1
|
Gómez-Sánchez N, Galindo N, Alfosea-Simón M, Nicolás JF, Crespo J, Yubero E. Chemical composition of PM 10 at a rural site in the western Mediterranean and its relationship with the oxidative potential. CHEMOSPHERE 2024; 363:142880. [PMID: 39019189 DOI: 10.1016/j.chemosphere.2024.142880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
A comprehensive chemical characterization (water-soluble ions, organic and elemental carbon, water- and methanol-soluble organic carbon, levoglucosan, and major and trace metals) of PM10 samples collected in a rural area located in the southeast of the Iberian Peninsula was performed. Additionally, the oxidative potential of the samples, used as an indicator of aerosol toxicity, was determined by the ascorbic acid (OPAA) and dithiothreitol (OPDTT) assays. The average concentration of PM10 during the study period, spanning from late winter to early spring, was 20.2 ± 10.8 μg m-3. Nitrate, carbonate and calcium (accounting for 20% of the average PM10 mass concentration) and organic matter (with a contribution of 28%) were the main chemical components of PM10. Average concentrations of traffic tracers such as elemental carbon, copper and zinc (0.31 μg m-3, 3 ng m-3, and 9 ng m-3, respectively) were low compared with those obtained at an urban site in the same region, due to the almost total absence of traffic in the surrounding of the sampling site. Regarding levoglucosan and K+, which can be considered as tracers of biomass burning, their concentrations (0.12 μg m-3 and 55 ng m-3, respectively) were in the lower range of values reported for other rural areas in Europe, suggesting a moderate contribution form this source to PM10 levels. The results of the Pearson's correlation analysis showed that volume-normalised OPAA and OPDTT levels (average values of 0.11 and 0.32 nmol min-1 m-3, respectively) were sensitive to different PM10 chemical components. Whereas OPAA was not strongly correlated with any of the species measured, good correlation coefficients of OPDTT with water-soluble organic carbon (r = 0.81) and K+ (r = 0.73) were obtained, which points to biomass burning as an important driver of the DTT activity.
Collapse
Affiliation(s)
- Noelia Gómez-Sánchez
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain.
| | - Nuria Galindo
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain.
| | - Marina Alfosea-Simón
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain.
| | - Jose F Nicolás
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain.
| | - Javier Crespo
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain.
| | - Eduardo Yubero
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain.
| |
Collapse
|
2
|
Li JM, Zhao SM, Wu SP, Jiang BQ, Liu YJ, Zhang J, Schwab JJ. Size-segregated characteristics of water-soluble oxidative potential in urban Xiamen: Potential driving factors and implications for human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168902. [PMID: 38029991 DOI: 10.1016/j.scitotenv.2023.168902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
Oxidative potential (OP), defined as the ability of particulate matter (PM) to generate reactive oxygen species (ROS), has been considered as a potential health-related metric for PM. Particles with different sizes have different OP and deposition efficiencies in the respiratory tract and pose different health risks. In this study, size-segregated PM samples were collected at a coastal urban site in Xiamen, a port city in southeastern China, between August 2020 and September 2021. The water-soluble constituents, including inorganic ions, elements and organic carbon, were determined. Total volume-normalized OP based on the dithiothreitol assay was highest in spring (0.241 ± 0.033 nmol min-1 m-3) and lowest in summer (0.073 ± 0.006 nmol min-1 m-3). OP had a biomodal distribution with peaks at 0.25-0.44 μm and 1.0-1.4 μm in spring, summer, and winter and a unimodal pattern with peak at 0.25-0.44 μm in fall, which were different from the patterns of redox-active species. Variations in the seasonality of fine and coarse mode OP and their correlations with water-soluble constituents showed that the size distribution patterns of OP could be attributed to the combined effects of the size distributions of transition metals and redox-active organics and the interactions between them which varied with emissions, meteorological conditions and atmospheric processes. Respiratory tract deposition model indicated that the deposited OP and the toxic elements accounted for 47.9 % and 36.8 % of their measured concentrations, respectively. The highest OP doses and the excess lifetime carcinogenic risk (ELCR) were found in the head airway (>70 %). However, the size distributions of OP deposition and ELCR in the respiratory tract were different, with 63.9 % and 49.4 % of deposited ELCR and OP, respectively, coming from PM2.5. Therefore, attention must be paid to coarse particles from non-exhaust emissions and road dust resuspension.
Collapse
Affiliation(s)
- Jia-Min Li
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; Center for Marine Environmental Chemistry and Toxicology, College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Si-Min Zhao
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; Center for Marine Environmental Chemistry and Toxicology, College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shui-Ping Wu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; Center for Marine Environmental Chemistry and Toxicology, College of Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Bing-Qi Jiang
- Fujian Provincial Academy of Environmental Science, Fuzhou 350013, China
| | - Yi-Jing Liu
- Fujian Provincial Academy of Environmental Science, Fuzhou 350013, China
| | - Jie Zhang
- Atmospheric Sciences Research Center, University at Albany, SUNY, Albany 12203, USA
| | - James J Schwab
- Atmospheric Sciences Research Center, University at Albany, SUNY, Albany 12203, USA
| |
Collapse
|
3
|
Badami MM, Tohidi R, Aldekheel M, Farahani VJ, Verma V, Sioutas C. Design, optimization, and evaluation of a wet electrostatic precipitator (ESP) for aerosol collection. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2023; 308:119858. [PMID: 37305446 PMCID: PMC10249774 DOI: 10.1016/j.atmosenv.2023.119858] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, we developed, optimized, and evaluated in lab and field experiments a wet electrostatic precipitator (ESP) for the collection of ambient PM2.5 (particulate matter with aerodynamic diameter < 2.5 μm) into ultrapure water by applying an electrostatic charge to the particles. We operated the wet ESP at different flow rates and voltages to identify the optimal operating conditions. According to our experimental measurements, a flow rate of 125 lpm and an applied positive voltage of 11 kV resulted in a lower ozone generation of 133 ppb and a particle collection efficiency exceeding 80-90% in all size ranges. For the field tests, the wet ESP was compared with the versatile aerosol concentration enrichment system (VACES) connected to a BioSampler, a PTFE filter sampler, and an OC/EC analyzer (Sunset Laboratory Inc., USA) as a reference. The chemical analysis results indicated the wet ESP concentrations of metal and trace elements were in very good agreement with those measured by the VACES/BioSampler and PTFE filter sampler. Moreover, our results showed comparable total organic carbon (TOC) concentrations measured by the wet ESP, BioSampler, and OC/EC analyzer, while somewhat lower TOC concentrations were measured by the PTFE filter sampler, possibly due to the limitations of extracting water-insoluble organic carbon (WIOC) from a dry substrate in the latter sampler. The comparable TOC content in the wet ESP and BioSampler samples differs from previous findings that showed higher TOC content in BioSampler samples compared to those collected by dry ESP. The results of the Dithiothreitol (DTT) assay showed comparable DTT activity in the VACES/BioSampler and wet ESP PM samples while slightly lower in the PTFE filter samples. Overall, our results suggest that the wet ESP could be a promising alternative to other conventional sampling methods.
Collapse
Affiliation(s)
- Mohammad Mahdi Badami
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Ramin Tohidi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Mohammad Aldekheel
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
- Kuwait University, Department of Civil Engineering, P.O Box 5969, Safat 13060, Kuwait
| | - Vahid Jalali Farahani
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| |
Collapse
|
4
|
Aldekheel M, Farahani VJ, Tohidi R, Altuwayjiri A, Sioutas C. Development and performance evaluation of a two-stage cascade impactor equipped with gelatin filter substrates for the collection of multi-sized particulate matter. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2023; 294:119493. [PMID: 36504702 PMCID: PMC9733700 DOI: 10.1016/j.atmosenv.2022.119493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This study presents the development and evaluation of a high flow rate gelatin cascade impactor (GCI) to collect different PM particle sizes on water-soluble gelatin substrates. The GCI operates at a flow rate of 100 lpm, and consists of two impaction stages, followed by a filter holder to separate particles in the following diameter ranges: >2.5 μm, 0.2-2.5 μm, and <0.2 μm. Laboratory characterization of the GCI performance was conducted using monodisperse polystyrene latex (PSL) particles as well as polydisperse ammonium sulfate, sodium chloride, and ammonium nitrate aerosols to obtain the particle collection efficiency curves for both impaction stages. In addition to the laboratory characterization, we performed concurrent field experiments to collect PM2.5 employing both GCI equipped with gelatin filter and personal cascade impactor sampler (PCIS) equipped with PTFE filter for further toxicological analysis using macrophage-based reactive oxygen species (ROS) and dithiothreitol consumption (DTT) assays. Our results showed that the experimentally determined cut-point diameters for the first and second impaction stages were 2.4 μm and 0.21 μm, respectively, which agreed with the theoretical predictions. Although the GCI has been developed primarily to collect particles on gelatin filters, the use of a different type of substrate (i.e., quartz) led to similar particle separation characteristics. The findings of the field tests demonstrated the advantage of using the GCI in toxicological studies due to its ability to collect considerable PM-toxic constituents, as corroborated by the DTT and ROS values for the GCI-collected particles which were 26.44 nmoles/min/mg PM and 8813.2 μg Zymosan Units/mg PM, respectively. These redox activity values were more than twice those of particles collected concurrently on PTFE filter using the PCIS. This high-flow-rate impactor can collect considerable amounts of size-fractionated PM on water-soluble filters (i.e., gelatin), which can completely dissolve in water allowing for the extraction of soluble and insoluble PM species for further toxicological analysis.
Collapse
Affiliation(s)
- Mohammad Aldekheel
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
- Kuwait University, Department of Civil Engineering, P.O Box 5969, Safat 13060, Kuwait
| | - Vahid Jalali Farahani
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Ramin Tohidi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Abdulmalik Altuwayjiri
- Department of Civil and Environmental Engineering, College of Engineering, Majmaah University, AL-Majmaah 11952, Saudi Arabia
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| |
Collapse
|
5
|
Besis A, Romano MP, Serafeim E, Avgenikou A, Kouras A, Lionetto MG, Guascito MR, De Bartolomeo AR, Giordano ME, Mangone A, Contini D, Samara C. Size-Resolved Redox Activity and Cytotoxicity of Water-Soluble Urban Atmospheric Particulate Matter: Assessing Contributions from Chemical Components. TOXICS 2023; 11:59. [PMID: 36668785 PMCID: PMC9867266 DOI: 10.3390/toxics11010059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Throughout the cold and the warm periods of 2020, chemical and toxicological characterization of the water-soluble fraction of size segregated particulate matter (PM) (<0.49, 0.49−0.95, 0.95−1.5, 1.5−3.0, 3.0−7.2 and >7.2 μm) was conducted in the urban agglomeration of Thessaloniki, northern Greece. Chemical analysis of the water-soluble PM fraction included water-soluble organic carbon (WSOC), humic-like substances (HULIS), and trace elements (V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd and Pb). The bulk (sum of all size fractions) concentrations of HULIS were 2.5 ± 0.5 and 1.2 ± 0.3 μg m−3, for the cold and warm sampling periods, respectively with highest values in the <0.49 μm particle size fraction. The total HULIS-C/WSOC ratio ranged from 17 to 26% for all sampling periods, confirming that HULIS are a significant part of WSOC. The most abundant water-soluble metals were Fe, Zn, Cu, and Mn. The oxidative PM activity was measured abiotically using the dithiothreitol (DTT) assay. In vitro cytotoxic responses were investigated using mitochondrial dehydrogenase (MTT). A significant positive correlation was found between OPmDTT, WSOC, HULIS and the MTT cytotoxicity of PM. Multiple Linear Regression (MLR) showed a good relationship between OPMDTT, HULIS and Cu.
Collapse
Affiliation(s)
- Athanasios Besis
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Maria Pia Romano
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
| | - Eleni Serafeim
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Anna Avgenikou
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Athanasios Kouras
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Maria Rachele Guascito
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
- Institute of Atmospheric Sciences and Climate (CNR-ISAC), 73100 Lecce, Italy
| | - Anna Rita De Bartolomeo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Maria Elena Giordano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Annarosa Mangone
- Department of Chemistry, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Daniele Contini
- Institute of Atmospheric Sciences and Climate (CNR-ISAC), 73100 Lecce, Italy
| | - Constantini Samara
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Pietrogrande MC, Demaria G, Colombi C, Cuccia E, Dal Santo U. Seasonal and Spatial Variations of PM 10 and PM 2.5 Oxidative Potential in Five Urban and Rural Sites across Lombardia Region, Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7778. [PMID: 35805434 PMCID: PMC9265313 DOI: 10.3390/ijerph19137778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023]
Abstract
Oxidative potential (OP) of particulate matter (PM) is gaining strong interest as a promising health exposure metric. This study investigated OP of a large set of PM10 and PM2.5 samples collected at five urban and background sites near Milan (Italy), one of the largest and most polluted urban areas in Europe, afflicted with high particle levels. OP responses from two acellular assays, based on ascorbic acid (AA) and dithiothreitol (DTT), were combined with atmospheric detailed composition to examine any possible feature in OP with PM size fraction, spatial and seasonal variations. A general association of volume-normalized OP with PM mass was found; this association may be related to the clear seasonality observed, whereby there was higher OP activity in wintertime at all investigated sites. Univariate correlations were used to link OP with the concentrations of the major chemical markers of vehicular and biomass burning emissions. Of the two assays, AA was particularly sensitive towards transition metals in coarse particles released from vehicular traffic. The results obtained confirm that the responses from the two assays and their relationship with atmospheric pollutants are assay- and location-dependent, and that their combination is therefore helpful to singling out the PM redox-active compounds driving its oxidative properties.
Collapse
Affiliation(s)
- Maria Chiara Pietrogrande
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy;
| | - Giorgia Demaria
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy;
| | - Cristina Colombi
- Environmental Monitoring Sector, Arpa Lombardia, Via Rosellini 17, 20124 Milano, Italy; (C.C.); (E.C.); (U.D.S.)
| | - Eleonora Cuccia
- Environmental Monitoring Sector, Arpa Lombardia, Via Rosellini 17, 20124 Milano, Italy; (C.C.); (E.C.); (U.D.S.)
| | - Umberto Dal Santo
- Environmental Monitoring Sector, Arpa Lombardia, Via Rosellini 17, 20124 Milano, Italy; (C.C.); (E.C.); (U.D.S.)
| |
Collapse
|
7
|
Shafer MM, Overdier JT, Schauer JJ. An improved method for sampling and analytical measurement of aerosol platinum in ambient air and workplace environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152657. [PMID: 34971687 DOI: 10.1016/j.scitotenv.2021.152657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
In this study we critically examined with both field and laboratory experiments key components of extant methods for measurement of aerosol soluble platinum in ambient air and workplace environments. Our goal was to develop an improved method for soluble platinum measurement that could be readily implemented in the field and laboratory using readily available modern analytical tools, and in parallel provide insight into factors influencing the robustness of specific aspects of measurement methods for soluble platinum. Experiments addressed sampler type, filter media and pre-cleaning, extraction solvent and volume, extraction time & energy and materials composition, with the objective of optimizing each specific component and promulgating strategies for improving signal/noise and precision. We used basic clean-room protocols and applied ICPMS tools to address these objectives. We document a method that provides for measurement of soluble platinum at the 0.02 ng/m3 level (8-h sample at 2 L/min). Of the four samplers evaluated (IOM, closed-face cassette, and two parallel particle impactors), the IOM exhibited the best precision. The three filter substrates evaluated (Teflon, MCE, PVC) performed similarly in most challenges, however, overall, we conclude that MCE media is the most robust collection substrate for soluble platinum measurements. To achieve the lowest detection levels, it is critical to pre-clean the filter substrates. The use of a 0.07 M HCl extractant (in preference to a water extractant) is recommended - platinum recoveries, particularly from real-world samples, are higher and more consistent with the HCl extractant. The outcomes of the extraction kinetics experiments suggest that an extraction time of 60 min may improve the method performance with 0.07 M HCl but degrade the performance with water, in comparison with a 30-min extraction period. The use of sonication in preference to a table-top shaker is recommended for energy input during extraction.
Collapse
Affiliation(s)
- Martin M Shafer
- School of Medicine & Public Health, Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, 2601 Agriculture Drive, Madison, WI 53718, United States of America.
| | - Joel T Overdier
- School of Medicine & Public Health, Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, 2601 Agriculture Drive, Madison, WI 53718, United States of America
| | - James J Schauer
- School of Medicine & Public Health, Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, 2601 Agriculture Drive, Madison, WI 53718, United States of America.
| |
Collapse
|
8
|
Khoshkam Z, Habibi-Rezaei M, Hassanvand MS, Aftabi Y, Seyedrezazadeh E, Amiri-Sadeghan A, Zarredar H, Roshangar L, Gholampour A, Moosavi-Movahedi AA. The oxidative and neurotoxic potentials of the ambient PM 2.5 extracts: The efficient multi-solvent extraction method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152291. [PMID: 34902406 DOI: 10.1016/j.scitotenv.2021.152291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/05/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The health effects of ambient air particulate matter with a diameter of ≤2.5 μm (PM2.5) on the central nervous system are well known and the induced oxidative stress has been shown as their main neuropathologic outcome. Ambient air PM2.5 sampling methods mostly use air sampler systems that collect PM2.5 on filters, which is followed by a PM2.5 extraction approach. Inefficient extraction may lead to compositional bias and unreal interpretation of the results. This study aimed to compare our proposed multi-solvent extraction (MSE) approach for PM2.5 extraction with a conventional aqueous extraction (AqE) method using the analysis of oxidative effects and cytotoxicity in the human neuroblastoma SH-SY5Y cell line. Ambient PM2.5 samples were collected from an urban traffic location in Tehran city, the capital of Iran, using a high-volume sampler. The developed MSE method was proved to have superior advantages over the AqE method including an increased extraction efficiency (as much as 96 against 48% for PMms and PMaq, respectively), and decreased artifacts and compositional biases. Ambient PM2.5, besides PMms and PMaq were analyzed for water-soluble ions, metals, and major elements. Dithiothreitol, ascorbic acid, lipid peroxidation, and cell viability assays on SH-SY5Y cells represented the significantly higher oxidative potential for PMms compared to PMaq. The increased cytotoxicity may occur because of the increased oxidative potential of PMms and possibly is associated with higher efficiency of the MSE over the AqE method for removal of total redox-active PM components.
Collapse
Affiliation(s)
- Zahra Khoshkam
- College of Science, University of Tehran, Tehran, Iran; Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Habibi-Rezaei
- College of Science, University of Tehran, Tehran, Iran; Center of Excellence in NanoBiomedicine, University of Tehran, Tehran 1417466191, Iran.
| | - Mohammad Sadegh Hassanvand
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Younes Aftabi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ensiyeh Seyedrezazadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Amiri-Sadeghan
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Gholampour
- Department of Environmental Health Engineering, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
9
|
Altuwayjiri A, Pirhadi M, Kalafy M, Alharbi B, Sioutas C. Impact of different sources on the oxidative potential of ambient particulate matter PM 10 in Riyadh, Saudi Arabia: A focus on dust emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150590. [PMID: 34597581 PMCID: PMC8907835 DOI: 10.1016/j.scitotenv.2021.150590] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 05/08/2023]
Abstract
In this study, we employed Principal Component Analysis (PCA) and Multi-Linear Regression (MLR) to identify the most significant sources contributing to the toxicity of PM10 in the city center of Riyadh. PM10 samples were collected using a medium-volume air sampler during cool (December 2019-March 2020) and warm (May 2020-August 2020) seasons, including dust and non-dust events. The collected filters were analyzed for their chemical components (i.e., water-soluble ions, metals, and trace elements) as well as oxidative potential and elemental and organic carbon (EC/OC) contents. Our measurements revealed comparable extrinsic oxidative potential (P-value = 0.30) during the warm (1.2 ± 0.1 nmol/min-m3) and cool (1.1 ± 0.1 nmol/min-m3) periods. Moreover, we observed higher extrinsic oxidative potential of PM10 samples collected during dust events (~30% increase) compared to non-dust samples. Our PCA-MLR analysis identified soil and resuspended dust, secondary aerosol (SA), local industrial activities and petroleum refineries, and traffic emissions as the four sources contributing to the ambient PM10 oxidative potential in central Riyadh. Soil and resuspended dust were the major source contributing to the oxidative potential of ambient PM10, accounting for 31% of the total oxidative potential. Secondary aerosols (SA) were the next important source of PM10 toxicity in the area as they contributed to about 20% of the PM10 oxidative potential. Results of this study revealed the major role of soil and resuspended road dust on PM10 toxicity and can be helpful in adopting targeted air quality policies to reduce the population exposure to PM10.
Collapse
Affiliation(s)
- Abdulmalik Altuwayjiri
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA; Majmaah University, Department of Civil and Environmental Engineering, Majmaah, Riyadh, Saudi Arabia
| | - Milad Pirhadi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Mohammed Kalafy
- Saudi Envirozone, Air Quality Monitoring Department, Riyadh, Saudi Arabia
| | - Badr Alharbi
- National Center for Environmental Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Bandowe BAM, Lui KH, Jones T, BéruBé K, Adams R, Niu X, Wei C, Cao JJ, Lee SC, Chuang HC, Ho KF. The chemical composition and toxicological effects of fine particulate matter (PM 2.5) emitted from different cooking styles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117754. [PMID: 34284205 DOI: 10.1016/j.envpol.2021.117754] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The mass, chemical composition and toxicological properties of fine particulates (PM2.5) emitted from cooking activities in three Hong Kong based restaurants and two simulated cooking experiments were characterized. Extracts from the PM2.5 samples elicited significant biological activities [cell viability, generation of reactive oxygen species (ROS), DNA damage and inflammation effect (TNF-α)] in a dose-dependent manner. The composition of PAHs, oxygenated PAHs (OPAHs) and azaarenes (AZAs) mixtures differed between samples. The concentration ranges of the Σ30PAHs, Σ17OPAHs and Σ4AZAs and Σ7Carbonyls in the samples were 9627-23,452 pg m-3, 503-3700 pg m-3, 33-263 pg m-3 and 158 - 5328 ng m-3, respectively. Cell viability caused by extracts from the samples was positively correlated to the concentration of benzo[a]anthracene, indeno[1,2,3-cd]pyrene and 1,4-naphthoquinone in the PM2.5 extracts. Cellular ROS production (upon exposure to extracts) was positively correlated with the concentrations of PM2.5, decaldehyde, acridine, Σ17OPAHs and 7 individual OPAHs. TNF-α showed significant positive correlations with the concentrations of most chemical species (elemental carbon, 16 individual PAHs including benzo[a]pyrene, Σ30PAHs, SO42-, Ca2+, Ca, Na, K, Ti, Cr, Mn, Fe, Cu and Zn). The concentrations of Al, Ti, Mn, Σ30PAHs and 8 individual PAHs including benzo[a]pyrene in the samples were positively correlated with DNA damage caused by extracts from the samples. This study demonstrates that inhalation of PM2.5 emitted from cooking could result in adverse human health effects.
Collapse
Affiliation(s)
- Benjamin A Musa Bandowe
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012, Bern, Switzerland; Max Planck Institute for Chemistry, Multiphase Chemistry Department, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| | - K H Lui
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Timothy Jones
- School of Earth and Environmental Sciences, Cardiff University, Park Place, Cardiff, UK
| | - Kelly BéruBé
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK
| | - Rachel Adams
- Cardiff School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff, UK
| | - Xinyi Niu
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Chong Wei
- Shanghai Carbon Data Research Center (SCDRC), CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 2010210, China
| | - Jun-Ji Cao
- Key Laboratory of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710075, China; Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China
| | - S C Lee
- Department of Civil and Structural Engineering, Research Center of Urban Environmental Technology and Management, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - K F Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Metabolic Response of RAW 264.7 Macrophages to Exposure to Crude Particulate Matter and a Reduced Content of Organic Matter. TOXICS 2021; 9:toxics9090205. [PMID: 34564356 PMCID: PMC8472964 DOI: 10.3390/toxics9090205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/21/2022]
Abstract
Exposure to air pollution from various airborne particulate matter (PM) is regarded as a potential health risk. Airborne PM penetrates the lungs, where it is taken up by macrophages, what results in macrophage activation and can potentially lead to negative consequences for the organism. In the present study, we assessed the effects of direct exposure of RAW 264.7 macrophages to crude PM (NIST1648a) and to a reduced content of organic matter (LAp120) for up to 72 h on selected parameters of metabolic activity. These included cell viability and apoptosis, metabolic activity and cell number, ROS synthesis, nitric oxide (NO) release, and oxidative burst. The results indicated that both NIST1648a and LAp120 negatively influenced the parameters of cell viability and metabolic activity due to increased ROS synthesis. The negative effect of PM was concentration-dependent; i.e., it was the most pronounced for the highest concentration applied. The impact of PM also depended on the time of exposure, so at respective time points, PM induced different effects. There were also differences in the impact of NIST1648a and LAp120 on almost all parameters tested. The negative effect of LAp120 was more pronounced, what appeared to be associated with an increased content of metals.
Collapse
|
12
|
Altuwayjiri A, Soleimanian E, Moroni S, Palomba P, Borgini A, De Marco C, Ruprecht AA, Sioutas C. The impact of stay-home policies during Coronavirus-19 pandemic on the chemical and toxicological characteristics of ambient PM 2.5 in the metropolitan area of Milan, Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143582. [PMID: 33213922 PMCID: PMC7833074 DOI: 10.1016/j.scitotenv.2020.143582] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/10/2020] [Accepted: 11/02/2020] [Indexed: 05/03/2023]
Abstract
The goal of this study was to characterize changes in components and toxicological properties of PM2.5 during the nationwide 2019-Coronavirus (COVID-19) lockdown restrictions in Milan, Italy. Time-integrated PM2.5 filters were collected at a residential site in Milan metropolitan area from April 11th to June 3rd at 2020, encompassing full-lockdown (FL), the followed partial-lockdown (PL2), and full-relaxation (FR) periods of COVID-19 restrictions. The collected filters were analyzed for elemental and organic carbon (EC/OC), water-soluble organic carbon (WSOC), individual organic species (e.g., polycyclic aromatic hydrocarbons (PAHs), and levoglucosan), and metals. According to online data, nitrogen dioxide (NO2) and benzene (C6H6) levels significantly decreased during the entire COVID-19 period compared to the same time span in 2019, mainly due to the government-backed shutdowns and curtailed road traffic. Similarly, with a few exceptions, surrogates of tailpipe emissions (e.g., traffic-associated PAHs) as well as re-suspended road dust (e.g., Fe, Mn, Cu, Cr, and Ti) were relatively lower during FL and PL2 periods in comparison with year 2019, whereas an increasing trend in mass concentration of mentioned species was observed from FL to PL2 and FR phases due to the gradual lifting of lockdown restrictions. In contrast, comparable concentrations of ambient PM2.5 and black carbon (BC) between lockdown period and the same time span in 2019 were attributed to the interplay between decreased road traffic and elevated domestic biomass burning as a result of adopted stay-home strategies. Finally, the curtailed road traffic during FL and PL2 periods led to ~25% drop in the PM2.5 oxidative potential (measured via 2',7'-dichlorodihydrofluorescein (DCFH) and dithiothreitol (DTT) assays) with respect to the FR period as well as the same time span in 2019. The results of this study provide insights into the changes in components and oxidative potential of PM2.5 in the absence of road traffic during COVID-19 restrictions.
Collapse
Affiliation(s)
- Abdulmalik Altuwayjiri
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Ehsan Soleimanian
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Silvia Moroni
- Agenzia Mobilità Ambiente e Territorio - AMAT srl, Mobility, Environment and Territory Agency, Milan, Italy
| | - Paolo Palomba
- Agenzia Mobilità Ambiente e Territorio - AMAT srl, Mobility, Environment and Territory Agency, Milan, Italy
| | - Alessandro Borgini
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Associazione Medici per l'Ambiente ISDE Italia, International Society of Doctors for the Environment (ISDE), Italy
| | - Cinzia De Marco
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Associazione Medici per l'Ambiente ISDE Italia, International Society of Doctors for the Environment (ISDE), Italy
| | - Ario A Ruprecht
- Associazione Medici per l'Ambiente ISDE Italia, International Society of Doctors for the Environment (ISDE), Italy
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Daellenbach KR, Uzu G, Jiang J, Cassagnes LE, Leni Z, Vlachou A, Stefenelli G, Canonaco F, Weber S, Segers A, Kuenen JJP, Schaap M, Favez O, Albinet A, Aksoyoglu S, Dommen J, Baltensperger U, Geiser M, El Haddad I, Jaffrezo JL, Prévôt ASH. Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature 2020; 587:414-419. [PMID: 33208962 DOI: 10.1038/s41586-020-2902-8] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 10/05/2020] [Indexed: 11/09/2022]
Abstract
Particulate matter is a component of ambient air pollution that has been linked to millions of annual premature deaths globally1-3. Assessments of the chronic and acute effects of particulate matter on human health tend to be based on mass concentration, with particle size and composition also thought to play a part4. Oxidative potential has been suggested to be one of the many possible drivers of the acute health effects of particulate matter, but the link remains uncertain5-8. Studies investigating the particulate-matter components that manifest an oxidative activity have yielded conflicting results7. In consequence, there is still much to be learned about the sources of particulate matter that may control the oxidative potential concentration7. Here we use field observations and air-quality modelling to quantify the major primary and secondary sources of particulate matter and of oxidative potential in Europe. We find that secondary inorganic components, crustal material and secondary biogenic organic aerosols control the mass concentration of particulate matter. By contrast, oxidative potential concentration is associated mostly with anthropogenic sources, in particular with fine-mode secondary organic aerosols largely from residential biomass burning and coarse-mode metals from vehicular non-exhaust emissions. Our results suggest that mitigation strategies aimed at reducing the mass concentrations of particulate matter alone may not reduce the oxidative potential concentration. If the oxidative potential can be linked to major health impacts, it may be more effective to control specific sources of particulate matter rather than overall particulate mass.
Collapse
Affiliation(s)
- Kaspar R Daellenbach
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland.,Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Laboratoire Chimie Environnement (LCE), Marseille, France.,Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Gaëlle Uzu
- Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Institute of Engineering and Management Univ. Grenoble Alpes (Grenoble INP), Institut des Géosciences de l'Environnement (IGE), Grenoble, France
| | - Jianhui Jiang
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
| | | | - Zaira Leni
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Athanasia Vlachou
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Giulia Stefenelli
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Francesco Canonaco
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland.,Datalystica, Villigen, Switzerland
| | - Samuël Weber
- Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Institute of Engineering and Management Univ. Grenoble Alpes (Grenoble INP), Institut des Géosciences de l'Environnement (IGE), Grenoble, France
| | - Arjo Segers
- Department of Climate, Air and Sustainability, The Netherlands Organisation for Applied Scientific Research (TNO), Utrecht, The Netherlands
| | - Jeroen J P Kuenen
- Department of Climate, Air and Sustainability, The Netherlands Organisation for Applied Scientific Research (TNO), Utrecht, The Netherlands
| | - Martijn Schaap
- Department of Climate, Air and Sustainability, The Netherlands Organisation for Applied Scientific Research (TNO), Utrecht, The Netherlands.,Institut für Meteorologie, Free University Berlin, Berlin, Germany
| | - Olivier Favez
- Institut National de l'Environnement Industriel et des Risques (Ineris), Verneuil en Halatte, France
| | - Alexandre Albinet
- Institut National de l'Environnement Industriel et des Risques (Ineris), Verneuil en Halatte, France
| | - Sebnem Aksoyoglu
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Josef Dommen
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Urs Baltensperger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | | | - Imad El Haddad
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
| | - Jean-Luc Jaffrezo
- Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Institute of Engineering and Management Univ. Grenoble Alpes (Grenoble INP), Institut des Géosciences de l'Environnement (IGE), Grenoble, France
| | - André S H Prévôt
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
| |
Collapse
|
14
|
Pirhadi M, Mousavi A, Sioutas C. Evaluation of a high flow rate electrostatic precipitator (ESP) as a particulate matter (PM) collector for toxicity studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140060. [PMID: 32554118 PMCID: PMC7442709 DOI: 10.1016/j.scitotenv.2020.140060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 05/07/2023]
Abstract
In this study, we investigated the performance of an electrostatic precipitator (ESP) operating at high flow rates (i.e., 50-100 lpm) as a fine particulate matter (PM2.5) collector for toxicological studies. The ESP optimum configuration (i.e., flow rate of 75 lpm and applied voltage of +12 kV) was determined based on maximum particle collection efficiencies and minimum ozone emissions associated with the instrument using different laboratory-generated aerosols. This configuration resulted in particle collection efficiencies above 80% for almost all particles in the size range of 0.015-2.5 μm while the ozone concentration was 17 ppb. The ESP was then deployed to our sampling site in central Los Angeles to evaluate its performance using ambient particles under the optimum configuration. Chemical composition and oxidative potential of PM2.5 samples collected on the foils placed inside the ESP tube were compared with those collected concurrently on filters and aerosol slurries using the versatile aerosol concentration enrichment system (VACES) operating in parallel. Our results demonstrated that the ESP was more efficient in preserving labile inorganic ions and total organic carbon (TOC) compared to filters. PM samples collected on ESP substrates also showed higher intrinsic oxidative potential compared to the filters, which might be the result of better preservation of redox active semi-volatile organic compounds on the ESP substrates. However, the TOC concentrations and intrinsic oxidative potential of PM samples collected on ESP substrates were somewhat lower than the aerosol slurries collected by the VACES, probably due to deficiency of water-insoluble compounds in extracted PM samples from ESP substrates. In conclusion, while particle collection for toxicological purposes by the ESP is somewhat inferior to a direct aerosol-into-liquid collection, the ESP performs equally well, if not better, than conventional filter samplers and can be utilized as a simple and adequately efficient PM collector for toxicological studies.
Collapse
Affiliation(s)
- Milad Pirhadi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Amirhosein Mousavi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Long X, Luo YH, Zhang Z, Zheng C, Zeng C, Bi Y, Zhou C, Rittmann BE, Waite TD, Herckes P, Westerhoff P. The Nature and Oxidative Reactivity of Urban Magnetic Nanoparticle Dust Provide New Insights into Potential Neurotoxicity Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10599-10609. [PMID: 32786591 DOI: 10.1021/acs.est.0c01962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The recent discovery of magnetic nanoparticles (NPs) in human brain tissue has raised concerns regarding their source and neurotoxicity. As previous studies have suggested that magnetite in urban dust may be the source, we collected urban magnetic dust and thoroughly characterized the nature of ambient urban magnetic dust particles prior to investigating their neurotoxic potential. In addition to magnetite, magnetic dust contained an abundance (∼40%) of elemental iron (Fe0). The coexistence of magnetite and elemental iron was found in magnetic dust particles of inhalable (<10 μm) and nanoscale (<200 nm) size ranges with these particles small enough to enter the human brain via the respiratory tract and olfactory bulbs. The magnetic dust also contained nonferrous water-soluble metals (particularly Cu) that can induce formation of reactive oxygen species (ROS). Previous studies used engineered pure-magnetite for in vitro ROS studies. However, while magnetite was present in all magnetic dust particles collected, engineered pure-magnetite was relatively unreactive and contributed minimally to the generation of ROS. We fill a critical knowledge gap between exposure to heterogeneous ambient iron-particles and in vitro experiments with engineered versus ambient, incidental iron-bearing nanoscale minerals. Our work points to the need to further investigate the presence and properties of magnetic NPs in respirable dust with respect to their potential role in neurodegeneration.
Collapse
Affiliation(s)
- Xiangxing Long
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Zhaobo Zhang
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Chenwei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Chao Zeng
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Yuqiang Bi
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - T David Waite
- Water Research Center, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Pierre Herckes
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| |
Collapse
|
16
|
Wang Y, Zhang Y, Schauer JJ, de Foy B, Cai T, Zhang Y. Impacts of Sources on PM 2.5 Oxidation Potential during and after the Asia-Pacific Economic Cooperation Conference in Huairou, Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2585-2594. [PMID: 31951123 DOI: 10.1021/acs.est.9b05468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To illustrate the major sources responsible for the redox activity of ambient fine particles during the 2014 Asia-Pacific Economic Cooperation (APEC) conference in Beijing, 3 months of daytime (8:00-19:30 LST) and nighttime (20:00-7:30 LST) particulate kmatter (PM2.5) was collected in Huairou, Beijing from November 3, 2014 through January 31, 2015. PM2.5 compositions were analyzed, including elements, organic carbon, elemental carbon, water-soluble ions, organics, and redox activities measured by both the dithiothreitol and the macrophage reactive oxygen species (ROS) assays. The mass-normalized redox activity was approximately constant during the noncontrol period (NCP) and control period (CP). The absolute value of the volume-normalized redox activity was about 4 times higher during NCP than that during CP, indicating the effectiveness of the control measures. The statistical analysis results showed that an interquartile range increase in PM2.5 mass, chemicals, and sources (μg/m3) was associated with the 1-3% increase in redox activity, indicating that the successful control did make a significant reduction in redox activity but did not elucidate that some source controls (i.e., vehicle emissions) could be more effective at reducing redox activity than other control programs (i.e., dust source). This study demonstrated that combustion particles from both solid fuels and liquid fuels could contribute to ROS generation. Furthermore, ROS could be formed in the atmosphere via photochemical reactions, which highlights the need to further research on their formation pathways. A better understanding of the relevant mechanistic pathways and different source contributors to ROS will help to guide strategies for targeted mitigation of the atmospheric oxidation potential and will also help to reduce the great disease stress caused by exposure to air pollution.
Collapse
Affiliation(s)
- Yuqin Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Institute of Bishan Eco-Environment, Bishan, Chongqing 402760, China
| | - James J Schauer
- Civil and Environmental Engineering Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Benjamin de Foy
- Department of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, Missouri 63108, United States
| | - Tianqi Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute of Electronic System Engineering, Beijing 100854, China
| | - Yang Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Lai AM, Clark S, Carter E, Shan M, Ni K, Yang X, Baumgartner J, Schauer JJ. Impacts of stove/fuel use and outdoor air pollution on chemical composition of household particulate matter. INDOOR AIR 2020; 30:294-305. [PMID: 31880849 DOI: 10.1111/ina.12636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Biomass combustion for cooking and heating releases particulate matter (PM2.5 ) that contributes to household air pollution. Fuel and stove types affect the chemical composition of household PM, as does infiltration of outdoor PM. Characterization of these impacts can inform future exposure assessments and epidemiologic studies, but is currently limited. In this study, we measured chemical components of PM2.5 (water-soluble organic matter [WSOM], ions, black carbon, elements, organic tracers) in rural Chinese households using traditional biomass stoves, semi-gasifier stoves with pelletized biomass, and/or non-biomass stoves. We distinguished households using one stove type (traditional, semi-gasifier, or LPG/electric) from those using multiple stoves/fuels. WSOM concentrations were higher in households using only semi-gasifier or traditional stoves (31%-33%) than in those with exclusive LPG/electric stove (13%) or mixed stove use (12%-22%). Inorganic ions comprised 14% of PM in exclusive LPG/electric households, compared to 1%-5% of PM in households using biomass. Total PAH content was much higher in households that used traditional stoves (0.8-2.8 mg/g PM) compared to those that did not (0.1-0.3 mg/g PM). Source apportionment revealed that biomass burning comprised 27%-84% of PM2.5 in households using biomass. In all samples, identified outdoor sources (vehicles, dust, coal combustion, secondary aerosol) contributed 10%-20% of household PM2.5 .
Collapse
Affiliation(s)
- Alexandra M Lai
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Sierra Clark
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Ellison Carter
- Department of Civil and Environmental Engineering, Colorado State University, CO, USA
| | - Ming Shan
- Department of Building Science, Tsinghua University, Beijing, China
| | - Kun Ni
- Department of Building Science, Tsinghua University, Beijing, China
| | - Xudong Yang
- Department of Building Science, Tsinghua University, Beijing, China
| | - Jill Baumgartner
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
- Institute for Health and Social Policy, McGill University, Montreal, QC, Canada
| | - James J Schauer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
18
|
Pirhadi M, Mousavi A, Taghvaee S, Shafer MM, Sioutas C. Semi-volatile components of PM 2.5 in an urban environment: volatility profiles and associated oxidative potential. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2020; 223:117197. [PMID: 32577088 PMCID: PMC7311065 DOI: 10.1016/j.atmosenv.2019.117197] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The volatility profiles of PM2.5 semi-volatile compounds and relationships to the oxidative potential of urban airborne particles were investigated in central Los Angeles, CA. Ambient and thermodenuded fine (PM2.5) particles were collected during both warm and cold seasons by employing the Versatile Aerosol Concentration Enrichment System (VACES) combined with a thermodenuder. When operated at 50 °C and 100 °C, the VACES/thermodenuder system removed about 50% and 75% of the PM2.5 volume concentration, respectively. Most of the quantified PM2.5 semi-volatile species including organic carbon (OC), water soluble organic carbon (WSOC), polycyclic aromatic hydrocarbons (PAHs), organic acids, n-alkanes, and levoglucosan, as well as inorganic ions (i.e., nitrate, sulfate, and ammonium) exhibited concentration losses in the ranges of 40-66% and 67-92%, respectively, as the thermodenuder temperature increased to 50 °C and 100 °C. Species in the PM2.5 such as elemental carbon (EC) and inorganic elements (including trace metals) were minimally impacted by the heating process - thus can be considered refractory. On average, nearly half of the PM2.5 oxidative potential (as measured by the dichlorodihydrofluorescein (DCFH) alveolar macrophage in vitro assay) was associated with the semi-volatile species removed by heating the aerosols to only 50 °C, highlighting the importance of this quite volatile compartment to the ambient PM2.5 toxicity. The fraction of PM2.5 oxidative potential lost upon heating the aerosols to 100 °C further increased to around 75-85%. Furthermore, we document statistically significant correlations between the PM2.5 oxidative potential and different semi-volatile organic compounds originating from primary and secondary sources, including OC (Rwarm, and Rcold) (0.86, and 0.74), WSOC (0.60, and 0.98), PAHs (0.88, and 0.76), organic acids (0.76, and 0.88), and n-alkanes (0.67, and 0.83) in warm and cold seasons, respectively, while a strong correlation between oxidative potential and levoglucosan, a tracer of biomass burning, was observed only during the cold season (Rcold=0.81).
Collapse
Affiliation(s)
- Milad Pirhadi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Amirhosein Mousavi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Sina Taghvaee
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Martin M. Shafer
- University of Wisconsin-Madison, Wisconsin State Laboratory of Hygiene, Madison, WI, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| |
Collapse
|
19
|
Liu Q, Lu Z, Xiong Y, Huang F, Zhou J, Schauer JJ. Oxidative potential of ambient PM 2.5 in Wuhan and its comparisons with eight areas of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134844. [PMID: 31704396 DOI: 10.1016/j.scitotenv.2019.134844] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/09/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Oxidative potential (OP) is a good indicator for assessing health risk associated with exposure to fine particulate matter (PM2.5, <2.5 μm in aerodynamic diameter). In this study, 24-h ambient PM2.5 samples were collected at three sampling sites throughout selected months of 2012 in Wuhan, Central China. Water soluble ions, metals, organic carbon (OC), elemental carbon (EC), levoglucosan, polycyclic aromatic hydrocarbons (PAHs), hopanes, and dicarboxylic acids were determined. The dithiothreitol (DTT) assay was used to characterize the oxidative potential of PM2.5. Linear regression analysis and principal component analysis (PCA) were used to link OP to the individual redox-active components originating from diverse emission sources. The OP results from the three sites in Wuhan, combined with the findings from eight other field studies of OP conducted in China, were compiled in order to compare the OP data in developed countries. The average, normalized OP levels for volume and mass at the three sampling sites in Wuhan were in the range of 1.8-8.2 nmol min-1 m-3 and 18.2-52.8 nmol min-1 mg-1, respectively. The differences in OP levels across sampling sites depended on the temporal and spatial differences in redox-active components of PM2.5. Results from linear regression and PCA showed that the redox-active components emitted from secondary inorganic aerosols as well as secondary organic aerosols were associated with the volume normalized OP in Wuhan. Two notable findings are illustrated by synthesizing the OP results observed at multi-sites across China. Of the nine field studies conducted in China, the lowest measured mass-normalized OP levels are significantly higher than the highest OP levels from field studies conducted in developed continents. China shares the same sources responsible for OP (e.g., secondary sources, fuel combustion, biomass burning, and dust emissions) with several other countries in developed continents.
Collapse
Affiliation(s)
- Qingyang Liu
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Zhaojie Lu
- College of Civil & Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ying Xiong
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; Department of Mechanical and Manufacturing Engineering, University of Calgary, Alberta T2N 1N4, Canada
| | - Fan Huang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jiabin Zhou
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.
| | - James J Schauer
- College of Civil & Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
20
|
Seasonal Variations and Chemical Predictors of Oxidative Potential (OP) of Particulate Matter (PM), for Seven Urban French Sites. ATMOSPHERE 2019. [DOI: 10.3390/atmos10110698] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epidemiological studies suggest that the main part of chronic effects from air pollution is likely to be linked with particulate matter (PM). Oxidative potential (OP) of PM is gaining strong interest as a promising health exposure metric. This study combined atmospheric detailed composition results obtained for seven different urban background environments over France to examine any possible common feature in OP seasonal variations obtained using two assays (acid ascorbic (AA) and dithiothreitol (DTT)) along a large set of samples ( N > 700 ). A remarkable homogeneity in annual cycles was observed with a higher OP activity in wintertime at all investigated sites. Univariate correlations were used to link the concentrations of some major chemical components of PM and their OP. Four PM components were identified as OP predictors: OC, EC, monosaccharides and Cu. These species are notably emitted by road transport and biomass burning, targeting main sources probably responsible for the measured OP activity. The results obtained confirm that the relationship between OP and atmospheric pollutants is assay- and location-dependent and, thus, the strong need for a standardized test, or set of tests, for further regulation purposes.
Collapse
|
21
|
Review of PM Oxidative Potential Measured with Acellular Assays in Urban and Rural Sites across Italy. ATMOSPHERE 2019. [DOI: 10.3390/atmos10100626] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work is an overview of the oxidative potential (OP) values up to date measured in Italy, with the aim to provide a picture of the spatial and seasonal variability of OP in the various geographical areas across Italy. The summarized works used the common acellular assays-based dithiothreitol (OPDTT), ascorbic acid (OPAA), glutathione (OPGSH), and 2',7'-dichlorodfluorescein (OPDCFH) assays. The paper describes the association of OP responses with PM chemical composition, the sensitivity of various acellular OP assays to PM components and emission sources, and PM size distribution of the measured OP values. Our synthesis indicates that crustal and transition metals (e.g., Fe, Ni, Cu, Cr, Mn, Zn, and V), secondary ions and carbonaceous components (elemental carbon, EC, organic carbon, OC and water soluble carbon, WSOC) show significant correlations with OP across different urban and rural areas and size ranges. These chemical species are mainly associated with various PM sources, including residual/fuel oil combustion, traffic emissions, and secondary organic aerosol formation. Although the OP assays are sensitive to the same redox-active species, they differ in the association with PM chemical components. The DDT assay is mainly sensitive to the organic compounds that are mostly accumulated in the fine PM fraction, i.e., tracers of burning sources, and redox active organics associated with other markers of photochemical aging. In contrast, OPAA and OPGSH were mostly responsive to metals, mainly those related to non-exhaust traffic emissions (Cu, Zn, Cr, Fe, Ni, Mn, Sn, Cd, Pb), that are mainly accumulated in the coarse PM. Among the investigated sites, our synthesis shows larger OP values in Trentino region and the Po Valley, that may be explained by the high density of anthropogenic sources, and the orographic and meteorological characteristics, that favor the pollutants accumulation and aerosol photo-oxidative aging.
Collapse
|
22
|
Yang J, Roth P, Durbin TD, Shafer MM, Hemming J, Antkiewicz DS, Asa-Awuku A, Karavalakis G. Emissions from a flex fuel GDI vehicle operating on ethanol fuels show marked contrasts in chemical, physical and toxicological characteristics as a function of ethanol content. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:749-761. [PMID: 31150895 DOI: 10.1016/j.scitotenv.2019.05.279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/19/2019] [Indexed: 06/09/2023]
Abstract
This study assessed the gaseous and particulate emissions, as well as the toxicological properties of particulate matter (PM) from a flex fuel vehicle equipped with a wall-guided gasoline direct injection engine over triplicates cold-start and hot-start LA92 cycles. The vehicle was operated on a Tier 3 E10 fuel, an E10 fuel with higher levels of aromatics than the Tier 3 E10, an E30, and an E78 blend. Total hydrocarbon (THC), non-methane hydrocarbon (NMHC), carbon monoxide (CO), particulate emissions, and gaseous toxics (of benzene, toluene, ethylbenzene, xylenes (BTEX), and 1,3-butadiene) reduced for E30 and E78 blends compared to both E10 fuels. Formaldehyde and acetaldehyde emissions substantially increased with the higher ethanol blends. The high aromatic E10 fuel increased the emissions of THC, NMHC, particulates, and BTEX compared to the Tier 3 E10 fuel and the higher ethanol blends, as well as showed higher concentrations of accumulation mode particles. The GDI PM did not exhibit any measurable mutagenicity at the PM concentrations tested. Cytotoxicity varied only within a small range and concentrations of PM, eliciting a cytotoxic response similar to those by ambient aerosol. The outcomes of our two measures of PM oxidative potential (macrophage ROS and DTT) were significantly correlated, with the E78 blend exhibiting the least oxidative potential and the E30 the greatest. Gene expression analysis at both the mRNA and protein level indicates that there is the potential for GDI PM emissions to contribute to inflammation and etiology of disease such as asthma, and in contrast to the ROS and DTT outcomes, the E78 fuel PM exhibited the greatest potential to elicit pro-inflammatory cytokine (TNFα) production. Overall, the trends in toxicity emission rates (activity/mi) across the ethanol blends was driven primarily by PM mass emission rate contrasts and only secondarily by the differences in intrinsic toxicity of the PM.
Collapse
Affiliation(s)
- Jiacheng Yang
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA; Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Riverside, CA 92507, USA
| | - Patrick Roth
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA; Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Riverside, CA 92507, USA
| | - Thomas D Durbin
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA; Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Riverside, CA 92507, USA
| | - Martin M Shafer
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, USA
| | - Jocelyn Hemming
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, USA
| | - Dagmara S Antkiewicz
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, USA
| | - Akua Asa-Awuku
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA; Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Riverside, CA 92507, USA; Department of Chemical and Biomolecular Engineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, USA
| | - Georgios Karavalakis
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA; Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Riverside, CA 92507, USA.
| |
Collapse
|
23
|
Guo HB, Li M, Lyu Y, Cheng TT, Xv JJ, Li X. Size-resolved particle oxidative potential in the office, laboratory, and home: Evidence for the importance of water-soluble transition metals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:704-709. [PMID: 30623827 DOI: 10.1016/j.envpol.2018.12.094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/06/2018] [Accepted: 12/29/2018] [Indexed: 06/09/2023]
Abstract
Particulate matter (PM) oxidative potential (OP) is an emerging health metric, but studies examining the OP of indoor PM are rare. This paper focuses on the relationships between respiratory exposure to OP and PM water-soluble composition in indoor environments. Size-resolved PM samples were collected between November 2015 and June 2016 from an office, home (including bedroom, living room, and storeroom), and laboratory using a MOUDI sampler. Particles from each source were segregated into eleven size bins, and the water-soluble metal content and dithiothreitol (DTT) loss rate were measured in each PM extract. The water-soluble OP (OPws) of indoor PM was highest in the office and lowest in the home, varying by factors of up to 1.2; these variations were attributed to differences in occupation density, occupant activity, and ventilation. In addition, the particulate Cu, Mn, and Fe concentrations were closely correlated with OPws in indoor particles; the transition metals may have acted as catalysts during oxidation processes, inducing ·OH formation through the concomitant consumption of DTT. The OPws particle size distributions featured single modes with peaks between 0.18 and 3.2 μm across all indoor sites, reflecting the dominant contribution of PM3.2 to total PM levels and the enhanced oxidative activity of the PM3.2 compared to PM>3.2. Lung-deposition model calculations indicated that PM3.2 dominated the pulmonary deposition of the OPws (>75%) due to both the high levels of metals content and the high deposition efficiency in the alveolar region. Therefore, because OPws has been directly linked to various health effects, special attention should be given to PM3.2.
Collapse
Affiliation(s)
- Hui-Bin Guo
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China
| | - Mei Li
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Engineering Research Center for on-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China.
| | - Yan Lyu
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China
| | - Tian-Tao Cheng
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China
| | - Jun-Jun Xv
- Agilent Technologies (China) Co.,Ltd, Shanghai, 200080, China
| | - Xiang Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
24
|
Yang J, Roth P, Ruehl CR, Shafer MM, Antkiewicz DS, Durbin TD, Cocker D, Asa-Awuku A, Karavalakis G. Physical, chemical, and toxicological characteristics of particulate emissions from current technology gasoline direct injection vehicles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1182-1194. [PMID: 30308806 DOI: 10.1016/j.scitotenv.2018.09.110] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/20/2018] [Accepted: 09/08/2018] [Indexed: 06/08/2023]
Abstract
We assessed the physical, chemical and toxicological characteristics of particulate emissions from four light-duty gasoline direct injection vehicles when operated over the LA92 driving cycle. Our results showed that particle mass and number emissions increased markedly during accelerations. For three of the four vehicles tested, particulate matter (PM) mass and particle number emissions were markedly higher during cold-start and the first few accelerations following the cold-start period than during the hot running and hot-start segments of the LA92 cycle. For one vehicle (which had the highest emissions overall) the hot-start and cold-start PM emissions were similar. Black carbon emissions were also much higher during the cold-start conditions, indicating severe fuel wetting leading to slow evaporation and pool burning, and subsequent soot formation. Particle number concentrations and black carbon emissions showed large reductions during the urban and hot-start phases of the test cycle. The oxidative potential of PM was quantified with both a chemical and a biological assay, and the gene expression impacts of the PM in a macrophage model with PCR (polymerase chain reaction) and ELISA (enzyme-linked immunosorbent assay) analyses. Inter- and intra-vehicle variability in oxidative potential per milligram of PM emitted was relatively low for both oxidative assays, suggesting that real-world emissions and exposure can be estimated with distance-normalized emission factors. The PCR response from signaling markers for oxidative stress (e.g., NOX1) was greater than from inflammatory, AhR (aryl hydrocarbon receptor), or MAPK (mitogen-activated protein kinase) signaling. Protein production associated with inflammation (tumor necrosis factor alpha-TNFα) and oxidative stress (HMOX-1) were quantified and displayed relatively high inter-vehicle variability, suggesting that these pathways may be activated by different PM components. Correlation of trace metal concentrations and oxidative potential suggests a role for small, insoluble particles in inducing oxidative stress.
Collapse
Affiliation(s)
- Jiacheng Yang
- University of California, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), 1084 Columbia Avenue, Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA
| | - Patrick Roth
- University of California, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), 1084 Columbia Avenue, Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA
| | | | - Martin M Shafer
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, USA
| | - Dagmara S Antkiewicz
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, USA
| | - Thomas D Durbin
- University of California, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), 1084 Columbia Avenue, Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA
| | - David Cocker
- University of California, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), 1084 Columbia Avenue, Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA
| | - Akua Asa-Awuku
- University of California, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), 1084 Columbia Avenue, Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA
| | - Georgios Karavalakis
- University of California, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), 1084 Columbia Avenue, Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
25
|
Al Hanai AH, Antkiewicz DS, Hemming JDC, Shafer MM, Lai AM, Arhami M, Hosseini V, Schauer JJ. Seasonal variations in the oxidative stress and inflammatory potential of PM 2.5 in Tehran using an alveolar macrophage model; The role of chemical composition and sources. ENVIRONMENT INTERNATIONAL 2019; 123:417-427. [PMID: 30622066 DOI: 10.1016/j.envint.2018.12.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
The current study was designed to assess the association between temporal variations in urban PM2.5 chemical composition, sources, and the oxidative stress and inflammatory response in an alveolar macrophage (AM) model. A year-long sampling campaign collected PM2.5 samples at the Sharif University in Tehran, Iran. PM-induced reactive oxygen species (ROS) production was measured both with an acellular dithiothreitol consumption assay (DTT-ROS; ranged from 2.1 to 9.3 nmoles min-1 m-3) and an in vitro macrophage-mediated ROS production assay (AM-ROS; ranged from 125 to 1213 μg Zymosan equivalents m-3). The production of tumor necrosis factor alpha (TNF-α; ranged from ~60 to 518 pg TNF-α m-3) was quantified as a marker of the inflammatory potential of the PM. PM-induced DTT-ROS and AM-ROS were substantially higher for the colder months' PM (1.5-fold & 3-fold, respectively) compared with warm season. Vehicular emission tracers, aliphatic diacids, and hopanes exhibited moderate correlation with ROS measures. TNF-α secretion exhibited a markedly different pattern than ROS activity with a 2-fold increase in the warm months compared to the rest of the year. Gasoline vehicles and residual oil combustion were moderately associated with both ROS measures (R ≥ 0.67, p < 0.05), while diesel vehicles exhibited a strong correlation with secreted TNF-α in the cold season (R = 0.89, p < 0.05). mRNA expression of fourteen genes including antioxidant response and pro-inflammatory markers were found to be differentially modulated in our AM model. HMOX1, an antioxidant response gene, was up-regulated throughout the year. Pro-inflammatory genes (e.g. TNF-α and IL1β) were down-regulated in the cold season and displayed moderate to weak correlation with crustal elements (R > 0.5, p < 0.05). AM-ROS activity showed an inverse relationship with genes including SOD2, TNF, IL1β and IL6 (R ≥ -0.66, p < 0.01). Our findings indicate that Tehran's PM2.5 has the potential to induce oxidative stress and inflammation responses in vitro. In the current study, these responses included NRF2, NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Ahlam H Al Hanai
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Martin M Shafer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin State Laboratory of Hygiene, Madison, WI, USA
| | - Alexandra M Lai
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - James J Schauer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin State Laboratory of Hygiene, Madison, WI, USA.
| |
Collapse
|
26
|
Lyu Y, Guo H, Cheng T, Li X. Particle Size Distributions of Oxidative Potential of Lung-Deposited Particles: Assessing Contributions from Quinones and Water-Soluble Metals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6592-6600. [PMID: 29719143 DOI: 10.1021/acs.est.7b06686] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Redox-active species in ambient particulate matter (PM) cause adverse health effects through the production of reactive oxygen species (ROS) in the human respiratory tract. However, respiratory deposition of these species and their relative contributions to oxidative potential (OP) have not been described. Size-segregated aerosols were collected during haze and nonhaze periods using a micro-orifice uniform deposit impactor sampler at an urban site in Shanghai to address this issue. Samples were analyzed for redox-active species content and PM OP. The average dithiothreitol (DTT) activity of haze samples was approximately 2.4-fold higher than that of nonhaze samples and significantly correlated with quinone and water-soluble metal concentrations. The size-specific distribution data revealed that both water-soluble OPvDTT (volume-normalized OP quantified by DTT assay) and OPmDTT (mass-normalized OP) were unimodal, peaking at 0.56-1 and 0.1-0.32 μm, respectively, due to contributions from accumulation-mode quinones and water-soluble metals. We further estimated that transition metals (mainly copper and manganese) contributed 55 ± 13% of the DTT activity while quinones accounted for only 8 ± 3%. Multiple-path particle dosimetry calculations estimated that OP deposition in the pulmonary region was mainly from accumulation-mode transition metals despite quinones having the highest DTT activity. This behavior is primarily attributed to the efficiency of deposition of transition metals in the pulmonary region being approximately 1.2-fold greater than that of quinones. These results reveal that accumulation-mode transition metals are significant contributors to the OP of deposited water-soluble particles in the pulmonary region of the lung.
Collapse
Affiliation(s)
- Yan Lyu
- Department of Environmental Science & Engineering , Fudan University , Shanghai 200438 , P. R. China
| | - Huibin Guo
- Department of Environmental Science & Engineering , Fudan University , Shanghai 200438 , P. R. China
| | - Tiantao Cheng
- Department of Environmental Science & Engineering , Fudan University , Shanghai 200438 , P. R. China
| | - Xiang Li
- Department of Environmental Science & Engineering , Fudan University , Shanghai 200438 , P. R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P. R. China
| |
Collapse
|