1
|
Cen H, Sun M, Zheng B, Peng W, Wen Q, Lin Z, Zhang X, Zhou N, Zhu G, Yu X, Zhang L, Liang L. Hyaluronic acid modified nanocarriers for aerosolized delivery of verteporfin in the treatment of acute lung injury. Int J Biol Macromol 2024; 267:131386. [PMID: 38582458 DOI: 10.1016/j.ijbiomac.2024.131386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Verteporfin (VER), a photosensitizer used in macular degeneration therapy, has shown promise in controlling macrophage polarization and alleviating inflammation in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). However, its hydrophobicity, limited bioavailability, and side effects hinder its therapeutic potential. In this study, we aimed to enhance the therapeutic potential of VER through pulmonary nebulized drug delivery for ALI/ARDS treatment. We combined hydrophilic hyaluronic acid (HA) with an oil-in-water system containing a poly(lactic acid-co-glycolic acid) (PLGA) copolymer of VER to synthesize HA@PLGA-VER (PHV) nanoparticles with favorable surface characteristics to improve the bioavailability and targeting ability of VER. PHV possesses suitable electrical properties, a narrow size distribution (approximately 200 nm), and favorable stability. In vitro and in vivo studies demonstrated the excellent biocompatibility, safety, and anti-inflammatory responses of the PHV by suppressing M1 macrophage polarization while inducing M2 polarization. The in vivo experiments indicated that the treatment with aerosolized nano-VER (PHV) allowed more drugs to accumulate and penetrate into the lungs, improved the pulmonary function and attenuated lung injury, and mortality of ALI mice, achieving improved therapeutic outcomes. These findings highlight the potential of PHV as a promising delivery system via nebulization for enhancing the therapeutic effects of VER in ALI/ARDS.
Collapse
Affiliation(s)
- Huiyu Cen
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Mingna Sun
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Bingyu Zheng
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Weijie Peng
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Qiqi Wen
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Zhongxiao Lin
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Xin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Na Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Guanxiong Zhu
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China; Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, PR China
| | - Xiyong Yu
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Lingmin Zhang
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Lu Liang
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
2
|
Wang B, Wang L, Yang Q, Zhang Y, Qinglai T, Yang X, Xiao Z, Lei L, Li S. Pulmonary inhalation for disease treatment: Basic research and clinical translations. Mater Today Bio 2024; 25:100966. [PMID: 38318475 PMCID: PMC10840005 DOI: 10.1016/j.mtbio.2024.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Pulmonary drug delivery has the advantages of being rapid, efficient, and well-targeted, with few systemic side effects. In addition, it is non-invasive and has good patient compliance, making it a highly promising drug delivery mode. However, there have been limited studies on drug delivery via pulmonary inhalation compared with oral and intravenous modes. This paper summarizes the basic research and clinical translation of pulmonary inhalation drug delivery for the treatment of diseases and provides insights into the latest advances in pulmonary drug delivery. The paper discusses the processing methods for pulmonary drug delivery, drug carriers (with a focus on various types of nanoparticles), delivery devices, and applications in pulmonary diseases and treatment of systemic diseases (e.g., COVID-19, inhaled vaccines, diagnosis of the diseases, and diabetes mellitus) with an updated summary of recent research advances. Furthermore, this paper describes the applications and recent progress in pulmonary drug delivery for lung diseases and expands the use of pulmonary drugs for other systemic diseases.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Binzhou People's Hospital, Binzhou, 256610, Shandong, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Tang Qinglai
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lanjie Lei
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
3
|
Yu J, Dan N, Eslami SM, Lu X. State of the Art of Silica Nanoparticles: An Overview on Biodistribution and Preclinical Toxicity Studies. AAPS J 2024; 26:35. [PMID: 38514482 DOI: 10.1208/s12248-024-00906-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Over the past few years, nanoparticles have drawn particular attention in designing and developing drug delivery systems due to their distinctive advantages like improved pharmacokinetics, reduced toxicity, and specificity. Along with other successful nanosystems, silica nanoparticles (SNPs) have shown promising effects for therapeutic and diagnostic purposes. These nanoparticles are of great significance owing to their modifiable surface with various ligands, tunable particle size, and large surface area. The rate and extent of degradation and clearance of SNPs depend on factors such as size, shape, porosity, and surface modification, which directly lead to varying toxic mechanisms. Despite SNPs' enormous potential for clinical and pharmaceutical applications, safety concerns have hindered their translation into the clinic. This review discusses the biodistribution, toxicity, and clearance of SNPs and the formulation-related factors that ultimately influence clinical efficacy and safety for treatment. A holistic view of SNP safety will be beneficial for developing an enabling SNP-based drug product.
Collapse
Affiliation(s)
- Joshua Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Nirnoy Dan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Seyyed Majid Eslami
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA.
| |
Collapse
|
4
|
García-Fernández A, Sancho M, Garrido E, Bisbal V, Sancenón F, Martínez-Máñez R, Orzáez M. Targeted Delivery of the Pan-Inflammasome Inhibitor MM01 as an Alternative Approach to Acute Lung Injury Therapy. Adv Healthc Mater 2023; 12:e2301577. [PMID: 37515468 DOI: 10.1002/adhm.202301577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Acute lung injury (ALI) is a severe pulmonary disorder responsible for high percentage of mortality and morbidity in intensive care unit patients. Current treatments are ineffective, so the development of efficient and specific therapies is an unmet medical need. The activation of NLPR3 inflammasome during ALI produces the release of proinflammatory factors and pyroptosis, a proinflammatory form of cell death that contributes to lung damage spreading. Herein, it is demonstrated that modulating inflammasome activation through inhibition of ASC oligomerization by the recently described MM01 compound can be an alternative pharmacotherapy against ALI. Besides, the added efficacy of using a drug delivery nanosystem designed to target the inflamed lungs is determined. The MM01 drug is incorporated into mesoporous silica nanoparticles capped with a peptide (TNFR-MM01-MSNs) to target tumor necrosis factor receptor-1 (TNFR-1) to proinflammatory macrophages. The prepared nanoparticles can deliver the cargo in a controlled manner after the preferential uptake by proinflammatory macrophages and exhibit anti-inflammatory activity. Finally, the therapeutic effect of MM01 free or nanoparticulated to inhibit inflammatory response and lung injury is successfully demonstrated in lipopolysaccharide-mouse model of ALI. The results suggest the potential of pan-inflammasome inhibitors as candidates for ALI therapy and the use of nanoparticles for targeted lung delivery.
Collapse
Affiliation(s)
- Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camí de vera s/n, Valencia, 46022, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - Mónica Sancho
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, E-46100, Spain
| | - Eva Garrido
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camí de vera s/n, Valencia, 46022, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
| | - Viviana Bisbal
- Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camí de vera s/n, Valencia, 46022, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta, Valencia, 46026, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camí de vera s/n, Valencia, 46022, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta, Valencia, 46026, Spain
| | - Mar Orzáez
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, E-46100, Spain
| |
Collapse
|
5
|
Lérida-Viso A, Estepa-Fernández A, García-Fernández A, Martí-Centelles V, Martínez-Máñez R. Biosafety of mesoporous silica nanoparticles; towards clinical translation. Adv Drug Deliv Rev 2023; 201:115049. [PMID: 37573951 DOI: 10.1016/j.addr.2023.115049] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) have attracted the attention of chemists, who have developed numerous systems for the encapsulation of a plethora of molecules, allowing the use of mesoporous silica nanoparticles for biomedical applications. MSNs have been extensively studied for their use in nanomedicine, in applications such as drug delivery, diagnosis, and bioimaging, demonstrating significant in vivo efficacy in different preclinical models. Nevertheless, for the transition of MSNs into clinical trials, it is imperative to understand the characteristics that make MSNs effective and safe. The biosafety properties of MSNs in vivo are greatly influenced by their physicochemical characteristics such as particle shape, size, surface modification, and silica framework. In this review, we compile the most relevant and recent progress in the literature up to the present by analyzing the contributions on biodistribution, biodegradability, and clearance of MSNs. Furthermore, the ongoing clinical trials and the potential challenges related to the administration of silica materials for advanced therapeutics are discussed. This approach aims to provide a solid overview of the state-of-the-art in this field and to encourage the translation of MSNs to the clinic.
Collapse
Affiliation(s)
- Araceli Lérida-Viso
- Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta. 46026, Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Alejandra Estepa-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain.
| | - Vicente Martí-Centelles
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Ramón Martínez-Máñez
- Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta. 46026, Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
6
|
Uskoković V. Lessons from the history of inorganic nanoparticles for inhalable diagnostics and therapeutics. Adv Colloid Interface Sci 2023; 315:102903. [PMID: 37084546 DOI: 10.1016/j.cis.2023.102903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
The respiratory tract is one of the most accessible ones to exogenous nanoparticles, yet drug delivery by their means to it is made extraordinarily challenging because of the plexus of aerodynamic, hemodynamic and biomolecular factors at cellular and extracellular levels that synergistically define the safety and efficacy of this process. Here, the use of inorganic nanoparticles (INPs) for inhalable diagnostics and therapies of the lung is viewed through the prism of the history of studies on the interaction of INPs with the lower respiratory tract. The most conceptually and methodologically innovative and illuminative studies are referred to in the chronological order, as they were reported in the literature, and the trends in the progress of understanding this interaction of immense therapeutic and toxicological significance are being deduced from it. The most outstanding actual trends delineated include the diminishment of toxicity via surface functionalization, cell targeting, tagging and tracking via controlled binding and uptake, hybrid INP treatments, magnetic guidance, combined drug and gene delivery, use as adjuvants in inhalable vaccines, and other. Many of the understudied research directions, which have been accomplished by the nanostructured organic polymers in the pulmonary niche, are discussed. The progress in the use of INPs as inhalable diagnostics or therapeutics has been hampered by their well-recognized inflammatory potential and toxicity in the respiratory tract. However, the annual numbers of methodologically innovative studies have been on the rise throughout the past two decades, suggesting that this is a prolific direction of research, its comparatively poor commercial takings notwithstanding. Still, the lack of consensus on the effects of many INP compositions at low but therapeutically effective doses, the plethora of contradictory reports on ostensibly identical chemical compositions and NP properties, and the many cases of antagonism in combinatorial NP treatments imply that the rational design of inhalable medical devices based on INPs must rely on qualitative principles for the most part and embrace a partially stochastic approach as well. At the same time, the fact that the most studied INPs for pulmonary applications have been those with some of the thickest records of pulmonary toxicity, e.g., carbon, silver, gold, silica and iron oxide, is a silent call for the expansion of the search for new inorganic compositions for use in inhalable therapies to new territories.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano LLC, 7 Park Vista, Irvine, CA 92604, USA; Department of Mechanical Engineering, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| |
Collapse
|
7
|
Meng L, Liao X, Wang Y, Chen L, Gao W, Wang M, Dai H, Yan N, Gao Y, Wu X, Wang K, Liu Q. Pharmacologic therapies of ARDS: From natural herb to nanomedicine. Front Pharmacol 2022; 13:930593. [PMID: 36386221 PMCID: PMC9651133 DOI: 10.3389/fphar.2022.930593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common critical illness in respiratory care units with a huge public health burden. Despite tremendous advances in the prevention and treatment of ARDS, it remains the main cause of intensive care unit (ICU) management, and the mortality rate of ARDS remains unacceptably high. The poor performance of ARDS is closely related to its heterogeneous clinical syndrome caused by complicated pathophysiology. Based on the different pathophysiology phases, drugs, protective mechanical ventilation, conservative fluid therapy, and other treatment have been developed to serve as the ARDS therapeutic methods. In recent years, there has been a rapid development in nanomedicine, in which nanoparticles as drug delivery vehicles have been extensively studied in the treatment of ARDS. This study provides an overview of pharmacologic therapies for ARDS, including conventional drugs, natural medicine therapy, and nanomedicine. Particularly, we discuss the unique mechanism and strength of nanomedicine which may provide great promises in treating ARDS in the future.
Collapse
Affiliation(s)
- Linlin Meng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Ximing Liao
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Yuanyuan Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Liangzhi Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Gao
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Muyun Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Huiling Dai
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Na Yan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yixuan Gao
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xu Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kun Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
- *Correspondence: Kun Wang, ; Qinghua Liu,
| | - Qinghua Liu
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
- *Correspondence: Kun Wang, ; Qinghua Liu,
| |
Collapse
|
8
|
Ahmadi F, Sodagar-Taleghani A, Ebrahimnejad P, Pouya Hadipour Moghaddam S, Ebrahimnejad F, Asare-Addo K, Nokhodchi A. A review on the latest developments of mesoporous silica nanoparticles as a promising platform for diagnosis and treatment of cancer. Int J Pharm 2022; 625:122099. [PMID: 35961417 DOI: 10.1016/j.ijpharm.2022.122099] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/24/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Cancer is the second cause of human mortality after cardiovascular disease around the globe. Conventional cancer therapies are chemotherapy, radiation, and surgery. In fact, due to the lack of absolute specificity and high drug concentrations, early recognition and treatment of cancer with conventional approaches have become challenging issues in the world. To mitigate against the limitations of conventional cancer chemotherapy, nanomaterials have been developed. Nanomaterials exhibit particular properties that can overcome the drawbacks of conventional therapies such as lack of specificity, high drug concentrations, and adverse drug reactions. Among nanocarriers, mesoporous silica nanoparticles (MSNs) have gained increasing attention due to their well-defined pore size and structure, high surface area, good biocompatibility and biodegradability, ease of surface modification, and stable aqueous dispersions. This review highlights the current progress with the use of MSNs for the delivery of chemotherapeutic agents for the diagnosis and treatment of cancer. Various stimuli-responsive gatekeepers, which endow the MSNs with on-demand drug delivery, surface modification strategies for targeting purposes, and multifunctional MSNs utilized in drug delivery systems (DDSs) are also addressed. Also, the capability of MSNs as flexible imaging platforms is considered. In addition, physicochemical attributes of MSNs and their effects on cancer therapy with a particular focus on recent studies is emphasized. Moreover, major challenges to the use of MSNs for cancer therapy, biosafety and cytotoxicity aspects of MSNs are discussed.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Arezoo Sodagar-Taleghani
- Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran; Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Seyyed Pouya Hadipour Moghaddam
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA; Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Farzam Ebrahimnejad
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA
| | - Kofi Asare-Addo
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK; Lupin Pharmaceutical Research Inc., Coral Springs, FL, USA.
| |
Collapse
|
9
|
Huang Y, Li P, Zhao R, Zhao L, Liu J, Peng S, Fu X, Wang X, Luo R, Wang R, Zhang Z. Silica nanoparticles: Biomedical applications and toxicity. Biomed Pharmacother 2022; 151:113053. [PMID: 35594717 DOI: 10.1016/j.biopha.2022.113053] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Silica nanoparticles (SiNPs) are composed of silicon dioxide, the most abundant compound on Earth, and are used widely in many applications including the food industry, synthetic processes, medical diagnosis, and drug delivery due to their controllable particle size, large surface area, and great biocompatibility. Building on basic synthetic methods, convenient and economical strategies have been developed for the synthesis of SiNPs. Numerous studies have assessed the biomedical applications of SiNPs, including the surface and structural modification of SiNPs to target various cancers and diagnose diseases. However, studies on the in vitro and in vivo toxicity of SiNPs remain in the exploratory stage, and the toxicity mechanisms of SiNPs are poorly understood. This review covers recent studies on the biomedical applications of SiNPs, including their uses in drug delivery systems to diagnose and treat various diseases in the human body. SiNP toxicity is discussed in terms of the different systems of the human body and the individual organs in those systems. This comprehensive review includes both fundamental discoveries and exploratory progress in SiNP research that may lead to practical developments in the future.
Collapse
Affiliation(s)
- Yanmei Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Peng Li
- Department of Nephrology, Yantai Yuhuangding Hospital, Qingdao University, Yantai 264005, Shandong, PR China
| | - Ruikang Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Laien Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Jia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Shengjun Peng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xiaoxuan Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xiaojie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Rongrui Luo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Rong Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
10
|
Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214309] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Romeo D, Nowack B, Wick P. Combined in vitro-in vivo dosimetry enables the extrapolation of in vitro doses to human exposure levels: A proof of concept based on a meta-analysis of in vitro and in vivo titanium dioxide toxicity data. NANOIMPACT 2022; 25:100376. [PMID: 35559882 DOI: 10.1016/j.impact.2021.100376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 05/27/2023]
Abstract
Evaluating the potential risks of nanomaterials on human health is fundamental to assure their safety. To do so, Human Health Risk Assessment (HHRA) relies mostly on animal studies to provide information about nanomaterials toxicity. The scarcity of such data, due to the shift of the nanotoxicology field away from a phenomenological, animal-based approach and towards a mechanistic understanding based on in vitro studies, represents a challenge for HHRA. Implementing in vitro data in the HHRA methodology requires an extrapolation strategy; combining in vitro dosimetry and lung dosimetry can be an option to estimate the toxic effects on lung cells caused by inhaled nanomaterials. Since the two dosimetry models have rarely been used together, we developed a combined dosimetry model (CoDo) that estimates the air concentrations corresponding to the in vitro doses, extrapolating in this way in vitro doses to human doses. Applying the model to a data set of in vitro and in vivo toxicity data about titanium dioxide, we demonstrated CoDo's multiple applications. First, we confirmed that most in vitro doses are much higher than realistic human exposures, considering the Swiss Occupational Exposure Limit as benchmark. The comparison of the Benchmark Doses (BMD) extrapolated from in vitro and in vivo data, using the surface area dose metric, showed that despite both types of data had a quite wide range, animal data were overall more precise. The high variability of the results may be due both to the dis-homogeneity of the original data (different cell lines, particle properties, etc.) and to the high level of uncertainty in the extrapolation procedure caused by both model assumptions and experimental conditions. Moreover, while the surface area BMDs from studies on rodents and rodent cells were comparable, human co-cultures showed less susceptibility and had higher BMDs regardless of the titanium dioxide type. Last, a Support Vector Machine classification model built on the in vitro data set was able to predict the BMD-derived human exposure level range for viability effects based on the particle properties and experimental conditions with an accuracy of 85%, while for cytokine release in vitro and neutrophil influx in vivo the model had a lower performance.
Collapse
Affiliation(s)
- Daina Romeo
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| | - Bernd Nowack
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
12
|
Protein and peptide delivery to lungs by using advanced targeted drug delivery. Chem Biol Interact 2021; 351:109706. [PMID: 34662570 DOI: 10.1016/j.cbi.2021.109706] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/16/2021] [Accepted: 10/13/2021] [Indexed: 11/20/2022]
Abstract
The challenges and difficulties associated with conventional drug delivery systems have led to the emergence of novel, advanced targeted drug delivery systems. Therapeutic drug delivery of proteins and peptides to the lungs is complicated owing to the large size and polar characteristics of the latter. Nevertheless, the pulmonary route has attracted great interest today among formulation scientists, as it has evolved into one of the important targeted drug delivery platforms for the delivery of peptides, and related compounds effectively to the lungs, primarily for the management and treatment of chronic lung diseases. In this review, we have discussed and summarized the current scenario and recent developments in targeted delivery of proteins and peptide-based drugs to the lungs. Moreover, we have also highlighted the advantages of pulmonary drug delivery over conventional drug delivery approaches for peptide-based drugs, in terms of efficacy, retention time and other important pharmacokinetic parameters. The review also highlights the future perspectives and the impact of targeted drug delivery on peptide-based drugs in the coming decade.
Collapse
|
13
|
García-Fernández A, Sancenón F, Martínez-Máñez R. Mesoporous silica nanoparticles for pulmonary drug delivery. Adv Drug Deliv Rev 2021; 177:113953. [PMID: 34474094 DOI: 10.1016/j.addr.2021.113953] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022]
Abstract
Over the last years, respiratory diseases represent a clinical concern, being included among the leading causes of death in the world due to the lack of effective lung therapies, mainly ascribed to the pulmonary barriers affecting the delivery of drugs to the lungs. In this way, nanomedicine has arisen as a promising approach to overcome the limitations of current therapies for pulmonary diseases. The use of nanoparticles allows enhancing drug bioavailability at the target site while minimizing undesired side effects. Despite different approaches have been developed for pulmonary delivery of drugs, including the use of polymers, lipid-based nanoparticles, and inorganic nanoparticles, more efforts are required to achieve effective pulmonary drug delivery. This review provides an overview of the clinical challenges in main lung diseases, as well as highlighted the role of nanomedicine in achieving efficient pulmonary drug delivery. Drug delivery into the lungs is a complex process limited by the anatomical, physiological and immunological barriers of the respiratory system. We discuss how nanomedicine can be useful to overcome these pulmonary barriers and give insights for the rational design of future nanoparticles for enhancing lung treatments. We also attempt herein to display more in detail the potential of mesoporous silica nanoparticles (MSNs) as promising nanocarrier for pulmonary drug delivery by providing a comprehensive overview of their application in lung delivery to date while discussing the use of these particles for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain, Camino de Vera s/n, 46022 València, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain, Camino de Vera s/n, 46022 València, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 València, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain, Camino de Vera s/n, 46022 València, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 València, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
14
|
Tammam SN, El Safy S, Ramadan S, Arjune S, Krakor E, Mathur S. Repurpose but also (nano)-reformulate! The potential role of nanomedicine in the battle against SARS-CoV2. J Control Release 2021; 337:258-284. [PMID: 34293319 PMCID: PMC8289726 DOI: 10.1016/j.jconrel.2021.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
The coronavirus disease-19 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has taken the world by surprise. To date, a worldwide approved treatment remains lacking and hence in the context of rapid viral spread and the growing need for rapid action, drug repurposing has emerged as one of the frontline strategies in the battle against SARS-CoV2. Repurposed drugs currently being evaluated against COVID-19 either tackle the replication and spread of SARS-CoV2 or they aim at controlling hyper-inflammation and the rampaged immune response in severe disease. In both cases, the target for such drugs resides in the lungs, at least during the period where treatment could still provide substantial clinical benefit to the patient. Yet, most of these drugs are administered systemically, questioning the percentage of administered drug that actually reaches the lung and as a consequence, the distribution of the remainder of the dose to off target sites. Inhalation therapy should allow higher concentrations of the drug in the lungs and lower concentrations systemically, hence providing a stronger, more localized action, with reduced adverse effects. Therefore, the nano-reformulation of the repurposed drugs for inhalation is a promising approach for targeted drug delivery to lungs. In this review, we critically analyze, what nanomedicine could and ought to do in the battle against SARS-CoV2. We start by a brief description of SARS-CoV2 structure and pathogenicity and move on to discuss the current limitations of repurposed antiviral and immune-modulating drugs that are being clinically investigated against COVID-19. This account focuses on how nanomedicine could address limitations of current therapeutics, enhancing the efficacy, specificity and safety of such drugs. With the appearance of new variants of SARS-CoV2 and the potential implication on the efficacy of vaccines and diagnostics, the presence of an effective therapeutic solution is inevitable and could be potentially achieved via nano-reformulation. The presence of an inhaled nano-platform capable of delivering antiviral or immunomodulatory drugs should be available as part of the repertoire in the fight against current and future outbreaks.
Collapse
Affiliation(s)
- Salma N Tammam
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt.
| | - Sara El Safy
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt
| | - Shahenda Ramadan
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt
| | - Sita Arjune
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Eva Krakor
- Institute of Inorganic Chemistry, Department of Chemistry, , University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, Department of Chemistry, , University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| |
Collapse
|
15
|
Cosnier F, Seidel C, Valentino S, Schmid O, Bau S, Vogel U, Devoy J, Gaté L. Retained particle surface area dose drives inflammation in rat lungs following acute, subacute, and subchronic inhalation of nanomaterials. Part Fibre Toxicol 2021; 18:29. [PMID: 34353337 PMCID: PMC8340536 DOI: 10.1186/s12989-021-00419-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/23/2021] [Indexed: 01/05/2023] Open
Abstract
Background An important aspect of nanomaterial (NM) risk assessment is establishing relationships between physicochemical properties and key events governing the toxicological pathway leading to adverse outcomes. The difficulty of NM grouping can be simplified if the most toxicologically relevant dose metric is used to assess the toxicological dose-response. Here, we thoroughly investigated the relationship between acute and chronic inflammation (based on polymorphonuclear neutrophil influx (% PMN) in lung bronchoalveolar lavage) and the retained surface area in the lung. Inhalation studies were performed in rats with three classes of NMs: titanium dioxides (TiO2) and carbon blacks (CB) as poorly soluble particles of low toxicity (PSLT), and multiwall carbon nanotubes (MWCNTs). We compared our results to published data from nearly 30 rigorously selected articles. Results This analysis combined data specially generated for this work on three benchmark materials - TiO2 P25, the CB Printex-90 and the MWCNT MWNT-7 - following subacute (4-week) inhalation with published data relating to acute (1-week) to subchronic (13-week) inhalation exposure to the classes of NMs considered. Short and long post-exposure recovery times (immediately after exposure up to more than 6 months) allowed us to examine both acute and chronic inflammation. A dose-response relationship across short-term and long-term studies was revealed linking pulmonary retained surface area dose (measured or estimated) and % PMN. This relationship takes the form of sigmoid curves, and is independent of the post-exposure time. Curve fitting equations depended on the class of NM considered, and sometimes on the duration of exposure. Based on retained surface area, long and thick MWCNTs (few hundred nm long with an aspect ratio greater than 25) had a higher inflammatory potency with 5 cm2/g lung sufficient to trigger an inflammatory response (at 6% PMN), whereas retained surfaces greater than 150 cm2/g lung were required for PSLT. Conclusions Retained surface area is a useful metric for hazard grouping purposes. This metric would apply to both micrometric and nanometric materials, and could obviate the need for direct measurement in the lung. Indeed, it could alternatively be estimated from dosimetry models using the aerosol parameters (rigorously determined following a well-defined aerosol characterization strategy). Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00419-w.
Collapse
Affiliation(s)
- Frédéric Cosnier
- Institut National de Recherche et de Sécurité, 1 Rue du Morvan, CS 60027, 54519, Vandœuvre-les-Nancy Cedex, France.
| | - Carole Seidel
- Institut National de Recherche et de Sécurité, 1 Rue du Morvan, CS 60027, 54519, Vandœuvre-les-Nancy Cedex, France
| | - Sarah Valentino
- Institut National de Recherche et de Sécurité, 1 Rue du Morvan, CS 60027, 54519, Vandœuvre-les-Nancy Cedex, France
| | - Otmar Schmid
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Comprehensive Pneumology Center, Munich (CPC-M) - Member of the German Center for Lung Research (DZL), 81377, Munich, Germany
| | - Sébastien Bau
- Institut National de Recherche et de Sécurité, 1 Rue du Morvan, CS 60027, 54519, Vandœuvre-les-Nancy Cedex, France
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen, Denmark.,Department of Health Technology by DTU Food, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Jérôme Devoy
- Institut National de Recherche et de Sécurité, 1 Rue du Morvan, CS 60027, 54519, Vandœuvre-les-Nancy Cedex, France
| | - Laurent Gaté
- Institut National de Recherche et de Sécurité, 1 Rue du Morvan, CS 60027, 54519, Vandœuvre-les-Nancy Cedex, France
| |
Collapse
|
16
|
García-Fernández A, Sancho M, Bisbal V, Amorós P, Marcos MD, Orzáez M, Sancenón F, Martínez-Máñez R. Targeted-lung delivery of dexamethasone using gated mesoporous silica nanoparticles. A new therapeutic approach for acute lung injury treatment. J Control Release 2021; 337:14-26. [PMID: 34265332 DOI: 10.1016/j.jconrel.2021.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/29/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022]
Abstract
Acute lung injury (ALI) is a critical inflammatory syndrome, characterized by increased diffuse inflammation and severe lung damage, which represents a clinical concern due to the high morbidity and mortality in critical patients. In last years, there has been a need to develop more effective treatments for ALI, and targeted drug delivery to inflamed lungs has become an attractive research field. Here, we present a nanodevice based on mesoporous silica nanoparticles loaded with dexamethasone (a glucocorticoid extensively used for ALI treatment) and capped with a peptide that targets the TNFR1 receptor expressed in pro-inflammatory macrophages (TNFR-Dex-MSNs) and avoids cargo leakage. TNFR-Dex-MSNs nanoparticles are preferentially internalized by pro-inflammatory macrophages, which overexpressed the TNFR1 receptor, with the subsequent cargo release upon the enzymatic hydrolysis of the capping peptide in lysosomes. Moreover, TNFR-Dex-MSNs are able to reduce the levels of TNF-α and IL-1β cytokines in activated pro-inflammatory M1 macrophages. The anti-inflammatory effect of TNFR-Dex-MSNs is also tested in an in vivo ALI mice model. The administered nanodevice (intravenously by tail vein injection) accumulated in the injured lungs and the controlled dexamethasone release reduces markedly the inflammatory response (TNF-α IL-6 and IL-1β levels). The attenuation in lung damage, after treatment with TNFR-Dex-MSNs, is also confirmed by histopathological studies. Besides, the targeted-lung dexamethasone delivery results in a decrease of dexamethasone derived side-effects, suggesting that targeted nanoparticles can be used for therapy in ALI and could help to overcome the clinical limitations of current treatments.
Collapse
Affiliation(s)
- Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, València, Spain
| | - Mónica Sancho
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, València, Spain; Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, Valencia 46012, Spain
| | - Viviana Bisbal
- Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, Valencia 46012, Spain
| | - Pedro Amorós
- Instituto Universitario de Ciencia de los Materiales (ICMUV), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| | - María D Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, València, Spain
| | - Mar Orzáez
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, València, Spain; Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, Valencia 46012, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, València, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, València, Spain.
| |
Collapse
|
17
|
Rawal S, Patel M. Bio-Nanocarriers for Lung Cancer Management: Befriending the Barriers. NANO-MICRO LETTERS 2021; 13:142. [PMID: 34138386 PMCID: PMC8196938 DOI: 10.1007/s40820-021-00630-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/23/2021] [Indexed: 05/03/2023]
Abstract
Lung cancer is a complex thoracic malignancy developing consequential to aberrations in a myriad of molecular and biomolecular signaling pathways. It is one of the most lethal forms of cancers accounting to almost 1.8 million new annual incidences, bearing overall mortality to incidence ratio of 0.87. The dismal prognostic scenario at advanced stages of the disease and metastatic/resistant tumor cell populations stresses the requisite of advanced translational interdisciplinary interventions such as bionanotechnology. This review article deliberates insights and apprehensions on the recent prologue of nanobioengineering and bionanotechnology as an approach for the clinical management of lung cancer. The role of nanobioengineered (bio-nano) tools like bio-nanocarriers and nanobiodevices in secondary prophylaxis, diagnosis, therapeutics, and theranostics for lung cancer management has been discussed. Bioengineered, bioinspired, and biomimetic bio-nanotools of considerate translational value have been reviewed. Perspectives on existent oncostrategies, their critical comparison with bio-nanocarriers, and issues hampering their clinical bench side to bed transformation have also been summarized.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India
| | - Mayur Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
18
|
Sun M, Gu P, Yang Y, Yu L, Jiang Z, Li J, Le Y, Chen Y, Ba Q, Wang H. Mesoporous silica nanoparticles inflame tumors to overcome anti-PD-1 resistance through TLR4-NFκB axis. J Immunother Cancer 2021; 9:jitc-2021-002508. [PMID: 34117115 PMCID: PMC8202116 DOI: 10.1136/jitc-2021-002508] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2021] [Indexed: 12/31/2022] Open
Abstract
Background The clinical benefits of antiprogrammed cell death protein 1 (PD-1) therapy are compromised by resistance in immunologically cold tumors. Convergence of immunotherapy and bioengineering is potential to overcome the resistance. Mesoporous silica nanoparticles (MSNs) are considered the most promising inorganic biological nanomaterials for clinical transformation, however, the fundamental influence of MSNs on immunotherapy is unclear. In this study, we aimed to investigate the role of MSNs in tumor resensitization and explore the feasibility of MSNs combined with anti-PD-1 in cancer therapy. Methods Intrinsic and acquired resistant tumors, as well as spontaneous and secondary tumor recurrence models, were used to evaluate the influence of MSNs and the synergistical effect with anti-PD-1 therapy. The roles of CD8+ cytotoxic T-lymphocytes (CTLs) and macrophages were assessed in Rag-1-/- mice, ovalbumin/OT-1 TCR transgenic T-cell system, and other blocking mice models. Mechanistic studies were processed by transcriptomics analysis and conducted in primary cells, in vitro coculture systems, and Toll-like receptor 4 (TLR4) knockout mice. Results Both granular and rod-shaped MSNs efficiently overcame tumor resistance with dependence on diameter and aspect ratio. Only once injection of MSNs in prior to anti-PD-1 markedly improved the treatment efficacy, protective immunity, and prognosis. MSNs per se boosted infiltration of CTLs as the early event (days 2–3); and synergistically with anti-PD-1 therapy, MSNs rapidly established a T cell-inflamed microenvironment with abundant high-activated (interferon-γ/tumor necrosis factor-α/Perforin/GranzymeB) and low-exhausted (PD-1/lymphocyte-activation gene 3 (LAG-3)/T-cell immunoglobulin and mucin-domain containing-3 (TIM-3)) CTLs. Chemokines Ccl5/Cxcl9/Cxcl10, which were produced predominantly by macrophages, promoted MSNs-induced CTLs infiltration. MSNs led to high Ccl5/Cxcl9/Cxcl10 production in vitro and in mice through regulating TLR4-NFκB axis. Blocking TLR4-NFκB axis in macrophages or CTLs infiltration abrogated MSNs-induced resensitization to anti-PD-1 therapy. Conclusions MSNs efficiently and rapidly inflame immunologically cold tumors and resensitize them to anti-PD-1 therapy through TLR4-NFκB-Ccl5/Cxcl9/Cxcl10 axis. MSNs-based theranostic agents can serve as sensitizers for patients with resistant tumors to improve immunotherapy.
Collapse
Affiliation(s)
- Mayu Sun
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pengfei Gu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Luodan Yu
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Zheshun Jiang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Le
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Chen
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Qian Ba
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China .,CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
19
|
Wagner J, Gößl D, Ustyanovska N, Xiong M, Hauser D, Zhuzhgova O, Hočevar S, Taskoparan B, Poller L, Datz S, Engelke H, Daali Y, Bein T, Bourquin C. Mesoporous Silica Nanoparticles as pH-Responsive Carrier for the Immune-Activating Drug Resiquimod Enhance the Local Immune Response in Mice. ACS NANO 2021; 15:4450-4466. [PMID: 33648336 DOI: 10.1021/acsnano.0c08384] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanoparticle-based delivery systems for cancer immunotherapies aim to improve the safety and efficacy of these treatments through local delivery to specialized antigen-presenting cells (APCs). Multifunctional mesoporous silica nanoparticles (MSNs), with their large surface areas, their tunable particle and pore sizes, and their spatially controlled functionalization, represent a safe and versatile carrier system. In this study, we demonstrate the potential of MSNs as a pH-responsive drug carrier system for the anticancer immune-stimulant R848 (resiquimod), a synthetic Toll-like receptor 7 and 8 agonist. Equipped with a biotin-avidin cap, the tailor-made nanoparticles showed efficient stimuli-responsive release of their R848 cargo in an environmental pH of 5.5 or below. We showed that the MSNs loaded with R848 were rapidly taken up by APCs into the acidic environment of the lysosome and that they potently activated the immune cells. Upon subcutaneous injection into mice, the particles accumulated in migratory dendritic cells (DCs) in the draining lymph nodes, where they strongly enhanced the activation of the DCs. Furthermore, simultaneous delivery of the model antigen OVA and the adjuvant R848 by MSNs resulted in an augmented antigen-specific T-cell response. The MSNs significantly improved the pharmacokinetic profile of R848 in mice, as the half-life of the drug was increased 6-fold, and at the same time, the systemic exposure was reduced. In summary, we demonstrate that MSNs represent a promising tool for targeted delivery of the immune modulator R848 to APCs and hold considerable potential as a carrier for cancer vaccines.
Collapse
Affiliation(s)
- Julia Wagner
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Dorothée Gößl
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Natasha Ustyanovska
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Mengyao Xiong
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Daniel Hauser
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland
| | - Olga Zhuzhgova
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Sandra Hočevar
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Betül Taskoparan
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Laura Poller
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Stefan Datz
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Hanna Engelke
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Youssef Daali
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Carole Bourquin
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
20
|
Modification of Mesoporous Silica Surface by Immobilization of Functional Groups for Controlled Drug Release. J CHEM-NY 2020. [DOI: 10.1155/2020/9176257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This paper introduces the synthesis of mesoporous silica nanoparticles (MSNs) with three different groups such as amine, thiol, and sulfonic acid, along the internal surface. Trimethyl[3-(trimethoxysilyl)propyl]ammonium chloride was used to modify the external surface of the nanomaterials. Such materials allow control of the drug release from MSN pores. Multifunctional MSNs were loaded with doxycycline (Doxy) to study their capacities and uploading time. The loading profile indicates that sulfonic groups in the internal surface were the most efficient surfaces with a loading capacity of ca. 35% in 90 min in acidic media.
Collapse
|
21
|
Bölükbas DA, Datz S, Meyer-Schwickerath C, Morrone C, Doryab A, Gößl D, Vreka M, Yang L, Argyo C, van Rijt SH, Lindner M, Eickelberg O, Stoeger T, Schmid O, Lindstedt S, Stathopoulos GT, Bein T, Wagner DE, Meiners S. Organ-restricted vascular delivery of nanoparticles for lung cancer therapy. ADVANCED THERAPEUTICS 2020; 3:2000017. [PMID: 33884290 PMCID: PMC7610651 DOI: 10.1002/adtp.202000017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Indexed: 12/23/2022]
Abstract
Nanoparticle-based targeted drug delivery holds promise for treatment of cancers. However, most approaches fail to be translated into clinical success due to ineffective tumor targeting in vivo. Here, the delivery potential of mesoporous silica nanoparticles (MSN) functionalized with targeting ligands for EGFR and CCR2 is explored in lung tumors. The addition of active targeting ligands on MSNs enhances their uptake in vitro but fails to promote specific delivery to tumors in vivo, when administered systemically via the blood or locally to the lung into immunocompetent murine lung cancer models. Ineffective tumor targeting is due to efficient clearance of the MSNs by the phagocytic cells of the liver, spleen, and lung. These limitations, however, are successfully overcome using a novel organ-restricted vascular delivery (ORVD) approach. ORVD in isolated and perfused mouse lungs of Kras-mutant mice enables effective nanoparticle extravasation from the tumor vasculature into the core of solid lung tumors. In this study, ORVD promotes tumor cell-specific uptake of nanoparticles at cellular resolution independent of their functionalization with targeting ligands. Organ-restricted vascular delivery thus opens new avenues for optimized nanoparticles for lung cancer therapy and may have broad applications for other vascularized tumor types.
Collapse
Affiliation(s)
- Deniz A Bölükbas
- Comprehensive Pneumology Center (CPC), University Hospital Ludwig-Maximilians University, and Helmholtz Zentrum München, Munich, Germany. Member of the German Center for Lung Research (DZL), 81377 Munich, Germany; Lung Bioengineering and Regeneration, Dept of Experimental Medical Sciences, Stem Cell Centre, Wallenberg Center for Molecular Medicine, Lund University Cancer Centre (LUCC), Lund University, 22362 Lund, Sweden
| | - Stefan Datz
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU) 81377 Munich, Germany
| | - Charlotte Meyer-Schwickerath
- Comprehensive Pneumology Center (CPC), University Hospital Ludwig-Maximilians University, and Helmholtz Zentrum München, Munich, Germany. Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Carmela Morrone
- Comprehensive Pneumology Center (CPC), University Hospital Ludwig-Maximilians University, and Helmholtz Zentrum München, Munich, Germany. Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Ali Doryab
- Comprehensive Pneumology Center (CPC), University Hospital Ludwig-Maximilians University, and Helmholtz Zentrum München, Munich, Germany. Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Dorothee Gößl
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU) 81377 Munich, Germany
| | - Malamati Vreka
- Comprehensive Pneumology Center (CPC), University Hospital Ludwig-Maximilians University, and Helmholtz Zentrum München, Munich, Germany. Member of the German Center for Lung Research (DZL), 81377 Munich, Germany; Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, 26504 Patras, Greece
| | - Lin Yang
- Comprehensive Pneumology Center (CPC), University Hospital Ludwig-Maximilians University, and Helmholtz Zentrum München, Munich, Germany. Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Christian Argyo
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU) 81377 Munich, Germany
| | - Sabine H van Rijt
- Comprehensive Pneumology Center (CPC), University Hospital Ludwig-Maximilians University, and Helmholtz Zentrum München, Munich, Germany. Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Michael Lindner
- Center of Thoracic Surgery Munich, Asklepios Clinic Munich-Gauting, and Asklepios Biobank for Diseases of the Lung, Comprehensive Pneumology Center (CPC), Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), 82131 Gauting, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center (CPC), University Hospital Ludwig-Maximilians University, and Helmholtz Zentrum München, Munich, Germany. Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Tobias Stoeger
- Comprehensive Pneumology Center (CPC), University Hospital Ludwig-Maximilians University, and Helmholtz Zentrum München, Munich, Germany. Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Otmar Schmid
- Comprehensive Pneumology Center (CPC), University Hospital Ludwig-Maximilians University, and Helmholtz Zentrum München, Munich, Germany. Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Sandra Lindstedt
- Dept of Cardiothoracic Surgery, Heart and Lung Transplantation, Lund University Hospital 22242 Lund, Sweden
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center (CPC), University Hospital Ludwig-Maximilians University, and Helmholtz Zentrum München, Munich, Germany. Member of the German Center for Lung Research (DZL), 81377 Munich, Germany; Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, 26504 Patras, Greece
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU) 81377 Munich, Germany
| | - Darcy E Wagner
- Lung Bioengineering and Regeneration, Dept of Experimental Medical Sciences, Stem Cell Centre, Wallenberg Center for Molecular Medicine, Lund University Cancer Centre (LUCC), Lund University, 22362 Lund, Sweden
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital Ludwig-Maximilians University, and Helmholtz Zentrum München, Munich, Germany. Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| |
Collapse
|
22
|
Li Z, Mu Y, Peng C, Lavin MF, Shao H, Du Z. Understanding the mechanisms of silica nanoparticles for nanomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1658. [PMID: 32602269 PMCID: PMC7757183 DOI: 10.1002/wnan.1658] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/13/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022]
Abstract
As a consequence of recent progression in biomedicine and nanotechnology, nanomedicine has emerged rapidly as a new discipline with extensive application of nanomaterials in biology, medicine, and pharmacology. Among the various nanomaterials, silica nanoparticles (SNPs) are particularly promising in nanomedicine applications due to their large specific surface area, adjustable pore size, facile surface modification, and excellent biocompatibility. This paper reviews the synthesis of SNPs and their recent usage in drug delivery, biomedical imaging, photodynamic and photothermal therapy, and other applications. In addition, the possible adverse effects of SNPs in nanomedicine applications are reviewed from reported in vitro and in vivo studies. Finally, the potential opportunities and challenges for the future use of SNPs are discussed. This article is categorized under:Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies
Collapse
Affiliation(s)
- Ziyuan Li
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yingwen Mu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Cheng Peng
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland, Australia
| | - Martin F Lavin
- University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
| | - Hua Shao
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhongjun Du
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
23
|
Gisbert-Garzarán M, Vallet-Regí M. Influence of the Surface Functionalization on the Fate and Performance of Mesoporous Silica Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E916. [PMID: 32397449 PMCID: PMC7279540 DOI: 10.3390/nano10050916] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Mesoporous silica nanoparticles have been broadly applied as drug delivery systems owing to their exquisite features, such as excellent textural properties or biocompatibility. However, there are various biological barriers that prevent their proper translation into the clinic, including: (1) lack of selectivity toward tumor tissues, (2) lack of selectivity for tumoral cells and (3) endosomal sequestration of the particles upon internalization. In addition, their open porous structure may lead to premature drug release, consequently affecting healthy tissues and decreasing the efficacy of the treatment. First, this review will provide a comprehensive and systematic overview of the different approximations that have been implemented into mesoporous silica nanoparticles to overcome each of such biological barriers. Afterward, the potential premature and non-specific drug release from these mesoporous nanocarriers will be addressed by introducing the concept of stimuli-responsive gatekeepers, which endow the particles with on-demand and localized drug delivery.
Collapse
Affiliation(s)
- Miguel Gisbert-Garzarán
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
24
|
Yang L, Gradl R, Dierolf M, Möller W, Kutschke D, Feuchtinger A, Hehn L, Donnelley M, Günther B, Achterhold K, Walch A, Stoeger T, Razansky D, Pfeiffer F, Morgan KS, Schmid O. Multimodal Precision Imaging of Pulmonary Nanoparticle Delivery in Mice: Dynamics of Application, Spatial Distribution, and Dosimetry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904112. [PMID: 31639283 DOI: 10.1002/smll.201904112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/12/2019] [Indexed: 06/10/2023]
Abstract
Targeted delivery of nanomedicine/nanoparticles (NM/NPs) to the site of disease (e.g., the tumor or lung injury) is of vital importance for improved therapeutic efficacy. Multimodal imaging platforms provide powerful tools for monitoring delivery and tissue distribution of drugs and NM/NPs. This study introduces a preclinical imaging platform combining X-ray (two modes) and fluorescence imaging (three modes) techniques for time-resolved in vivo and spatially resolved ex vivo visualization of mouse lungs during pulmonary NP delivery. Liquid mixtures of iodine (contrast agent for X-ray) and/or (nano)particles (X-ray absorbing and/or fluorescent) are delivered to different regions of the lung via intratracheal instillation, nasal aspiration, and ventilator-assisted aerosol inhalation. It is demonstrated that in vivo propagation-based phase-contrast X-ray imaging elucidates the dynamic process of pulmonary NP delivery, while ex vivo fluorescence imaging (e.g., tissue-cleared light sheet fluorescence microscopy) reveals the quantitative 3D drug/particle distribution throughout the entire lung with cellular resolution. The novel and complementary information from this imaging platform unveils the dynamics and mechanisms of pulmonary NM/NP delivery and deposition for each of the delivery routes, which provides guidance on optimizing pulmonary delivery techniques and novel-designed NM for targeting and efficacy.
Collapse
Affiliation(s)
- Lin Yang
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, 81377, Germany
- Institute of Lung Biology and Disease, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Faculty of Medicine, Technical University of Munich, Munich, 80333, Germany
| | - Regine Gradl
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, Garching, 85748, Germany
- Munich School of BioEngineering, Technical University of Munich, Garching, 85748, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, 85748, Germany
| | - Martin Dierolf
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, Garching, 85748, Germany
- Munich School of BioEngineering, Technical University of Munich, Garching, 85748, Germany
| | - Winfried Möller
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, 81377, Germany
- Institute of Lung Biology and Disease, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - David Kutschke
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, 81377, Germany
- Institute of Lung Biology and Disease, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Lorenz Hehn
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, Garching, 85748, Germany
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, München, 81675, Germany
| | - Martin Donnelley
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, 5000, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, SA, 5006, Australia
| | - Benedikt Günther
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, Garching, 85748, Germany
- Munich School of BioEngineering, Technical University of Munich, Garching, 85748, Germany
| | - Klaus Achterhold
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, Garching, 85748, Germany
- Munich School of BioEngineering, Technical University of Munich, Garching, 85748, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Tobias Stoeger
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, 81377, Germany
- Institute of Lung Biology and Disease, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Daniel Razansky
- Faculty of Medicine, Technical University of Munich, Munich, 80333, Germany
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, 85764, Germany
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, CH-8057, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, Garching, 85748, Germany
- Munich School of BioEngineering, Technical University of Munich, Garching, 85748, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, 85748, Germany
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, München, 81675, Germany
| | - Kaye S Morgan
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, Garching, 85748, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, 85748, Germany
- School of Physics and Astronomy, Monash University, Clayton, Victoria, 3800, Australia
| | - Otmar Schmid
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, 81377, Germany
- Institute of Lung Biology and Disease, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, 85764, Germany
| |
Collapse
|
25
|
Lee SH, Song JG, Han HK. Development of pH-responsive organic-inorganic hybrid nanocomposites as an effective oral delivery system of protein drugs. J Control Release 2019; 311-312:74-84. [PMID: 31487499 DOI: 10.1016/j.jconrel.2019.08.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 02/05/2023]
Abstract
This research aimed to develop a pH-responsive organic-inorganic hybrid nanocomposite as an effective oral delivery system for protein drugs. Three different nanocomposites were prepared by using bovine serum albumin (BSA) as a model protein. A nanocomplex of BSA with 3-aminopropyl functionalized magnesium phyllosilicate (AC-BSA) was obtained via the spontaneous co-assembly and then sequentially coated with glycol-chitosan (GAC-BSA) and the pH sensitive polymer, Eudragit®L100-55 (EGAC-BSA). These organic-inorganic hybrid nanocomposites exhibited high entrapment efficiency (86-99%) and their structural characteristics were confirmed by using energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and circular dichroism analysis, indicating that the secondary structure of BSA was well retained in the nanocomposites. At pH 1.2, AC-BSA achieved rapid drug release of about 80% within 2 h, while GAC-BSA and EGAC-BSA exhibited slow drug release of 30% and 15%, respectively, indicating that the surface-coated nanocomposites were more stable in the gastric condition. Furthermore, the conformational stability of BSA entrapped in EGAC-BSA was well retained in the presence of proteolytic enzymes, suggesting that EGAC-BSA should be effective in protecting the protein against gastrointestinal harsh environment. Compared to free BSA, all of tested nanocomposites demonstrated 2.1-3.8-fold higher cellular uptake in Caco-2 cells. Furthermore, energy-dependent endocytosis and paracellular pathway contributed to the cellular transport of nanoparticles. After oral administration in rats, EGAC-BSA significantly enhanced the intestinal permeation of BSA compared to free BSA. In conclusion, EGAC-BSA appears to be promising as an effective oral delivery system for proteins with enhanced intestinal absorption.
Collapse
Affiliation(s)
- Sang Hoon Lee
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang, Republic of Korea
| | - Jae Geun Song
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang, Republic of Korea
| | - Hyo-Kyung Han
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang, Republic of Korea.
| |
Collapse
|
26
|
Yang L, Feuchtinger A, Möller W, Ding Y, Kutschke D, Möller G, Schittny JC, Burgstaller G, Hofmann W, Stoeger T, Walch A, Schmid O. Three-Dimensional Quantitative Co-Mapping of Pulmonary Morphology and Nanoparticle Distribution with Cellular Resolution in Nondissected Murine Lungs. ACS NANO 2019; 13:1029-1041. [PMID: 30566327 DOI: 10.1021/acsnano.8b07524] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Deciphering biodistribution, biokinetics, and biological effects of nanoparticles (NPs) in entire organs with cellular resolution remains largely elusive due to the lack of effective imaging tools. Here, light sheet fluorescence microscopy in combination with optical tissue clearing was validated for concomitant three-dimensional mapping of lung morphology and NP biodistribution with cellular resolution in nondissected ex vivo murine lungs. Tissue autofluorescence allowed for label-free, quantitative morphometry of the entire bronchial tree, acinar structure, and blood vessels. Co-registration of fluorescent NPs with lung morphology revealed significant differences in pulmonary NP distribution depending on the means of application (intratracheal instillation and ventilator-assisted aerosol inhalation under anesthetized conditions). Inhalation exhibited a more homogeneous NP distribution in conducting airways and acini indicated by a central-to-peripheral (C/P) NP deposition ratio of unity (0.98 ± 0.13) as compared to a 2-fold enhanced central deposition (C/P = 1.98 ± 0.37) for instillation. After inhalation most NPs were observed in the proximal part of the acini as predicted by computational fluid dynamics simulations. At cellular resolution patchy NP deposition was visualized in bronchioles and acini, but more pronounced for instillation. Excellent linearity of the fluorescence intensity-dose response curve allowed for accurate NP dosimetry and revealed ca. 5% of the inhaled aerosol was deposited in the lungs. This single-modality imaging technique allows for quantitative co-registration of tissue architecture and NP biodistribution, which could accelerate elucidation of NP biokinetics and bioactivity within intact tissues, facilitating both nanotoxicology studies and the development of nanomedicines.
Collapse
Affiliation(s)
- Lin Yang
- Comprehensive Pneumology Center (CPC-M) , Member of the German Center for Lung Research (DZL) , Munich , 81377 , Germany
- Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Neuherberg , 85764 , Germany
- Faculty of Medicine , Technical University of Munich , Munich , 80333 , Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology , Helmholtz Zentrum München , Neuherberg , 85764 , Germany
| | - Winfried Möller
- Comprehensive Pneumology Center (CPC-M) , Member of the German Center for Lung Research (DZL) , Munich , 81377 , Germany
- Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Neuherberg , 85764 , Germany
| | - Yaobo Ding
- Comprehensive Pneumology Center (CPC-M) , Member of the German Center for Lung Research (DZL) , Munich , 81377 , Germany
- Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Neuherberg , 85764 , Germany
| | - David Kutschke
- Comprehensive Pneumology Center (CPC-M) , Member of the German Center for Lung Research (DZL) , Munich , 81377 , Germany
- Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Neuherberg , 85764 , Germany
| | - Gabriele Möller
- Department Genome Analysis Center , Institute of Experimental Genetics, Helmholtz Zentrum München , Neuherberg , 85764 , Germany
| | | | - Gerald Burgstaller
- Comprehensive Pneumology Center (CPC-M) , Member of the German Center for Lung Research (DZL) , Munich , 81377 , Germany
- Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Neuherberg , 85764 , Germany
| | - Werner Hofmann
- Department of Chemistry and Physics of Materials , University of Salzburg , Salzburg , A-5020 , Austria
| | - Tobias Stoeger
- Comprehensive Pneumology Center (CPC-M) , Member of the German Center for Lung Research (DZL) , Munich , 81377 , Germany
- Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Neuherberg , 85764 , Germany
| | - Alex Walch
- Research Unit Analytical Pathology , Helmholtz Zentrum München , Neuherberg , 85764 , Germany
| | - Otmar Schmid
- Comprehensive Pneumology Center (CPC-M) , Member of the German Center for Lung Research (DZL) , Munich , 81377 , Germany
- Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Neuherberg , 85764 , Germany
| |
Collapse
|
27
|
Tao J, Fei W, Tang H, Li C, Mu C, Zheng H, Li F, Zhu Z. Angiopep-2-Conjugated "Core-Shell" Hybrid Nanovehicles for Targeted and pH-Triggered Delivery of Arsenic Trioxide into Glioma. Mol Pharm 2019; 16:786-797. [PMID: 30620881 DOI: 10.1021/acs.molpharmaceut.8b01056] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The poor capability of drugs to permeate through the blood-brain barrier (BBB) and further release inside glioma greatly limits the curative effects of glioma chemotherapies. In this study, we prepared angiopep-2-conjugated liposome-silica hybrid nanovehicles for targeted delivery and increased the permeation of arsenic trioxide (ATO) in glioma. Polyacrylic acid (PAA) was grafted on mesoporous silica nanoparticles (MSN) for pH-sensitive release and supporting the lipid membrane. The prepared "core-shell" nanovehicles (ANG-LP-PAA-MSN) were characterized with uniform size, high drug loading efficiency (8.19 ± 0.51%), and superior pH-sensitive release feature. From the experiments, the enhanced targeted delivery of ATO by ANG-LP-PAA-MSN (ANG-LP-PAA-MSN@ATO) was evidenced by the improvement of transport, enhanced cellular uptake, and apoptosis in vitro. In addition, the pharmacokinetic study was creatively carried out through the blood-glioma synchronous microdialysis and revealed that the half-life ( t1/2) of blood and glioma tissue in the ANG-LP-PAA-MSN@ATO treatment group was extended by 1.65 and 2.34 times compared with the ATO solution group (ATO-Sol). The targeting efficiency of ANG-LP-PAA-MSN@ATO (24.96%) was dramatically stronger than that of the ATO-Sol (5.94%). Importantly, ANG-LP-PAA-MSN@ATO had a higher accumulation (4.6 ± 2.6% ID per g) in tumor tissues and showed a better therapeutic efficacy in intracranial C6 glioma bearing rats. Taken together, the blood-glioma synchronous microdialysis was successful used for the pharmacokinetic study and real-time monitoring of drug concentrations in blood and glioma; ANG-LP-PAA-MSN could be a promising targeted drug delivery system for glioma therapy.
Collapse
Affiliation(s)
- Jiaoyang Tao
- College of Pharmaceutical Science , Zhejiang Chinese Medical University , Hangzhou 311402 , China
| | - Weidong Fei
- Department of Pharmacy , Women's Hospital, Zhejiang University School of Medicine , Hangzhou 310006 , China
| | - Hongxia Tang
- College of Pharmaceutical Science , Zhejiang Chinese Medical University , Hangzhou 311402 , China
| | - Chaoqun Li
- College of Pharmaceutical Science , Zhejiang Chinese Medical University , Hangzhou 311402 , China
| | - Chaofeng Mu
- College of Pharmaceutical Science , Zhejiang Chinese Medical University , Hangzhou 311402 , China
| | - Hongyue Zheng
- Libraries of Zhejiang Chinese Medical University , Zhejiang Chinese Medical University , Hangzhou 310053 , China
| | - Fanzhu Li
- College of Pharmaceutical Science , Zhejiang Chinese Medical University , Hangzhou 311402 , China
| | - Zhihong Zhu
- College of Pharmaceutical Science , Zhejiang Chinese Medical University , Hangzhou 311402 , China
| |
Collapse
|
28
|
Lozano O, Colaux JL, Laloy J, Alpan L, Dogné JM, Lucas S. Fast, asymmetric and nonhomogeneous clearance of SiC nanoaerosol assessed by micro-particle-induced x-ray emission. Nanomedicine (Lond) 2017; 13:145-155. [PMID: 29173016 DOI: 10.2217/nnm-2017-0245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AIM To study the biopersistence of a silicon carbide (SiC) nanoaerosol in rat lungs, as time-dependent clearance and spatial distribution. MATERIALS & METHODS Sprague-Dawley rats were exposed 6 h/day during 5 days to a SiC nanoaerosol at 4.91 mg SiC/l. SiC biopersistence in rat lungs sections was assessed over 28 days by micro-particle-induced x-ray emission (μPIXE) as 2D maps and by particle-induced x-ray emission (PIXE) for whole-lung quantification. 2D maps were analyzed for SiC spatial distribution as skewness and kurtosis. RESULTS Half-time clearance was 10.9 ± 0.9 days, agreeing with PIXE measurements. Spatial-temporal analysis of SiC indicated decreased symmetry and homogeneity. CONCLUSION Fast SiC clearance points that current nanoaerosol exposure may not be enough to trigger lung overload. Spatial distribution shows an asymmetric and nonhomogeneous SiC clearance.
Collapse
Affiliation(s)
- Omar Lozano
- Research Centre for the Physics of Matter & Radiation (PMR), Namur Nanosafety Center (NNC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), B-5000 Namur, Belgium.,Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, 64849 Monterrey, México
| | - Julien L Colaux
- Ion Beam Centre, University of Surrey, Guildford, Surrey, GU2 7XH, UK.,Synthesis, Irradiation & Analysis of Materials (SIAM) Platform, University of Namur, B-5000 Namur, Belgium
| | - Julie Laloy
- Department of Pharmacy, Namur Nanosafety Center (NNC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), B-5000 Namur, Belgium
| | - Lütfiye Alpan
- Department of Pharmacy, Namur Nanosafety Center (NNC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), B-5000 Namur, Belgium
| | - Jean-Michel Dogné
- Department of Pharmacy, Namur Nanosafety Center (NNC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), B-5000 Namur, Belgium
| | - Stéphane Lucas
- Research Centre for the Physics of Matter & Radiation (PMR), Namur Nanosafety Center (NNC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), B-5000 Namur, Belgium
| |
Collapse
|
29
|
Chou CC, Chen W, Hung Y, Mou CY. Molecular Elucidation of Biological Response to Mesoporous Silica Nanoparticles in Vitro and in Vivo. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22235-22251. [PMID: 28608695 DOI: 10.1021/acsami.7b05359] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biomedical applications of mesoporous silica nanoparticles (MSNs) require efficient cellular uptake and low toxicity. The purpose of this study is to investigate the cellular uptake and toxicity of MSNs with different sizes and charges (50, 100, and 250 nm with a positive surface charge and 100 nm with a negative surface charge) exposed to human monocyte-derived macrophages, lung epithelium BEAS-2B cells, and mice using genome-wide gene expression analysis and cellular/animal-level end point tests. We found that MSNs can be taken up into cells through endocytosis in a charge- and size-dependent manner, with positively charged and larger MSNs being more easily taken up into the cells by recruiting more types of endocytotic pathways for more cellular uptake. Moreover, the cytotoxicity of MSNs could be correlated with the amount of MSNs taken up by cells, which positively correlates to the particle size and dosage. Therefore, only positively charged and larger MSNs (≥100 nm) during higher treatment doses (≥500 μg mL-1) resulted in a sufficient accumulation of internalized MSNs in cells to induce significant release of reactive oxygen species (ROS) and oxidative stress, inflammatory gene upregulation through NF-κB and AP-1, and eventually autophagy-mediated necrotic cell death. Furthermore, genome-wide gene expression analysis could reflect the above in vitro cellular damages and corresponding in vivo injuries in mice, indicating that specific gene expression footprints may be used for assessing the safety of nanoparticles. The present finding provides some insights into the rational design of effective MSN-based drug/gene delivery systems and biomedical applications.
Collapse
Affiliation(s)
- Cheng-Chung Chou
- Department of Life Science and Institute of Molecular Biology, National Chung Cheng University , Chia-Yi, Taiwan 62102, ROC
| | - Wei Chen
- Department of Chemistry, National Taiwan University , Taipei, Taiwan 10617, ROC
| | - Yann Hung
- Department of Chemistry, National Taiwan University , Taipei, Taiwan 10617, ROC
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University , Taipei, Taiwan 10617, ROC
| |
Collapse
|
30
|
Zhu J, Niu Y, Li Y, Gong Y, Shi H, Huo Q, Liu Y, Xu Q. Stimuli-responsive delivery vehicles based on mesoporous silica nanoparticles: recent advances and challenges. J Mater Chem B 2017; 5:1339-1352. [DOI: 10.1039/c6tb03066a] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the past decade, stimuli-responsive drug delivery vehicles based on surface-functionalized mesoporous silica nanoparticles have attracted intense interest as a new type of drug carrier.
Collapse
Affiliation(s)
- Jianhua Zhu
- Department of Pharmacy
- Bengbu Medical College
- Bengbu 233030
- China
- School of Pharmacy
| | - Yimin Niu
- Department of Pharmacy
- Zhongda Hospital
- School of Medicine
- Southeast University
- Nanjing 210009
| | - Yang Li
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- China
| | - Yaxiang Gong
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- China
| | - Huihui Shi
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- China
| | - Qiang Huo
- Department of Pharmacy
- Bengbu Medical College
- Bengbu 233030
- China
| | - Yang Liu
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- China
| | - Qunwei Xu
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- China
| |
Collapse
|