1
|
Ghorbanizamani F. A combinatorial approach to chicken meat spoilage detection using color-shifting silver nanoparticles, smartphone imaging, and artificial neural network (ANN). Food Chem 2025; 468:142390. [PMID: 39667235 DOI: 10.1016/j.foodchem.2024.142390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Ensuring food freshness is crucial for public health. Biogenic amines (like histamine) are reliable spoilage indicators in protein-rich foods such as meat. This study presents a label-free colorimetric sensor using green-colored silver nanoparticles (AgNPs) functionalized with carboxylated polyvinylpyrrolidone (PVP-COOH) for sensitive BA detection. After optimizing pH, time, and temperature, the modified AgNPs achieved a detection limit (LOD) of 0.21 μg/mL and an analytical dynamic range of 10-100 μg/mL for histamine. Smartphone imaging was employed to capture colorimetric changes, and the extracted data were used to train an artificial neural network (ANN), enhancing the LOD to 0.09 μg/mL and extending the dynamic range to 0.5-200 μg/mL. The sensor was validated with real food samples, successfully monitoring histamine levels in chicken meat over three days, detecting spoilage-related changes with high sensitivity. This integrative approach combining AgNPs, smartphone imaging, and AI offers a powerful tool for advanced food freshness monitoring.
Collapse
Affiliation(s)
- Faezeh Ghorbanizamani
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornova, Izmir, Türkiye..
| |
Collapse
|
2
|
Haghayegh F, Haghani E, Norouziazad A, Ghavamabadi HA, Aggarwal S, Orszulik R, Krylov SN, Raichura A, Salahandish R. Integrating advanced Microfluidic lateral flow systems with a finger-prick blood collection cartridge to create an all-in-one platform for point-of-care diagnostics. Biosens Bioelectron 2025; 271:117079. [PMID: 39721464 DOI: 10.1016/j.bios.2024.117079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Rapid, point-of-care tests are critical for early diagnosis of disease and detection of biological threats. Lateral flow immunoassays (LFIAs) are well-suited for point-of-care testing due to their ease of use and straightforward readout. However, limitations in sensitivity, quantification, and integration into sample-to-result systems indicate the need for further advancements. This paper introduces a novel all-in-one LFIA that integrates a test strip with optimized geometry within a newly designed finger-prick blood collection cartridge. This innovative system offers an efficient solution for the detection and quantification of hepatitis B antigens, combining precision and user-friendliness in a single device. To enhance assay performance, the conventional test strip's response to the target protein was significantly improved by incorporating a constricted test zone and upstream mixing elements. To meet self-testing requirements, the blood collection cartridge incorporates an innovative two-step rotation mechanism that simplifies sample collection, processing, and application onto the test strip. Numerical simulations of flow dynamics and antibody-antigen interactions using COMSOL guided the optimization of the test strip geometry, achieving a substantial improvement in the limit of detection from 1.78 ± 0.08 to 0.55 ± 0.04 ng/mL compared to the classic rectangular strip geometry. The optimized design also increased analytical sensitivity from 1.4 ± 0.1 to 2.8 ± 0.1 RU.mL/ng. The system demonstrated complete functionality, from sample collection to analyte quantification. This integrated, user-friendly platform provides an advanced, sample-to-result diagnostic solution for detecting disease markers from finger-prick blood samples. Its simplicity makes it suitable for point-of-care testing, including home use by non-professionals.
Collapse
Affiliation(s)
- Fatemeh Haghayegh
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab-HA), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3 Canada; Department of Electrical Engineering and Computer Science (EECS), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada
| | - Elnaz Haghani
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab-HA), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3 Canada; Department of Electrical Engineering and Computer Science (EECS), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada
| | - Alireza Norouziazad
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab-HA), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3 Canada; Department of Electrical Engineering and Computer Science (EECS), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada
| | - Hamidreza Akbari Ghavamabadi
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab-HA), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3 Canada; Department of Electrical Engineering and Computer Science (EECS), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada
| | - Shitij Aggarwal
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab-HA), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3 Canada; Department of Electrical Engineering and Computer Science (EECS), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada
| | - Ryan Orszulik
- Department of Earth and Space Science and Engineering, Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada
| | - Sergey N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, ON, M3J 1P3, Canada
| | | | - Razieh Salahandish
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab-HA), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3 Canada; Department of Electrical Engineering and Computer Science (EECS), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
3
|
Flores MSC, Alocilja EC, Amalin DM, Aguila MJB, Purificacion MV, Merca FE, Manuel MCC, Dimamay MPS, Bautista MAM, Fernando LM. DNA-Based Nanobiosensor for the Colorimetric Detection of Dengue Virus Serotype 2 Synthetic Target Oligonucleotide. BIOSENSORS 2025; 15:71. [PMID: 39996973 PMCID: PMC11853087 DOI: 10.3390/bios15020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 02/26/2025]
Abstract
Annually, the Philippines is burdened by a high number of infections and deaths due to Dengue. This disease is caused by the Dengue virus (DENV) and is transmitted from one human host to another by the female Aedes aegypti mosquito. Being a developing country, most of the high-risk areas in the Philippines are resource-limited and cannot afford equipment for detection and monitoring. Moreover, traditional clinical diagnoses of DENV infection are costly and time-consuming and require expertise. Hence, it is important to establish effective vector control and surveillance measures. In this study, we developed a DNA-based nanobiosensor for the colorimetric detection of Dengue virus serotype 2 (DENV-2) synthetic target DNA (stDNA S2) using gold nanoparticles (AuNPs). We successfully functionalized dextrin-capped gold nanoparticles with the designed DENV-2 oligonucleotide probes. The detection of the complementary stDNA S2, indicated by the pink-colored solution, was successfully performed within 15 min using 0.40 M NaCl solution. We were able to detect up to 36.14 ng/μL of stDNA S2 with some cross-reactivity observed with one non-complementary target. We believe that our study offers a basis for developing nanobiosensors for other DENV serotypes.
Collapse
Affiliation(s)
- Michael Sandino C. Flores
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, College, Los Baños 4031, Philippines; (M.J.B.A.); (M.V.P.); (F.E.M.)
| | - Evangelyn C. Alocilja
- Nano-Biosensors Lab, Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Divina M. Amalin
- Department of Biology, College of Science, De La Salle University Manila, Taft Avenue, Malate, Manila 1004, Philippines;
- Institute of Biological Control, De La Salle University-Laguna Campus, Biñan City 4024, Philippines
| | - Mae Joanne B. Aguila
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, College, Los Baños 4031, Philippines; (M.J.B.A.); (M.V.P.); (F.E.M.)
| | - Marynold V. Purificacion
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, College, Los Baños 4031, Philippines; (M.J.B.A.); (M.V.P.); (F.E.M.)
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Los Baños 4031, Philippines
| | - Florinia E. Merca
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, College, Los Baños 4031, Philippines; (M.J.B.A.); (M.V.P.); (F.E.M.)
| | - Ma. Carmina C. Manuel
- Genetics and Molecular Biology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, College, Los Baños 4031, Philippines;
| | - Mark Pierre S. Dimamay
- Research and Biotechnology Division, St. Luke’s Medical Center, Quezon City 1112, Philippines;
| | - Ma. Anita M. Bautista
- Functional Genomics Laboratory, National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City 1101, Philippines;
| | - Lilia M. Fernando
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, College, Los Baños 4031, Philippines; (M.J.B.A.); (M.V.P.); (F.E.M.)
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Los Baños 4031, Philippines
| |
Collapse
|
4
|
Blázquez AB, Jiménez de Oya N. Biosensors for the detection of flaviviruses: A review. Synth Syst Biotechnol 2024; 10:194-206. [PMID: 39552759 PMCID: PMC11564047 DOI: 10.1016/j.synbio.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Flaviviruses affect the lives of millions of people in endemic regions and also have the potential to impact non-endemic areas. Factors such as climate change, global warming, deforestation, and increased travel and trade are linked to the spread of flaviviruses into new habitats and host species. Given the absence of specific treatments and the limited availability of vaccines, it is imperative to understand the biology of flaviviruses and develop rapid and sensitive diagnostic tests. These measures are essential for preventing the transmission of these potentially life-threatening pathogens. Flavivirus infections are mainly diagnosed using conventional methods. However, these techniques present several drawbacks, including high expenses, time-consuming procedures, and the need for skilled professionals. The search for fast, easy-to-use, and affordable alternative techniques as a feasible solution for developing countries is leading to the search for new methods in the diagnosis of flaviviruses, such as biosensors. This review provides a comprehensive overview of different biosensor detection strategies for flaviviruses and describes recent advances in diagnostic technologies. Finally, we explore their future prospects and potential applications in pathogen detection. This review serves as a valuable resource to understand advances in ongoing research into new biosensor-based diagnostic methods for flaviviruses.
Collapse
Affiliation(s)
- Ana-Belén Blázquez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain
| | - Nereida Jiménez de Oya
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain
| |
Collapse
|
5
|
Liv L, Özerdem Z. First DFT-supported point of care and novel electrochemical biosensing: Determination of yellow fever NS1 antibody in human plasma. Int J Biol Macromol 2024; 269:132169. [PMID: 38723801 DOI: 10.1016/j.ijbiomac.2024.132169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
In our study, we developed a point of care electrochemical biosensing platform based on the functionalized cysteine-positioned gold electrode to diagnose yellow fever disease from human plasma samples. The developed platform underwent characterization through diverse methods encompassing cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and density-functional theory. The capacitive interaction between yellow fever virus non-structural antigen and antibody gave a cathodic signal at approximately -260 mV, and increased in proportion to the amount of non-structural antibody. The created electrochemical biosensor has an ability to detect 96 ag/mL of the yellow fever non-structural antibody with an extensive analytical range varied from 0.1 fg/mL to 1 μg/mL. The interference effects of various substances that could be found in human plasma, and the performance of the method were examined from the point of recovery and relative standard deviation for human plasma samples; hereby, the results confirmed the unprecedented selectivity and accuracy of the proposed method.
Collapse
Affiliation(s)
- Lokman Liv
- Electrochemistry Laboratory, Chemistry Group, The Scientific and Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), 41470 Gebze, Kocaeli, Turkey.
| | - Zekihan Özerdem
- Electrochemistry Laboratory, Chemistry Group, The Scientific and Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), 41470 Gebze, Kocaeli, Turkey; Department of Chemistry, Bogazici University, 34342 Bebek, Istanbul, Turkey
| |
Collapse
|
6
|
Ekman M, Salminen T, Raiko K, Soukka T, Gidwani K, Martiskainen I. Spectrally separated dual-label upconversion luminescence lateral flow assay for cancer-specific STn-glycosylation in CA125 and CA15-3. Anal Bioanal Chem 2024; 416:3251-3260. [PMID: 38584178 PMCID: PMC11068694 DOI: 10.1007/s00216-024-05275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Multiplexed lateral flow assays (LFAs) offer efficient on-site testing by simultaneously detecting multiple biomarkers from a single sample, reducing costs. In cancer diagnostics, where biomarkers can lack specificity, multiparameter detection provides more information at the point-of-care. Our research focuses on epithelial ovarian cancer (EOC), where STn-glycosylated forms of CA125 and CA15-3 antigens can better discriminate cancer from benign conditions. We have developed a dual-label LFA that detects both CA125-STn and CA15-3-STn within a single anti-STn antibody test line. This utilizes spectral separation of green (540 nm) and blue (450 nm) emitting erbium (NaYF4:Yb3+, Er3+)- and thulium (NaYF4: Yb3+, Tm3+)-doped upconverting nanoparticle (UCNP) reporters conjugated with antibodies against the protein epitopes in CA125 or CA15-3. This technology allows the simultaneous detection of different antigen variants from a single test line. The developed proof-of-concept dual-label LFA was able to distinguish between the ascites fluid samples from diagnosed ovarian cancer patients (n = 10) and liver cirrhosis ascites fluid samples (n = 3) used as a negative control. The analytical sensitivity of CA125-STn for the dual-label LFA was 1.8 U/ml in buffer and 3.6 U/ml in ascites fluid matrix. Here we demonstrate a novel approach of spectrally separated measurement of STn-glycosylated forms of two different cancer-associated protein biomarkers by using UCNP reporter technology.
Collapse
Affiliation(s)
- Miikka Ekman
- Biotechnology Unit, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland
| | - Teppo Salminen
- Biotechnology Unit, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland
| | - Kirsti Raiko
- Biotechnology Unit, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland
| | - Tero Soukka
- Biotechnology Unit, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland
| | - Kamlesh Gidwani
- Biotechnology Unit, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland
| | - Iida Martiskainen
- Biotechnology Unit, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland.
| |
Collapse
|
7
|
Ismillayli N, Suprapto S, Santoso E, Nugraha RE, Holilah H, Bahruji H, Jalil AA, Hermanto D, Prasetyoko D. The role of pH-induced tautomerism of polyvinylpyrrolidone on the size, stability, and antioxidant and antibacterial activities of silver nanoparticles synthesized using microwave radiation. RSC Adv 2024; 14:4509-4517. [PMID: 38312717 PMCID: PMC10836328 DOI: 10.1039/d3ra07113h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Tautomerism alters the structure and properties of materials, which can be exploited to control their chemical and biological activities. The role of pH-induced tautomerism of polyvinylpyrrolidone (PVP) was determined by measuring the size, stability, and antioxidant and antibacterial properties of microwave synthesized-silver nanoparticles (AgNPs). TEM and XRD analyses confirmed the formation of face-centered cubic silver nanoparticles. PVP stabilized the AgNPs by interaction with the carbonyl or hydroxyl groups depending on the tautomerization under different pH conditions. At pH 4, PVP was stable in the keto tautomer, stabilizing Ag through electron donation of oxygen atoms in the carbonyl group, producing smaller AgNPs with a higher zeta potential. At pH 7 and 9, the enol tautomer PVP stabilized the AgNPs via oxygen atoms in the hydroxyl group, forming large nanoparticles. The keto form of PVP improved the stability and antioxidant and antibacterial properties of AgNPs compared with the enol form. This study also excluded the antioxidant contribution of PVP via hydrogen donation to free radicals. A facile method for controlling the size of AgNPs by adapting the pH-induced tautomerism of PVP that affects their stability and antioxidant and antibacterial activities is thus reported.
Collapse
Affiliation(s)
- Nurul Ismillayli
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Keputih, Sukolilo Surabaya 60111 Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Mataram Mataram 83125 Indonesia
| | - Suprapto Suprapto
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Keputih, Sukolilo Surabaya 60111 Indonesia
| | - Eko Santoso
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Keputih, Sukolilo Surabaya 60111 Indonesia
| | - Reva Edra Nugraha
- Department of Chemical Engineering, Faculty of Engineering, Universitas Pembangunan Nasional "Veteran" Jawa Timur Surabaya East Java 60294 Indonesia
| | - Holilah Holilah
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency of Indonesia (BRIN) Cibinong 16911 Indonesia
| | - Hasliza Bahruji
- Centre of Advanced Material and Energy Sciences, Universiti Brunei Darussalam Jalan Tungku Link BE 1410 Brunei
| | - Aishah Abdul Jalil
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia 81310 Skudai Johor Bahru Johor Malaysia
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia 81310 Skudai Johor Bahru Johor Malaysia
| | - Dhony Hermanto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Mataram Mataram 83125 Indonesia
| | - Didik Prasetyoko
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Keputih, Sukolilo Surabaya 60111 Indonesia
| |
Collapse
|
8
|
Ioannou P, Baliou S, Samonis G. Nanotechnology in the Diagnosis and Treatment of Antibiotic-Resistant Infections. Antibiotics (Basel) 2024; 13:121. [PMID: 38391507 PMCID: PMC10886108 DOI: 10.3390/antibiotics13020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
The development of antimicrobial resistance (AMR), along with the relative reduction in the production of new antimicrobials, significantly limits the therapeutic options in infectious diseases. Thus, novel treatments, especially in the current era, where AMR is increasing, are urgently needed. There are several ongoing studies on non-classical therapies for infectious diseases, such as bacteriophages, antimicrobial peptides, and nanotechnology, among others. Nanomaterials involve materials on the nanoscale that could be used in the diagnosis, treatment, and prevention of infectious diseases. This review provides an overview of the applications of nanotechnology in the diagnosis and treatment of infectious diseases from a clinician's perspective, with a focus on pathogens with AMR. Applications of nanomaterials in diagnosis, by taking advantage of their electrochemical, optic, magnetic, and fluorescent properties, are described. Moreover, the potential of metallic or organic nanoparticles (NPs) in the treatment of infections is also addressed. Finally, the potential use of NPs in the development of safe and efficient vaccines is also reviewed. Further studies are needed to prove the safety and efficacy of NPs that would facilitate their approval by regulatory authorities for clinical use.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Stella Baliou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - George Samonis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- First Department of Medical Oncology, Metropolitan Hospital of Neon Faliron, 18547 Athens, Greece
| |
Collapse
|
9
|
Abstract
The outer membrane of gram-negative bacteria is primarily composed of lipopolysaccharide (LPS). In addition to protection, LPS defines the distinct serogroups used to identify bacteria specifically. Furthermore, LPS also act as highly potent stimulators of innate immune cells, a phenomenon essential to understanding pathogen invasion in the body. The complex multi-step process of LPS binding to cells involves several binding partners, including LPS binding protein (LBP), CD14 in both membrane-bound and soluble forms, membrane protein MD-2, and toll-like receptor 4 (TLR4). Once these pathways are activated, pro-inflammatory cytokines are eventually expressed. These binding events are also affected by the presence of monomeric or aggregated LPS. Traditional techniques to detect LPS include the rabbit pyrogen test, the monocyte activation test and Limulus-based tests. Modern approaches are based on protein, antibodies or aptamer binding. Recently, novel techniques including electrochemical methods, HPLC, quartz crystal microbalance (QCM), and molecular imprinting have been developed. These approaches often use nanomaterials such as gold nanoparticles, quantum dots, nanotubes, and magnetic nanoparticles. This chapter reviews current developments in endotoxin detection with a focus on modern novel techniques that use various sensing components, ranging from natural biomolecules to synthetic materials. Highly integrated and miniaturized commercial endotoxin detection devices offer a variety of options as the scientific and technologic revolution proceeds.
Collapse
Affiliation(s)
- Palak Sondhi
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO, United States
| | - Taiwo Adeniji
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO, United States
| | - Dhanbir Lingden
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO, United States
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO, United States.
| |
Collapse
|
10
|
Hamad-Schifferli K. Applications of Gold Nanoparticles in Plasmonic and Nanophotonic Biosensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:185-221. [PMID: 38273208 PMCID: PMC11182655 DOI: 10.1007/10_2023_237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The unique properties of plasmonic nanoparticles and nanostructures have enabled a broad range of applications in a diverse set of fields, ranging from biological sensing, cancer therapy, to catalysis. They have been some of the most studied nanomaterials due in part to their chemical stability and biocompatibility as well as supporting theoretical efforts. The synthesis and fabrication of plasmonic nanoparticles and nanostructures have now reached high precision and sophistication. We review here their fundamental optical properties, discuss their tailoring for biological environments, and then detail examples on how they have been used to innovate in the biological and biomedical fields.
Collapse
Affiliation(s)
- Kimberly Hamad-Schifferli
- Department of Engineering, School for the Environment, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
11
|
Nielsen JB, Holladay JD, Burningham AJ, Rapier-Sharman N, Ramsey JS, Skaggs TB, Nordin GP, Pickett BE, Woolley AT. Monolithic affinity columns in 3D printed microfluidics for chikungunya RNA detection. Anal Bioanal Chem 2023; 415:7057-7065. [PMID: 37801120 PMCID: PMC10840819 DOI: 10.1007/s00216-023-04971-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
Mosquito-borne pathogens plague much of the world, yet rapid and simple diagnosis is not available for many affected patients. Using a custom stereolithography 3D printer, we created microfluidic devices with affinity monoliths that could retain, noncovalently attach a fluorescent tag, and detect oligonucleotide and viral RNA. We optimized the fluorescent binding and sample load times using an oligonucleotide sequence from chikungunya virus (CHIKV). We also tested the specificity of CHIKV capture relative to genetically similar Sindbis virus. Moreover, viral RNA from both viruses was flowed through capture columns to study the efficiency and specificity of the column for viral CHIKV. We detected ~107 loaded viral genome copies, which was similar to levels in clinical samples during acute infection. These results show considerable promise for development of this platform into a rapid mosquito-borne viral pathogen detection system.
Collapse
Affiliation(s)
- Jacob B Nielsen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - James D Holladay
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Addalyn J Burningham
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Naomi Rapier-Sharman
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Joshua S Ramsey
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Timothy B Skaggs
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Gregory P Nordin
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA
| | - Brett E Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
12
|
Burlec AF, Corciova A, Boev M, Batir-Marin D, Mircea C, Cioanca O, Danila G, Danila M, Bucur AF, Hancianu M. Current Overview of Metal Nanoparticles' Synthesis, Characterization, and Biomedical Applications, with a Focus on Silver and Gold Nanoparticles. Pharmaceuticals (Basel) 2023; 16:1410. [PMID: 37895881 PMCID: PMC10610223 DOI: 10.3390/ph16101410] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Metal nanoparticles (NPs) have garnered considerable attention, due to their unique physicochemical properties, that render them promising candidates for various applications in medicine and industry. This article offers a comprehensive overview of the most recent advancements in the manufacturing, characterization, and biomedical utilization of metal NPs, with a primary focus on silver and gold NPs. Their potential as effective anticancer, anti-inflammatory, and antimicrobial agents, drug delivery systems, and imaging agents in the diagnosis and treatment of a variety of disorders is reviewed. Moreover, their translation to therapeutic settings, and the issue of their inclusion in clinical trials, are assessed in light of over 30 clinical investigations that concentrate on administering either silver or gold NPs in conditions ranging from nosocomial infections to different types of cancers. This paper aims not only to examine the biocompatibility of nanomaterials but also to emphasize potential challenges that may limit their safe integration into healthcare practices. More than 100 nanomedicines are currently on the market, which justifies ongoing study into the use of nanomaterials in medicine. Overall, the present review aims to highlight the potential of silver and gold NPs as innovative and effective therapeutics in the field of biomedicine, citing some of their most relevant current applications.
Collapse
Affiliation(s)
- Ana Flavia Burlec
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Andreia Corciova
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Monica Boev
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Denisa Batir-Marin
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Cornelia Mircea
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Oana Cioanca
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Gabriela Danila
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Marius Danila
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Anca Florentina Bucur
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Monica Hancianu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| |
Collapse
|
13
|
Nan X, Yao X, Yang L, Cui Y. Lateral flow assay of pathogenic viruses and bacteria in healthcare. Analyst 2023; 148:4573-4590. [PMID: 37655501 DOI: 10.1039/d3an00719g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Healthcare-associated pathogenic viruses and bacteria can have a serious impact on human health and have attracted widespread global attention. The lateral flow assay is a unidirectional detection based on the binding of a target analyte and a bioreceptor on the device via lateral flow. With incredible advantages over traditional chromatographic methods, such as rapid detection, ease of manufacture and cost effectiveness, these test strips are increasingly considered the ideal form for point-of-care applications. This review explores lateral flow assays for pathogenic viruses and bacteria, with a particular focus on methodologies, device components, construction methods, and applications. We anticipate that this review could provide exciting opportunities for developing new lateral flow devices for pathogens and advance related healthcare applications.
Collapse
Affiliation(s)
- Xuanxu Nan
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| | - Xuesong Yao
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| | - Li Yang
- Peking University First Hospital; Peking University Institute of Nephrology, Beijing 100034, P. R. China.
| | - Yue Cui
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| |
Collapse
|
14
|
Dey MK, Iftesum M, Devireddy R, Gartia MR. New technologies and reagents in lateral flow assay (LFA) designs for enhancing accuracy and sensitivity. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4351-4376. [PMID: 37615701 DOI: 10.1039/d3ay00844d] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Lateral flow assays (LFAs) are a popular method for quick and affordable diagnostic testing because they are easy to use, portable, and user-friendly. However, LFA design has always faced challenges regarding sensitivity, accuracy, and complexity of the operation. By integrating new technologies and reagents, the sensitivity and accuracy of LFAs can be improved while minimizing the complexity and potential for false positives. Surface enhanced Raman spectroscopy (SERS), photoacoustic techniques, fluorescence resonance energy transfer (FRET), and the integration of smartphones and thermal readers can improve LFA accuracy and sensitivity. To ensure reliable and accurate results, careful assay design and validation, appropriate controls, and optimization of assay conditions are necessary. Continued innovation in LFA technology is crucial to improving the reliability and accuracy of rapid diagnostic testing and expanding its applications to various areas, such as food testing, water quality monitoring, and environmental testing.
Collapse
Affiliation(s)
- Mohan Kumar Dey
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Maria Iftesum
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Ram Devireddy
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
15
|
Zohra T, Saeed F, Ikram A, Khan T, Alam S, Adil M, Gul A, Almawash S, Ayaz M. Nanomedicine as a potential novel therapeutic approach against the dengue virus. Nanomedicine (Lond) 2023; 18:1567-1584. [PMID: 37753727 DOI: 10.2217/nnm-2022-0217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
Dengue is an arbovirus infection which is transmitted by Aedes mosquitoes. Its prompt detection and effective treatment is a global health challenge. Various nanoparticle-based vaccines have been formulated to present immunogen (antigens) to instigate an immune response or prevent virus spread, but no specific treatment has been devised. This review explores the role of nanomedicine-based therapeutic agents against dengue virus, taking into consideration the applicable dengue virus assays that are sensitive, specific, have a short turnaround time and are inexpensive. Various kinds of metallic, polymeric and lipid nanoparticles with safe and effective profiles present an alternative strategy that could provide a better remedy for eradicating the dengue virus.
Collapse
Affiliation(s)
- Tanzeel Zohra
- Public Health Laboratories Division, National Institute of Health, Islamabad, 45500, Pakistan
| | - Faryal Saeed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Aamer Ikram
- Public Health Laboratories Division, National Institute of Health, Islamabad, 45500, Pakistan
| | - Tariq Khan
- Department of Biotechnology, University of Malakand, University of Malakand, Chakdara, 18800 Dir (L), KP, Pakistan
| | - Siyab Alam
- Department of Biotechnology, University of Malakand, University of Malakand, Chakdara, 18800 Dir (L), KP, Pakistan
| | - Muhammad Adil
- Department of Biotechnology, University of Malakand, University of Malakand, Chakdara, 18800 Dir (L), KP, Pakistan
| | - Ayesha Gul
- Department of Chemical Engineering, Polytechnique Montreal, H3T IJ4, Canada
| | - Saud Almawash
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18800 Dir (L), KP, Pakistan
| |
Collapse
|
16
|
Mousavi SM, Kalashgrani MY, Gholami A, Omidifar N, Binazadeh M, Chiang WH. Recent Advances in Quantum Dot-Based Lateral Flow Immunoassays for the Rapid, Point-of-Care Diagnosis of COVID-19. BIOSENSORS 2023; 13:786. [PMID: 37622872 PMCID: PMC10452855 DOI: 10.3390/bios13080786] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
The COVID-19 pandemic has spurred demand for efficient and rapid diagnostic tools that can be deployed at point of care to quickly identify infected individuals. Existing detection methods are time consuming and they lack sensitivity. Point-of-care testing (POCT) has emerged as a promising alternative due to its user-friendliness, rapidity, and high specificity and sensitivity. Such tests can be conveniently conducted at the patient's bedside. Immunodiagnostic methods that offer the rapid identification of positive cases are urgently required. Quantum dots (QDs), known for their multimodal properties, have shown potential in terms of combating or inhibiting the COVID-19 virus. When coupled with specific antibodies, QDs enable the highly sensitive detection of viral antigens in patient samples. Conventional lateral flow immunoassays (LFAs) have been widely used for diagnostic testing due to their simplicity, low cost, and portability. However, they often lack the sensitivity required to accurately detect low viral loads. Quantum dot (QD)-based lateral flow immunoassays have emerged as a promising alternative, offering significant advancements in sensitivity and specificity. Moreover, the lateral flow immunoassay (LFIA) method, which fulfils POCT standards, has gained popularity in diagnosing COVID-19. This review focuses on recent advancements in QD-based LFIA for rapid POCT COVID-19 diagnosis. Strategies to enhance sensitivity using QDs are explored, and the underlying principles of LFIA are elucidated. The benefits of using the QD-based LFIA as a POCT method are highlighted, and its published performance in COVID-19 diagnostics is examined. Overall, the integration of quantum dots with LFIA holds immense promise in terms of revolutionizing COVID-19 detection, treatment, and prevention, offering a convenient and effective approach to combat the pandemic.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| | - Masoomeh Yari Kalashgrani
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71468-64685, Iran; (M.Y.K.); (A.G.)
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71468-64685, Iran; (M.Y.K.); (A.G.)
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71557-13876, Iran;
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| |
Collapse
|
17
|
Dias BDP, Barbosa CC, Ferreira CS, Mayra Soares Alves Dos Santos S, Arrieta OAP, Malta WC, Gomes MLMD, Alves E Silva M, Fonseca JDM, Borges LP, Silva BDM. Challenges in Direct Detection of Flaviviruses: A Review. Pathogens 2023; 12:pathogens12050643. [PMID: 37242313 DOI: 10.3390/pathogens12050643] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Arthropods transmit arboviruses via mosquito and tick bites to humans and other animals. The genus flavivirus, which causes diseases, sequelae, and thousands of deaths, mainly in developing and underdeveloped countries, is among the arboviruses of interest to public health. Given the importance of early and accurate diagnosis, this review analyzes the methods of direct detection of flaviviruses, such as reverse transcription loop-mediated isothermal amplification, microfluidics, localized surface plasmon resonance, and surface-enhanced Raman scattering, and presents the advantages, disadvantages, and detection limits identified in studies reported in the literature for each methodology. Among the different methods available, it is essential to balance four fundamental indicators to determine the ideal test: good sensitivity, high specificity, low false positive rate, and rapid results. Among the methods analyzed, reverse transcription loop-mediated isothermal amplification stands out, owing to result availability within a few minutes, with good sensitivity and specificity; in addition, it is the best-characterized methodology.
Collapse
Affiliation(s)
- Bruna de Paula Dias
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Camila Cavadas Barbosa
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Cyntia Silva Ferreira
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil
| | | | | | | | | | - Mariela Alves E Silva
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Júlia de Matos Fonseca
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Lysandro Pinto Borges
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 9100-000, Brazil
| | - Breno de Mello Silva
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil
| |
Collapse
|
18
|
Sivakumar R, Park SY, Lee NY. Quercetin-Mediated Silver Nanoparticle Formation for the Colorimetric Detection of Infectious Pathogens Coupled with Loop-Mediated Isothermal Amplification. ACS Sens 2023; 8:1422-1430. [PMID: 36952605 DOI: 10.1021/acssensors.2c02054] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Here, quercetin-mediated silver nanoparticle (AgNP) formation combined with loop-mediated isothermal amplification (LAMP) was introduced to colorimetrically detect two major infectious pathogens, SARS-CoV-2 and Enterococcus faecium, using a foldable PMMA microdevice. The nitrogenous bases of LAMP amplicons can readily form a complex with Ag+ ions, and the catechol moiety in quercetin, which acted as a reducing agent, could be chelated with Ag+ ions, resulting in the easy electron transfer from the oxidant to the reductant and producing brown-colored AgNPs within 5 min. The introduced method exhibited higher sensitivity than agarose gel electrophoresis due to more active redox centers in quercetin. The detection limit was attained at 101 copies μL-1 and 101 CFU mL-1 for SARS-CoV-2 RNA and E. faecium, respectively. A foldable microdevice made of two pieces of PMMA that fully integrates DNA extraction, amplification, and detection processes was fabricated to establish practical applicability. On one PMMA, DNA extraction was performed in a reaction chamber inserted with an FTA card, and then LAMP reagents were added for amplification. Silver nitrate was added to the reaction chamber after LAMP. On the other PMMA, quercetin-soaked paper discs loaded in the detection chamber were folded toward the reaction chamber for colorimetric detection. An intense brown color was produced within 5 min when heated at 65 °C. The introduced colorimetric assay, which is highly favorable for laboratory and on-site applications, could be a valuable alternative to conventional methods for detecting infectious diseases, given its unique principle, simplicity, and naked-eye detection.
Collapse
Affiliation(s)
- Rajamanickam Sivakumar
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea
| | - So Yeon Park
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea
| |
Collapse
|
19
|
Chen F, Hu Q, Li H, Xie Y, Xiu L, Zhang Y, Guo X, Yin K. Multiplex Detection of Infectious Diseases on Microfluidic Platforms. BIOSENSORS 2023; 13:bios13030410. [PMID: 36979622 PMCID: PMC10046538 DOI: 10.3390/bios13030410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 05/31/2023]
Abstract
Infectious diseases contribute significantly to the global disease burden. Sensitive and accurate screening methods are some of the most effective means of identifying sources of infection and controlling infectivity. Conventional detecting strategies such as quantitative polymerase chain reaction (qPCR), DNA sequencing, and mass spectrometry typically require bulky equipment and well-trained personnel. Therefore, mass screening of a large population using conventional strategies during pandemic periods often requires additional manpower, resources, and time, which cannot be guaranteed in resource-limited settings. Recently, emerging microfluidic technologies have shown the potential to replace conventional methods in performing point-of-care detection because they are automated, miniaturized, and integrated. By exploiting the spatial separation of detection sites, microfluidic platforms can enable the multiplex detection of infectious diseases to reduce the possibility of misdiagnosis and incomplete diagnosis of infectious diseases with similar symptoms. This review presents the recent advances in microfluidic platforms used for multiplex detection of infectious diseases, including microfluidic immunosensors and microfluidic nucleic acid sensors. As representative microfluidic platforms, lateral flow immunoassay (LFIA) platforms, polymer-based chips, paper-based devices, and droplet-based devices will be discussed in detail. In addition, the current challenges, commercialization, and prospects are proposed to promote the application of microfluidic platforms in infectious disease detection.
Collapse
Affiliation(s)
- Fumin Chen
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, China
- One Health Center, Shanghai Jiao Tong University—The University of Edinburgh, Shanghai 200025, China
| | - Qinqin Hu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, China
- One Health Center, Shanghai Jiao Tong University—The University of Edinburgh, Shanghai 200025, China
| | - Huimin Li
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, China
- One Health Center, Shanghai Jiao Tong University—The University of Edinburgh, Shanghai 200025, China
| | - Yi Xie
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, China
- One Health Center, Shanghai Jiao Tong University—The University of Edinburgh, Shanghai 200025, China
| | - Leshan Xiu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, China
- One Health Center, Shanghai Jiao Tong University—The University of Edinburgh, Shanghai 200025, China
| | - Yuqian Zhang
- Department of Surgery, Division of Surgery Research, Mayo Clinic, Rochester, MN 55905, USA
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaokui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, China
- One Health Center, Shanghai Jiao Tong University—The University of Edinburgh, Shanghai 200025, China
| | - Kun Yin
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, China
- One Health Center, Shanghai Jiao Tong University—The University of Edinburgh, Shanghai 200025, China
| |
Collapse
|
20
|
Banerjee S, Hemmat MA, Shubham S, Gosai A, Devarakonda S, Jiang N, Geekiyanage C, Dillard JA, Maury W, Shrotriya P, Lamm MH, Nilsen-Hamilton M. Structurally Different Yet Functionally Similar: Aptamers Specific for the Ebola Virus Soluble Glycoprotein and GP1,2 and Their Application in Electrochemical Sensing. Int J Mol Sci 2023; 24:4627. [PMID: 36902059 PMCID: PMC10003157 DOI: 10.3390/ijms24054627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
The Ebola virus glycoprotein (GP) gene templates several mRNAs that produce either the virion-associated transmembrane protein or one of two secreted glycoproteins. Soluble glycoprotein (sGP) is the predominant product. GP1 and sGP share an amino terminal sequence of 295 amino acids but differ in quaternary structure, with GP1 being a heterohexamer with GP2 and sGP a homodimer. Two structurally different DNA aptamers were selected against sGP that also bound GP1,2. These DNA aptamers were compared with a 2'FY-RNA aptamer for their interactions with the Ebola GP gene products. The three aptamers have almost identical binding isotherms for sGP and GP1,2 in solution and on the virion. They demonstrated high affinity and selectivity for sGP and GP1,2. Furthermore, one aptamer, used as a sensing element in an electrochemical format, detected GP1,2 on pseudotyped virions and sGP with high sensitivity in the presence of serum, including from an Ebola-virus-infected monkey. Our results suggest that the aptamers interact with sGP across the interface between the monomers, which is different from the sites on the protein bound by most antibodies. The remarkable similarity in functional features of three structurally distinct aptamers suggests that aptamers, like antibodies, have preferred binding sites on proteins.
Collapse
Affiliation(s)
- Soma Banerjee
- Ames Laboratory, U.S. Department of Energy, Ames, IA 50011, USA
| | - Mahsa Askary Hemmat
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Shambhavi Shubham
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Agnivo Gosai
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | | | - Nianyu Jiang
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | | | - Jacob A. Dillard
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 50011, USA
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 50011, USA
| | - Pranav Shrotriya
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Monica H. Lamm
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Marit Nilsen-Hamilton
- Ames Laboratory, U.S. Department of Energy, Ames, IA 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Aptalogic Inc., Ames, IA 50014, USA
| |
Collapse
|
21
|
Bracamonte AG. Current Advances in Nanotechnology for the Next Generation of Sequencing (NGS). BIOSENSORS 2023; 13:260. [PMID: 36832027 PMCID: PMC9954403 DOI: 10.3390/bios13020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
This communication aims at discussing strategies based on developments from nanotechnology focused on the next generation of sequencing (NGS). In this regard, it should be noted that even in the advanced current situation of many techniques and methods accompanied with developments of technology, there are still existing challenges and needs focused on real samples and low concentrations of genomic materials. The approaches discussed/described adopt spectroscopical techniques and new optical setups. PCR bases are introduced to understand the role of non-covalent interactions by discussing about Nobel prizes related to genomic material detection. The review also discusses colorimetric methods, polymeric transducers, fluorescence detection methods, enhanced plasmonic techniques such as metal-enhanced fluorescence (MEF), semiconductors, and developments in metamaterials. In addition, nano-optics, challenges linked to signal transductions, and how the limitations reported in each technique could be overcome are considered in real samples. Accordingly, this study shows developments where optical active nanoplatforms generate signal detection and transduction with enhanced performances and, in many cases, enhanced signaling from single double-stranded deoxyribonucleic acid (DNA) interactions. Future perspectives on miniaturized instrumentation, chips, and devices aimed at detecting genomic material are analyzed. However, the main concept in this report derives from gained insights into nanochemistry and nano-optics. Such concepts could be incorporated into other higher-sized substrates and experimental and optical setups.
Collapse
Affiliation(s)
- Angel Guillermo Bracamonte
- Instituto de Investigaciones en Físicoquímica de Córdoba (INFIQC), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; or
- Departement de Chimie et Centre d’Optique, Photonique et Laser (COPL), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
22
|
Fahy KM, Eiken MK, Baumgartner KV, Leung KQ, Anderson SE, Berggren E, Bouzos E, Schmitt LR, Asuri P, Wheeler KE. Silver Nanoparticle Surface Chemistry Determines Interactions with Human Serum Albumin and Cytotoxic Responses in Human Liver Cells. ACS OMEGA 2023; 8:3310-3318. [PMID: 36713725 PMCID: PMC9878656 DOI: 10.1021/acsomega.2c06882] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/19/2022] [Indexed: 06/01/2023]
Abstract
Engineered nanomaterials (ENMs) are synthesized with a diversity of surface chemistries that mediate biochemical interactions and physiological response to the particles. In this work, silver engineered nanomaterials (AgENMs) are used to evaluate the role of surface charge in protein interactions and cellular cytotoxicity. The most abundant protein in blood, human serum albumin (HSA), was interacted with 40 nm AgENMs with a range of surface-charged coatings: positively charged branched polyethyleneimine (bPEI), negatively charged citrate (CIT), and circumneutral poly(ethylene glycol) (PEG). HSA adsorption to AgENMs was monitored by UV-vis spectroscopy and dynamic light scattering, while changes to the protein structure were evaluated with circular dichroism spectroscopy. Binding affinity for citrate-coated AgENMs and HSA is largest among the three AgENM coatings; yet, HSA lost the most secondary structure upon interaction with bPEI-coated AgENMs compared to the other two coatings. HSA increased AgENM oxidative dissolution across all particle types, with the greatest dissolution for citrate-coated AgENMs. Results indicate that surface coating is an important consideration in transformation of both the particle and protein upon interaction. To connect results to cellular outcomes, we also performed cytotoxicity experiments with HepG2 cells across all three AgENM types with and without HSA. Results show that bPEI-coated AgENMs cause the greatest loss of cell viability, both with and without inclusion of HSA with the AgENMs. Thus, surface coatings on AgENMs alter both biophysical interactions with proteins and particle cytotoxicity. Within this study set, positively charged bPEI-coated AgENMs cause the greatest disruption to HSA structure and cell viability.
Collapse
Affiliation(s)
- Kira M. Fahy
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Madeline K. Eiken
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
- Department
of Bioengineering, Santa Clara University, Santa Clara, California95053, United States
| | - Karl V. Baumgartner
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
- Department
of Bioengineering, Santa Clara University, Santa Clara, California95053, United States
| | - Kaitlyn Q. Leung
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Sarah E. Anderson
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Erik Berggren
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Evangelia Bouzos
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
- Department
of Bioengineering, Santa Clara University, Santa Clara, California95053, United States
| | - Lauren R. Schmitt
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Prashanth Asuri
- Department
of Bioengineering, Santa Clara University, Santa Clara, California95053, United States
| | - Korin E. Wheeler
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| |
Collapse
|
23
|
Patil AA, Kaushik P, Jain RD, Dandekar PP. Assessment of Urinary Biomarkers for Infectious Diseases Using Lateral Flow Assays: A Comprehensive Overview. ACS Infect Dis 2023; 9:9-22. [PMID: 36512677 DOI: 10.1021/acsinfecdis.2c00449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Screening of biomarkers is a powerful approach for providing a holistic view of the disease spectrum and facilitating the diagnosis and prognosis of the state of infectious diseases. Unaffected by the homeostasis mechanism in the human body, urine accommodates systemic changes and reflects the pathophysiological condition of an individual. Easy availability in large volumes and non-invasive sample collection have rendered urine an ideal source of biomarkers for various diseases. Infectious diseases may be communicable, and therefore early diagnosis and treatment are of immense importance. Current diagnostic approaches preclude the timely identification of clinical conditions and also lack portability. Point-of-care (POC) testing solutions have gained attention as alternative diagnostic measures due to their ability to provide rapid and on-site results. Lateral flow assays (LFAs) are the mainstay in POC device development and have attracted interest owing to their potential to provide instantaneous results in resource-limited settings. The discovery and optimization of a definitive biomarker can render POC testing an excellent platform, thus impacting unwarranted antibiotic administration and preventing the spread of infectious diseases. This Review summarizes the importance of urine as an emerging biological fluid in infectious disease research and diagnosis in clinical settings. We review the academic research related to LFAs. Further, we also describe commercial POC devices based on the identification of urinary biomarkers as diagnostic targets for infectious diseases. We also discuss the future use of LFAs in developing more effective POC tests for urinary biomarkers of various infections.
Collapse
Affiliation(s)
- Ashwini A Patil
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra 400019, India
| | - Preeti Kaushik
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra 400019, India
| | - Ratnesh D Jain
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra 400019, India
| | - Prajakta P Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra 400019, India
| |
Collapse
|
24
|
Patel SK, Surve J, Parmar J, Ahmed K, Bui FM, Al-Zahrani FA. Recent Advances in Biosensors for Detection of COVID-19 and Other Viruses. IEEE Rev Biomed Eng 2023; 16:22-37. [PMID: 36197867 PMCID: PMC10009816 DOI: 10.1109/rbme.2022.3212038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/28/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
This century has introduced very deadly, dangerous, and infectious diseases to humankind such as the influenza virus, Ebola virus, Zika virus, and the most infectious SARS-CoV-2 commonly known as COVID-19 and have caused epidemics and pandemics across the globe. For some of these diseases, proper medications, and vaccinations are missing and the early detection of these viruses will be critical to saving the patients. And even the vaccines are available for COVID-19, the new variants of COVID-19 such as Delta, and Omicron are spreading at large. The available virus detection techniques take a long time, are costly, and complex and some of them generates false negative or false positive that might cost patients their lives. The biosensor technique is one of the best qualified to address this difficult challenge. In this systematic review, we have summarized recent advancements in biosensor-based detection of these pandemic viruses including COVID-19. Biosensors are emerging as efficient and economical analytical diagnostic instruments for early-stage illness detection. They are highly suitable for applications related to healthcare, wearable electronics, safety, environment, military, and agriculture. We strongly believe that these insights will aid in the study and development of a new generation of adaptable virus biosensors for fellow researchers.
Collapse
Affiliation(s)
- Shobhit K. Patel
- Department of Computer EngineeringMarwadi UniversityRajkot360003India
| | - Jaymit Surve
- Department of Electrical EngineeringMarwadi UniversityRajkot360003India
| | - Juveriya Parmar
- Department of Mechanical and Materials EngineeringUniversity of Nebraska - LincolnNebraska68588USA
- Department of Electronics and Communication EngineeringMarwadi UniversityRajkot360003India
| | - Kawsar Ahmed
- Department of Electrical and Computer EngineeringUniversity of SaskatchewanSaskatoonSKS79 5A9Canada
- Group of Bio-PhotomatiX, Department of Information and Communication TechnologyMawlana Bhashani Science and Technology UniversitySantoshTangail1902Bangladesh
| | - Francis M. Bui
- Department of Electrical and Computer EngineeringUniversity of SaskatchewanSaskatoonSKS79 5A9Canada
| | | |
Collapse
|
25
|
Towards papertronics based electrode decorated with zinc oxide nanoparticles for the detection of the yellow fever virus consensus sequence. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Muthamma K, Sunil D. Cellulose as an Eco-Friendly and Sustainable Material for Optical Anticounterfeiting Applications: An Up-to-Date Appraisal. ACS OMEGA 2022; 7:42681-42699. [PMID: 36467930 PMCID: PMC9713864 DOI: 10.1021/acsomega.2c05547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
The falsification of documents, currency, pharmaceuticals, branded goods, clothing, food products, and packaging leads to severe consequences. Counterfeited products can not only pose health risks to consumers but also cause substantial economic losses that can negatively impact the global markets. Unfortunately, most anticounterfeiting strategies are easily duplicated due to rapid technological advancements. Therefore, innovative and cost-effective antiforgery techniques that can offer superior multilevel security features are continuously sought after. Due to the ever-growing global awareness of environmental pollution, renewable and eco-friendly native biopolymers are garnering wide attention in anticounterfeiting applications. This review highlights the potential use of cellulose-based eco-friendly materials to combat the counterfeiting of goods. The initial section of the review focuses on the structure, properties, and chemical modifications of cellulose as a sustainable biomaterial. Further, the topical developments reported on cellulose and nanocellulose-based materials used as fluorescent security inks, films, and papers for achieving protection against counterfeiting are presented. The studies suggest the convenient use of celluose and modified cellulose materials for promising optical antiforgery applications. Furthermore, the scope for future research developments is also discussed based on the current critical challenges in the fabrication of cellulose-based materials and their anticounterfeit applications.
Collapse
|
27
|
Jin B, Du Z, Zhang C, Yu Z, Wang X, Hu J, Li Z. Eu-Chelate Polystyrene Microsphere-Based Lateral Flow Immunoassay Platform for hs-CRP Detection. BIOSENSORS 2022; 12:977. [PMID: 36354486 PMCID: PMC9688000 DOI: 10.3390/bios12110977] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Inflammation caused by viral or bacterial infection is a major threat to human health globally. Blood C-reactive protein (CRP) has been proven to be a sensitive indicator for the occurrence and development of inflammation. Furthermore, a tiny change of blood CRP concentration may portend chronic diseases; therefore, high-sensitivity CRP (hs-CRP) detection in a quantitative, rapid, user-friendly, and low-cost manner is highly demanded. In this paper, we developed a europium-chelate polystyrene microsphere (EuPSM)-based lateral flow immunoassay (LFIA) integrating with a benchtop fluorescence analyzer for hs-CRP detection. The optimization of the EuPSM-based LFIA was implemented through adjusting the antibody density on EuPSM from 100% to 60% of the saturated density. Finally, the limit of detection of 0.76 pg/mL and detection range of 0.025-250 ng/mL were obtained. Moreover, the clinical application capability of the proposed platform was validated through detecting CRP in clinical serum samples, showing high consistency with the results obtained from the clinical standard method. Hence, the proposed EuPSM-based LFIA has been verified to be well suitable for hs-CRP detection, while also showing great applicability for sensitively and rapidly detecting other biomarkers.
Collapse
Affiliation(s)
- Birui Jin
- School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhiguo Du
- School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China
| | - Chuyao Zhang
- School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China
| | - Zhao Yu
- Xi’an Thermal Power Research Institute Co., Ltd., Xi’an 710054, China
| | - Xuemin Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Department of Radiotherapy Hospital Unit Radiation Therapy, Shaanxi Provincial Tumor Hospital, Xi’an 710061, China
| | - Jie Hu
- Suzhou DiYinAn Biotech Co., Ltd., Suzhou Innovation Center for Life Science and Technology, Suzhou 215129, China
| | - Zedong Li
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
28
|
Calidonio JM, Gomez-Marquez J, Hamad-Schifferli K. Nanomaterial and interface advances in immunoassay biosensors. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:17804-17815. [PMID: 38957865 PMCID: PMC11218816 DOI: 10.1021/acs.jpcc.2c05008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Biosensors have been used for a remarkable array of applications, including infectious diseases, environmental monitoring, cancer diagnosis, food safety, and numerous others. In particular, the global COVID-19 pandemic has exposed a need for rapid tests, so the type of biosensor that has gained considerable interest recently are immunoassays, which are used for rapid diagnostics. The performance of paper-based lateral flow and dipstick immunoassays is influenced by the physical properties of the nanoparticles (NPs), NP-antibody conjugates, and paper substrate. Many materials innovations have enhanced diagnostics by increasing sensitivity or enabling unique readouts. However, negative side effects can arise at the interface between the biological sample and biomolecules and the NP or paper substrate, such as non-specific adsorption and protein denaturation. In this Perspective, we discuss the immunoassay components and highlight chemistry and materials innovations that can improve sensitivity. We also explore the range of bio-interface issues that can present challenges for immunoassays.
Collapse
Affiliation(s)
| | | | - Kimberly Hamad-Schifferli
- Department of Engineering, University of Massachusetts Boston, Boston, MA 02125
- School for the Environment, University of Massachusetts Boston, Boston, MA 02125
| |
Collapse
|
29
|
Sena-Torralba A, Álvarez-Diduk R, Parolo C, Piper A, Merkoçi A. Toward Next Generation Lateral Flow Assays: Integration of Nanomaterials. Chem Rev 2022; 122:14881-14910. [PMID: 36067039 PMCID: PMC9523712 DOI: 10.1021/acs.chemrev.1c01012] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Lateral flow assays (LFAs) are currently the most used
point-of-care
sensors for both diagnostic (e.g., pregnancy test, COVID-19 monitoring)
and environmental (e.g., pesticides and bacterial monitoring) applications.
Although the core of LFA technology was developed several decades
ago, in recent years the integration of novel nanomaterials as signal
transducers or receptor immobilization platforms has brought improved
analytical capabilities. In this Review, we present how nanomaterial-based
LFAs can address the inherent challenges of point-of-care (PoC) diagnostics
such as sensitivity enhancement, lowering of detection limits, multiplexing,
and quantification of analytes in complex samples. Specifically, we
highlight the strategies that can synergistically solve the limitations
of current LFAs and that have proven commercial feasibility. Finally,
we discuss the barriers toward commercialization and the next generation
of LFAs.
Collapse
Affiliation(s)
- Amadeo Sena-Torralba
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain.,Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ruslan Álvarez-Diduk
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Claudio Parolo
- Barcelona Institute for Global Health (ISGlobal) Hospital Clínic-Universitat de Barcelona, Carrer del Rosselló 132, 08036 Barcelona, Spain
| | - Andrew Piper
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
30
|
Jaisankar A, Krishnan S, Rangasamy L. Recent developments of aptamer-based lateral flow assays for point-of-care (POC) diagnostics. Anal Biochem 2022; 655:114874. [PMID: 36027971 DOI: 10.1016/j.ab.2022.114874] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022]
Abstract
In the field of lateral flow assay (LFA), the application of aptamer as a bioreceptor has been implemented to overcome the limitations of antibodies, such as tedious in vivo processes, short shelf-life, and functionalization issues. To address these limitations aptamer-based LFA (ALFA) is preferred to antibody-based LFA that produces higher sensitivity and specificity. In principle, aptamers have a strong affinity towards their targets like small, large, and non-immunogenic molecules because of their high affinity, sensitivity, low dissociation constant, cost-effectiveness, and flexible nature. Thus, ALFA can be considered an efficient biosensor model for its superior portability, rapid detection with quick turnaround time, and usability by a non-technical person at any location with simple visual output. This review concisely overviews ALFA, its principles, formats, aptamer selection process, and biomedical applications. In addition, the critical components to design, develop, test, and amplify signals to create ALFA are discussed in brief. In addition, the aspects of conceptualization of ALFA product transforming from bench-side laboratory design and fabrication to commercial market are addressed in detail.
Collapse
Affiliation(s)
- Abinaya Jaisankar
- Drug Discovery Unit, Centre for Biomaterials, Cellular, and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Sasirekha Krishnan
- Drug Discovery Unit, Centre for Biomaterials, Cellular, and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Loganathan Rangasamy
- Drug Discovery Unit, Centre for Biomaterials, Cellular, and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
31
|
Ren W, Irudayaraj J. Magnetic Control-Enhanced Lateral Flow Technique for Ultrasensitive Nucleic Acid Target Detection. ACS OMEGA 2022; 7:29204-29210. [PMID: 36033722 PMCID: PMC9404192 DOI: 10.1021/acsomega.2c03276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
In this work, a lateral flow (LF)-based detection strategy termed magnetic control-enhanced LFA (MCLF) was proposed to detect nucleic acid sequences at attomolar sensitivity. In the proposed MCLF method, magnetic controllers which are magnetic nanoparticles modified with antibodies against the labels on capture sequences were used to interact with the unreacted labeled capture sequence (CS-label) to improve the detection limit. By regulating the movement of magnetic probes (magnetic controllers) with a simple magnet under the lateral flow strip, the movement of magnetic probes bounded with unreacted CS-label in the sample flow could be reduced. Therefore, the target sequence-containing sandwich structures will arrive at the test zone prior, to interact with the recognition ligands, whereby the capture efficiency of the sandwich structures could be increased because the unreacted capture sequences at the test zone will be reduced. With the colorimetric signal from gold nanoparticle-based probes, the proposed MCLF technique could recognize as low as 100 aM of DNA target sequences by naked eyes, and the responding range of MCLF is from 100 aM to 10 pM.
Collapse
Affiliation(s)
- Wen Ren
- Department
of Bioengineering, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United States
- Biomedical
Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Joseph Irudayaraj
- Department
of Bioengineering, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United States
- Biomedical
Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
- Holonyak
Micro and Nanotechnology Laboratory; Beckman Institute; Carl Woese
Institute for Genomic Biology, University
of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
- Cancer
Center at Illinois (CCIL), University of
Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
32
|
Pan Y, Mao K, Hui Q, Wang B, Cooper J, Yang Z. Paper-based devices for rapid diagnosis and wastewater surveillance. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Li Q, Sun T, Salentijn GI, Ning B, Han D, Bai J, Peng Y, Gao Z, Wang Z. Bifunctional ligand-mediated amplification of polydiacetylene response to biorecognition of diethylstilbestrol for on-site smartphone detection. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128692. [PMID: 35316640 DOI: 10.1016/j.jhazmat.2022.128692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Polydiacetylene (PDA) is very suited for sensitively detecting large biomolecules, and its unique chromatic properties enable visual read-out. However, application to the selective detection of small molecules remains challenging. Here, bifunctional ligands are studied to amplify the color change of PDA for biorecognition of small molecules for the smartphone-based detection of diethylstilbestrol (DES). PDA is decorated with streptavidin (PDA-SA, blue), and biotin-modified DES (bio-DES) is prepared as a bifunctional ligand to couple with PDA-SA and DES antibody. Since multiple bio-DES can bind to a single SA, then multiple SAs on PDA lead to an increased surface coverage of the vesicle. In samples without DES, PDA-SA-bio-DES-DES antibody complexes will form, leading to a color transition (blue to red); this color transition is greatly amplified by antibody-induced aggregation of the complexes. When DES is present, aggregation is inhibited due to competition for the antibody and PDA-SA-bio-DES retains its blue color. A linear relationship (0.4-1250 ng mL-1) is found between the colorimetric response and the logarithmic DES concentration, with adequate selectivity, accuracy (82.24-118.64%), and precision (below 8.24%). Finally, a paper-based DES PDA biosensor is developed with visual and smartphone-based detection limits of 10 ng mL-1 and 0.85 ng mL-1 in water, respectively.
Collapse
Affiliation(s)
- Qiaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Wageningen Food Safety Research, Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Tieqiang Sun
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Gert Ij Salentijn
- Wageningen Food Safety Research, Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands; Laboratory of Organic Chemistry, Wageningen University, Wageningen 6708 WE, The Netherlands
| | - Baoan Ning
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
34
|
Gosselin B, Retout M, Dutour R, Troian-Gautier L, Bevernaegie R, Herens S, Lefèvre P, Denis O, Bruylants G, Jabin I. Ultrastable Silver Nanoparticles for Rapid Serology Detection of Anti-SARS-CoV-2 Immunoglobulins G. Anal Chem 2022; 94:7383-7390. [PMID: 35561247 PMCID: PMC9127678 DOI: 10.1021/acs.analchem.2c00870] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/02/2022] [Indexed: 01/24/2023]
Abstract
Dipstick assays using silver nanoparticles (AgNPs) stabilized by a thin calix[4]arene-based coating were developed and used for the detection of Anti-SARS-CoV-2 IgG in clinical samples. The calixarene-based coating enabled the covalent bioconjugation of the SARS-CoV-2 Spike Protein via the classical EDC/sulfo-NHS procedure. It further conferred remarkable stability to the resulting bioconjugated AgNPs, as no degradation was observed over several months. In comparison with lateral-flow immunoassays (LFIAs) based on classical gold nanoparticles, our AgNP-based system constitutes a clear step forward, as the limit of detection for Anti-SARS-CoV-2 IgG was reduced by 1 order of magnitude and similar signals were observed with 10 times fewer particles. In real clinical samples, the AgNP-based dipstick assays showed impressive results: 100% specificity was observed for negative samples, while a sensitivity of 73% was determined for positive samples. These values match the typical sensitivities obtained for reported LFIAs based on gold nanoparticles. These results (i) represent one of the first examples of the use of AgNP-based dipstick assays in the case of real clinical samples, (ii) demonstrate that ultrastable calixarene-coated AgNPs could advantageously replace AuNPs in LFIAs, and thus (iii) open new perspectives in the field of rapid diagnostic tests.
Collapse
Affiliation(s)
- Bryan Gosselin
- Engineering
of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
- Laboratoire
de Chimie Organique, Université libre
de Bruxelles (ULB), Avenue
F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Maurice Retout
- Engineering
of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Raphaël Dutour
- Engineering
of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Ludovic Troian-Gautier
- Laboratoire
de Chimie Organique, Université libre
de Bruxelles (ULB), Avenue
F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Robin Bevernaegie
- Laboratoire
de Chimie Organique, Université libre
de Bruxelles (ULB), Avenue
F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Sophie Herens
- Service
de Biologie Clinique, Clinique CHC MontLégia, Bvd Patience et Beaujonc 2, 4000 Liège, Belgium
| | - Philippe Lefèvre
- Service
de Biologie Clinique, Hôpital de
Marche, Groupe VIVALIA, Rue du Vivier 21, 6900 Marche en Famenne, Belgium
| | - Olivier Denis
- Service
Immune Response, Sciensano, Site Ukkel Engelandstraat 642, 1180 Brussels, Belgium
| | - Gilles Bruylants
- Engineering
of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Ivan Jabin
- Laboratoire
de Chimie Organique, Université libre
de Bruxelles (ULB), Avenue
F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| |
Collapse
|
35
|
Edible mushroom extract engineered Ag NPs as safe antimicrobial and antioxidant agents with no significant cytotoxicity on human dermal fibroblast cells. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Bikkarolla SK, McNamee SE, Vance P, McLaughlin J. High-Sensitive Detection and Quantitative Analysis of Thyroid-Stimulating Hormone Using Gold-Nanoshell-Based Lateral Flow Immunoassay Device. BIOSENSORS 2022; 12:182. [PMID: 35323452 PMCID: PMC8946628 DOI: 10.3390/bios12030182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/22/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Au nanoparticles (AuNPs) have been used as signal reporters in colorimetric lateral flow immunoassays (LFAs) for decades. However, it remains a major challenge to significantly improve the detection sensitivity of traditional LFAs due to the low brightness of AuNPs. As an alternative approach, we overcome this problem by utilizing 150 nm gold nanoshells (AuNSs) that were engineered by coating low-density silica nanoparticles with a thin layer of gold. AuNSs are dark green, have 14 times larger surface area, and are approximately 35 times brighter compared to AuNPs. In this study, we used detection of thyroid-stimulating hormone (TSH) in a proof-of-concept assay. The limit of detection (LOD) with AuNS-based LFA was 0.16 µIU/mL, which is 26 times more sensitive than the conventional colorimetric LFA that utilizes AuNP as a label. The dynamic range of the calibration curve was 0.16−9.5 µIU/mL, making it possible to diagnose both hyperthyroidism (<0.5 µIU/mL) and hypothyroidism (>5 µIU/mL) using AuNS-based LFA. Thus, the developed device has a strong potential for early screening and diagnosis of diseases related to the thyroid hormone.
Collapse
Affiliation(s)
- Santosh Kumar Bikkarolla
- School of Engineering, Engineering Research Institute, University of Ulster, Newtownabbey BT37 0QB, UK;
| | - Sara E. McNamee
- School of Engineering, Engineering Research Institute, University of Ulster, Newtownabbey BT37 0QB, UK;
| | - Paul Vance
- Randox Laboratories Ltd., 55 Diamond Road, Crumlin, County Antrim BT29 4QY, UK;
| | - James McLaughlin
- School of Engineering, Engineering Research Institute, University of Ulster, Newtownabbey BT37 0QB, UK;
| |
Collapse
|
37
|
Ghosh U, Sayef Ahammed K, Mishra S, Bhaumik A. The Emerging Roles of Silver Nanoparticles to Target Viral Life Cycle and Detect Viral Pathogens. Chem Asian J 2022; 17:e202101149. [PMID: 35020270 PMCID: PMC9011828 DOI: 10.1002/asia.202101149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/05/2022] [Indexed: 11/26/2022]
Abstract
Along the line of recent vaccine advancements, new antiviral therapeutics are compelling to combat viral infection-related public health crises. Several properties of silver nanoparticles (AgNPs) such as low level of cytotoxicity, ease of tunability of the AgNPs in the ultra-small nanoscale size and shape through different convenient bottom-up chemistry approaches, high penetration of the composite with drug formulations into host cells has made AgNPs, a promising candidate for developing antivirals. In this review, we have highlighted the recent advancements in the AgNPs based nano-formulations to target cellular mechanisms of viral propagation, immune modulation of the host, and the ability to synergistically enhance the activity of existing antiviral drugs. On the other hand, we have discussed the recent advancements on AgNPs based detection of viral pathogens from clinical samples using inherent physicochemical properties. This article will provide an overview of our current knowledge on AgNPs based formulations that has promising potential for developing a counteractive strategy against emerging and existing viruses.
Collapse
Affiliation(s)
- Ujjyani Ghosh
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
- Present address: The University of UtahSalt Lake CityUT84112USA
| | - Khondakar Sayef Ahammed
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
- Present address: The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical SciencesHoustonTX77030USA
| | - Snehasis Mishra
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
| | - Asim Bhaumik
- School of Materials SciencesIndian Association for the Cultivation of ScienceJadavpur, Kolkata700 032India
| |
Collapse
|
38
|
Ignatova T, Pourianejad S, Li X, Schmidt K, Aryeetey F, Aravamudhan S, Rotkin SV. Multidimensional Imaging Reveals Mechanisms Controlling Multimodal Label-Free Biosensing in Vertical 2DM-Heterostructures. ACS NANO 2022; 16:2598-2607. [PMID: 35061372 DOI: 10.1021/acsnano.1c09335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional materials and their van der Waals heterostructures enable a large range of applications, including label-free biosensing. Lattice mismatch and work function difference in the heterostructure material result in strain and charge transfer, often varying at a nanometer scale, that influence device performance. In this work, a multidimensional optical imaging technique is developed in order to map subdiffractional distributions for doping and strain and understand the role of those for modulation of the electronic properties of the material. As an example, vertical heterostructures comprised of monolayer graphene and single-layer flakes of transition metal dichalcogenide MoS2 were fabricated and used for biosensing. Herein, the optical label-free detection of doxorubicin, a common cancer drug, is reported via three independent optical detection channels (photoluminescence shift, Raman shift, and graphene enhanced Raman scattering). Non-uniform broadening of components of multimodal signal correlates with the statistical distribution of local optical properties of the heterostructure. Multidimensional nanoscale imaging allows one to reveal the physical origin for such a local response and propose the best strategy for the mitigation of materials variability and future device fabrication, enabling multiplexed biosensing.
Collapse
Affiliation(s)
- Tetyana Ignatova
- Department of Nanoscience, University of North Carolina at Greensboro, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Sajedeh Pourianejad
- Department of Nanoscience, University of North Carolina at Greensboro, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Xinyi Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kirby Schmidt
- Department of Nanoscience, University of North Carolina at Greensboro, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Frederick Aryeetey
- Department of Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Shyam Aravamudhan
- Department of Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Slava V Rotkin
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, Millennium Science Complex, University Park, Pennsylvania 16802, United States
| |
Collapse
|
39
|
Sharma P, Suleman S, Farooqui A, Ali W, Narang J, Malode SJ, Shetti NP. Analytical Methods for Ebola Virus Detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Singh S, Numan A, Cinti S. Point-of-Care for Evaluating Antimicrobial Resistance through the Adoption of Functional Materials. Anal Chem 2022; 94:26-40. [PMID: 34802244 PMCID: PMC8756393 DOI: 10.1021/acs.analchem.1c03856] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sima Singh
- IES
Institute of Pharmacy, IES University Campus, Kalkheda, Ratibad Main Road, Bhopal 462044, Madhya Pradesh, India
| | - Arshid Numan
- Graphene
& Advanced 2D Materials Research Group (GAMRG), School of Engineering
and Technology, Sunway University, 5, Jalan University, Bandar Sunway, 47500 Petaling
Jaya, Selangor, Malaysia
| | - Stefano Cinti
- Department
of Pharmacy, University of Naples “Federico
II”, Via D. Montesano 49, 80131 Naples, Italy
- BAT
Center−Interuniversity Center for Studies on Bioinspired Agro-Environmental
Technology, University of Napoli Federico
II, 80055 Naples, Italy
| |
Collapse
|
41
|
Chen X, Ding L, Huang X, Xiong Y. Tailoring noble metal nanoparticle designs to enable sensitive lateral flow immunoassay. Am J Cancer Res 2022; 12:574-602. [PMID: 34976202 PMCID: PMC8692915 DOI: 10.7150/thno.67184] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Lateral flow immunoassay (LFIA) with gold nanoparticles (AuNPs) as signal reporters is a popular point-of-care diagnostic technique. However, given the weak absorbance of traditional 20-40 nm spherical AuNPs, their sensitivity is low, which greatly limits the wide application of AuNP-based LFIA. With the rapid advances in materials science and nanotechnology, the synthesis of noble metal nanoparticles (NMNPs) has enhanced physicochemical properties such as optical, plasmonic, catalytic, and multifunctional activity by simply engineering their physical parameters, including the size, shape, composition, and external structure. Using these engineered NMNPs as an alternative to traditional AuNPs, the sensitivity of LFIA has been significantly improved, thereby greatly expanding the working range and application scenarios of LFIA, particularly in trace analysis. Therefore, in this review, we will focus on the design of engineered NMNPs and their demonstration in improving LFIA. We highlight the strategies available for tailoring NMNP designs, the effect of NMNP engineering on their performance, and the working principle of each engineering design for enhancing LFIA. Finally, current challenges and future improvements in this field are briefly discussed.
Collapse
|
42
|
Bradbury DW, Trinh JT, Ryan MJ, Chen KJ, Battikha AA, Wu BM, Kamei DT. Combination of the lateral-flow immunoassay with multicolor gold nanorod etching for the semi-quantitative detection of digoxin. Analyst 2022; 147:4000-4007. [DOI: 10.1039/d2an01047j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrated the first ever combination of the lateral-flow immunoassay (LFA) with gold nanorod etching to achieve a multicolor readout where the changes in color hue are more easily discernible than changes in intensity of a single color.
Collapse
Affiliation(s)
- Daniel W. Bradbury
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Jasmine T. Trinh
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Milo J. Ryan
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Kyle J. Chen
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Adel A. Battikha
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Benjamin M. Wu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Division of Advanced Prosthodontics & Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Daniel T. Kamei
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
43
|
Ren W, Irudayaraj J. Paper-Based Test for Rapid On-Site Screening of SARS-CoV-2 in Clinical Samples. BIOSENSORS 2021; 11:bios11120488. [PMID: 34940245 PMCID: PMC8699507 DOI: 10.3390/bios11120488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/21/2021] [Accepted: 11/28/2021] [Indexed: 05/17/2023]
Abstract
Detection methods for monitoring infectious pathogens has never been more important given the need to contain the spread of the COVID-19 pandemic. Herein we propose a highly sensitive magnetic-focus-enhanced lateral flow assay (mLFA) for the detection of SARS-CoV-2. The proposed mLFA is simple and requires only lateral flow strips and a reusable magnet to detect very low concentrations of the virus particles. The magnetic focus enhancement is achieved by focusing the SARS-CoV-2 conjugated magnetic probes in the sample placed in the lateral flow (LF) strips for improved capture efficiency, while horseradish peroxidase (HRP) was used to catalyze the colorimetric reaction for the amplification of the colorimetric signal. With the magnetic focus enhancement and HRP-based amplification, the mLFA could yield a highly sensitive technology for the recognition of SARS-CoV-2. The developed methods could detect as low as 400 PFU/mL of SARS-CoV-2 in PBS buffer based on the visible blue dots on the LF strips. The mLFA could recognize 1200 PFU/mL of SARS-CoV-2 in saliva samples. With clinical nasal swab samples, the proposed mLFA could achieve 66.7% sensitivity and 100% specificity.
Collapse
Affiliation(s)
- Wen Ren
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois (CCIL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
44
|
Gong X, Shao J, Guo S, Pan J, Fan X. Determination of inhibitory activity of Salvia miltiorrhiza extracts on xanthine oxidase with a paper-based analytical device. J Pharm Anal 2021; 11:603-610. [PMID: 34765273 PMCID: PMC8572718 DOI: 10.1016/j.jpha.2020.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/20/2020] [Accepted: 09/20/2020] [Indexed: 11/04/2022] Open
Abstract
A novel paper-based analytical device (PAD) was prepared and applied to determine the xanthine oxidase (XOD) inhibitory activity of Salvia miltiorrhiza extracts (SME). First, polycaprolactone was 3D printed on filter paper and heated to form hydrophobic barriers. Then the modified paper was cut according to the specific design. Necessary reagents including XOD for the colorimetric assay were immobilized on two separate pieces of paper. By simply adding phosphate buffer, the reaction was performed on the double-layer PAD. Quantitative results were obtained by analyzing the color intensity with the specialized device system (consisting of a smartphone, a detection box and sandwich plates). The 3D-printed detection box was small, with a size of 9.0 cm × 7.0 cm × 11.5 cm. Color component G performed well in terms of linearity and detection limits and thus was identified as the index. The reaction conditions were optimized using a definitive screening design. Moreover, a 10% glycerol solution was found to be a suitable stabilizer. When the stabilizer was added, the activity of XOD could be maintained for at least 15 days under 4 °C or −20 °C storage conditions. The inhibitory activity of SME was investigated and compared to that of allopurinol. The results obtained with the PAD showed agreement with those obtained with the microplate method. In conclusion, the proposed PAD method is simple, accurate and has a potential for point-of-care testing. It also holds promise for use in rapid quality testing of medicinal herbs, intermediate products, and preparations of traditional Chinese medicines. The inhibitory activity of Salvia miltiorrhiza extracts on xanthine oxidase was determined with PADs. A double-layer structure of PAD was designed to avoid enzyme-substrate reactions during storage. A reaction device and a detection system were suitable for point-of-care test.
Collapse
Affiliation(s)
- Xingchu Gong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingyuan Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shangxin Guo
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingjing Pan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
45
|
Nasrollahi F, Haghniaz R, Hosseini V, Davoodi E, Mahmoodi M, Karamikamkar S, Darabi MA, Zhu Y, Lee J, Diltemiz SE, Montazerian H, Sangabathuni S, Tavafoghi M, Jucaud V, Sun W, Kim H, Ahadian S, Khademhosseini A. Micro and Nanoscale Technologies for Diagnosis of Viral Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100692. [PMID: 34310048 PMCID: PMC8420309 DOI: 10.1002/smll.202100692] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/19/2021] [Indexed: 05/16/2023]
Abstract
Viral infection is one of the leading causes of mortality worldwide. The growth of globalization significantly increases the risk of virus spreading, making it a global threat to future public health. In particular, the ongoing coronavirus disease 2019 (COVID-19) pandemic outbreak emphasizes the importance of devices and methods for rapid, sensitive, and cost-effective diagnosis of viral infections in the early stages by which their quick and global spread can be controlled. Micro and nanoscale technologies have attracted tremendous attention in recent years for a variety of medical and biological applications, especially in developing diagnostic platforms for rapid and accurate detection of viral diseases. This review addresses advances of microneedles, microchip-based integrated platforms, and nano- and microparticles for sampling, sample processing, enrichment, amplification, and detection of viral particles and antigens related to the diagnosis of viral diseases. Additionally, methods for the fabrication of microchip-based devices and commercially used devices are described. Finally, challenges and prospects on the development of micro and nanotechnologies for the early diagnosis of viral diseases are highlighted.
Collapse
Affiliation(s)
- Fatemeh Nasrollahi
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
| | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
| | - Elham Davoodi
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
- Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Mahboobeh Mahmoodi
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
- Department of Biomedical EngineeringYazd BranchIslamic Azad UniversityYazd8915813135Iran
| | | | - Mohammad Ali Darabi
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Junmin Lee
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Sibel Emir Diltemiz
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
- Department of ChemistryFaculty of ScienceEskisehir Technical UniversityEskisehir26470Turkey
| | - Hossein Montazerian
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
| | | | - Maryam Tavafoghi
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Wujin Sun
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Han‐Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| |
Collapse
|
46
|
Hristov DR, Gomez-Marquez J, Wade D, Hamad-Schifferli K. SARS-CoV-2 and approaches for a testing and diagnostic strategy. J Mater Chem B 2021; 9:8157-8173. [PMID: 34494642 DOI: 10.1039/d1tb00674f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The COVID-19 pandemic has led to an unprecedented global health challenge, creating sudden, massive demands for diagnostic testing, treatment, therapies, and vaccines. In particular, the development of diagnostic assays for SARS-CoV-2 has been pursued as they are needed for quarantine, disease surveillance, and patient treatment. One of the major lessons the pandemic highlighted was the need for fast, cheap, scalable and reliable diagnostic methods, such as paper-based assays. Furthermore, it has previously been suggested that paper-based tests may be more suitable for settings with lower resource availability and may help alleviate some supply chain challenges which arose during the COVID-19 pandemic. Therefore, we explore how such devices may fit in a comprehensive diagnostic strategy and how some of the challenges to the technology, e.g. low sensitivity, may be addressed. We discuss the properties of the SARS-CoV-2 virus itself, the COVID-19 disease pathway, and the immune response. We then describe the different diagnostic strategies that have been pursued, focusing on molecular strategies for viral genetic material, antigen tests, and serological assays, and innovations for improving the diagnostic sensitivity and capabilities. Finally, we discuss pressing issues for the future, and what needs to be addressed for the ongoing pandemic and future outbreaks.
Collapse
Affiliation(s)
- Delyan R Hristov
- Department of Engineering, University of Massachusetts Boston, Boston, MA, USA.
| | - Jose Gomez-Marquez
- Little Devices Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Djibril Wade
- iLEAD (Innovation in Laboratory Engineered Accelerated Diagnostics), Institut de Recherche en Santé, de Surveillance Epidémiologique et de Formations (IRESSEF), Dakar, Senegal
| | - Kimberly Hamad-Schifferli
- Department of Engineering, University of Massachusetts Boston, Boston, MA, USA. .,School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| |
Collapse
|
47
|
Pilaquinga F, Morey J, Torres M, Seqqat R, Piña MDLN. Silver nanoparticles as a potential treatment against SARS-CoV-2: A review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1707. [PMID: 33638618 PMCID: PMC7995207 DOI: 10.1002/wnan.1707] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Several human coronaviruses (HCoVs) are distinguished by the ability to generate epidemics or pandemics, with their corresponding diseases characterized by severe respiratory illness, such as that which occurs in severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and, today, in SARS-CoV-2, an outbreak that has struck explosively and uncontrollably beginning in December 2019 and has claimed the lives of more than 1.9 M people worldwide as of January 2021. The development of vaccines has taken one year, which is why it is necessary to investigate whether some already-existing alternatives that have been successfully developed in recent years can mitigate the pandemic's advance. Silver nanoparticles (AgNPs) have proved effective in antiviral action. Thus, in this review, several in vitro and in vivo studies of the effect of AgNPs on viruses that cause respiratory diseases are analyzed and discussed to promote an understanding of the possible interaction of AgNPs with SARS-CoV-2. The study focuses on several in vivo toxicological studies of AgNPs and a dose extrapolation to humans to determine the chief avenue of exposure. It can be concluded that the use of AgNPs as a possible treatment for SARS-CoV-2 could be viable, based on comparing the virus' behavior to that of similar viruses in in vivo studies, and that the suggested route of administration in terms of least degree of adverse effects is inhalation. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Fernanda Pilaquinga
- School of Chemistry SciencesPontificia Universidad Católica del EcuadorQuitoEcuador
- Department of ChemistryUniversity of the Balearic IslandsPalma de MallorcaSpain
| | - Jeroni Morey
- Department of ChemistryUniversity of the Balearic IslandsPalma de MallorcaSpain
| | - Marbel Torres
- Immunology and Virology Laboratory, Nanoscience and Nanotechnology CenterUniversidad de las Fuerzas Armadas, ESPESangolquíEcuador
| | - Rachid Seqqat
- Immunology and Virology Laboratory, Nanoscience and Nanotechnology CenterUniversidad de las Fuerzas Armadas, ESPESangolquíEcuador
| | | |
Collapse
|
48
|
Sheikhzadeh E, Beni V, Zourob M. Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 2021; 230:122026. [PMID: 33934756 PMCID: PMC7854185 DOI: 10.1016/j.talanta.2020.122026] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases are a potential risk for public health and the global economy. Fast and accurate detection of the pathogens that cause these infections is important to avoid the transmission of the diseases. Conventional methods for the detection of these microorganisms are time-consuming, costly, and not applicable for on-site monitoring. Biosensors can provide a fast, reliable, and point of care diagnostic. Nanomaterials, due to their outstanding electrical, chemical, and optical features, have become key players in the area of biosensors. This review will cover different nanomaterials that employed in electrochemical, optical, and instrumental biosensors for infectious disease diagnosis and how these contributed to enhancing the sensitivity and rapidity of the various sensing platforms. Examples of nanomaterial synthesis methods as well as a comprehensive description of their properties are explained. Moreover, when available, comparative data, in the presence and absence of the nanomaterials, have been reported to further highlight how the usage of nanomaterials enhances the performances of the sensor.
Collapse
Affiliation(s)
- Elham Sheikhzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Corresponding author
| | - Valerio Beni
- Digital Systems, Department Smart Hardware, Unit Bio–& Organic Electronics, RISE Acreo, Research Institutes of Sweden, Norrkoping, 60221, Sweden
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia,King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia,Corresponding author. Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
49
|
Yao L, Xu J, Cheng J, Yao B, Zheng L, Liu G, Chen W. Simultaneous and accurate screening of multiple genetically modified organism (GMO) components in food on the same test line of SERS-integrated lateral flow strip. Food Chem 2021; 366:130595. [PMID: 34298393 DOI: 10.1016/j.foodchem.2021.130595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/14/2021] [Accepted: 07/11/2021] [Indexed: 01/17/2023]
Abstract
Herein, a surface-enhanced Raman scattering (SERS)-integrated LFS platform was developed for rapid and simultaneous screening of multiple genetically modified organism (GMO) components (promoter, codon, and terminator) in soybean. Research demonstrated that, on the same test line (T line) of single LFS, three different GMP components can be well distinguished with the help of three SERS nano tags. Good linear correlations between SERS signal and concentration of each GMO component were also obtained for quantitative analysis. Of greater importance, whether these multiple analytes coexisted or not, varied in the same concentration trend or not, these multiple GMP components can be rapidly (15 min) and accurately screened with satisfied sensitivity and specificity by decoding the signals on the same T line. We envision that this decoding platform can further improve the potential of LFS and SERS for practical applications and provide a promising alternative for multiple screening of GMO identification in food.
Collapse
Affiliation(s)
- Li Yao
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China; Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang 233100, China
| | - Jianguo Xu
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jigui Cheng
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Bangben Yao
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Province Institute of Product Quality Supervision & Inspection, Hefei 230051, China
| | - Lei Zheng
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Guodong Liu
- Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang 233100, China.
| | - Wei Chen
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China; Intelligent Manufacturing Institute of Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
50
|
Tortella GR, Pieretti JC, Rubilar O, Fernández-Baldo M, Benavides-Mendoza A, Diez MC, Seabra AB. Silver, copper and copper oxide nanoparticles in the fight against human viruses: progress and perspectives. Crit Rev Biotechnol 2021; 42:431-449. [PMID: 34233551 DOI: 10.1080/07388551.2021.1939260] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The rapid development of nanomedicine has created a high demand for silver, copper and copper oxide nanoparticles. Due to their high reactivity and potent antimicrobial activity, silver and copper-based nanomaterials have been playing an important role in the search for new alternatives for the treatment of several issues of concern, such as pathologies caused by bacteria and viruses. Viral diseases are a significant and constant threat to public health. The most recent example is the pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this context, the object of the present review is to highlight recent progress in the biomedical uses of these metal nanoparticles for the treatment and prevention of human viral infections. We discuss the antiviral activity of AgNPs and Cu-based NPs, including their actions against SARS-CoV-2. We also discuss the toxicity, biodistribution and excretion of AgNPs and CuNPs, along with their uses in medical devices or on inert surfaces to avoid viral dissemination by fomites. The challenges and limitations of the biomedical use of these nanoparticles are presented.
Collapse
Affiliation(s)
- G R Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA-BIOREN, Universidad de La Frontera, Temuco, Chile
| | - J C Pieretti
- Center for Natural and Human Sciences, Universidade Federal do ABC (UFABC), Santo André, Brazil
| | - O Rubilar
- Chemical Engineering Department, Universidad de La Frontera, Temuco, Chile
| | - M Fernández-Baldo
- National Scientific and Technical Research Council
- Conicet · INQUISAL Instituto de Química San Luis, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - A Benavides-Mendoza
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo, Mexico
| | - M C Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA-BIOREN, Universidad de La Frontera, Temuco, Chile.,Center for Natural and Human Sciences, Universidade Federal do ABC (UFABC), Santo André, Brazil
| | - A B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC (UFABC), Santo André, Brazil
| |
Collapse
|