1
|
Zhao H, Markow O, Olaitan G, Donarski ED, Lester KC, Lavrik NV, Venton BJ. Pyrolyzed Parylene-N for in Vivo Electrochemical Detection of Neurotransmitters. ACS ELECTROCHEMISTRY 2025; 1:730-740. [PMID: 40331006 PMCID: PMC12051191 DOI: 10.1021/acselectrochem.4c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 05/08/2025]
Abstract
Carbon electrodes are typically used for in vivo dopamine detection, and new types of electrodes and customized fabrication methods will facilitate new applications. Parylene is an insulator that can be deposited in a thin layer on a substrate and then pyrolyzed to carbon to enable its use as an electrode. However, pyrolyzed parylene has not been used for the real-time detection of neurochemicals by fast-scan cyclic voltammetry. In this work, we deposited thin layers of parylene-N (PN) on metal wires and then pyrolyzed them to carbon with high temperatures in a rapid thermal processor (RTP). Different masses of PN, 1, 6, and 12 g, were deposited to vary the thickness. RTP-PN (6 g) produced a 194 nm layer carbon thickness and had optimal electrochemical stability. Pyrolyzed parylene-N modified electrodes (PPNMEs) were characterized for electrochemical detection of dopamine, serotonin, and adenosine. Background-normalized currents at PPNMEs were about 2 times larger than those of carbon-fiber microelectrodes (CFMEs). Rich defect sites and oxygen functional groups promoted the neurochemical adsorption of cationic neurotransmitters. PPNMEs resisted fouling from serotonin polymer formation. PPNMEs were used in vivo to detect stimulated dopamine release and monitor spontaneous adenosine release. Pyrolyzed parylene is a sensitive and fouling-resistant thin-film carbon electrode that could be used in the future for making customized electrodes and devices.
Collapse
Affiliation(s)
- He Zhao
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Owen Markow
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Greatness Olaitan
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Eric D. Donarski
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kevin C. Lester
- Center
for Nanophase Materials Sciences, Oak Ridge
National Lab, Oak Ridge, Tennessee 37831, United States
| | - Nickolay V. Lavrik
- Center
for Nanophase Materials Sciences, Oak Ridge
National Lab, Oak Ridge, Tennessee 37831, United States
| | - B. Jill Venton
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
2
|
Alyamni N, Abot JL, Zestos AG. Carbon microelectrodes for the measurement of neurotransmitters with fast-scan cyclic voltammetry: methodology and applications. Front Bioeng Biotechnol 2025; 13:1569508. [PMID: 40260016 PMCID: PMC12010108 DOI: 10.3389/fbioe.2025.1569508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
Carbon microelectrodes (CMEs) have emerged as pivotal tools in the field of neurochemical sensing, enabling precise, real-time monitoring of neurotransmitters in both research and clinical contexts. The current review explores the design, fabrication, and application of CMEs, emphasizing recent advancements in material science and electrochemical techniques that enhance their sensitivity, selectivity, and biocompatibility. Innovations such as the incorporation of nanomaterials, including graphene and carbon nanotubes, and the adoption of advanced fabrication methods like three-dimensional (3D) printing and chemical vapor deposition, are discussed in detail. These developments have led to significant improvements in electrode performance, the reduction of biofouling and interferants, while enabling the detection of low concentrations of neurochemicals in complex biological systems. This review further highlights the potential of CMEs to address clinical challenges such as diagnosing and monitoring neurological disorders such as Parkinson's Disease and depression. By integrating advanced surface modifications, polymer coatings, and method development strategies, CMEs demonstrate high durability, reduced fouling, and enhanced specificity. Despite these advancements, challenges remain related to long-term in vivo stability, batch fabrication, and reproducibility, thus necessitating further research and optimization. This review highlights the transformative potential of CMEs in both research and therapeutic applications, providing a comprehensive overview of their current state and future directions. By addressing existing limitations and leveraging emerging technologies, CMEs have the potential to further enhance neurochemical sensing and contribute to breakthroughs in neuroscience and biomedical science.
Collapse
Affiliation(s)
- Nadiah Alyamni
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC, United States
- Department of Chemistry, American University, Washington, DC, United States
| | - Jandro L. Abot
- Department of Mechanical Engineering, The Catholic University of America, Washington, DC, United States
| | | |
Collapse
|
3
|
Shao Z, Zhao H, Dunham KE, Cao Q, Lavrik NV, Venton BJ. 3D-Printed Carbon Nanoneedle Electrodes for Dopamine Detection in Drosophila. Angew Chem Int Ed Engl 2024; 63:e202405634. [PMID: 38742923 PMCID: PMC11250930 DOI: 10.1002/anie.202405634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
In vivo electrochemistry in small brain regions or synapses requires nanoelectrodes with long straight tips for submicron scale measurements. Nanoelectrodes can be fabricated using a Nanoscribe two-photon printer, but annealed tips curl if they are long and thin. We propose a new pulling-force strategy to fabricate a straight carbon nanoneedle structure. A micron-width bridge is printed between two blocks. The annealed structure shrinks during pyrolysis, and the blocks create a pulling force to form a long, thin, and straight carbon bridge. Parameterization study and COMSOL modeling indicate changes in the block size, bridge size and length affect the pulling force and bridge shrinkage. Electrodes were printed on niobium wires, insulated with aluminum oxide, and the bridge cut with focused ion beam (FIB) to expose the nanoneedle tip. Annealed needle diameters ranged from 400 nm to 5.25 μm and length varied from 50.5 μm to 146 μm. The electrochemical properties are similar to glassy carbon, with good performance for dopamine detection with fast-scan cyclic voltammetry. Nanoelectrodes enable biological applications, such as dopamine detection in a specific Drosophila brain region. Long and thin nanoneedles are generally useful for other applications such as cellular sensing, drug delivery, or gas sensing.
Collapse
Affiliation(s)
- Zijun Shao
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| | - He Zhao
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| | - Kelly E Dunham
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| | - Qun Cao
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| | - Nickolay V Lavrik
- Center for Nanophase Materials Sciences, Oak Ridge National Lab, Oak Ridge, TN, 37831, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| |
Collapse
|
4
|
Ostertag BJ, Porshinsky EJ, Nawarathne CP, Ross AE. Surface-Roughened Graphene Oxide Microfibers Enhance Electrochemical Reversibility. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12124-12136. [PMID: 38815131 PMCID: PMC11209849 DOI: 10.1021/acs.langmuir.4c01004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Here, we provide an optimized method for fabricating surface-roughened graphene oxide disk microelectrodes (GFMEs) with enhanced defect density to generate a more suitable electrode surface for dopamine detection with fast-scan cyclic voltammetry (FSCV). FSCV detection, which is often influenced by adsorption-based surface interactions, is commonly impacted by the chemical and geometric structure of the electrode's surface, and graphene oxide is a tunable carbon-based nanomaterial capable of enhancing these two key characteristics. Synthesized GFMEs possess exquisite electronic and mechanical properties. We have optimized an applied inert argon (Ar) plasma treatment to increase defect density, with minimal changes in chemical functionality, for enhanced surface crevices to momentarily trap dopamine during detection. Optimal Ar plasma treatment (100 sccm, 60 s, 100 W) generates crevice depths of 33.4 ± 2.3 nm with high edge plane character enhancing dopamine interfacial interactions. Increases in GFME surface roughness improve electron transfer rates and limit diffusional rates out of the crevices to create nearly reversible dopamine electrochemical redox interactions. The utility of surface-roughened disk GFMEs provides comparable detection sensitivities to traditional cylindrical carbon fiber microelectrodes while improving temporal resolution ten-fold with amplified oxidation current due to dopamine cyclization. Overall, surface-roughened GFMEs enable improved adsorption interactions, momentary trapping, and current amplification, expanding the utility of GO microelectrodes for FSCV detection.
Collapse
Affiliation(s)
- Blaise J. Ostertag
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172, USA
| | - Evan J. Porshinsky
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172, USA
| | - Chaminda P. Nawarathne
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172, USA
| | - Ashley E. Ross
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172, USA
| |
Collapse
|
5
|
Ostertag BJ, Syeed AJ, Brooke AK, Lapsley KD, Porshinsky EJ, Ross AE. Waste Coffee Ground-Derived Porous Carbon for Neurochemical Detection. ACS Sens 2024; 9:1372-1381. [PMID: 38380643 PMCID: PMC11209848 DOI: 10.1021/acssensors.3c02383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
We present an optimized synthetic method for repurposing coffee waste to create controllable, uniform porous carbon frameworks for biosensor applications to enhance neurotransmitter detection with fast-scan cyclic voltammetry. Harnessing porous carbon structures from biowastes is a common practice for low-cost energy storage applications; however, repurposing biowastes for biosensing applications has not been explored. Waste coffee ground-derived porous carbon was synthesized by chemical activation to form multivoid, hierarchical porous carbon, and this synthesis was specifically optimized for porous uniformity and electrochemical detection. These materials, when modified on carbon-fiber microelectrodes, exhibited high surface roughness and pore distribution, which contributed to significant improvements in electrochemical reversibility and oxidative current for dopamine (3.5 ± 0.4-fold) and other neurochemicals. Capacitive current increases were small, showing evidence of small increases in electroactive surface area. Local trapping of dopamine within the pores led to improved electrochemical reversibility and frequency-independent behavior. Overall, we demonstrate an optimized biowaste-derived porous carbon synthesis for neurotransmitter detection for the first time and show material utility for viable neurotransmitter detection within a tissue matrix. This work supports the notion that controlled surface nanogeometries play a key role in electrochemical detection.
Collapse
Affiliation(s)
- Blaise J. Ostertag
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Ayah J. Syeed
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Alexandra K. Brooke
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Kamya D. Lapsley
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Evan J. Porshinsky
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Ashley E. Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| |
Collapse
|
6
|
Ostertag BJ, Ross AE. Editors' Choice-Review-The Future of Carbon-Based Neurochemical Sensing: A Critical Perspective. ECS SENSORS PLUS 2023; 2:043601. [PMID: 38170109 PMCID: PMC10759280 DOI: 10.1149/2754-2726/ad15a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Carbon-based sensors have remained critical materials for electrochemical detection of neurochemicals, rooted in their inherent biocompatibility and broad potential window. Real-time monitoring using fast-scan cyclic voltammetry has resulted in the rise of minimally invasive carbon fiber microelectrodes as the material of choice for making measurements in tissue, but challenges with carbon fiber's innate properties have limited its applicability to understudied neurochemicals. Here, we provide a critical review of the state of carbon-based real-time neurochemical detection and offer insight into ways we envision addressing these limitations in the future. This piece focuses on three main hinderances of traditional carbon fiber based materials: diminished temporal resolution due to geometric properties and adsorption/desorption properties of the material, poor selectivity/specificity to most neurochemicals, and the inability to tune amorphous carbon surfaces for specific interfacial interactions. Routes to addressing these challenges could lie in methods like computational modeling of single-molecule interfacial interactions, expansion to tunable carbon-based materials, and novel approaches to synthesizing these materials. We hope this critical piece does justice to describing the novel carbon-based materials that have preceded this work, and we hope this review provides useful solutions to innovate carbon-based material development in the future for individualized neurochemical structures.
Collapse
Affiliation(s)
- Blaise J. Ostertag
- University of Cincinnati, Department of Chemistry, Cincinnati, Ohio 45221-0172, United States of America
| | - Ashley E. Ross
- University of Cincinnati, Department of Chemistry, Cincinnati, Ohio 45221-0172, United States of America
| |
Collapse
|
7
|
Shao Z, Chang Y, Venton BJ. Carbon microelectrodes with customized shapes for neurotransmitter detection: A review. Anal Chim Acta 2022; 1223:340165. [PMID: 35998998 PMCID: PMC9867599 DOI: 10.1016/j.aca.2022.340165] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 01/26/2023]
Abstract
Carbon is a popular electrode material for neurotransmitter detection due to its good electrochemical properties, high biocompatibility, and inert chemistry. Traditional carbon electrodes, such as carbon fibers, have smooth surfaces and fixed shapes. However, newer studies customize the shape and nanostructure the surface to enhance electrochemistry for different applications. In this review, we show how changing the structure of carbon electrodes with methods such as chemical vapor deposition (CVD), wet-etching, direct laser writing (DLW), and 3D printing leads to different electrochemical properties. The customized shapes include nanotips, complex 3D structures, porous structures, arrays, and flexible sensors with patterns. Nanostructuring enhances sensitivity and selectivity, depending on the carbon nanomaterial used. Carbon nanoparticle modifications enhance electron transfer kinetics and prevent fouling for neurochemicals that are easily polymerized. Porous electrodes trap analyte momentarily on the scale of an electrochemistry experiment, leading to thin layer electrochemical behavior that enhances secondary peaks from chemical reactions. Similar thin layer cell behavior is observed at cavity carbon nanopipette electrodes. Nanotip electrodes facilitate implantation closer to the synapse with reduced tissue damage. Carbon electrode arrays are used to measure from multiple neurotransmitter release sites simultaneously. Custom-shaped carbon electrodes are enabling new applications in neuroscience, such as distinguishing different catecholamines by secondary peaks, detection of vesicular release in single cells, and multi-region measurements in vivo.
Collapse
Affiliation(s)
- Zijun Shao
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA
| | - Yuanyu Chang
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA
| | - B Jill Venton
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA.
| |
Collapse
|
8
|
Cao Q, Shao Z, Hensley D, Venton BJ. Carbon nanospike coated nanoelectrodes for measurements of neurotransmitters. Faraday Discuss 2022; 233:303-314. [PMID: 34889344 PMCID: PMC8983598 DOI: 10.1039/d1fd00053e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Carbon nanoelectrodes enable the detection of neurotransmitters at the level of single cells, vesicles, synapses and small brain structures. Previously, the etching of carbon fibers and 3D printing based on direct laser writing have been used to fabricate carbon nanoelectrodes, but these methods lack the ability of mass manufacturing. In this paper, we mass fabricate carbon nanoelectrodes by growing carbon nanospikes (CNSs) on metal wires. CNSs have a short, dense and defect-rich surface that produces remarkable electrochemical properties, and they can be mass fabricated on almost any substrate without using catalysts. Tungsten wires and niobium wires were electrochemically etched in batch to form sub micrometer sized tips, and a layer of CNSs was grown on the metal wires using plasma-enhanced chemical vapor deposition (PE-CVD). The thickness of the CNS layer was controlled by the deposition time, and a thin layer of CNSs can effectively cover the entire metal surface while maintaining the tip size within the sub micrometer scale. The etched tungsten wires produced tapered conical nanotips, while the etched niobium wires were long and thin. Both showed excellent sensitivity for the detection of outer sphere ruthenium hexamine and the inner sphere test compound ferricyanide. The CNS nanosensors were used for the measurement of dopamine, serotonin, ascorbic acid and DOPAC with fast-scan cyclic voltammetry. The CNS nanoelectrodes had a large surface area and numerous defect sites, which improved the sensitivity, electron transfer kinetics and adsorption. Finally, the CNS nanoelectrodes were compared with other nanoelectrode fabrication methods, including flame etching, 3D printing, and nanopipettes, which are slower to make and more difficult for mass fabrication. Thus, CNS nanoelectrodes are a promising strategy for the mass fabrication of nanoelectrode sensors for neurotransmitters.
Collapse
Affiliation(s)
- Qun Cao
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA.
| | - Zijun Shao
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA.
| | - Dale Hensley
- Center for Nanophase Material Science, Oak Ridge National Lab, Oak Ridge, Tennessee, 37831, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA.
| |
Collapse
|
9
|
Ostertag BJ, Cryan MT, Serrano JM, Liu G, Ross AE. Porous Carbon Nanofiber-Modified Carbon Fiber Microelectrodes for Dopamine Detection. ACS APPLIED NANO MATERIALS 2022; 5:2241-2249. [PMID: 36203493 PMCID: PMC9531868 DOI: 10.1021/acsanm.1c03933] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present a method to modify carbon-fiber microelectrodes (CFME) with porous carbon nanofibers (PCFs) to improve detection and to investigate the impact of porous geometry for dopamine detection with fast-scan cyclic voltammetry (FSCV). PCFs were fabricated by electrospinning, carbonizing, and pyrolyzing poly(acrylonitrile)-b-poly(methyl methacrylate) (PAN-b-PMMA) block copolymer nanofiber frameworks. Commonly, porous nanofibers are used for energy storage applications, but we present an application of these materials for biosensing which has not been previously studied. This modification impacted the topology and enhanced redox cycling at the surface. PCF modifications increased the oxidative current for dopamine 2.0 ± 0.1-fold (n = 33) with significant increases in detection sensitivity. PCF are known to have more edge plane sites which we speculate lead to the two-fold increase in electroactive surface area. Capacitive current changes were negligible providing evidence that improvements in detection are due to faradaic processes at the electrode. The ΔEp for dopamine decreased significantly at modified CFMEs. Only a 2.2 ± 2.2 % change in dopamine current was observed after repeated measurements and only 10.5 ± 2.8% after 4 hours demonstrating the stability of the modification over time. We show significant improvements in norepinephrine, ascorbic acid, adenosine, serotonin, and hydrogen peroxide detection. Lastly, we demonstrate that the modified electrodes can detect endogenous, unstimulated release of dopamine in living slices of rat striatum. Overall, we provide evidence that porous nanostructures significantly improve neurochemical detection with FSCV and echo the necessity for investigating the extent to which geometry impacts electrochemical detection.
Collapse
Affiliation(s)
- Blaise J. Ostertag
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Michael T. Cryan
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Joel M. Serrano
- Virginia Polytechnic Institute and State University, Department of Chemistry, Macromolecules Innovation Institute, Division of Nanoscience, Academy of Integrated Science, 800 West Campus Dr., Blacksburg, VA, 2406, USA
| | - Guoliang Liu
- Virginia Polytechnic Institute and State University, Department of Chemistry, Macromolecules Innovation Institute, Division of Nanoscience, Academy of Integrated Science, 800 West Campus Dr., Blacksburg, VA, 2406, USA
| | - Ashley E. Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
- Corresponding author: Office Phone#: 513-556-9314,
| |
Collapse
|
10
|
Cho W, Rafi H, Cho S, Balijepalli A, Zestos AG. High resolution voltammetric and field-effect transistor readout of carbon fiber microelectrode biosensors. SENSORS & DIAGNOSTICS 2022; 1:460-464. [PMID: 35647552 PMCID: PMC9119317 DOI: 10.1039/d2sd00023g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rapid and sensitive pH measurements with increased spatiotemporal resolution are imperative to probe neurochemical signals and illuminate brain function. We interfaced carbon fiber microelectrode (CFME) sensors with both fast scan cyclic voltammetry (FSCV) and field-effect transistor (FET) transducers for dynamic pH measurements. The electrochemical oxidation and reduction of functional groups on the surface of CFMEs affect their response over a physiologically relevant pH range. When measured with FET transducers, the sensitivity of the measurements over the measured pH range was found to be (101 ± 18) mV, which exceeded the Nernstian value of 59 mV by approximately 70%. Finally, we validated the functionality of CFMEs as pH sensors with FSCV ex vivo in rat brain coronal slices with exogenously applied solutions of varying pH values indicating that potential in vivo study is feasible. Highly sensitive CFMEs as a pH sensor in tandem with both FET and FSCV methods having ex vivo sensing capability is demonstrated.![]()
Collapse
Affiliation(s)
- Whirang Cho
- Department of Chemistry, American University, Washington, D.C. 20016, USA
- Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg 20899, USA
| | - Harmain Rafi
- Department of Chemistry, American University, Washington, D.C. 20016, USA
| | - Seulki Cho
- Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg 20899, USA
| | - Arvind Balijepalli
- Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg 20899, USA
| | | |
Collapse
|
11
|
Lu K, Liu J, Dai X, Zhao L, Yang Y, Li H, Jiang Y. Construction of a Au@MoS 2 composite nanosheet biosensor for the ultrasensitive detection of a neurotransmitter and understanding of its mechanism based on DFT calculations. RSC Adv 2021; 12:798-809. [PMID: 35425140 PMCID: PMC8978983 DOI: 10.1039/d1ra07962j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023] Open
Abstract
MoS2 nanosheets can be applied as electrochemical biosensors to selectively and sensitively respond to the surrounding environment and detect various biomolecules due to their large specific surface area and unique physicochemical properties. In this paper, single-layer or few-layer MoS2 nanosheets were prepared by an improved liquid phase stripping method, and then combining the unique material characteristics of MoS2 and the metallic property of Au nanoparticles (AuNPs), Au@MoS2 composite nanosheets were synthesized based on MoS2 nanosheets. Then, the structure and properties of MoS2 nanosheets and Au@MoS2 composite nanosheets were comprehensively characterized. The results proved that AuNPs were successfully loaded on MoS2 nanosheets. At the same time, on the basis of the successful preparation of Au@MoS2 composite nanosheets, an electrochemical biosensor targeting dopamine was successfully constructed by cyclic voltammetry. The linear detection range was 0.5–350 μM, and the detection limit was 0.2 μM. The high-sensitive electrochemical detection of dopamine has been achieved, which provides a new idea for the application of MoS2-based nanomaterials in the biosensing of neurotransmitters. In addition, density functional theory (DFT) was used to explore the electrochemical performance of Au@MoS2 composite nanosheets. The results show that the adsorption of Au atoms on the MoS2 2D structure improves the conductivity of MoS2 nanosheets, which theoretically supports the possibilities of its application as a platform for the ultrasensitive detection of neurotransmitters or other biomolecules in the field of disease diagnosis. An electrochemical biosensor based on Au@MoS2 composite nanosheets was successfully prepared for the high-sensitivity detection of dopamine.![]()
Collapse
Affiliation(s)
- Kaida Lu
- Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University Jinan Shandong 250061 P. R. China
| | - Jiamei Liu
- Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University Jinan Shandong 250061 P. R. China
| | - Xinyue Dai
- School of Life Sciences, Shanghai University Shanghai 200444 P. R. China
| | - Li Zhao
- Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University Jinan Shandong 250061 P. R. China
| | - Yufei Yang
- Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University Jinan Shandong 250061 P. R. China
| | - Hui Li
- Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University Jinan Shandong 250061 P. R. China
| | - Yanyan Jiang
- Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University Jinan Shandong 250061 P. R. China .,Shenzhen Research Institute of Shandong University Shenzhen Guangdong 518000 P. R. China
| |
Collapse
|
12
|
Rafi H, Zestos AG. Multiplexing neurochemical detection with carbon fiber multielectrode arrays using fast-scan cyclic voltammetry. Anal Bioanal Chem 2021; 413:6715-6726. [PMID: 34259877 PMCID: PMC8551007 DOI: 10.1007/s00216-021-03526-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Carbon fiber microelectrodes (CFMEs) have been extensively used to measure neurotransmitters with fast-scan cyclic voltammetry (FSCV) due to their ability to adsorb cationic monoamine neurotransmitters. Although FSCV, in tandem with CFMEs, provides high temporal and spatial resolution, only single-channel potentiostats and electrodes have been primarily utilized. More recently, the need and use of carbon fiber multielectrode arrays has risen to target multiple brain regions. Previous studies have shown the ability to detect dopamine using multielectrode arrays; however, they are not readily available to the scientific community. In this work, we interfaced a carbon fiber multielectrode array (MEA or multielectrode array), to a commercially available four-channel potentiostat for multiplexing neurochemical measurements. The MEA's relative performance was compared to single CFMEs where dopamine detection was found to be adsorption controlled to the electrode's surface. Multiple waveforms were applied to each fiber of the multielectrode array simultaneously to detect different analytes on each electrode of the array. A proof of concept ex vivo experiment showed that the multielectrode array could record redox activity in different areas within the mouse caudate putamen and detect dopamine in a 3-mm2 area. To our knowledge, this is the first use of the multielectrode array paired with a commercially available multichannel potentiostat for multi-waveform application and neurotransmitter co-detection. This novel array may aid in future studies to better understand complex brain heterogeneity, the dynamic neurochemical environment, and how disease states or drugs affect separate brain areas concurrently. Graphical abstract.
Collapse
Affiliation(s)
- Harmain Rafi
- Center for Neuroscience and Behavior, American University, Washington, DC, 20016, USA
- Department of Neuroscience, American University, Washington, DC, 20016, USA
| | - Alexander G Zestos
- Center for Neuroscience and Behavior, American University, Washington, DC, 20016, USA.
- Department of Chemistry, American University, Washington, DC, 20016, USA.
| |
Collapse
|
13
|
Devi M, Vomero M, Fuhrer E, Castagnola E, Gueli C, Nimbalkar S, Hirabayashi M, Kassegne S, Stieglitz T, Sharma S. Carbon-based neural electrodes: promises and challenges. J Neural Eng 2021; 18. [PMID: 34404037 DOI: 10.1088/1741-2552/ac1e45] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023]
Abstract
Neural electrodes are primary functional elements of neuroelectronic devices designed to record neural activity based on electrochemical signals. These electrodes may also be utilized for electrically stimulating the neural cells, such that their response can be simultaneously recorded. In addition to being medically safe, the electrode material should be electrically conductive and electrochemically stable under harsh biological environments. Mechanical flexibility and conformability, resistance to crack formation and compatibility with common microfabrication techniques are equally desirable properties. Traditionally, (noble) metals have been the preferred for neural electrode applications due to their proven biosafety and a relatively high electrical conductivity. Carbon is a recent addition to this list, which is far superior in terms of its electrochemical stability and corrosion resistance. Carbon has also enabled 3D electrode fabrication as opposed to the thin-film based 2D structures. One of carbon's peculiar aspects is its availability in a wide range of allotropes with specialized properties that render it highly versatile. These variations, however, also make it difficult to understand carbon itself as a unique material, and thus, each allotrope is often regarded independently. Some carbon types have already shown promising results in bioelectronic medicine, while many others remain potential candidates. In this topical review, we first provide a broad overview of the neuroelectronic devices and the basic requirements of an electrode material. We subsequently discuss the carbon family of materials and their properties that are useful in neural applications. Examples of devices fabricated using bulk and nano carbon materials are reviewed and critically compared. We then summarize the challenges, future prospects and next-generation carbon technology that can be helpful in the field of neural sciences. The article aims at providing a common platform to neuroscientists, electrochemists, biologists, microsystems engineers and carbon scientists to enable active and comprehensive efforts directed towards carbon-based neuroelectronic device fabrication.
Collapse
Affiliation(s)
- Mamta Devi
- School of Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075, India
| | - Maria Vomero
- Bioelectronic Systems Laboratory, Columbia University, 500 West 120th Street, New York, NY 10027, United States of America
| | - Erwin Fuhrer
- School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075 India
| | - Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Calogero Gueli
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 080, 79110 Freiburg, Germany
| | - Surabhi Nimbalkar
- NanoFAB.SDSU Research Lab, Department of Mechanical Engineering, San Diego State University and NSF-ERC Center for Neurotechnology (CNT), 5500 Campanile Drive, San Diego, CA 92182, United States of America
| | - Mieko Hirabayashi
- NanoFAB.SDSU Research Lab, Department of Mechanical Engineering, San Diego State University and NSF-ERC Center for Neurotechnology (CNT), 5500 Campanile Drive, San Diego, CA 92182, United States of America
| | - Sam Kassegne
- NanoFAB.SDSU Research Lab, Department of Mechanical Engineering, San Diego State University and NSF-ERC Center for Neurotechnology (CNT), 5500 Campanile Drive, San Diego, CA 92182, United States of America
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 080, 79110 Freiburg, Germany.,BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 080, 79110 Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Hansastr. 9a, 79104 Freiburg, Germany
| | - Swati Sharma
- School of Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075, India
| |
Collapse
|
14
|
Castagnola E, Garg R, Rastogi SK, Cohen-Karni T, Cui XT. 3D fuzzy graphene microelectrode array for dopamine sensing at sub-cellular spatial resolution. Biosens Bioelectron 2021; 191:113440. [PMID: 34171734 DOI: 10.1016/j.bios.2021.113440] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/28/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023]
Abstract
The development of a high sensitivity real-time sensor for multi-site detection of dopamine (DA) with high spatial and temporal resolution is of fundamental importance to study the complex spatial and temporal pattern of DA dynamics in the brain, thus improving the understanding and treatments of neurological and neuropsychiatric disorders. In response to this need, here we present high surface area out-of-plane grown three-dimensional (3D) fuzzy graphene (3DFG) microelectrode arrays (MEAs) for highly selective, sensitive, and stable DA electrochemical sensing. 3DFG microelectrodes present a remarkable sensitivity to DA (2.12 ± 0.05 nA/nM, with LOD of 364.44 ± 8.65 pM), the highest reported for nanocarbon MEAs using Fast Scan Cyclic Voltammetry (FSCV). The high surface area of 3DFG allows for miniaturization of electrode down to 2 × 2 μm2, without compromising the electrochemical performance. Moreover, 3DFG MEAs are electrochemically stable under 7.2 million scans of continuous FSCV cycling, present exceptional selectivity over the most common interferents in vitro with minimum fouling by electrochemical byproducts and can discriminate DA and serotonin (5-HT) in response to the injection of their 50:50 mixture. These results highlight the potential of 3DFG MEAs as a promising platform for FSCV based multi-site detection of DA with high sensitivity, selectivity, and spatial resolution.
Collapse
Affiliation(s)
- Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260 Pittsburgh, PA, USA
| | - Raghav Garg
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Sahil K Rastogi
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Tzahi Cohen-Karni
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive Pittsburgh, PA, 15219-3110, USA.
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260 Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive Pittsburgh, PA, 15219-3110, USA; Center for Neural Basis of Cognition, University of Pittsburgh, 4400 Fifth Ave, Pittsburgh, PA 15213, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
15
|
Rafi H, Zestos AG. Review-Recent Advances in FSCV Detection of Neurochemicals via Waveform and Carbon Microelectrode Modification. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2021; 168:057520. [PMID: 34108735 PMCID: PMC8186302 DOI: 10.1149/1945-7111/ac0064] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Fast scan cyclic voltammetry (FSCV) is an analytical technique that was first developed over 30 years ago. Since then, it has been extensively used to detect dopamine using carbon fiber microelectrodes (CFMEs). More recently, electrode modifications and waveform refinement have enabled the detection of a wider variety of neurochemicals including nucleosides such as adenosine and guanosine, neurotransmitter metabolites of dopamine, and neuropeptides such as enkephalin. These alterations have facilitated the selectivity of certain biomolecules over others to enhance the measurement of the analyte of interest while excluding interferants. In this review, we detail these modifications and how specializing CFME sensors allows neuro-analytical researchers to develop tools to understand the neurochemistry of the brain in disease states and provide groundwork for translational work in clinical settings.
Collapse
Affiliation(s)
- Harmain Rafi
- Department of Chemistry, American University, Washington, DC 20016, United States of America
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, United States of America
| | - Alexander G. Zestos
- Department of Chemistry, American University, Washington, DC 20016, United States of America
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, United States of America
| |
Collapse
|
16
|
Asrat T, Cho W, Liu FA, Shapiro SM, Bracht JR, Zestos AG. Direct Detection of DNA and RNA on Carbon Fiber Microelectrodes Using Fast-Scan Cyclic Voltammetry. ACS OMEGA 2021; 6:6571-6581. [PMID: 33748569 PMCID: PMC7970473 DOI: 10.1021/acsomega.0c04845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/18/2021] [Indexed: 05/04/2023]
Abstract
DNA and RNA have been measured with many techniques but often with relatively long analysis times. In this study, we utilize fast-scan cyclic voltammetry (FSCV) for the subsecond codetection of adenine, guanine, and cytosine, first as free nucleosides, and then within custom synthesized oligos, plasmid DNA, and RNA from the nematode Caenorhabditis elegans. Previous studies have shown the detection of adenosine and guanosine with FSCV with high spatiotemporal resolution, while we have extended the assay to include cytidine and adenine, guanine, and cytosine in RNA and single- and double-stranded DNA (ssDNA and dSDNA). We find that FSCV testing has a higher sensitivity and yields higher peak oxidative currents when detecting shorter oligonucleotides and ssDNA samples at equivalent nucleobase concentrations. This is consistent with an electrostatic repulsion from negatively charged oxide groups on the surface of the carbon fiber microelectrode (CFME), the negative holding potential, and the negatively charged phosphate backbone. Moreover, as opposed to dsDNA, ssDNA nucleobases are not hydrogen-bonded to one another and thus are free to adsorb onto the surface of the carbon electrode. We also demonstrate that the simultaneous determination of nucleobases is not masked even in biologically complex serum samples. This is the first report demonstrating that FSCV, when used with CFMEs, is able to codetect nucleobases when polymerized into DNA or RNA and could potentially pave the way for future uses in clinical, diagnostic, or research applications.
Collapse
Affiliation(s)
- Thomas
M. Asrat
- Department
of Chemistry, American University, Washington, D.C. 20016, United States
| | - Whirang Cho
- Department
of Chemistry, American University, Washington, D.C. 20016, United States
| | - Favian A. Liu
- Department
of Chemistry, American University, Washington, D.C. 20016, United States
| | - Sarah M. Shapiro
- Department
of Biology, American University, Washington, D.C. 20016, United States
| | - John R. Bracht
- Department
of Biology, American University, Washington, D.C. 20016, United States
| | - Alexander G. Zestos
- Department
of Chemistry, American University, Washington, D.C. 20016, United States
| |
Collapse
|
17
|
Cao Q, Shao Z, Hensley DK, Lavrik NV, Venton BJ. Influence of Geometry on Thin Layer and Diffusion Processes at Carbon Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2667-2676. [PMID: 33591763 PMCID: PMC7937503 DOI: 10.1021/acs.langmuir.0c03315] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The geometric structure of carbon electrodes affects their electrochemical behavior, and large-scale surface roughness leads to thin layer electrochemistry when analyte is trapped in pores. However, the current response is always a mixture of both thin layer and diffusion processes. Here, we systematically explore the effects of thin layer electrochemistry and diffusion at carbon fiber (CF), carbon nanospike (CNS), and carbon nanotube yarn (CNTY) electrodes. The cyclic voltammetry (CV) response to the surface-insensitive redox couple Ru(NH3)63+/2+ is tested, so the geometric structure is the only factor. At CFs, the reaction is diffusion-controlled because the surface is smooth. CNTY electrodes have gaps between nanotubes that are about 10 μm deep, comparable with the diffusion layer thickness. CNTY electrodes show clear thin layer behavior due to trapping effects, with more symmetrical peaks and ΔEp closer to zero. CNS electrodes have submicrometer scale roughness, so their CV shape is mostly due to diffusion, not thin layer effects. However, even the 10% contribution of thin layer behavior reduces the peak separation by 30 mV, indicating ΔEp is influenced not only by electron transfer kinetics but also by surface geometry. A new simulation model is developed to quantitate the thin layer and diffusion contributions that explains the CV shape and peak separation for CNS and CNTY electrodes, providing insight on the impact of scan rate and surface structure size. Thus, this study provides key understanding of thin layer and diffusion processes at different surface structures and will enable rational design of electrodes with thin layer electrochemistry.
Collapse
Affiliation(s)
- Qun Cao
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Zijun Shao
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Dale K. Hensley
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nickolay V. Lavrik
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
- Corresponding Author: B. Jill Venton,
| |
Collapse
|
18
|
Purcell EK, Becker MF, Guo Y, Hara SA, Ludwig KA, McKinney CJ, Monroe EM, Rechenberg R, Rusinek CA, Saxena A, Siegenthaler JR, Sortwell CE, Thompson CH, Trevathan JK, Witt S, Li W. Next-Generation Diamond Electrodes for Neurochemical Sensing: Challenges and Opportunities. MICROMACHINES 2021; 12:128. [PMID: 33530395 PMCID: PMC7911340 DOI: 10.3390/mi12020128] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Carbon-based electrodes combined with fast-scan cyclic voltammetry (FSCV) enable neurochemical sensing with high spatiotemporal resolution and sensitivity. While their attractive electrochemical and conductive properties have established a long history of use in the detection of neurotransmitters both in vitro and in vivo, carbon fiber microelectrodes (CFMEs) also have limitations in their fabrication, flexibility, and chronic stability. Diamond is a form of carbon with a more rigid bonding structure (sp3-hybridized) which can become conductive when boron-doped. Boron-doped diamond (BDD) is characterized by an extremely wide potential window, low background current, and good biocompatibility. Additionally, methods for processing and patterning diamond allow for high-throughput batch fabrication and customization of electrode arrays with unique architectures. While tradeoffs in sensitivity can undermine the advantages of BDD as a neurochemical sensor, there are numerous untapped opportunities to further improve performance, including anodic pretreatment, or optimization of the FSCV waveform, instrumentation, sp2/sp3 character, doping, surface characteristics, and signal processing. Here, we review the state-of-the-art in diamond electrodes for neurochemical sensing and discuss potential opportunities for future advancements of the technology. We highlight our team's progress with the development of an all-diamond fiber ultramicroelectrode as a novel approach to advance the performance and applications of diamond-based neurochemical sensors.
Collapse
Affiliation(s)
- Erin K. Purcell
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Michael F. Becker
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Yue Guo
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
| | - Seth A. Hara
- Division of Engineering, Mayo Clinic, Rochester, MN 55905, USA;
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.A.L.); (J.K.T.)
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Collin J. McKinney
- Department of Chemistry, Electronics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Elizabeth M. Monroe
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA; (E.M.M.); (C.A.R.)
| | - Robert Rechenberg
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Cory A. Rusinek
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA; (E.M.M.); (C.A.R.)
| | - Akash Saxena
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - James R. Siegenthaler
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Caryl E. Sortwell
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Cort H. Thompson
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - James K. Trevathan
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.A.L.); (J.K.T.)
- Grainger Institute for Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Suzanne Witt
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Wen Li
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
19
|
Wonnenberg P, Cho W, Liu F, Asrat T, Zestos AG. Polymer Modified Carbon Fiber Microelectrodes for Precision Neurotransmitter Metabolite Measurements. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2020; 167:167507. [PMID: 33927450 PMCID: PMC8081299 DOI: 10.1149/1945-7111/abcb6d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Carbon fiber-microelectrodes (CFMEs) are considered to be one of the standard electrodes for neurotransmitter detection such as dopamine (DA). DA is physiologically important for many pharmacological and behavioral states, but is readily metabolized on a fast, subsecond timescale. Recently, DA metabolites such as 3-methoxytyramine (3-MT) and 3,4-dihydroxyphenylacetaldehyde (DOPAL) were found to be involved in physiological functions, such as movement control and progressive neuro degeneration. However, there is no current assay to detect and differentiate them from DA. In this study, we demonstrate the co-detection of similarly structured neurochemicals such as DA, 3-MT, and DOPAL. We accomplished this through electrodepositing CFMEs with polyethyleneimine (PEI) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) polymers. This endowed the bare unmodified CFMEs with surface charge, physical, and chemical differences, which resulted in the improved sensitivity and selectivity of neurotransmitter detection. The differentiation and detection of 3-MT, DOPAL, and DA will potentially help further understand the important physiological roles that these dopaminergic metabolites play in vivo.
Collapse
Affiliation(s)
- Pauline Wonnenberg
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
| | - Whirang Cho
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
| | - Favian Liu
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
| | - Thomas Asrat
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
| | - Alexander G. Zestos
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
- Center for Behavioral Neuroscience, American University, Washington, D.C. 20016, United States of America
| |
Collapse
|
20
|
Cho W, Liu F, Hendrix A, McCray B, Asrat T, Connaughton V, Zestos AG. Timed Electrodeposition of PEDOT:Nafion onto Carbon Fiber-Microelectrodes Enhances Dopamine Detection in Zebrafish Retina. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2020; 167:115501. [PMID: 33927449 PMCID: PMC8081298 DOI: 10.1149/1945-7111/aba33d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Carbon fiber-microelectrodes (CFMEs) are one of the standards for the detection of neurotransmitters such as dopamine (DA). In this study, we demonstrate that CFMEs electrodeposited with poly (3,4-ethylenedioxythiophene) (PEDOT) in the presence of Nafion exhibit enhanced sensitivity for DA detection. Scanning electron microscopy (SEM) revealed the smooth outer surface morphologies of polymer coatings, which filled in the ridges and grooves of the bare unmodified carbon electrode and energy-dispersive X-ray spectroscopy (EDX) confirmed PEDOT:Nafion incorporation. PEDOT:Nafion coated CMFEs exhibited a statistically enhanced two-fold increase in DA sensitivity compared to unmodified microelectrodes, with stability and integrity of the coated microelectrodes maintained for at least 4 h. A scan rate test revealed a linear relationship with peak DA oxidative current (5 μM), indicating adsorption control of DA to the surface of the PEDOT:Nafion electrode. As proof of principle, PEDOT:Nafion coated electrodes were used to detect potassium chloride (KCl)-induced DA release in zebrafish (Danio rerio) retinal tissue ex vivo, thus illustrating their applicability as biosensors.
Collapse
Affiliation(s)
- Whirang Cho
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
| | - Favian Liu
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
| | - Aaron Hendrix
- Department of Biology, American University, Washington, D.C. 20016, United States of America
| | - Brazil McCray
- Department of Biology, American University, Washington, D.C. 20016, United States of America
| | - Thomas Asrat
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
| | - Victoria Connaughton
- Department of Biology, American University, Washington, D.C. 20016, United States of America
- Center for Behavioral Neuroscience, American University, Washington, D.C. 20016, United States of America
| | - Alexander G. Zestos
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
- Center for Behavioral Neuroscience, American University, Washington, D.C. 20016, United States of America
| |
Collapse
|
21
|
Siegenthaler JR, Gushiken BC, Hill DF, Cowen SL, Heien ML. Moving Fast-Scan Cyclic Voltammetry toward FDA Compliance with Capacitive Decoupling Patient Protection. ACS Sens 2020; 5:1890-1899. [PMID: 32580544 DOI: 10.1021/acssensors.9b02249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Carbon-fiber microelectrodes allow for high spatial and temporal measurements of electroactive neurotransmitter measurements in vivo using fast-scan cyclic voltammetry (FSCV). However, common instrumentation for such measurements systems lack patient safety precautions. To add safety precautions as well as to overcome chemical and electrical noise, a two-electrode FSCV headstage was modified to introduce an active bandpass filter on the electrode side of the measurement amplifier. This modification reduced the measured noise and ac-coupled the voltammetric measurement and moved it from a classical direct current response measurement. ac-coupling not only reduces the measured noise, but also moves FSCV toward compliance with IEC-60601-1, enabling future human trials. Here, we develop a novel ac-coupled voltammetric measurement method of electroactive neurotransmitters. Our method allows for the modeling of a system to then calculate a waveform to compensate for added impedance and capacitance for the system. We describe how first by measuring the frequency response of the system and modeling the analogue response as a digital filter we can then calculate a predicted waveform. The predicted waveform, when applied to the bandpass filter, is modulated to create a desired voltage sweep at the electrode interface. Further, we describe how this modified FSCV waveform is stable, allowing for the measurement of electroactive neurotransmitters. We later describe a 32.7% sensitivity enhancement for dopamine with this new measurement as well as maintaining a calibration curve for dopamine, 3,4-dihydroxyphenylacetic acid, ascorbic acid, and serotonin in vitro. We then validate dopamine in vivo with stimulated release. Our developed measurement method overcame the added capacitance that would traditionally make a voltammetric measurement impossible, and it has wider applications in electrode sensor development, allowing for measurement with capacitive systems, which previously would not have been possible.
Collapse
Affiliation(s)
- James R. Siegenthaler
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona, United States
| | - Breanna C. Gushiken
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona, United States
| | - Daniel F. Hill
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
| | - Stephen L. Cowen
- Department of Psychology, University of Arizona, Tucson, Arizona, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona, United States
| | - Michael L. Heien
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|
22
|
Chang Y, Venton BJ. Optimization of graphene oxide-modified carbon-fiber microelectrode for dopamine detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2893-2902. [PMID: 32617123 PMCID: PMC7331934 DOI: 10.1039/d0ay00310g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Graphene oxide (GO) is a carbon-based material that is easily obtained from graphite or graphite oxide. GO has been used broadly for electrochemistry applications and our hypothesis is that GO coating a carbon-fiber microelectrode (CFME) will increase the sensitivity for dopamine by providing more adsorption sites due to the enhancement of oxygen functional groups. Here, we compared drop casting, dip coating, and electrodeposition methods to directly coat commercial GO on CFME surfaces. Dip coating did not result in much GO coating and drop casting resulted in large agglomerations that produced noisy signals and slow rise times. Electrodeposition method with cyclic voltammetry increase the current for dopamine and this method was the most reproducible and had the least noise compared to the other two coating methods. The optimized method used a triangular waveform scanned from -1.2 V to 1.5 V at 100 mV/s for 5 cycles in 0.2 mg/mL GO in water. With fast-scan cyclic voltammetry (FSCV), the optimized GO/CFME enhanced the dopamine oxidation peak two-fold. The sensitivity of the modified electrode is 41±2 nA/μM with a linear range from 25 nM to 1 μM, and a limit of detection of 11 nM. The optimized electrodes were used to detect electrically-stimulated dopamine in brain slices to demonstrate their performance in tissue. Thus, GO can be used to enhance the sensitivity of electrodes for dopamine and improve biological measurements.
Collapse
Affiliation(s)
- Yuanyu Chang
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| |
Collapse
|
23
|
Wonnenberg PM, Zestos AG. Polymer-Modified Carbon Fiber Microelectrodes for Neurochemical Detection of Dopamine and Metabolites. ECS TRANSACTIONS 2020; 97:901-927. [PMID: 33953827 PMCID: PMC8096166 DOI: 10.1149/09707.0901ecst] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Carbon-fiber microelectrodes (CFMEs) are considered to be the standard electrodes for neurotransmitter detection. Fast-scan cyclic voltammetry (FSCV), an electro analytical method, has the ability to follow neurochemical dynamics in real time using CFMEs. Improvements in neurochemical detection with CFMEs were previously made through the coating of polymers onto the surface of the carbon-fiber. Polymers such as PEI, PEDOT, and Nafion were electrodeposited onto the surface of the electrodes to enhance neurochemical detection. This work demonstrates applications for enhancements in co-detection of similarly structured neurochemicals such as dopamine, DOPAL, 3-methoxytyramine, DOPAC, and other neurotransmitters. Manipulating the charge and surface structure of the carbon electrode allows for the improvement of sensitivity and selectivity of neurotransmitter detection. The analytes are detected and differentiated by the shape and the peak positions of their respective cyclic voltammograms.
Collapse
Affiliation(s)
- P M Wonnenberg
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, District of Columbia 20016, USA
| | - A G Zestos
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, District of Columbia 20016, USA
| |
Collapse
|
24
|
Mendoza A, Asrat T, Liu F, Wonnenberg P, Zestos AG. Carbon Nanotube Yarn Microelectrodes Promote High Temporal Measurements of Serotonin Using Fast Scan Cyclic Voltammetry. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1173. [PMID: 32093345 PMCID: PMC7070315 DOI: 10.3390/s20041173] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
Carbon fiber-microelectrodes (CFMEs) have been the standard for neurotransmitter detection for over forty years. However, in recent years, there have been many advances of utilizing alternative nanomaterials for neurotransmitter detection with fast scan cyclic voltammetry (FSCV). Recently, carbon nanotube (CNT) yarns have been developed as the working electrode materials for neurotransmitter sensing capabilities with fast scan cyclic voltammetry. Carbon nanotubes are ideal for neurotransmitter detection because they have higher aspect ratios enabling monoamine adsorption and lower limits of detection, faster electron transfer kinetics, and a resistance to surface fouling. Several methods to modify CFMEs with CNTs have resulted in increases in sensitivity, but have also increased noise and led to irreproducible results. In this study, we utilize commercially available CNT-yarns to make microelectrodes as enhanced neurotransmitter sensors for neurotransmitters such as serotonin. CNT-yarn microelectrodes have significantly higher sensitivities (peak oxidative currents of the cyclic voltammograms) than CFMEs and faster electron transfer kinetics as measured by peak separation (ΔEP) values. Moreover, both serotonin and dopamine are adsorption controlled to the surface of the electrode as measured by scan rate and concentration experiments. CNT yarn microelectrodes also resisted surface fouling of serotonin onto the surface of the electrode over thirty minutes and had a wave application frequency independent response to sensitivity at the surface of the electrode.
Collapse
Affiliation(s)
| | | | | | | | - Alexander G. Zestos
- Department of Chemistry and Center for Behavioral Neuroscience, American University, Washington, DC 20016, USA; (A.M.); (T.A.); (F.L.); (P.W.)
| |
Collapse
|
25
|
Abstract
Fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes (CFMEs) is a versatile electrochemical technique to probe neurochemical dynamics in vivo. Progress in FSCV methodology continues to address analytical challenges arising from biological needs to measure low concentrations of neurotransmitters at specific sites. This review summarizes recent advances in FSCV method development in three areas: (1) waveform optimization, (2) electrode development, and (3) data analysis. First, FSCV waveform parameters such as holding potential, switching potential, and scan rate have been optimized to monitor new neurochemicals. The new waveform shapes introduce better selectivity toward specific molecules such as serotonin, histamine, hydrogen peroxide, octopamine, adenosine, guanosine, and neuropeptides. Second, CFMEs have been modified with nanomaterials such as carbon nanotubes or replaced with conducting polymers to enhance sensitivity, selectivity, and antifouling properties. Different geometries can be obtained by 3D-printing, manufacturing arrays, or fabricating carbon nanopipettes. Third, data analysis is important to sort through the thousands of CVs obtained. Recent developments in data analysis include preprocessing by digital filtering, principal components analysis for distinguishing analytes, and developing automated algorithms to detect peaks. Future challenges include multisite measurements, machine learning, and integration with other techniques. Advances in FSCV will accelerate research in neurochemistry to answer new biological questions about dynamics of signaling in the brain.
Collapse
Affiliation(s)
- Pumidech Puthongkham
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
26
|
Kamal Eddin FB, Wing Fen Y. Recent Advances in Electrochemical and Optical Sensing of Dopamine. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1039. [PMID: 32075167 PMCID: PMC7071053 DOI: 10.3390/s20041039] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Nowadays, several neurological disorders and neurocrine tumours are associated with dopamine (DA) concentrations in various biological fluids. Highly accurate and ultrasensitive detection of DA levels in different biological samples in real-time can change and improve the quality of a patient's life in addition to reducing the treatment cost. Therefore, the design and development of diagnostic tool for in vivo and in vitro monitoring of DA is of considerable clinical and pharmacological importance. In recent decades, a large number of techniques have been established for DA detection, including chromatography coupled to mass spectrometry, spectroscopic approaches, and electrochemical (EC) methods. These methods are effective, but most of them still have some drawbacks such as consuming time, effort, and money. Added to that, sometimes they need complex procedures to obtain good sensitivity and suffer from low selectivity due to interference from other biological species such as uric acid (UA) and ascorbic acid (AA). Advanced materials can offer remarkable opportunities to overcome drawbacks in conventional DA sensors. This review aims to explain challenges related to DA detection using different techniques, and to summarize and highlight recent advancements in materials used and approaches applied for several sensor surface modification for the monitoring of DA. Also, it focuses on the analytical features of the EC and optical-based sensing techniques available.
Collapse
Affiliation(s)
- Faten Bashar Kamal Eddin
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Yap Wing Fen
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
27
|
Ratnam KV, Manjunatha H, Janardan S, Babu Naidu KC, Ramesh S. Nonenzymatic electrochemical sensor based on metal oxide, MO (M= Cu, Ni, Zn, and Fe) nanomaterials for neurotransmitters: An abridged review. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
28
|
Sung C, Jeon W, Nam KS, Kim Y, Butt H, Park S. Multimaterial and multifunctional neural interfaces: from surface-type and implantable electrodes to fiber-based devices. J Mater Chem B 2020; 8:6624-6666. [DOI: 10.1039/d0tb00872a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Development of neural interfaces from surface electrodes to fibers with various type, functionality, and materials.
Collapse
Affiliation(s)
- Changhoon Sung
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Woojin Jeon
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Kum Seok Nam
- School of Electrical Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Yeji Kim
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Haider Butt
- Department of Mechanical Engineering
- Khalifa University
- Abu Dhabi 127788
- United Arab Emirates
| | - Seongjun Park
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST)
| |
Collapse
|
29
|
Cao Q, Hensley DK, Lavrik NV, Venton BJ. Carbon nanospikes have better electrochemical properties than carbon nanotubes due to greater surface roughness and defect sites. CARBON 2019; 155:250-257. [PMID: 31588146 PMCID: PMC6777722 DOI: 10.1016/j.carbon.2019.08.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Carbon nanomaterials are used to improve electrodes for neurotransmitter detection, but what properties are important for maximizing those effects? In this work, we compare a newer form of graphene, carbon nanospikes (CNSs), with carbon nanotubes (CNTs) grown on wires and carbon fibers (CFs). CNS electrodes have a short, dense, defect-filled surface that produces remarkable electrochemical properties, much better than CNTs or CFs. The CNS surface roughness is 5.5 times greater than glassy carbon, while CNTs enhance roughness only 1.8-fold. D/G ratios are higher for CNS electrodes than CNT electrodes, an indication of more defect sites. For cyclic voltammetry of dopamine and ferricyanide, CNSs have both higher currents and smaller ΔEp values than CNTs and CFs. CNS electrodes also have a very low resistance to charge transfer. With fast-scan cyclic voltammetry (FSCV), CNS electrodes have enhanced current density for dopamine and cationic neurotransmitters due to increased adsorption to edge plane sites. This study establishes that not all carbon nanomaterials are equally advantageous for dopamine electrochemistry, but that short, dense nanomaterials that add defect sites provide improved current and electron transfer. CNSs are simple to mass fabricate on a variety of substrates and thus could be a favorable material for neurotransmitter sensing.
Collapse
Affiliation(s)
- Qun Cao
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901
| | - Dale K. Hensley
- Center for Nanophase Material Science, Oak Ridge National Lab, Oak Ridge, TN 37831
| | - Nickolay V. Lavrik
- Center for Nanophase Material Science, Oak Ridge National Lab, Oak Ridge, TN 37831
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901
| |
Collapse
|
30
|
Puthongkham P, Venton BJ. Nanodiamond Coating Improves the Sensitivity and Antifouling Properties of Carbon Fiber Microelectrodes. ACS Sens 2019; 4:2403-2411. [PMID: 31387349 PMCID: PMC6776076 DOI: 10.1021/acssensors.9b00994] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanodiamonds (NDs) are carbon nanomaterials with a core diamond crystalline structure and crystal defects, such as graphitic carbon and heteroatoms, on their surface. For electrochemistry, NDs are promising to increase active sites and decrease fouling, but NDs have not been studied for neurotransmitter electrochemistry. Here, we optimized ND coatings on microelectrodes and found that ND increases the sensitivity for neurotransmitters with fast-scan cyclic voltammetry detection and decreases electrochemical and biofouling. Different sizes and functionalizations of NDs were tested, and ND suspensions were drop-casted onto carbon-fiber microelectrodes (CFMEs). The 5 nm ND-H and 5 nm ND-COOH formed thick coatings, while the 15 and 60 nm ND-COOH formed more sparse coatings. With electrochemical impedance spectroscopy, 5 nm ND-H and 5 nm ND-COOH had high charge-transfer resistance, while 15 and 60 nm ND-COOH had low charge-transfer resistance. ND-COOH (15 nm) was optimal, with the best electrocatalytic properties and current for dopamine. Sensitivity was enhanced 2.1 ± 0.2 times and the limit of detection for dopamine improved to 3 ± 1 nM. ND coating increased current for other cations such as serotonin, norepinephrine, and epinephrine, but not for the anion ascorbic acid. Moreover, NDs decreased electrochemical fouling from serotonin and 5-hydroxyindoleacetic acid, and they also decreased biofouling in brain slice tissue by 50%. The current at biofouled ND-coated electrodes is similar to the signal of pristine, unfouled CFMEs. The carboxylated ND-modified CFMEs are beneficial for neurotransmitter detection because of easy fabrication, improved limit of detection, and antifouling properties.
Collapse
Affiliation(s)
- Pumidech Puthongkham
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| |
Collapse
|
31
|
Mohanaraj S, Wonnenberg P, Cohen B, Zhao H, Hartings MR, Zou S, Fox DM, Zestos AG. Gold Nanoparticle Modified Carbon Fiber Microelectrodes for Enhanced Neurochemical Detection. J Vis Exp 2019:10.3791/59552. [PMID: 31132067 PMCID: PMC8266205 DOI: 10.3791/59552] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
For over 30 years, carbon-fiber microelectrodes (CFMEs) have been the standard for neurotransmitter detection. Generally, carbon fibers are aspirated into glass capillaries, pulled to a fine taper, and then sealed using an epoxy to create electrode materials that are used for fast scan cyclic voltammetry testing. The use of bare CFMEs has several limitations, though. First and foremost, the carbon fiber contains mostly basal plane carbon, which has a relatively low surface area and yields lower sensitivities than other nanomaterials. Furthermore, the graphitic carbon is limited by its temporal resolution, and its relatively low conductivity. Lastly, neurochemicals and macromolecules have been known to foul at the surface of carbon electrodes where they form non-conductive polymers that block further neurotransmitter adsorption. For this study, we modify CFMEs with gold nanoparticles to enhance neurochemical testing with fast scan cyclic voltammetry. Au3+ was electrodeposited or dipcoated from a colloidal solution onto the surface of CFMEs. Since gold is a stable and relatively inert metal, it is an ideal electrode material for analytical measurements of neurochemicals. Gold nanoparticle modified (AuNP-CFMEs) had a stability to dopamine response for over 4 h. Moreover, AuNP-CFMEs exhibit an increased sensitivity (higher peak oxidative current of the cyclic voltammograms) and faster electron transfer kinetics (lower ΔEP or peak separation) than bare unmodified CFMEs. The development of AuNP-CFMEs provides the creation of novel electrochemical sensors for detecting fast changes in dopamine concentration and other neurochemicals at lower limits of detection. This work has vast applications for the enhancement of neurochemical measurements. The generation of gold nanoparticle modified CFMEs will be vitally important for the development of novel electrode sensors to detect neurotransmitters in vivo in rodent and other models to study neurochemical effects of drug abuse, depression, stroke, ischemia, and other behavioral and disease states.
Collapse
Affiliation(s)
| | | | | | - He Zhao
- Department of Chemistry, American University
| | | | | | | | - Alexander G Zestos
- Department of Chemistry, American University; Center for Behavioral Neuroscience, American University;
| |
Collapse
|
32
|
Antifouling characteristics of a carbon electrode surface hydrogenated by n-butylsilane reduction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Yang C, Hu K, Wang D, Zubi Y, Lee ST, Puthongkham P, Mirkin MV, Venton BJ. Cavity Carbon-Nanopipette Electrodes for Dopamine Detection. Anal Chem 2019; 91:4618-4624. [PMID: 30810304 PMCID: PMC6526101 DOI: 10.1021/acs.analchem.8b05885] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Microelectrodes are typically used for neurotransmitter detection, but nanoelectrodes are not because there is a trade-off between spatial resolution and sensitivity that is dependent on surface area. Cavity carbon-nanopipette electrodes (CNPEs), with tip diameters of a few hundred nanometers, have been developed for nanoscale electrochemistry. Here, we characterize the electrochemical performance of CNPEs with fast-scan cyclic voltammetry (FSCV) for the first time. Dopamine detection using cavity CNPEs, with a depth equivalent to a few radii, is compared with that using open-tube CNPEs, an essentially infinite geometry. Open-tube CNPEs have very slow temporal responses that change over time as the liquid rises in the CNPE. However, a cavity CNPE has a fast temporal response to a bolus of dopamine that is not different from that of a traditional carbon-fiber microelectrode. Cavity CNPEs, with tip diameters of 200-400 nm, have high currents because the small cavity traps and increases the local dopamine concentration. The trapping also leads to an FSCV frequency-independent response and the appearance of cyclization peaks that are normally observed only with large concentrations of dopamine. CNPEs have high dopamine selectivity over ascorbic acid (AA) because of the repulsion of AA by the negative electric field at the holding potential and the irreversible redox reaction. In mouse-brain slices, cavity CNPEs detected exogenously applied dopamine, showing they do not clog in tissue. Thus, cavity CNPEs are promising neurochemical sensors that provide spatial resolution on the scale of hundreds of nanometers, which is useful for small model organisms or for locations near specific cells.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904
| | - Keke Hu
- Department of Chemistry and Biochemistry, Queens College–CUNY, Flushing, New York 11367
- The Graduate Center of the City University of New York, New York, New York 10016
| | - Dengchao Wang
- Department of Chemistry and Biochemistry, Queens College–CUNY, Flushing, New York 11367
| | - Yasmine Zubi
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904
| | - Scott T. Lee
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904
| | | | - Michael V. Mirkin
- Department of Chemistry and Biochemistry, Queens College–CUNY, Flushing, New York 11367
- The Graduate Center of the City University of New York, New York, New York 10016
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
34
|
Raju D, Mendoza A, Wonnenberg P, Mohanaraj S, Sarbanes M, Truong C, Zestos AG. Polymer Modified Carbon Fiber-Microelectrodes and Waveform Modifications Enhance Neurotransmitter Metabolite Detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:1620-1630. [PMID: 34079589 PMCID: PMC8168831 DOI: 10.1039/c8ay02737d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Carbon-fiber microelectrodes (CFMEs) have been used for several years for the detection of neurotransmitters such as dopamine. Dopamine is a fundamentally important neurotransmitter and is also metabolized at a subsecond timescale. Recently, several metabolites of dopamine have been shown to be physiologically important such as 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA). Many of these neurotransmitter metabolites are currently only detected with microdialysis coupled with liquid chromatography with relatively low temporal and spatial resolution. Current electrochemical methods such as the dopamine waveform (scanning from -0.4 to 1.3 V at 400 V/sec) are utilized to electrostatically repel anions such as DOPAC and promote dopamine adsorption to the surface of the electrode. Moreover, polymer coatings such as Nafion have been shown to electrostatically repel anions such as 5-hydroxyindoleacetic acid (5-HIAA). In this study, we develop novel polymer and waveform modifications for enhanced DOPAC detection. Applying the DOPAC waveform (scanning from 0 to 1.3 V at 400 V/sec) enhances DOPAC detection significantly because it does not include the negative holding potential of the dopamine waveform. Moreover, positively charged cationic polymers such as polyethyleneimine (PEI) allow for the preconcentration of DOPAC to the surface of the carbon fiber through an electrostatic attraction. The limit of detection for DOPAC for PEI coated CFMEs with the DOPAC waveform applied is 58.2 ± 2 nM as opposed to 291 ± 10 nM for unmodified electrodes applying the dopamine waveform (n = 4). This work offers promise for the development of novel electrode materials and waveforms for the specific detection of several important biomolecules such as dopamine metabolite neurotransmitters.
Collapse
Affiliation(s)
- Dilpreet Raju
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016
| | - Alexander Mendoza
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016
| | - Pauline Wonnenberg
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016
| | - Sanuja Mohanaraj
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016
| | - Mulugeta Sarbanes
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016
| | - Carly Truong
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016
| | - Alexander G Zestos
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016
| |
Collapse
|
35
|
Norouzi P, Larijani B, Alizadeh T, Pourbasheer E, Aghazadeh M, Ganjali MR. Application of Advanced Electrochemical Methods with Nanomaterial-based Electrodes as Powerful Tools for Trace Analysis of Drugs and Toxic Compounds. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180316170607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background:
The new progress in electronic devices has provided a great opportunity for
advancing electrochemical instruments by which we can more easily solve many problems of interest
for trace analysis of compounds, with a high degree of accuracy, precision, sensitivity, and selectivity.
On the other hand, in recent years, there is a significant growth in the application of nanomaterials for
the construction of nanosensors due to enhanced chemical and physical properties arising from discrete
modified nanomaterial-based electrodes or microelectrodes.
Objective:
Combination of the advanced electrochemical system and nanosensors make these devices
very suitable for the high-speed analysis, as motioning and portable devices. This review will discuss
the recent developments and achievements that have been reported for trace measurement of drugs and
toxic compounds for environment, food and health application.
Collapse
Affiliation(s)
- Parviz Norouzi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Bagher Larijani
- Endocrinology & Metabolism Research Center, Endocrinology & Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Taher Alizadeh
- Department of Analytical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Eslam Pourbasheer
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| | - Mostafa Aghazadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
36
|
Cao Q, Puthongkham P, Venton BJ. Review: New insights into optimizing chemical and 3D surface structures of carbon electrodes for neurotransmitter detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:247-261. [PMID: 30740148 PMCID: PMC6366673 DOI: 10.1039/c8ay02472c] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The carbon-fiber microelectrode has been used for decades as a neurotransmitter sensor. Recently, new strategies have been developed for making carbon electrodes, including using carbon nanomaterials or pyrolyzing photoresist etched by nanolithography or 3D printing. This review summarizes how chemical and 3D surface structures of new carbon electrodes are optimized for neurotransmitter detection. There are effects of the chemical structure that are advantageous and nanomaterials are used ranging from carbon nanotube (CNT) to graphene to nanodiamond. Functionalization of these materials promotes surface oxide groups that adsorb dopamine and dopants introduce defect sites good for electron transfer. Polymer coatings such as poly(3,4-ethylenedioxythiophene) (PEDOT) or Nafion also enhance the selectivity, particularly for dopamine over ascorbic acid. Changing the 3D surface structure of an electrode increases current by adding more surface area. If the surface structure has roughness or pores on the micron scale, the electrode also acts as a thin layer cell, momentarily trapping the analyte for redox cycling. Vertically-aligned CNTs as well as lithographically-made or 3D printed pillar arrays act as thin layer cells, producing more reversible cyclic voltammograms. A better understanding of how chemical and surface structure affects electrochemistry enables rational design of electrodes. New carbon electrodes are being tested in vivo and strategies to reduce biofouling are being developed. Future studies should test the robustness for long term implantation, explore electrochemical properties of neurotransmitters beyond dopamine, and combine optimized chemical and physical structures for real-time monitoring of neurotransmitters.
Collapse
Affiliation(s)
| | | | - B. Jill Venton
- Dept. of Chemistry, University of Virginia, Charlottesville, VA 22901
| |
Collapse
|
37
|
Nanomaterial-based electrochemical sensors for the detection of neurochemicals in biological matrices. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.08.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Aysha Shanta S, Shamsir S, Song Y, Dale Hensley K, Adam Rondinone J, Syed Islam K, McFarlane AN. Carbon Nanospikes on Silicon Wafer for Amperometric Biosensing Applications. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:4281-4284. [PMID: 30441300 DOI: 10.1109/embc.2018.8513401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Carbon electrodes have gained wide popularity in biosensing applications in recent years. In this paper, we discuss carbon nanospikes fabricated using plasma enhanced chemical vapor deposition on a silicon wafer. Carbon nanospikes are preferred over other carbon nanostructures due to their batch reproducibility. Scanning electron microscope and Raman spectroscopy demonstrate spike-like and defectrich structure of the electrodes. Hydrogen peroxide has been chosen as the sensing analyte since it plays a vital role in various neurological disease states and is a byproduct of various electrochemical reactions.
Collapse
|
39
|
Carbon Nanoelectrodes for the Electrochemical Detection of Neurotransmitters. INTERNATIONAL JOURNAL OF ELECTROCHEMISTRY 2018; 2018. [PMID: 34306762 PMCID: PMC8301601 DOI: 10.1155/2018/3679627] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Carbon-based electrodes have been developed for the detection of neurotransmitters over the past 30 years using voltammetry and amperometry. The traditional electrode for neurotransmitter detection is the carbon fiber microelectrode (CFME). The carbon-based electrode is suitable for in vivo neurotransmitter detection due to the fact that it is biocompatible and relatively small in surface area. The advent of nanoscale electrodes is in high demand due to smaller surface areas required to target specific brain regions that are also minimally invasive and cause relatively low tissue damage when implanted into living organisms. Carbon nanotubes (CNTs), carbon nanofibers, carbon nanospikes, and carbon nanopetals among others have all been utilized for this purpose. Novel electrode materials have also required novel insulations such as glass, epoxy, and polyimide coated fused silica capillaries for their construction and usage. Recent research developments have yielded a wide array of carbon nanoelectrodes with superior properties and performances in comparison to traditional electrode materials. These electrodes have thoroughly enhanced neurotransmitter detection allowing for the sensing of biological compounds at lower limits of detection, fast temporal resolution, and without surface fouling. This will allow for greater understanding of several neurological disease states based on the detection of neurotransmitters.
Collapse
|
40
|
Zestos AG, Venton BJ. Communication-Carbon Nanotube Fiber Microelectrodes for High Temporal Measurements of Dopamine. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2018; 165:G3071-G3073. [PMID: 30197450 PMCID: PMC6121781 DOI: 10.1149/2.0111812jes] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Carbon nanotube (CNT) yarn and fiber-microelectrodes were developed for neurotransmitter detection using fast scan cyclic voltammetry (FSCV). Fibers were made by suspending CNTs in acid/surfactant and extruding into acetone/polyethyleneimine (PEI) and compared to a CNT yarn. They were FSCV frequency independent for dopamine up to 100 Hz. With faster frequencies, up to 500 Hz, high currents are maintained, which allows a 2 ms sampling rate for FSCV, compared to 100 ms. CNT fibers have rough surfaces which trap dopamine and dopamine-o-quinone (DOQ), creating more reversible CVs. CNT yarns and fibers are beneficial for high sensitivity, rapid measurements of neurotransmitters.
Collapse
Affiliation(s)
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904,
| |
Collapse
|
41
|
Abstract
Neurotransmitters are chemicals that act as messengers in the synaptic transmission process. They are essential for human health and any imbalance in their activities can cause serious mental disorders such as Parkinson’s disease, schizophrenia, and Alzheimer’s disease. Hence, monitoring the concentrations of various neurotransmitters is of great importance in studying and diagnosing such mental illnesses. Recently, many researchers have explored the use of unique materials for developing biosensors for both in vivo and ex vivo neurotransmitter detection. A combination of nanomaterials, polymers, and biomolecules were incorporated to implement such sensor devices. For in vivo detection, electrochemical sensing has been commonly applied, with fast-scan cyclic voltammetry being the most promising technique to date, due to the advantages such as easy miniaturization, simple device architecture, and high sensitivity. However, the main challenges for in vivo electrochemical neurotransmitter sensors are limited target selectivity, large background signal and noise, and device fouling and degradation over time. Therefore, achieving simultaneous detection of multiple neurotransmitters in real time with long-term stability remains the focus of research. The purpose of this review paper is to summarize the recently developed sensing techniques with the focus on neurotransmitters as the target analyte, and to discuss the outlook of simultaneous detection of multiple neurotransmitter species. This paper is organized as follows: firstly, the common materials used for developing neurotransmitter sensors are discussed. Secondly, several sensor surface modification approaches to enhance sensing performance are reviewed. Finally, we discuss recent developments in the simultaneous detection capability of multiple neurotransmitters.
Collapse
|
42
|
Shanta AS, Al Mamun KA, Hensley D, Lavrik NV, Islam SK, McFarlane N. Carbon nanospikes for biosensing applications. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:193-196. [PMID: 29059843 DOI: 10.1109/embc.2017.8036795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we discuss the structure and characteristics of carbon nanospikes. We also compare carbon nanospikes with previously grown carbon nanostructures known as vertically aligned carbon nanofibers (VACNF). Plasma enhanced chemical vapor deposition (PECVD) is used to fabricate both the nanospikes and VACNF. However, carbon nanospikes do not require a catalyst for the growth process, whereas VACNF requires a catalyst in the growth process. This facilitates batch fabrication with greater reproducibility. Scanning electron microscope images and Raman spectroscopy show that carbon nanospikes fabricated on silver wires will show superior performance.
Collapse
|
43
|
Yang C, Trikantzopoulos E, Jacobs CB, Venton BJ. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties. Anal Chim Acta 2017; 965:1-8. [PMID: 28366206 DOI: 10.1016/j.aca.2017.01.039] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 02/01/2023]
Abstract
Fibers made of CNTs are attractive microelectrode sensors because they can be directly fabricated into microelectrodes. Different protocols for making CNT fibers have been developed, but differences in surface structure and therefore electrochemical properties that result have not been studied. In this study, we correlated the surface and electrochemical properties for neurochemical detection at 3 types of materials: CNT fibers produced by wet spinning with (1) polyethylenimine (PEI/CNT) or (2) chlorosulfonic acid (CA/CNT), and (3) CNT yarns made by solid-based CNT drawing. CNT yarns had well-aligned, high purity CNTs, abundant oxygen functional groups, and moderate surface roughness which led to the highest dopamine current density (290 ± 65 pA/cm2) and fastest electron transfer kinetics. The crevices of the CNT yarn and PEI/CNT fiber microelectrodes allow dopamine to be momentarily trapped during fast-scan cyclic voltammetry detection, leading to thin-layer cell conditions and a response that was independent of applied waveform frequency. The larger crevices on the PEI/CNT fibers led to a slower time response, showing too much roughness is detrimental to fast detection. CA/CNT fibers have a smoother surface and lower currents, but their negative surface charge results in high selectivity for dopamine over uric acid or ascorbic acid. Overall, small crevices, high conductivity, and abundant oxygen groups led to high sensitivity for amine neurotransmitters, such as dopamine and serotonin. Thus, different surfaces of CNT fibers result in altered electrochemical properties and could be used in the future to predict and control electrochemical performance.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, United States
| | | | - Christopher B Jacobs
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, United States
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, United States.
| |
Collapse
|
44
|
Li H, Shen J, Cui R, Sun C, Zhao Y, Wu X, Li N, Tang B. A highly selective and sensitive fluorescent nanosensor for dopamine based on formate bridged Tb(iii) complex and silver nanoparticles. Analyst 2017; 142:4240-4246. [DOI: 10.1039/c7an00961e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The proposed fluorescent nanosensor can distinguish DA from EP.
Collapse
Affiliation(s)
- Huihui Li
- School of Chemistry and Chemical Engineering
- Shandong University
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan 250100
| | - Jin Shen
- School of Chemistry and Chemical Engineering
- Shandong University
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan 250100
| | - Rongwei Cui
- School of Chemistry and Chemical Engineering
- Shandong University
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan 250100
| | - Chongmei Sun
- School of Chemistry and Chemical Engineering
- Shandong University
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan 250100
| | - Yanyan Zhao
- School of Chemistry and Chemical Engineering
- Shandong University
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan 250100
| | - Xia Wu
- School of Chemistry and Chemical Engineering
- Shandong University
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan 250100
| | - Na Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| |
Collapse
|
45
|
Urbanová V, Karlický F, Matěj A, Šembera F, Janoušek Z, Perman JA, Ranc V, Čépe K, Michl J, Otyepka M, Zbořil R. Fluorinated graphenes as advanced biosensors - effect of fluorine coverage on electron transfer properties and adsorption of biomolecules. NANOSCALE 2016; 8:12134-12142. [PMID: 26879645 DOI: 10.1039/c6nr00353b] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Graphene derivatives are promising materials for the electrochemical sensing of diverse biomolecules and development of new biosensors owing to their improved electron transfer kinetics compared to pristine graphene. Here, we report complex electrochemical behavior and electrocatalytic performance of variously fluorinated graphene derivatives prepared by reaction of graphene with a nitrogen-fluorine mixture at 2 bars pressure. The fluorine content was simply controlled by varying the reaction time and temperature. The studies revealed that electron transfer kinetics and electrocatalytic activity of CFx strongly depend on the degree of fluorination. The versatility of fluorinated graphene as a biosensor platform was demonstrated by cyclic voltammetry for different biomolecules essential in physiological processes, i.e. NADH, ascorbic acid and dopamine. Importantly, the highest electrochemical performance, even higher than pristine graphene, was obtained for fluorinated graphene with the lowest fluorine content (CF0.084) due to its high conductivity and enhanced adsorption properties combining π-π stacking interaction with graphene regions with hydrogen-bonding interaction with fluorine atoms.
Collapse
Affiliation(s)
- Veronika Urbanová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17 listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - František Karlický
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17 listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - Adam Matěj
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17 listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - Filip Šembera
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nám. 2., 166 10 Prague 6, Czech Republic
| | - Zbyněk Janoušek
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nám. 2., 166 10 Prague 6, Czech Republic
| | - Jason A Perman
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17 listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - Václav Ranc
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17 listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - Klára Čépe
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17 listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - Josef Michl
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nám. 2., 166 10 Prague 6, Czech Republic and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80301, USA
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17 listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17 listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| |
Collapse
|
46
|
Yang C, Jacobs C, Nguyen MD, Ganesana M, Zestos AG, Ivanov IN, Puretzky AA, Rouleau CM, Geohegan DB, Venton BJ. Carbon Nanotubes Grown on Metal Microelectrodes for the Detection of Dopamine. Anal Chem 2016; 88:645-52. [PMID: 26639609 PMCID: PMC4718531 DOI: 10.1021/acs.analchem.5b01257] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 12/07/2015] [Indexed: 01/18/2023]
Abstract
Microelectrodes modified with carbon nanotubes (CNTs) are useful for the detection of neurotransmitters because the CNTs enhance sensitivity and have electrocatalytic effects. CNTs can be grown on carbon fiber microelectrodes (CFMEs) but the intrinsic electrochemical activity of carbon fibers makes evaluating the effect of CNT enhancement difficult. Metal wires are highly conductive and many metals have no intrinsic electrochemical activity for dopamine, so we investigated CNTs grown on metal wires as microelectrodes for neurotransmitter detection. In this work, we successfully grew CNTs on niobium substrates for the first time. Instead of planar metal surfaces, metal wires with a diameter of only 25 μm were used as CNT substrates; these have potential in tissue applications due to their minimal tissue damage and high spatial resolution. Scanning electron microscopy shows that aligned CNTs are grown on metal wires after chemical vapor deposition. By use of fast-scan cyclic voltammetry, CNT-coated niobium (CNT-Nb) microelectrodes exhibit higher sensitivity and lower ΔEp value compared to CNTs grown on carbon fibers or other metal wires. The limit of detection for dopamine at CNT-Nb microelectrodes is 11 ± 1 nM, which is approximately 2-fold lower than that of bare CFMEs. Adsorption processes were modeled with a Langmuir isotherm, and detection of other neurochemicals was also characterized, including ascorbic acid, 3,4-dihydroxyphenylacetic acid, serotonin, adenosine, and histamine. CNT-Nb microelectrodes were used to monitor stimulated dopamine release in anesthetized rats with high sensitivity. This study demonstrates that CNT-grown metal microelectrodes, especially CNTs grown on Nb microelectrodes, are useful for monitoring neurotransmitters.
Collapse
Affiliation(s)
- Cheng Yang
- Department
of Chemistry, University of Virginia, McCormick Road,
Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Christopher
B. Jacobs
- Department
of Chemistry, University of Virginia, McCormick Road,
Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Michael D. Nguyen
- Department
of Chemistry, University of Virginia, McCormick Road,
Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Mallikarjunarao Ganesana
- Department
of Chemistry, University of Virginia, McCormick Road,
Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Alexander G. Zestos
- Department
of Chemistry, University of Virginia, McCormick Road,
Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Ilia N. Ivanov
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, 1 Bethel Valley Road, Building 8610, Oak
Ridge, Tennessee 37831, United States
| | - Alexander A. Puretzky
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, 1 Bethel Valley Road, Building 8610, Oak
Ridge, Tennessee 37831, United States
| | - Christopher M. Rouleau
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, 1 Bethel Valley Road, Building 8610, Oak
Ridge, Tennessee 37831, United States
| | - David B. Geohegan
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, 1 Bethel Valley Road, Building 8610, Oak
Ridge, Tennessee 37831, United States
| | - B. Jill Venton
- Department
of Chemistry, University of Virginia, McCormick Road,
Box 400319, Charlottesville, Virginia 22904-4319, United States
| |
Collapse
|