1
|
Hiramoto K, Ino K, Takahashi I, Hirano-Iwata A, Shiku H. Electrochemiluminescence microscopy for the investigation of peptide interactions within planar lipid membranes. Faraday Discuss 2025; 257:137-150. [PMID: 39440464 DOI: 10.1039/d4fd00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Understanding the interactions between lipid membranes and peptides is crucial for controlling bacterial and viral infections, and developing effective drugs. In this study, we proposed the use of electrochemiluminescence (ECL) microscopy in a solution of [Ru(bpy)3]2+ and tri-n-propylamine to monitor alterations in the lipid membranes due to peptide action. A planar artificial lipid membrane served as a model platform, and its surface was observed using ECL microscopy during exposure to melittin, a representative membrane lytic peptide. Upon exposure to melittin, the light-emitting process of the [Ru(bpy)3]2+/tri-n-propylamine system through the lipid membrane exhibited complex changes, suggesting that stepwise peptide actions can be monitored through the system. Furthermore, wide-field imaging with ECL microscopy provided an effective means of elucidating the membrane surface at the submicron level and revealing heterogeneous changes upon exposure to melittin. This complemented the spatiotemporal information that could not be obtained using conventional electrochemical measurements.
Collapse
Affiliation(s)
- Kaoru Hiramoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 2-1-2 Katahira, Aoba-ku, Sendai 980-8577, Japan.
- Research Institute of Electrical Communications, Tohoku University, Japan
| | - Kosuke Ino
- Graduate School of Engineering, Tohoku University, Japan
| | | | - Ayumi Hirano-Iwata
- Research Institute of Electrical Communications, Tohoku University, Japan
- Advanced Institute for Materials Research, Tohoku University, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, Japan
| |
Collapse
|
2
|
Zhang F, Xu W, Deng Z, Huang J. A bibliometric and visualization analysis of electrochemical biosensors for early diagnosis of eye diseases. Front Med (Lausanne) 2025; 11:1487981. [PMID: 39867928 PMCID: PMC11757256 DOI: 10.3389/fmed.2024.1487981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Electrochemical biosensors can provide an economical, accurate and rapid method for early screening of disease biomarkers in clinical medicine due to their high sensitivity, selectivity, portability, low cost and easy manufacturing, and multiplexing capability. Tear, a fluid naturally secreted by the human body, is not only easily accessible but also contains a great deal of biological information. However, no bibliometric studies focus on applying electrochemical sensors in tear/eye diseases. Therefore, we utilized VOSviewer and CiteSpace, to perform a detailed bibliometric analysis of 114 papers in the field of research on the application of tear in electrochemical biosensors screened from Web of Science with the combination of Scimago Graphica and Microsoft Excel for visualization to show the current research hotspots and future trends. The results show that the research in this field started in 2008 and experienced an emerging period in recent years. Researchers from China and the United States mainly contributed to the thriving research areas, with 41 and 29 articles published, respectively. Joseph Wang from the University of California San Diego is the most influential author in the field, and Biosensors & Bioelectronics is the journal with the most published research and the most cited journal. The highest appearance keywords were "biosensor" and "tear glucose," while the most recent booming keywords "diagnosis" and "in-vivo" were. In conclusion, this study elucidates current trends, hotspots, and emerging frontiers, and provides future biomarkers of ocular and systemic diseases by electrochemical sensors in tear with new ideas and opinions.
Collapse
Affiliation(s)
- Fushen Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Weiye Xu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zejun Deng
- School of Materials Science and Engineering, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
3
|
Wasim M, Shaheen S, Fatima B, Hussain D, Hassan F, Tahreem S, Riaz MM, Yar A, Majeed S, Najam-Ul-Haq M. Non-enzymatic electrochemical detection of sarcosine in serum of prostate cancer patients by CoNiWBO/rGO nanocomposite. Sci Rep 2024; 14:24240. [PMID: 39414878 PMCID: PMC11484907 DOI: 10.1038/s41598-024-74628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
Selective and sensitive sarcosine detection is crucial due to its recent endorsement as a prostate cancer (PCa) biomarker in clinical diagnosis. The reduced graphene oxide-cobalt nickel tungsten boron oxides (CoNiWBO/rGO) nanocomposite is developed as a non-enzymatic electrochemical sensor for sarcosine detection in PCa patients' serum. CoNiWBO/rGO is synthesized by the chemical reduction method via a one-pot reduction method followed by calcination at 500 °C under a nitrogen environment for 2 h and characterized by UV-Vis, XRD, TGA, and SEM. CoNiWBO/rGO is then deposited on a glassy carbon electrode, and sarcosine sensing parameters are optimized, including concentration and pH. This non-enzymatic sensor is employed to directly determine sarcosine in serum samples. Differential pulse voltammetry (DPV) and linear sweep voltammetry (LSV) are employed to monitor the electrochemical behavior where sarcosine binding leads to oxidation. Chronoamperometric studies show the stability of the developed sensor. The results demonstrate a wide linear range from 0.1 to 50 µM and low limits of detection, i.e., 0.04 µM and 0.07 µM using DPV and LSV respectivel. Moreover, the calculated recovery of sarcosine in human serum of prostate cancer patients is 78-96%. The developed electrochemical sensor for sarcosine detection can have potential applications in clinical diagnosis.
Collapse
Affiliation(s)
- Muhammad Wasim
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Sana Shaheen
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Fatima Hassan
- Department of Mechatronics, College of Electrical and Mechanical Engineering, National University of Science and Technology, Islamabad, Pakistan
| | - Shajeea Tahreem
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | | | - Ahmad Yar
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Saadat Majeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
4
|
Giagu G, Fracassa A, Fiorani A, Villani E, Paolucci F, Valenti G, Zanut A. From theory to practice: understanding the challenges in the implementation of electrogenerated chemiluminescence for analytical applications. Mikrochim Acta 2024; 191:359. [PMID: 38819653 PMCID: PMC11143011 DOI: 10.1007/s00604-024-06413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
Electrogenerated chemiluminescence (ECL) stands out as a remarkable phenomenon of light emission at electrodes initiated by electrogenerated species in solution. Characterized by its exceptional sensitivity and minimal background optical signals, ECL finds applications across diverse domains, including biosensing, imaging, and various analytical applications. This review aims to serve as a comprehensive guide to the utilization of ECL in analytical applications. Beginning with a brief exposition on the theory at the basis of ECL generation, we elucidate the diverse systems employed to initiate ECL. Furthermore, we delineate the principal systems utilized for ECL generation in analytical contexts, elucidating both advantages and challenges inherent to their use. Additionally, we provide an overview of different electrode materials and novel ECL-based protocols tailored for analytical purposes, with a specific emphasis on biosensing applications.
Collapse
Affiliation(s)
- Gabriele Giagu
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Alessandro Fracassa
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Andrea Fiorani
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Elena Villani
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
| | - Francesco Paolucci
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Giovanni Valenti
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, Bologna, 40126, Italy.
| | - Alessandra Zanut
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padua, 35131, Italy.
| |
Collapse
|
5
|
Davis F, Higson SPJ. Synthetic Receptors for Early Detection and Treatment of Cancer. BIOSENSORS 2023; 13:953. [PMID: 37998127 PMCID: PMC10669836 DOI: 10.3390/bios13110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 11/25/2023]
Abstract
Over recent decades, synthetic macrocyclic compounds have attracted interest from the scientific community due to their ability to selectively and reversibly form complexes with a huge variety of guest moieties. These molecules have been studied within a wide range of sensing and other fields. Within this review, we will give an overview of the most common synthetic macrocyclic compounds including cyclodextrins, calixarenes, calixresorcinarenes, pillarenes and cucurbiturils. These species all display the ability to form a wide range of complexes. This makes these compounds suitable in the field of cancer detection since they can bind to either cancer cell surfaces or indeed to marker compounds for a wide variety of cancers. The formation of such complexes allows sensitive and selective detection and quantification of such guests. Many of these compounds also show potential for the detection and encapsulation of environmental carcinogens. Furthermore, many anti-cancer drugs, although effective in in vitro tests, are not suitable for use directly for cancer treatment due to low solubility, inherent instability in in vivo environments or an inability to be adsorbed by or transported to the required sites for treatment. The reversible encapsulation of these species in a macrocyclic compound can greatly improve their solubility, stability and transport to required sites where they can be released for maximum therapeutic effect. Within this review, we intend to present the use of these species both in cancer sensing and treatment. The various macrocyclic compound families will be described, along with brief descriptions of their synthesis and properties, with an outline of their use in cancer detection and usage as therapeutic agents. Their use in the sensing of environmental carcinogens as well as their potential utilisation in the clean-up of some of these species will also be discussed.
Collapse
Affiliation(s)
| | - Séamus P. J. Higson
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK;
| |
Collapse
|
6
|
Yamani HZ, Safwat N, Mahmoud AM, Ayad MF, Abdel-Ghany MF, Gomaa MM. Point-of-care diagnostics for rapid determination of prostate cancer biomarker sarcosine: application of disposable potentiometric sensor based on oxide-conductive polymer nanocomposite. Anal Bioanal Chem 2023; 415:5451-5462. [PMID: 37389600 PMCID: PMC10444660 DOI: 10.1007/s00216-023-04818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
One of the most important reasons for an increased mortality rate of cancer is late diagnosis. Point-of-care (POC) diagnostic sensors can provide rapid and cost-effective diagnosis and monitoring of cancer biomarkers. Portable, disposable, and sensitive sarcosine solid-contact ion-selective potentiometric sensors (SC-ISEs) were fabricated as POC analyzers for the rapid determination of the prostate cancer biomarker sarcosine. Tungsten trioxide nanoparticles (WO3 NPs), polyaniline nanoparticles (PANI NPs), and PANI-WO3 nanocomposite were used as ion-to-electron transducers on screen-printed sensors. WO3 NPs and PANI-WO3 nanocomposite have not been investigated before as ion-to-electron transducer layers in potentiometric SC sensors. The designated sensors were characterized using SEM, XRD, FTIR, UV-VIS spectroscopy, and EIS. The inclusion of WO3 and PANI in SC sensors enhanced the transduction at the interface between the screen-printed SC and the ion-selective membrane, offering lower potential drift, a longer lifetime, shorter response time, and better sensitivity. The proposed sarcosine sensors exhibited Nernstian slopes over linear response ranges 10-3-10-7 M, 10-3-10-8 M, 10-5-10-9 M, and 10-7-10-12 M for control, WO3 NPs, PANI NPs, and PANI-WO3 nanocomposite-based sensors, respectively. From a comparative point of view between the four sensors, PANI-WO3 nanocomposite inclusion offered the lowest potential drift (0.5 mV h-1), the longest lifetime (4 months), and the best LOD (9.95 × 10-13 M). The proposed sensors were successfully applied to determine sarcosine as a potential prostate cancer biomarker in urine without prior sample treatment steps. The WHO ASSURED criteria for point-of-care diagnostics are met by the proposed sensors.
Collapse
Affiliation(s)
- Hend Z Yamani
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Nardine Safwat
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Amr M Mahmoud
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Miriam F Ayad
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Maha F Abdel-Ghany
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Mohammed M Gomaa
- Solid State Physics Department, National Research Centre, Giza, 12622, Egypt
| |
Collapse
|
7
|
Virzì GM, Mattiotti M, de Cal M, Ronco C, Zanella M, De Rosa S. Endotoxin in Sepsis: Methods for LPS Detection and the Use of Omics Techniques. Diagnostics (Basel) 2022; 13:diagnostics13010079. [PMID: 36611371 PMCID: PMC9818564 DOI: 10.3390/diagnostics13010079] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Lipopolysaccharide (LPS) or endotoxin, the major cell wall component of Gram-negative bacteria, plays a pivotal role in the pathogenesis of sepsis. It is able to activate the host defense system through interaction with Toll-like receptor 4, thus triggering pro-inflammatory mechanisms. A large amount of LPS induces inappropriate activation of the immune system, triggering an exaggerated inflammatory response and consequent extensive organ injury, providing the basis of sepsis damage. In this review, we will briefly describe endotoxin's molecular structure and its main pathogenetic action during sepsis. In addition, we will summarize the main different available methods for endotoxin detection with a special focus on the wider spectrum offered by omics technologies (genomics, transcriptomics, proteomics, and metabolomics) and promising applications of these in the identification of specific biomarkers for sepsis.
Collapse
Affiliation(s)
- Grazia Maria Virzì
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, 36100 Vicenza, Italy
- IRRIV—International Renal Research Institute Vicenza, 36100 Vicenza, Italy
- Correspondence: ; Tel.: +39-0444753650; Fax: +39-0444753949
| | - Maria Mattiotti
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, 36100 Vicenza, Italy
- IRRIV—International Renal Research Institute Vicenza, 36100 Vicenza, Italy
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Department of Experimental Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Massimo de Cal
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, 36100 Vicenza, Italy
- IRRIV—International Renal Research Institute Vicenza, 36100 Vicenza, Italy
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, 36100 Vicenza, Italy
- IRRIV—International Renal Research Institute Vicenza, 36100 Vicenza, Italy
| | - Monica Zanella
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, 36100 Vicenza, Italy
- IRRIV—International Renal Research Institute Vicenza, 36100 Vicenza, Italy
| | - Silvia De Rosa
- IRRIV—International Renal Research Institute Vicenza, 36100 Vicenza, Italy
- Centre for Medical Sciences—CISMed, University of Trento, Via S. Maria Maddalena 1, 38122 Trento, Italy
- Anesthesia and Intensive Care, Santa Chiara Regional Hospital, APSS Trento, 38122 Trento, Italy
| |
Collapse
|
8
|
Evaluation of polycrystalline cerium oxide electrodes for electrochemiluminescent detection of sarcosine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Ozdalgic B, Gul M, Uygun ZO, Atçeken N, Tasoglu S. Emerging Applications of Electrochemical Impedance Spectroscopy in Tear Film Analysis. BIOSENSORS 2022; 12:827. [PMID: 36290964 PMCID: PMC9599721 DOI: 10.3390/bios12100827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Human tear film, with a flow rate of 1-3 µL/min, is a rich bodily fluid that transmits a variety of metabolites and hormones containing proteins, lipids and electrolytes that provide clues about ocular and systemic diseases. Analysis of disease biomarkers such as proteins, mRNA, enzymes and cytokines in the tear film, collected by noninvasive methods, can provide significant results for sustaining a predictive, preventive and personalized medicine regarding various diseases such as glaucoma, diabetic retinopathy, keratoconus, dry eye, cancer, Alzheimer's disease, Parkinson's disease and COVID-19. Electrochemical impedance spectroscopy (EIS) offers a powerful technique for analyzing these biomarkers. EIS detects electrical equivalent circuit parameters related to biorecognition of receptor-analyte interactions on the electrode surface. This method is advantageous as it performs a label-free detection and allows the detection of non-electroactive compounds that cannot be detected by direct electron transfer, such as hormones and some proteins. Here, we review the opportunities regarding the integration of EIS into tear fluid sampling approaches.
Collapse
Affiliation(s)
- Berin Ozdalgic
- Department of Mechanical Engineering, Engineering Faculty, Koç University, Istanbul 34450, Türkiye
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Division of Optometry, School of Med Services & Techniques, Dogus University, Istanbul 34775, Türkiye
| | - Munire Gul
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
| | - Zihni Onur Uygun
- Department of Mechanical Engineering, Engineering Faculty, Koç University, Istanbul 34450, Türkiye
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Department of Biochemistry, Faculty of Medicine, Kafkas University, Kars 36100, Türkiye
| | - Nazente Atçeken
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
| | - Savas Tasoglu
- Department of Mechanical Engineering, Engineering Faculty, Koç University, Istanbul 34450, Türkiye
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Türkiye
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Türkiye
| |
Collapse
|
10
|
Cesari A, Rosa-Gastaldo D, Pedrini A, Rastrelli F, Dalcanale E, Pinalli R, Mancin F. Selective NMR detection of N-methylated amines using cavitand-decorated silica nanoparticles as receptors. Chem Commun (Camb) 2022; 58:10861-10864. [DOI: 10.1039/d2cc04199e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a strategy for the realization of NMR chemosensors based on the spontaneous self-assembly of lower rim pyridinium-functionalized tetraphopshonate cavitands on commercial silica nanoparticles. These nanohybrids enable the selective...
Collapse
|
11
|
A novel non-enzymatic sensor for prostate cancer biomarker sensing based on electrocatalytic oxidation of sarcosine at nanostructured NiMn 2O 4 impregnated carbon paste electrode. Anal Chim Acta 2021; 1186:339121. [PMID: 34756269 DOI: 10.1016/j.aca.2021.339121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/18/2021] [Accepted: 09/25/2021] [Indexed: 11/23/2022]
Abstract
This work addresses the electrocatalytic activity of a binary metal oxide catalyst of NiMn2O4 for electroxidation of sarcosine, the well-known prostate cancer biomarker. The nanocatalyst described was prepared via hydrothermal synthesis route, followed by calcination at 800 °C. Field emission scanning electron microscopy and X-ray diffraction were applied to obtain information about the material morphology and structure. A carbon paste electrode modified with nano-NiMn2O4 showed unique catalytic activity in sarcosine electroxidation which led to a significant rise in oxidation current (about four times) in comparison with the blank electrode. However, the carbon paste electrodes containing single oxides of NiO and Mn2O3 exhibited no considerable enhancement in sarcosine signal. The cyclic voltammetry results indicated that the Mn3+/Mn4+ couple was responsible for sarcosine oxidation, and NiO may enhance the content of Mn4+species in NiMn2O4 material. The carbon paste-based NiMn2O4 electrode was applied in the sensitive determination of sarcosine in the concentration range of 0.01-5.0 μM with the relative standard deviation of 3.49% (n = 5). The detection limit and quantification limit of the probe were determined to be 3.8 and 12 nM, respectively. The remarkable sensitivity and high selectivity of the method approved the sensor applicability in measurement of sarcosine content in urine samples.
Collapse
|
12
|
Bordbar MM, Sheini A, Hashemi P, Hajian A, Bagheri H. Disposable Paper-Based Biosensors for the Point-of-Care Detection of Hazardous Contaminations-A Review. BIOSENSORS 2021; 11:316. [PMID: 34562906 PMCID: PMC8464915 DOI: 10.3390/bios11090316] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The fast detection of trace amounts of hazardous contaminations can prevent serious damage to the environment. Paper-based sensors offer a new perspective on the world of analytical methods, overcoming previous limitations by fabricating a simple device with valuable benefits such as flexibility, biocompatibility, disposability, biodegradability, easy operation, large surface-to-volume ratio, and cost-effectiveness. Depending on the performance type, the device can be used to analyze the analyte in the liquid or vapor phase. For liquid samples, various structures (including a dipstick, as well as microfluidic and lateral flow) have been constructed. Paper-based 3D sensors are prepared by gluing and folding different layers of a piece of paper, being more user-friendly, due to the combination of several preparation methods, the integration of different sensor elements, and the connection between two methods of detection in a small set. Paper sensors can be used in chromatographic, electrochemical, and colorimetric processes, depending on the type of transducer. Additionally, in recent years, the applicability of these sensors has been investigated in various applications, such as food and water quality, environmental monitoring, disease diagnosis, and medical sciences. Here, we review the development (from 2010 to 2021) of paper methods in the field of the detection and determination of toxic substances.
Collapse
Affiliation(s)
- Mohammad Mahdi Bordbar
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 19945, Iran;
| | - Azarmidokht Sheini
- Department of Mechanical Engineering, Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz, Dashte Azadegan 78986, Iran;
| | - Pegah Hashemi
- Research and Development Department, Farin Behbood Tashkhis Ltd., Tehran 16471, Iran;
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria;
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 19945, Iran;
| |
Collapse
|
13
|
Hengameh Bahrami, Mousavi M, Maghsoudi S. Sensitive Voltammetric Method for Rapid Determination of Sarcosine as a New Biomarker for Prostate Cancer Using a TiO2 Nanoparticle/Ionic Liquid Modified Carbon Paste Electrode. RUSS J ELECTROCHEM+ 2021. [DOI: 10.1134/s1023193521020099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Williams GT, Haynes CJE, Fares M, Caltagirone C, Hiscock JR, Gale PA. Advances in applied supramolecular technologies. Chem Soc Rev 2021; 50:2737-2763. [DOI: 10.1039/d0cs00948b] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supramolecular chemistry has successfully built a foundation of fundamental understanding. However, with this now achieved, we show how this area of chemistry is moving out of the laboratory towards successful commercialisation.
Collapse
Affiliation(s)
| | | | - Mohamed Fares
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
| | - Claudia Caltagirone
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- 09042 Monserrato (CA)
- Italy
| | | | - Philip A. Gale
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
- The University of Sydney Nano Institute (Sydney Nano)
| |
Collapse
|
15
|
Fiorani A, Han D, Jiang D, Fang D, Paolucci F, Sojic N, Valenti G. Spatially resolved electrochemiluminescence through a chemical lens. Chem Sci 2020; 11:10496-10500. [PMID: 34123186 PMCID: PMC8162283 DOI: 10.1039/d0sc04210b] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/13/2020] [Indexed: 12/15/2022] Open
Abstract
Electrochemiluminescence (ECL) microscopy is an emerging technique with a wide range of imaging applications and unique properties in terms of high spatial resolution, surface confinement and favourable signal-to-noise ratio. Despite its successful analytical applications, tuning the depth of field (i.e., thickness of the ECL-emitting layer) is a crucial issue. Indeed, the control of the thickness of this ECL region, which can be considered as an "evanescent" reaction layer, limits the development of cell microscopy as well as bioassays. Here we report an original strategy based on chemical lens effects to tune the ECL-emitting layer in the model [Ru(bpy)3]2+/tri-n-propylamine (TPrA) system. It consists of microbeads decorated with [Ru(bpy)3]2+ labels, classically used in bioassays, and TPrA as the sacrificial coreactant. In particular we exploit the buffer capacity of the solution to modify the rate of the reactions involved in the ECL generation. For the first time, a precise control of the ECL light distribution is demonstrated by mapping the luminescence reactivity at the level of single micrometric bead. The resulting ECL image is the luminescent signature of the concentration profiles of diffusing TPrA radicals, which define the ECL layer. Therefore, our findings provide insights into the ECL mechanism and open new avenues for ECL microscopy and bioassays. Indeed, the reported approach based on a chemical lens controls the spatial extension of the "evanescent" ECL-emitting layer and is conceptually similar to evanescent wave microscopy. Thus, it should allow the exploration and imaging of different heights in substrates or in cells.
Collapse
Affiliation(s)
- Andrea Fiorani
- Department of Chemistry "G. Ciamician", University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Dongni Han
- Univ. Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 33607 Pessac France
- School of Pharmacy, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing Jiangsu 211126 China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210093 China
| | - Danjun Fang
- School of Pharmacy, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing Jiangsu 211126 China
| | - Francesco Paolucci
- Department of Chemistry "G. Ciamician", University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Neso Sojic
- Univ. Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 33607 Pessac France
- Department of Chemistry, South Ural State University Chelyabinsk 454080 Russian Federation
| | - Giovanni Valenti
- Department of Chemistry "G. Ciamician", University of Bologna Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
16
|
Tang P, Wang Y, He F. Electrochemical sensor based on super-magnetic metal–organic framework@molecularly imprinted polymer for Sarcosine detection in urine. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2020.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Fiorani A, Valenti G, Irkham, Paolucci F, Einaga Y. Quantification of electrogenerated chemiluminescence from tris(bipyridine)ruthenium(ii) and hydroxyl ions. Phys Chem Chem Phys 2020; 22:15413-15417. [PMID: 32601627 DOI: 10.1039/d0cp02005b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we quantify the electrogenerated chemiluminescence arising from the reaction of electrogenerated tris(bipyridine)ruthenium(iii) with hydroxyl ions, in terms of emission intensity and reaction rate. Different electrode materials (glassy carbon and boron-doped diamond) and different supporting electrolytes (perchlorate, phosphate, and carbonate) were investigated with pH variation. Relative quantification of the electrogenerated chemiluminescence was achieved using the Ru(bpy)32+/tri-n-propylamine system, taken as a reference, with relative emission as low as 600 and 230 times that observed at the same coreactant concentration and the same pH, respectively. The kinetics was investigated by foot of the wave analysis of cyclic voltammetry to measure the turnover frequency of the reaction.
Collapse
Affiliation(s)
- Andrea Fiorani
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan.
| | | | | | | | | |
Collapse
|
18
|
Abdussalam A, Guan Y, Xu G. Amplified Anodic Electrogenerated Chemiluminescence of Tris(2,2′‐bipyridyl)ruthenium(II) for the Sensitive Detection of Isatin. ChemElectroChem 2020. [DOI: 10.1002/celc.201902148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Abubakar Abdussalam
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Street Changchun 130022 Jilin China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of China Hefei 230026 Anhui China
- Faculty of Science, Department of ChemistryBayero University PMB 3011 Kano Nigeria
| | - Yiran Guan
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Street Changchun 130022 Jilin China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Street Changchun 130022 Jilin China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of China Hefei 230026 Anhui China
| |
Collapse
|
19
|
Pundir CS, Deswal R, Kumar P. Quantitative analysis of sarcosine with special emphasis on biosensors: a review. Biomarkers 2019; 24:415-422. [PMID: 31050554 DOI: 10.1080/1354750x.2019.1615124] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The quantitative determination of sarcosine is of great importance in clinical chemistry, food and fermentation industries. Elevated sarcosine levels are associated with Alzheimer, dementia, prostate cancer, colorectal cancer, stomach cancer and sarcosinemia. This review summarizes the various methods for quantitative analysis of sarcosine with special emphasis on various strategies of biosensors and their analytical performance. The current bio sensing methods have overcome the drawbacks of conventional methods. Sarcosine biosensors work optimally at pH 7.0 to 8.0 in the linear range of 0.1 to 100 μM within 2 to 17 s and between 25 and 37 °C, within a limit of detection (LOD) between 0.008 and 500 mM. The formulated biosensors can be reused within a stability period of 3-180 days. Future research could be focused to modify existing sarcosine biosensors, leading to simple, reliable, and economical sensors ideally suited for point-of-care treatment. Clinical significance Elevated sarcosine levels are associated with prostate and colorectal cancer, Alzheimer, dementia, stomach cancer and sarcosinemia. Quantitative determination of sarcosine is of great importance in clinical chemistry as well as food and fermentation industries. Attempts made in development of sarcosine biosensors have been reviewed with their advantages and disadvantages, so that scientist and clinicians can improvise the methods of developing more potent sarcosine biosensor applicable in multitudinous fields. This is the first comprehensive review which compares the various immobilization methods, sensing principles, strategies used in biosensors and their analytical performance in detail.
Collapse
Affiliation(s)
- C S Pundir
- a Department of Biochemistry , M.D. University , Rohtak , India
| | - Ritu Deswal
- b Centre for Medical Biotechnology , M.D. University , Rohtak , India
| | - Parveen Kumar
- a Department of Biochemistry , M.D. University , Rohtak , India
| |
Collapse
|
20
|
Brancatelli G, Dalcanale E, Pinalli R, Geremia S. Probing the Structural Determinants of Amino Acid Recognition: X-Ray Studies of Crystalline Ditopic Host-Guest Complexes of the Positively Charged Amino Acids, Arg, Lys, and His with a Cavitand Molecule. Molecules 2018; 23:molecules23123368. [PMID: 30572602 PMCID: PMC6321202 DOI: 10.3390/molecules23123368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 11/16/2022] Open
Abstract
Crystallization of tetraphosphonate cavitand Tiiii[H, CH3, CH3] in the presence of positively charged amino acids, namely arginine, lysine, or histidine, afforded host-guest complex structures. The X-ray structure determination revealed that in all three structures, the fully protonated form of the amino acid is ditopically complexed by two tetraphosphonate cavitand molecules. Guanidinium, ammonium, and imidazolium cationic groups of the amino acid side chain are hosted in the cavity of a phosphonate receptor, and are held in place by specific hydrogen bonding interactions with the P=O groups of the cavitand molecule. In all three structures, the positively charged α-ammonium groups form H-bonds with the P=O groups, and with a water molecule hosted in the cavity of a second tetraphosphonate molecule. Furthermore, water-assisted dimerization was observed for the cavitand/histidine ditopic complex. In this 4:2 supramolecular complex, a bridged water molecule is held by two carboxylic acid groups of the dimerized amino acid. The structural information obtained on the geometrical constrains necessary for the possible encapsulation of the amino acids are important for the rational design of devices for analytical and medical applications.
Collapse
Affiliation(s)
- Giovanna Brancatelli
- Centre of Excellence in Biocrystallography, Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Enrico Dalcanale
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, and INSTM, UdR Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Roberta Pinalli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, and INSTM, UdR Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Silvano Geremia
- Centre of Excellence in Biocrystallography, Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy.
| |
Collapse
|
21
|
Fiorani A, Irkham, Valenti G, Paolucci F, Einaga Y. Electrogenerated Chemiluminescence with Peroxydisulfate as a Coreactant Using Boron Doped Diamond Electrodes. Anal Chem 2018; 90:12959-12963. [DOI: 10.1021/acs.analchem.8b03622] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andrea Fiorani
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223−8522, Japan
| | - Irkham
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223−8522, Japan
| | - Giovanni Valenti
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Francesco Paolucci
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
- ICMATE-CNR Bologna Associate Unit, University of Bologna, 40126, Bologna, Italy
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223−8522, Japan
- JST-ACCEL, 3-14-1 Hiyoshi, Yokohama 223−8522, Japan
| |
Collapse
|
22
|
Pinalli R, Pedrini A, Dalcanale E. Biochemical sensing with macrocyclic receptors. Chem Soc Rev 2018; 47:7006-7026. [PMID: 30175351 DOI: 10.1039/c8cs00271a] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Preventive healthcare asks for the development of cheap, precise and non-invasive sensor devices for the early detection of diseases and continuous population screening. The actual techniques used for diagnosis, e.g. MRI and PET, or for biochemical marker sensing, e.g. immunoassays, are not suitable for continuous monitoring since they are expensive and prone to false positive responses. Synthetic supramolecular receptors offer new opportunities for the creation of specific, selective and cheap sensor devices for biological sensing of specific target molecules in complex mixtures of organic substances. The fundamental challenges faced in developing such devices are the precise transfer of the molecular recognition events at the solid-liquid interface and its transduction into a readable signal. In this review we present the progress made so far in turning synthetic macrocyclic hosts, namely cyclodextrins, calixarenes, cucurbiturils and cavitands, into effective biochemical sensors and the strategies utilized to solve the above mentioned issues. The performances of the developed sensing devices based on these receptors in detecting specific biological molecules, drugs and proteins are critically discussed.
Collapse
Affiliation(s)
- Roberta Pinalli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | | | | |
Collapse
|
23
|
Voiculescu I, Toda M, Inomata N, Ono T, Li F. Nano and Microsensors for Mammalian Cell Studies. MICROMACHINES 2018; 9:E439. [PMID: 30424372 PMCID: PMC6187600 DOI: 10.3390/mi9090439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/29/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022]
Abstract
This review presents several sensors with dimensions at the nano- and micro-scale used for biological applications. Two types of cantilever beams employed as highly sensitive temperature sensors with biological applications will be presented. One type of cantilever beam is fabricated from composite materials and is operated in the deflection mode. In order to achieve the high sensitivity required for detection of heat generated by a single mammalian cell, the cantilever beam temperature sensor presented in this review was microprocessed with a length at the microscale and a thickness in the nanoscale dimension. The second type of cantilever beam presented in this review was operated in the resonant frequency regime. The working principle of the vibrating cantilever beam temperature sensor is based on shifts in resonant frequency in response to temperature variations generated by mammalian cells. Besides the cantilever beam biosensors, two biosensors based on the electric cell-substrate impedance sensing (ECIS) used to monitor mammalian cells attachment and viability will be presented in this review. These ECIS sensors have dimensions at the microscale, with the gold films used for electrodes having thickness at the nanoscale. These micro/nano biosensors and their mammalian cell applications presented in the review demonstrates the diversity of the biosensor technology and applications.
Collapse
Affiliation(s)
- Ioana Voiculescu
- Mechanical Engineering Department, City College of New York, New York, NY 10031, USA.
| | - Masaya Toda
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.
| | - Naoki Inomata
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.
| | - Takahito Ono
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.
| | - Fang Li
- Mechanical Engineering, New York Institute of Technology, New York, NY 11568, USA.
| |
Collapse
|
24
|
Valenti G, Rampazzo E, Kesarkar S, Genovese D, Fiorani A, Zanut A, Palomba F, Marcaccio M, Paolucci F, Prodi L. Electrogenerated chemiluminescence from metal complexes-based nanoparticles for highly sensitive sensors applications. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Yamkamon V, Phakdee B, Yainoy S, Suksrichawalit T, Tatanandana T, Sangkum P, Eiamphungporn W. Development of sarcosine quantification in urine based on enzyme-coupled colorimetric method for prostate cancer diagnosis. EXCLI JOURNAL 2018; 17:467-478. [PMID: 30034310 PMCID: PMC6046622 DOI: 10.17179/excli2018-145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022]
Abstract
An enzyme-coupled colorimetric assay for quantification of urinary sarcosine was developed. The proposed method is a specific reaction based on hydrogen peroxide (H2O2) formation via sarcosine oxidase (SOX). The liberated H2O2 reacts with Amplex Red in the presence of horseradish peroxidase (HRP) to produce the red-fluorescent oxidation product, resorufin, which can be measured spectrophotometrically (OD570). The method was performed in the 96-well microtiter plate. Reaction conditions, such as pH and reaction time were optimized. At the optimum conditions, the limit of detection (LOD) and quantification (LOQ) were found to be 0.7 and 1 µM, respectively. A good linearity was revealed with a coefficient of 0.990. The assay showed no significant interference from ascorbic acid, glucose and bilirubin. In addition, it is extremely specific for sarcosine rather than other amino acids. The determination of sarcosine in human urine displayed high accuracy and good reproducibility. This method is promising to differentiate prostate cancer patients from healthy subjects according to urinary sarcosine level. Altogether, this study provides a rapid, simple and specific tool to determine urinary sarcosine which could be useful for prostate cancer diagnosis.
Collapse
Affiliation(s)
- Vichanan Yamkamon
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Benjarong Phakdee
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Thummaruk Suksrichawalit
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Tararat Tatanandana
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Premsant Sangkum
- Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
26
|
Jiang XY, Zhang L, Liu YL, Yu XD, Liang YY, Qu P, Zhao WW, Xu JJ, Chen HY. Hierarchical CuInS 2-based heterostructure: Application for photocathodic bioanalysis of sarcosine. Biosens Bioelectron 2018; 107:230-236. [PMID: 29477123 DOI: 10.1016/j.bios.2018.02.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 11/28/2022]
Abstract
In this study, on the basis of hierarchical CuInS2-based heterostructure, a novel cathodic photoelectrochemical (PEC) enzymatic bioanalysis of the sarcosine detection was reported. Specifically, heterostructured CuInS2/NiO/ITO photocathode was prepared and sarcosine oxidases (SOx) were integrated for the construction of the enzymatic biosensor. In the bioanalysis, the O2-dependent suppression of the cathodic photocurrent can be observed due to the competition between the as-fabricated O2-sensitive photocathode and the SOx-catalytic event toward O2 reduction. Based on the sarcosine-controlled O2 concentration, a novel photocathodic enzymatic biosensor could be realized for the sensitive and specific sarcosine detection. This work manifested the great potential of CuInS2-based heterostructure as a novel platform for future PEC bioanalytical development and also a PEC method for sarcosine detection, which could be easily extended to numerous other enzymatic systems and to our knowledge has not been reported. This work is expected to stimulate more interest in the design and implementation of numerous CuInS2-based heterostructured photocathodic enzymatic sensing.
Collapse
Affiliation(s)
- Xin-Yuan Jiang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ling Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; School of Material and Chemical Engineering, Bengbu College, Bengbu 233000, China
| | - Yi-Li Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Xiao-Dong Yu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yan-Yu Liang
- School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Peng Qu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
27
|
Valenti G, Iurlo M, Claramunt RM, Accorsi G, Paolucci F, Farrán MÁ, Marcaccio M. Redox Properties and Interchromophoric Electronic Interactions in Isoalloxazine−Anthraquinone Dyads. ChemElectroChem 2018. [DOI: 10.1002/celc.201701374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Giovanni Valenti
- Department of Chemistry “ G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Matteo Iurlo
- Department of Chemistry “ G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Rosa María Claramunt
- Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias; Universidad Nacional de Educación a Distancia (UNED); Paseo Senda del Rey 9 28040 Madrid Spain
| | - Gianluca Accorsi
- CNR NANOTEC, Institute of Nanotechnology c/o Campus Ecotekne; University of Salento; Via Monteroni 73100 Lecce Italy
| | - Francesco Paolucci
- Department of Chemistry “ G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - M. Ángeles Farrán
- Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias; Universidad Nacional de Educación a Distancia (UNED); Paseo Senda del Rey 9 28040 Madrid Spain
| | - Massimo Marcaccio
- Department of Chemistry “ G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
28
|
Sun NN, Yan B. A fluorescent probe based on a Tb3+/Cu2+ co-functionalized MOF for urinary sarcosine detection. Analyst 2018; 143:2349-2355. [DOI: 10.1039/c8an00425k] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel luminescent probe based on a Tb3+/Cu2+ heterometallic metal–organic framework (MOF) was first designed for beamed monitoring of urinary sarcosine, a differential metabolite that can indicate the progression of prostate cancer (PCa).
Collapse
Affiliation(s)
- Na-Na Sun
- Shanghai Key Lab of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- P. R. China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- P. R. China
| |
Collapse
|
29
|
Lin YH, Wu CC, Peng YS, Wu CW, Chang YT, Chang KP. Detection of anti-p53 autoantibodies in saliva using microfluidic chips for the rapid screening of oral cancer. RSC Adv 2018; 8:15513-15521. [PMID: 35539469 PMCID: PMC9080182 DOI: 10.1039/c7ra13734f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/19/2018] [Indexed: 11/21/2022] Open
Abstract
Autoantibodies have high specificity and stability and are easy to detect. Anti-p53 autoantibodies can be used as biomarkers for the early detection of oral cancer. However, most studies detected anti-p53 in sera samples. In this study, a microfluidic chip combined with magnetic immunoassay, which can automatically detect the concentration of anti-p53 in saliva, was developed. The use of a micromixer can shorten the immunoassay time: the mixing time of the antigen and antibody can be reduced from the original 60 min off-chip to 20 min, making the total immunoassay time around 60 min. A method of moving magnetic beads and the antibody instead of manipulating fluid was utilized to simplify fluid control and decrease contamination caused by non-specific protein adsorption to the surface of reaction wells. The detection limit of anti-p53 was 4 ng mL−1. In addition, a relative concentration of anti-p53 in the saliva of patients was detected in the chip. A microfluidic chip with multiple reaction wells is capable of automatically detecting anti-p53 autoantibody in saliva for oral cancer screening.![]()
Collapse
Affiliation(s)
- Yen-Heng Lin
- Department of Electronic Engineering
- Chang Gung University
- Taoyuan 333
- Taiwan
- Graduate Institute of Medical Mechatronics
| | - Chih-Ching Wu
- Department of Otolaryngology-Head & Neck Surgery
- Chang Gung Memorial Hospital
- Taoyuan 333
- Taiwan
- Department of Medical Biotechnology and Laboratory Science
| | - Yong-Sheng Peng
- Department of Electronic Engineering
- Chang Gung University
- Taoyuan 333
- Taiwan
| | - Chia-Wei Wu
- Graduate Institute of Medical Mechatronics
- Chang Gung University
- Taoyuan 333
- Taiwan
| | - Ya-Ting Chang
- Molecular Medicine Research Center
- Chang Gung University
- Taoyuan 333
- Taiwan
| | - Kai-Ping Chang
- Department of Otolaryngology-Head & Neck Surgery
- Chang Gung Memorial Hospital
- Taoyuan 333
- Taiwan
- Molecular Medicine Research Center
| |
Collapse
|
30
|
Valenti G, Scarabino S, Goudeau B, Lesch A, Jović M, Villani E, Sentic M, Rapino S, Arbault S, Paolucci F, Sojic N. Single Cell Electrochemiluminescence Imaging: From the Proof-of-Concept to Disposable Device-Based Analysis. J Am Chem Soc 2017; 139:16830-16837. [PMID: 29064235 DOI: 10.1021/jacs.7b09260] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report here the development of coreactant-based electrogenerated chemiluminescence (ECL) as a surface-confined microscopy to image single cells and their membrane proteins. Labeling the entire cell membrane allows one to demonstrate that, by contrast with fluorescence, ECL emission is only detected from fluorophores located in the immediate vicinity of the electrode surface (i.e., 1-2 μm). Then, to present the potential diagnostic applications of our approach, we selected carbon nanotubes (CNT)-based inkjet-printed disposable electrodes for the direct ECL imaging of a labeled plasma receptor overexpressed on tumor cells. The ECL fluorophore was linked to an antibody and enabled to localize the ECL generation on the cancer cell membrane in close proximity to the electrode surface. Such a result is intrinsically associated with the unique ECL mechanism and is rationalized by considering the limited lifetimes of the electrogenerated coreactant radicals. The electrochemical stimulus used for luminescence generation does not suffer from background signals, such as the typical autofluorescence of biological samples. The presented surface-confined ECL microscopy should find promising applications in ultrasensitive single cell imaging assays.
Collapse
Affiliation(s)
- Giovanni Valenti
- Department of Chemistry ''G. Ciamician'', University of Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Sabina Scarabino
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac, France
| | - Bertrand Goudeau
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac, France
| | - Andreas Lesch
- Laboratory of Physical and Analytical Electrochemistry, EPFL Valais Wallis , Rue de l'Industrie 17, CP 440, CH-1951 Sion, Switzerland
| | - Milica Jović
- Laboratory of Physical and Analytical Electrochemistry, EPFL Valais Wallis , Rue de l'Industrie 17, CP 440, CH-1951 Sion, Switzerland
| | - Elena Villani
- Department of Chemistry ''G. Ciamician'', University of Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Milica Sentic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac, France
| | - Stefania Rapino
- Department of Chemistry ''G. Ciamician'', University of Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Stéphane Arbault
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac, France
| | - Francesco Paolucci
- Department of Chemistry ''G. Ciamician'', University of Bologna , Via Selmi 2, 40126 Bologna, Italy.,ICMATE-CNR Bologna Associate Unit, University of Bologna , via Selmi 2, 40126 Bologna, Italy
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac, France
| |
Collapse
|
31
|
Juzgado A, Soldà A, Ostric A, Criado A, Valenti G, Rapino S, Conti G, Fracasso G, Paolucci F, Prato M. Highly sensitive electrochemiluminescence detection of a prostate cancer biomarker. J Mater Chem B 2017; 5:6681-6687. [PMID: 32264431 DOI: 10.1039/c7tb01557g] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostate-specific membrane antigen (PSMA), a glycoprotein expressed in the prostatic epithelium endowed with enzymatic activity, is a very promising diagnostic marker for the early detection of prostate cancer. In this study, we report a novel electrochemiluminescence ELISA-like immunosensor based on carbon nanotubes and a highly specific sandwich immunoassay for the PSMA detection. To fabricate the device, an optically transparent electrode was modified with doubly functionalized multi-walled carbon nanotubes carrying amine groups and a monoclonal anti-PSMA antibody. Subsequently, to complete the sandwich immunosensing device, a second specific monoclonal anti-PSMA antibody was labelled with a electrochemiluminescent probe. Under optimized experimental conditions, the proposed sensing device exhibits a performance exceeding that of the state of-the-art in terms of the limit of detection (LOD) and limit of quantification (LOQ) as good as 0.88 ng mL-1 and 2.60 ng mL-1, respectively, in real complex samples such as cell lysates. In addition, the unique role of carbon nanotubes is also discussed by comparison with an analogue sensor assembled without the nanocarbon-based material.
Collapse
Affiliation(s)
- A Juzgado
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa, 1, 34127 Trieste, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Daviddi E, Oleinick A, Svir I, Valenti G, Paolucci F, Amatore C. Theory and Simulation for Optimising Electrogenerated Chemiluminescence from Tris(2,2′-bipyridine)-ruthenium(II)-Doped Silica Nanoparticles and Tripropylamine. ChemElectroChem 2017. [DOI: 10.1002/celc.201600892] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Enrico Daviddi
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; Sorbonne Universités; UPMC Paris 06, CNRS UMR 8640 PASTEUR; 24 rue Lhomond 75005 Paris France
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Alexander Oleinick
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; Sorbonne Universités; UPMC Paris 06, CNRS UMR 8640 PASTEUR; 24 rue Lhomond 75005 Paris France
| | - Irina Svir
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; Sorbonne Universités; UPMC Paris 06, CNRS UMR 8640 PASTEUR; 24 rue Lhomond 75005 Paris France
| | - Giovanni Valenti
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Francesco Paolucci
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Christian Amatore
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; Sorbonne Universités; UPMC Paris 06, CNRS UMR 8640 PASTEUR; 24 rue Lhomond 75005 Paris France
| |
Collapse
|
33
|
Valenti G, Rampazzo E, Bonacchi S, Petrizza L, Marcaccio M, Montalti M, Prodi L, Paolucci F. Variable Doping Induces Mechanism Swapping in Electrogenerated Chemiluminescence of Ru(bpy)32+ Core–Shell Silica Nanoparticles. J Am Chem Soc 2016; 138:15935-15942. [DOI: 10.1021/jacs.6b08239] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Giovanni Valenti
- Department
of Chemistry ‘‘G. Ciamician’’, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Enrico Rampazzo
- Department
of Chemistry ‘‘G. Ciamician’’, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Sara Bonacchi
- Department
of Chemistry ‘‘G. Ciamician’’, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Luca Petrizza
- Department
of Chemistry ‘‘G. Ciamician’’, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Massimo Marcaccio
- Department
of Chemistry ‘‘G. Ciamician’’, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Marco Montalti
- Department
of Chemistry ‘‘G. Ciamician’’, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Luca Prodi
- Department
of Chemistry ‘‘G. Ciamician’’, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Francesco Paolucci
- Department
of Chemistry ‘‘G. Ciamician’’, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- ICMATE-CNR
Bologna Associate Unit, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
34
|
Valenti G, Fiorani A, Li H, Sojic N, Paolucci F. Essential Role of Electrode Materials in Electrochemiluminescence Applications. ChemElectroChem 2016. [DOI: 10.1002/celc.201600602] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Giovanni Valenti
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Andrea Fiorani
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Haidong Li
- University of Bordeaux; INP Bordeaux, Institut des Sciences Moléculaires, CNRS UMR 5255, ENSCBP; 33607 Pessac France
| | - Neso Sojic
- University of Bordeaux; INP Bordeaux, Institut des Sciences Moléculaires, CNRS UMR 5255, ENSCBP; 33607 Pessac France
| | - Francesco Paolucci
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
35
|
Irkham, Watanabe T, Fiorani A, Valenti G, Paolucci F, Einaga Y. Co-reactant-on-Demand ECL: Electrogenerated Chemiluminescence by the in Situ Production of S2O82– at Boron-Doped Diamond Electrodes. J Am Chem Soc 2016; 138:15636-15641. [DOI: 10.1021/jacs.6b09020] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Irkham
- Department
of Chemistry, Keio University, 3−14−1 Hiyoshi, Yokohama 223−8522, Japan
| | - Takeshi Watanabe
- Department
of Chemistry, Keio University, 3−14−1 Hiyoshi, Yokohama 223−8522, Japan
| | - Andrea Fiorani
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Giovanni Valenti
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Francesco Paolucci
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Yasuaki Einaga
- Department
of Chemistry, Keio University, 3−14−1 Hiyoshi, Yokohama 223−8522, Japan
- JST-ACCEL, 3−14−1 Hiyoshi, Yokohama 223−8522, Japan
| |
Collapse
|
36
|
Inorganic mesoporous silicas as vehicles of two novel anthracene-based ruthenium metalloarenes. J Inorg Biochem 2016; 166:87-93. [PMID: 27838582 DOI: 10.1016/j.jinorgbio.2016.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/14/2016] [Accepted: 11/03/2016] [Indexed: 12/19/2022]
Abstract
Two novel anthracene-based half-sandwich organometallic Ru(II) compounds, namely, [Ru(p-cymene)(L1)Cl2] (1) and [Ru(p-cymene)(L2)Cl2] (2) (L1=1-(anthracen-9-yl)-N-(pyridin-3-ylmethyl)methanamine; L2=1-(anthracen-9-yl)-N-(pyridin-4-ylmethyl)methanamine) have been synthesized and characterized. We demonstrate that the fluorescence properties of these complexes are highly affected by the linking position of the anthracene unit, as only 2 shows fluorescence emission in the blue region. Regarding their biological activity, both ruthenium metallodrugs show interaction with different biological targets such as S-donor amino acids (cysteine) and proteases (cysteine cathepsin B). Moreover, 1 and 2 show in vitro cytotoxicity against HL-60 cancer cell line (IC50=84.5 and 87.0μM for 1 and 2, respectively), with cell death occurring via apoptosis. Further studies have shown that diffusion into cells is the main mechanism of metallodrug uptake. Finally, as a proof of concept, these ruthenium complexes have been successfully encapsulated into MCM-41 and SBA-15 mesoporous silicas using two different incorporation strategies (impregnation and grinding).
Collapse
|
37
|
Pinalli R, Brancatelli G, Pedrini A, Menozzi D, Hernández D, Ballester P, Geremia S, Dalcanale E. The Origin of Selectivity in the Complexation of N-Methyl Amino Acids by Tetraphosphonate Cavitands. J Am Chem Soc 2016; 138:8569-80. [PMID: 27310660 DOI: 10.1021/jacs.6b04372] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report on the eligibility of tetraphosphonate resorcinarene cavitands for the molecular recognition of amino acids. We determined the crystal structure of 13 complexes of the tetraphosphonate cavitand Tiiii[H, CH3, CH3] with amino acids. (1)H NMR and (31)P NMR experiments and ITC analysis were performed to probe the binding between cavitand Tiiii[C3H7, CH3, C2H5] or the water-soluble counterpart Tiiii[C3H6Py(+)Cl(-), CH3, C2H5] and a selection of representative amino acids. The reported studies and results allowed us (i) to highlight the noncovalent interactions involved in the binding event in each case; (ii) to investigate the ability of tetraphosphonate cavitand receptors to discriminate between the different amino acids; (iii) to calculate the Ka values of the different complexes formed and evaluate the thermodynamic parameters of the complexation process, dissecting the entropic and enthalpic contributions; and (iv) to determine the solvent influence on the complexation selectivity. By moving from methanol to water, the complexation changed from entropy driven to entropy opposed, leading to a drop of almost three orders in the magnitude of the Ka. However, this reduction in binding affinity is associated with a dramatic increase in selectivity, since in aqueous solutions only N-methylated amino acids are effectively recognized. The thermodynamic profile of the binding does not change in PBS solution. The pivotal role played by cation-π interactions is demonstrated by the linear correlation found between the log Ka in methanol solution and the depth of (+)N-CH3 cavity inclusion in the molecular structures. These findings are relevant for the potential use of phosphonate cavitands as synthetic receptors for the detection of epigenetic modifications of histones in physiological media.
Collapse
Affiliation(s)
- Roberta Pinalli
- Department of Chemistry, University of Parma, and INSTM , UdR Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Giovanna Brancatelli
- CEB Centre of Excellence in Biocrystallography, Department of Chemical and Pharmaceutical Sciences, University of Trieste , Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Alessandro Pedrini
- Department of Chemistry, University of Parma, and INSTM , UdR Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Daniela Menozzi
- Department of Chemistry, University of Parma, and INSTM , UdR Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Daniel Hernández
- Catalan Institution for Research and Advanced Studies (ICREA) , Passeig Lluís Companys, 23, 08018 Barcelona, Spain
| | - Pablo Ballester
- Catalan Institution for Research and Advanced Studies (ICREA) , Passeig Lluís Companys, 23, 08018 Barcelona, Spain.,Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology , Avgda. Països Catalans 16, 43007 Tarragona, Spain
| | - Silvano Geremia
- CEB Centre of Excellence in Biocrystallography, Department of Chemical and Pharmaceutical Sciences, University of Trieste , Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Enrico Dalcanale
- Department of Chemistry, University of Parma, and INSTM , UdR Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|