosy Faculty of Pharmacy Cairo University Cairo 11562 Egypt
| | - Mohamed A. Rabeh
- Department of Pharmacognosy Faculty of Pharmacy Modern University for Technology and Information Cairo Egypt
- Department of Pharmacognosy Faculty of Pharmacy Cairo University Cairo 11562 Egypt
| | - Nagwan Gabr
- Department of Pharmacognosy Faculty of Pharmacy Helwan University Cairo 11795 Egypt
| | - Wael M. Afifi
- Department of Pharmacognosy Faculty of Pharmacy Al-Azhar University Cairo 11884 Egypt
- Department of Pharmacognosy Faculty of Pharmacy Sinai University Ismailia Egypt
| | - Mohamed A. Salem
- Department of Pharmaceutical Chemistry October University for Modern Sciences and Arts (MSA) Cairo Egypt
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry Faculty of Pharmacy The British University in Egypt (BUE) El-Sherouk City Cairo 11837 Egypt
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Ain-Shams University Abbasia Cairo 11566 Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy Faculty of Pharmacy Minia University Minia 61519 Egypt
- Department of Pharmacognosy Faculty of Pharmacy Deraya University 7 Universities Zone 61111 New Minia City Egypt
| | - Eman G. Haggag
- Department of Pharmacognosy Faculty of Pharmacy Helwan University Cairo 11795 Egypt
| |
Collapse
|
41
|
Abram S, Fromm KM. Handling (Nano)Silver as Antimicrobial Agent: Therapeutic Window, Dissolution Dynamics, Detection Methods and Molecular Interactions. Chemistry 2020; 26:10948-10971. [DOI: 10.1002/chem.202002143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Sarah‐Luise Abram
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Katharina M. Fromm
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| |
Collapse
|
42
|
Casillas-Figueroa F, Arellano-García ME, Leyva-Aguilera C, Ruíz-Ruíz B, Luna Vázquez-Gómez R, Radilla-Chávez P, Chávez-Santoscoy RA, Pestryakov A, Toledano-Magaña Y, García-Ramos JC, Bogdanchikova N. Argovit™ Silver Nanoparticles Effects on Allium cepa: Plant Growth Promotion without Cyto Genotoxic Damage. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1386. [PMID: 32708646 PMCID: PMC7408422 DOI: 10.3390/nano10071386] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Due to their antibacterial and antiviral effects, silver nanoparticles (AgNP) are one of the most widely used nanomaterials worldwide in various industries, e.g., in textiles, cosmetics and biomedical-related products. Unfortunately, the lack of complete physicochemical characterization and the variety of models used to evaluate its cytotoxic/genotoxic effect make comparison and decision-making regarding their safe use difficult. In this work, we present a systematic study of the cytotoxic and genotoxic activity of the commercially available AgNPs formulation Argovit™ in Allium cepa. The evaluated concentration range, 5-100 µg/mL of metallic silver content (85-1666 µg/mL of complete formulation), is 10-17 times higher than the used for other previously reported polyvinylpyrrolidone (PVP)-AgNP formulations and showed no cytotoxic or genotoxic damage in Allium cepa. Conversely, low concentrations (5 and 10 µg/mL) promote growth without damage to roots or bulbs. Until this work, all the formulations of PVP-AgNP evaluated in Allium cepa regardless of their size, concentration, or the exposure time had shown phytotoxicity. The biological response observed in Allium cepa exposed to Argovit™ is caused by nanoparticles and not by silver ions. The metal/coating agent ratio plays a fundamental role in this response and must be considered within the key physicochemical parameters for the design and manufacture of safer nanomaterials.
Collapse
Affiliation(s)
- Francisco Casillas-Figueroa
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - María Evarista Arellano-García
- Facultad de Ciencias, UABC, Carretera Transpeninsular Ensenada-Tijuana No. 3917 Col. Playitas, 22860 Ensenada, Baja California, Mexico;
| | - Claudia Leyva-Aguilera
- Facultad de Ciencias, UABC, Carretera Transpeninsular Ensenada-Tijuana No. 3917 Col. Playitas, 22860 Ensenada, Baja California, Mexico;
| | - Balam Ruíz-Ruíz
- Facultad de Medicina extensión los Mochis, Universidad Autónoma de Sinaloa, Av. Ángel Flores s/n, Ciudad Universitaria, 81223 Los Mochis, Sinaloa, Mexico;
| | - Roberto Luna Vázquez-Gómez
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - Patricia Radilla-Chávez
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - Rocío Alejandra Chávez-Santoscoy
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, ITESM, Monterrey, Eugenio Garza Sada, 2501 Sur, 64849 Monterrey, Nuevo León, Mexico;
| | - Alexey Pestryakov
- Department of Technology of Organic Substances and Polymer Materials, Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Yanis Toledano-Magaña
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - Juan Carlos García-Ramos
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, UNAM, Carretera Tijuana-Ensenada Km 107, 22860 Ensenada, Baja California, Mexico;
| |
Collapse
|
43
|
Kumar D, Kumar P, Singh H, Agrawal V. Biocontrol of mosquito vectors through herbal-derived silver nanoparticles: prospects and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25987-26024. [PMID: 32385820 DOI: 10.1007/s11356-020-08444-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/13/2020] [Indexed: 05/25/2023]
Abstract
Mosquitoes spread several life-threatening diseases such as malaria, filaria, dengue, Japanese encephalitis, West Nile fever, chikungunya, and yellow fever and are associated with millions of deaths every year across the world. However, insecticides of synthetic origin are conventionally used for controlling various vector-borne diseases but they have various associated drawbacks like impact on non-targeted species, negative effects on the environment, and development of resistance in vector species by alteration of the target site. Plant extracts, phytochemicals, and their nanoformulations can serve as ovipositional attractants, insect growth regulators, larvicides, and repellents with least effects on the environment. Such plant-derived products exhibit broad-spectrum resistance against various mosquito species and are relatively cheaper, environmentally safer, biodegradable, easily accessible, and are non-toxic to non-targeted organisms. Therefore, in this review article, the current knowledge of phytochemical sources exhibiting larvicidal activity and their variations in response to solvents used for their extraction is underlined. Also, different methods such as physical, chemical, and biological for silver nanoparticle (AgNPs) synthesis, their mechanism of synthesis using plant extract, their potent larvicidal activity, and the possible mechanism by which these particles kill mosquito larvae are discussed. In addition, constraints related to commercialization of nanoherbal products at government and academic or research level and barriers from laboratory experiments to field trial have also been discussed. This comprehensive information can be gainfully employed for the development of herbal larvicidal formulations and nanopesticides against insecticide-resistant vector species in the near future. Graphical abstract.
Collapse
Affiliation(s)
- Dinesh Kumar
- National Institute of Malaria Research, Dwarka, Delhi, 110077, India
- Medicinal Plant Biotechnology Lab, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Pawan Kumar
- National Institute of Malaria Research, Dwarka, Delhi, 110077, India
| | - Himmat Singh
- National Institute of Malaria Research, Dwarka, Delhi, 110077, India
| | - Veena Agrawal
- Medicinal Plant Biotechnology Lab, Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
44
|
Ruiz-Ruiz B, Arellano-García ME, Radilla-Chávez P, Salas-Vargas DS, Toledano-Magaña Y, Casillas-Figueroa F, Luna Vazquez-Gomez R, Pestryakov A, García-Ramos JC, Bogdanchikova N. Cytokinesis-Block Micronucleus Assay Using Human Lymphocytes as a Sensitive Tool for Cytotoxicity/Genotoxicity Evaluation of AgNPs. ACS OMEGA 2020; 5:12005-12015. [PMID: 32548379 PMCID: PMC7271025 DOI: 10.1021/acsomega.0c00149] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Silver nanoparticles (AgNPs) are the most used nanomaterials worldwide due to their excellent antibacterial, antiviral, and antitumor activities, among others. However, there is scarce information regarding their genotoxic potential measured using human peripheral blood lymphocytes. In this work, we present the cytotoxic and genotoxic behavior of two commercially available poly(vinylpyrrolidone)-coated silver nanoparticle (PVP-AgNPs) formulations that can be identified as noncytotoxic and nongenotoxic by just evaluating micronuclei (MNi) induction and the mitotic index, but present enormous differences when other parameters such as cytostasis, apoptosis, necrosis, and nuclear damage (nuclear buds (NBUDs) and nucleoplasmic bridges (NPBs)) are analyzed. The results show that Argovit (35 nm PVP-AgNPs) and nanoComposix (50 nm PVP-AgNPs), at concentrations from 0.012 to 12 μg/mL, produce no changes in the nuclear division index (NDI) or micronuclei (MNi) frequency compared with the values found on control cultures of human blood peripheral lymphocytes from a healthy donor. Still, 50 nm PVP-AgNPs significantly decrease the replication index and significantly increase cytostasis, apoptosis, necrosis, and the frequencies of nuclear buds (NBUDs) and nucleoplasmic bridges (NPBs). These results provide evidence that the cytokinesis-block micronucleus (CBMN) assay using human lymphocytes and evaluating the eight parameters provided by the technique is a sensitive, fast, accurate, and inexpensive detection tool to support or discard AgNPs or other nanomaterials, which is worthwhile for continued testing of their effectiveness and toxicity for biomedical applications. In addition, it provides very important information about the role played by the [coating agent]/[metal] ratio in the design of nanomaterials that could reduce adverse effects as much as possible while retaining their therapeutic capabilities.
Collapse
Affiliation(s)
- Balam Ruiz-Ruiz
- Laboratorio
de Genotoxicología Ambiental, Facultad de Ciencias, Universidad Autónoma de Baja California, C.P. 22860 Ensenada, Baja California, México
| | - María Evarista Arellano-García
- Laboratorio
de Genotoxicología Ambiental, Facultad de Ciencias, Universidad Autónoma de Baja California, C.P. 22860 Ensenada, Baja California, México
| | - Patricia Radilla-Chávez
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - David Sergio Salas-Vargas
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Yanis Toledano-Magaña
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Francisco Casillas-Figueroa
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Roberto Luna Vazquez-Gomez
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Alexey Pestryakov
- Department
of Technology of Organic Substances and Polymer Materials, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Juan Carlos García-Ramos
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Nina Bogdanchikova
- Centro
de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, C.P. 22879 Ensenada, Baja California, México
| |
Collapse
|
45
|
|
46
|
Stephano-Hornedo JL, Torres-Gutiérrez O, Toledano-Magaña Y, Gradilla-Martínez I, Pestryakov A, Sánchez-González A, García-Ramos JC, Bogdanchikova N. Argovit™ silver nanoparticles to fight Huanglongbing disease in Mexican limes ( Citrus aurantifolia Swingle). RSC Adv 2020; 10:6146-6155. [PMID: 35495993 PMCID: PMC9049702 DOI: 10.1039/c9ra09018e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/24/2020] [Indexed: 01/22/2023] Open
Abstract
Nowadays, Huanglongbing (HLB) disease, commonly known as "yellow dragon disease", affects citrus crops worldwide and has a devastating effect in the agro-industrial sector. Significant efforts have been made to fight the illness, but still, there is no effective treatment to eradicate the disease. This work is the first approach to evaluate the capacity of silver nanoparticles (AgNPs) to directly eradicate the bacteria responsible for Huanglongbing disease, Candidatus Liberibacter asiaticus (CLas), in the field. The AgNPs were administered by foliar sprinkling and trunk injection of 93 sick trees with remarkable results. Both methods produce an 80-90% decrease of bacterial titre, quantified by qRT-PCR in collected foliar tissue, compared with the control group. Scanning electron microscopy images show an essential reduction of starch accumulation in phloem vessels after AgNP treatments without evidence of bacteria in the analyzed samples. Compared with other effective methods that involve β-lactam antibiotics, the potency of AgNPs is 3 to 60-times higher when it is administered by foliar sprinkling and from 75 to 750-fold higher when the administration was by trunk-injection. All these results allow us to propose this AgNP formulation as a promising alternative for the treatment of infected trees in the field.
Collapse
Affiliation(s)
- José L Stephano-Hornedo
- Meredith Gould Laboratories Tijuana Baja California Mexico
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC) Carretera Transpeninsular 3917 Ensenada Baja California 22860 Mexico
| | - Osmin Torres-Gutiérrez
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC) Carretera Transpeninsular 3917 Ensenada Baja California 22860 Mexico
| | - Yanis Toledano-Magaña
- Escuela de Ciencias de La Salud, Universidad Autónoma de Baja California (UABC) Blvd. Zertuche y Blvd. de los Lagos S/N Fracc. Valle Dorado 22890 Ensenada B.C. Mexico
| | - Israel Gradilla-Martínez
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México Km 107 Carretera Tijuana-Ensenada C.P. 22860 Ensenada B.C. Mexico
| | - Alexey Pestryakov
- Department of Technology of Organic Substances and Polymer Materials, Tomsk Polytechnic University Lenin Avenue 30 Tomsk 634050 Russia
| | - Alejandro Sánchez-González
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC) Carretera Transpeninsular 3917 Ensenada Baja California 22860 Mexico
| | - Juan Carlos García-Ramos
- Escuela de Ciencias de La Salud, Universidad Autónoma de Baja California (UABC) Blvd. Zertuche y Blvd. de los Lagos S/N Fracc. Valle Dorado 22890 Ensenada B.C. Mexico
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México Km 107 Carretera Tijuana-Ensenada C.P. 22860 Ensenada B.C. Mexico
| |
Collapse
|
47
|
Biocompatible green synthesized silver nanoparticles impact on insecticides resistant developing enzymes of dengue transmitted mosquito vector. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1311-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
48
|
Green Synthesis of Nanomaterials. NANOMATERIALS 2019; 9:nano9091275. [PMID: 31500230 PMCID: PMC6781268 DOI: 10.3390/nano9091275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 11/16/2022]
Abstract
Nanomaterials possess stunning physical and chemical properties [...].
Collapse
|
49
|
Talebpour Z, Haghighi F, Taheri M, Hosseinzadeh M, Gharavi S, Habibi F, Aliahmadi A, Sadr AS, Azad J. Binding interaction of spherical silver nanoparticles and calf thymus DNA: Comprehensive multispectroscopic, molecular docking, and RAPD PCR studies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Lopes IMD, de Oliveira IM, Bargi-Souza P, Cavallin MD, Kolc CSM, Khalil NM, Quináia SP, Romano MA, Romano RM. Effects of Silver Nanoparticle Exposure to the Testicular Antioxidant System during the Prepubertal Rat Stage. Chem Res Toxicol 2019; 32:986-994. [DOI: 10.1021/acs.chemrestox.8b00281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes, 1524, 05508-000 São Paulo, Brazil
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, 31270-901 Minas Gerais, Brazil
| | | | - Christiane Schineider Machado Kolc
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, 31270-901 Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|