1
|
Stanley J, Molina-Millán L, Wesdemiotis C, Heeren RMA, Zamboulis A, Zemljič LF, Lambropoulou DA, Bikiaris DN. Synthesis and Characterization of Poly(ethylene furanoate)/Poly(ε-caprolactone) Block Copolymers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:286-298. [PMID: 39787314 PMCID: PMC11809208 DOI: 10.1021/jasms.4c00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
Biobased poly(ethylene furanoate) (PEF)/poly(ε-caprolactone) (PCL) block copolymers have been synthesized using ring opening polymerization (ROP) of ε-caprolactone (ε-CL) in the presence of PEF in different mass ratios. An increase in intrinsic viscosity is observed for the block copolymers with higher ε-CL content due to the extension of their macromolecular chain. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MS) was employed to understand the composition and structure of the produced block copolymers. The MS analysis helped to confirm the formation of PEF-PCL copolymers in all cases. Furthermore, tandem mass spectrometry experiments were performed to analyze the intrinsic fragmentation mechanism of neat PEF and PCL (both linear and cyclic) and confirm the block structure and end-groups. Finally, nuclear magnetic resonance results confirmed the composition and microstructure of the block copolymers. The synthesized PEF-PCL block copolymers can be used as a replacement for petroleum derived plastics, especially in the field of food packaging.
Collapse
Affiliation(s)
- Johan Stanley
- Laboratory
of Chemistry and Technology of Polymers and Colors, Department of
Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Lidia Molina-Millán
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Chrys Wesdemiotis
- School
of Polymer Science and Polymer Engineering and Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Ron M. A. Heeren
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Alexandra Zamboulis
- Laboratory
of Chemistry and Technology of Polymers and Colors, Department of
Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Lidija Fras Zemljič
- Faculty
of Mechanical Engineering, University of
Maribor, SI-2000 Maribor, Slovenia
| | - Dimitra A. Lambropoulou
- Laboratory
of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR−541 24 Thessaloniki, Greece
- Center for
Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-570 01 Thessaloniki, Greece
| | - Dimitrios N. Bikiaris
- Laboratory
of Chemistry and Technology of Polymers and Colors, Department of
Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
2
|
Salum TFC, Day D, Sherwood J, Pellis A, Farmer TJ. Enzymatic synthesis of aromatic biobased polymers in green, low-boiling solvents. J Biotechnol 2024; 396:1-9. [PMID: 39395641 PMCID: PMC7616777 DOI: 10.1016/j.jbiotec.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Given the urge to accelerate the substitution of petrol-derived solvents not only in more traditional fields like pharmaceuticals, personal care, or electronics but also in innovative research processes, this work focuses on the utilisation of four biobased solvents as media for the enzymatic synthesis of aliphatic-aromatic polyesters. As building blocks, the lignin-derived diethyl-2,4-pyridinedicarboxylate was selected as the potentially biobased, aromatic component while more classical diols such as 1,4-butanediol and 1,8-octanediol were used as the aliphatic portion. Results show that among the tested green solvents (cyclohexanone, phenetole, anisole and eucalyptol), the most suitable medium for lipase B from Candida antarctica-catalysed polycondensation reactions was eucalyptol that allowed reach monomer conversions >95 % and number average molecular weights up to 3500 g·mol-1. On the other hand, cyclohexanone led to the lowest monomer conversions (<80 %) and molecular weights (Mn<500 g·mol-1) confirming once again the unsuitability of ketone-containing solvents for enzymatic esterification and transesterification reactions. The lipase could be used up to three times, in eucalyptol as a solvent, without a significant decrease in monomer conversion or molecular weight.
Collapse
Affiliation(s)
- Thaís Fabiana Chan Salum
- University of York, Department of Chemistry, Green Chemistry Centre of Excellence, Heslington, York YO10 5DD, UK; Embrapa Agroenergy, Parque Estação Biológica, Brasilia 70770-901, Brazil.
| | - Daniel Day
- University of York, Department of Chemistry, Green Chemistry Centre of Excellence, Heslington, York YO10 5DD, UK.
| | - James Sherwood
- University of York, Department of Chemistry, Green Chemistry Centre of Excellence, Heslington, York YO10 5DD, UK.
| | - Alessandro Pellis
- University of Genova, Department of Chemistry and Industrial Chemistry, via Dodecaneso 31, Genova 16146, Italy.
| | - Thomas James Farmer
- University of York, Department of Chemistry, Green Chemistry Centre of Excellence, Heslington, York YO10 5DD, UK.
| |
Collapse
|
3
|
Papatola F, Slimani S, Peddis D, Pellis A. Biocatalyst immobilization on magnetic nano-architectures for potential applications in condensation reactions. Microb Biotechnol 2024; 17:e14481. [PMID: 38850268 PMCID: PMC11162105 DOI: 10.1111/1751-7915.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024] Open
Abstract
In this review article, a perspective on the immobilization of various hydrolytic enzymes onto magnetic nanoparticles for synthetic organic chemistry applications is presented. After a first part giving short overview on nanomagnetism and highlighting advantages and disadvantages of immobilizing enzymes on magnetic nanoparticles (MNPs), the most important hydrolytic enzymes and their applications were summarized. A section reviewing the immobilization techniques with a particular focus on supporting enzymes on MNPs introduces the reader to the final chapter describing synthetic organic chemistry applications of small molecules (flavour esters) and polymers (polyesters and polyamides). Finally, the conclusion and perspective section gives the author's personal view on further research discussing the new idea of a synergistic rational design of the magnetic and biocatalytic component to produce novel magnetic nano-architectures.
Collapse
Affiliation(s)
- F. Papatola
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
| | - S. Slimani
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
- CNRIstituto di Struttura Della Materia, nM2‐LabMonterotondo Scalo (Roma)Italy
| | - D. Peddis
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
- CNRIstituto di Struttura Della Materia, nM2‐LabMonterotondo Scalo (Roma)Italy
| | - A. Pellis
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
| |
Collapse
|
4
|
Silvianti F, Maniar D, Agostinho B, de Leeuw TC, Woortman AJJ, van Dijken J, Thiyagarajan S, Sousa AF, Loos K. Enzymatic Synthesis of Copolyesters with the Heteroaromatic Diol 3,4-Bis(hydroxymethyl)furan and Isomeric Dimethyl Furandicarboxylate Substitutions. Biomacromolecules 2024; 25:2792-2802. [PMID: 38602263 PMCID: PMC11094730 DOI: 10.1021/acs.biomac.3c01433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
Polyesters from furandicarboxylic acid derivatives, i.e., dimethyl 2,5-furandicarboxylate (2,5-DMFDCA) and 2,4-DMFDCA, show interesting properties among bio-based polymers. Another potential heteroaromatic monomer, 3,4-bis(hydroxymethyl)furan (3,4-BHMF), is often overlooked but holds promise for biopolymer synthesis. Cleaning and greening synthetic procedures, i.e., enzymatic polymerization, offer sustainable pathways. This study explores the Candida antarctica lipase B (CALB)-catalyzed copolymerization of 3,4-BHMF with furan dicarboxylate isomers and aliphatic diols. The furanic copolyesters (co-FPEs) with higher polymerization degrees are obtained using 2,4-isomer, indicating CALB's preference. Material analysis revealed semicrystalline properties in all synthesized 2,5-FDCA-based co-FPEs, with multiple melting temperatures (Tm) from 53 to 124 °C and a glass-transition temperature (Tg) of 9-10 °C. 2,4-FDCA-based co-FPEs showed multiple Tm from 43 to 61 °C and Tg of -14 to 12 °C; one of them was amorphous. In addition, all co-FPEs showed a two-step decomposition profile, indicating aliphatic and semiaromatic segments in the polymer chains.
Collapse
Affiliation(s)
- Fitrilia Silvianti
- Macromolecular
Chemistry & New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Dina Maniar
- Macromolecular
Chemistry & New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Beatriz Agostinho
- CICECO—Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | | | - Albert Jan Jacob Woortman
- Macromolecular
Chemistry & New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Jur van Dijken
- Macromolecular
Chemistry & New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Shanmugam Thiyagarajan
- Wageningen
Food & Biobased Research, Wageningen
University and Research, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| | - Andreia F. Sousa
- CICECO—Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
- Centre
for Mechanical Engineering, Materials and Processes, Department of
Chemical Engineering, University of Coimbra
Rua Sílvio Lima—Polo II, Coimbra 3030-790, Portugal
| | - Katja Loos
- Macromolecular
Chemistry & New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| |
Collapse
|
5
|
Abdel-Gawad R, Osman R, Awad GAS, Mortada N. Wound healing potential of silver nanoparticles embedded in optimized bio-inspired hybridized chitosan soft and dry hydrogel. Carbohydr Polym 2024; 324:121526. [PMID: 37985104 DOI: 10.1016/j.carbpol.2023.121526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
Interactive wound dressings combining healing and antimicrobial potentials, besides ensuring patient compliance with a recognized wound care service gained considerable interest recently. Both hydrogel spray dried microparticles (HMP) and soft hydrogel (G) were prepared. The bio-inspired combinatory platform included natural bio-macromolecules namely: chitosan (CS) and collagen (COL) with wound healing enhancement and connective tissue building capabilities cross linked with the natural genipin (GN) to build a three dimensional structured matrix. The optimized plain hydrogel obtained by a box behnken design (BBD) program (G) scored maximum swelling and porosity. The network was hosted with green synthesized cefotaxime sodium (cef.Na) AgNPs reduced by the anabolic folic acid (FA). Both hydrogels exhibited good antimicrobial activity against gram +ve and -ve bacteria. The wound healing activity, evaluated in injured rats, showed >98 % and complete wound closure after two and three weeks respectively. Oxidative stress minimization was proved by the estimation of biochemical markers malondialdehyde (MDA) and superoxide dismutase (SOD) levels at the wound site.
Collapse
Affiliation(s)
- Roxane Abdel-Gawad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, P.O. Box 11566, Cairo, Egypt.
| | - Rihab Osman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, P.O. Box 11566, Cairo, Egypt
| | - Gehanne A S Awad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, P.O. Box 11566, Cairo, Egypt
| | - Nahed Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, P.O. Box 11566, Cairo, Egypt
| |
Collapse
|
6
|
Sokołowska M, Nowak-Grzebyta J, Stachowska E, Miądlicki P, Zdanowicz M, Michalkiewicz B, El Fray M. Enzymatically catalyzed furan-based copolyesters containing dilinoleic diol as a building block. RSC Adv 2023; 13:22234-22249. [PMID: 37492515 PMCID: PMC10363961 DOI: 10.1039/d3ra03885h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
A more environmentally friendly method for creating sustainable alternatives to traditional aromatic-aliphatic polyesters is a valuable step towards resource-efficiency optimization. A library of furan-based block copolymers was synthesized via temperature-varied two-step polycondensation reaction in diphenyl ether using Candida antarctica lipase B (CAL-B) as a biocatalyst where dimethyl 2,5-furandicarboxylate (DMFDCA), α,ω-aliphatic linear diols (α,ω-ALD), and bio-based dilinoleic diol (DLD) were used as the starting materials. Nuclear magnetic spectroscopy (1H and 13C NMR), Fourier transform spectroscopy (FTIR) and size exclusion chromatography (SEC) were used to analyze the resulting copolymers. Additionally, crystallization behavior and thermal properties were studied using X-ray diffraction (XRD), digital holographic microscopy (DHM), and differential scanning microscopy (DSC). Finally, oxygen transmission rates (OTR) and dynamic mechanical analysis (DMTA) of furan-based copolyesters indicated their potential for medical packaging.
Collapse
Affiliation(s)
- Martyna Sokołowska
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Polymer and Biomaterials Science Al. Piastow 45 71-311 Szczecin Poland
| | - Jagoda Nowak-Grzebyta
- Poznan University of Technology, Faculty of Mechanical Engineering Ul. Piotrowo 3 60-965 Poznan Poland
| | - Ewa Stachowska
- Poznan University of Technology, Faculty of Mechanical Engineering Ul. Piotrowo 3 60-965 Poznan Poland
| | - Piotr Miądlicki
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Engineering of Catalytic and Sorbent Materials Department Al. Piastow 45 71-311 Szczecin Poland
| | - Magdalena Zdanowicz
- West Pomeranian University of Technology in Szczecin, Faculty of Food Sciences, Center of Bioimmobilisation and Innovative Packaging Materials Ul. Janickiego 35 71-270 Szczecin Poland
| | - Beata Michalkiewicz
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Engineering of Catalytic and Sorbent Materials Department Al. Piastow 45 71-311 Szczecin Poland
| | - Miroslawa El Fray
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Polymer and Biomaterials Science Al. Piastow 45 71-311 Szczecin Poland
| |
Collapse
|
7
|
Fredi G, Zonta E, Dussin A, Bikiaris DN, Papageorgiou GZ, Fambri L, Dorigato A. Toughening Effect of 2,5-Furandicaboxylate Polyesters on Polylactide-Based Renewable Fibers. Molecules 2023; 28:4811. [PMID: 37375367 DOI: 10.3390/molecules28124811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
This work presents the successful preparation and characterization of polylactide/poly(propylene 2,5-furandicarboxylate) (PLA/PPF) and polylactide/poly(butylene 2,5-furandicarboxylate) (PLA/PBF) blends in form of bulk and fiber samples and investigates the influence of poly(alkylene furanoate) (PAF) concentration (0 to 20 wt%) and compatibilization on the physical, thermal, and mechanical properties. Both blend types, although immiscible, are successfully compatibilized by Joncryl (J), which improves the interfacial adhesion and reduces the size of PPF and PBF domains. Mechanical tests on bulk samples show that only PBF is able to effectively toughen PLA, as PLA/PBF blends with 5-10 wt% PBF showed a distinct yield point, remarkable necking propagation, and increased strain at break (up to 55%), while PPF did not show significant plasticizing effects. The toughening ability of PBF is attributed to its lower glass transition temperature and greater toughness than PPF. For fiber samples, increasing the PPF and PBF amount improves the elastic modulus and mechanical strength, particularly for PBF-containing fibers collected at higher take-up speeds. Remarkably, in fiber samples, plasticizing effects are observed for both PPF and PBF, with significantly higher strain at break values compared to neat PLA (up to 455%), likely due to a further microstructural homogenization, enhanced compatibility, and load transfer between PLA and PAF phases following the fiber spinning process. SEM analysis confirms the deformation of PPF domains, which is probably due to a "plastic-rubber" transition during tensile testing. The orientation and possible crystallization of PPF and PBF domains contribute to increased tensile strength and elastic modulus. This work showcases the potential of PPF and PBF in tailoring the thermo-mechanical properties of PLA in both bulk and fiber forms, expanding their applications in the packaging and textile industry.
Collapse
Affiliation(s)
- Giulia Fredi
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Edoardo Zonta
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Alessandro Dussin
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Luca Fambri
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Andrea Dorigato
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
8
|
Kwiatkowska M, Kowalczyk I, Rozwadowski Z, Piesowicz E, Szymczyk A. Hytrel-like Copolymers Based on Furan Polyester: The Effect of Poly(Butylene Furanoate) Segment on Microstructure and Mechanical/Elastic Performance. Molecules 2023; 28:molecules28072962. [PMID: 37049723 PMCID: PMC10095974 DOI: 10.3390/molecules28072962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
This paper aims to compare the performance of two Hytrel-like segmented copolymers: “classic” PBT-b-PTMG and fully bio-based PBF-b-PTMG, containing poly(butylene furanoate) as the rigid segment. The idea behind this research is to assess whether the sustainable copolymers can successfully replace those “classic” once at the thermoplastic elastomers’ market. Two series of copolymers were synthesized under the same process parameters, had the same compositions, but differed in aromatic ring structure in terephthalate/furanoate unit. Furthermore, the materials were processed by injection moulding as typical Hytrel products. Then, the samples were subjected to extensive characterisation including NMR, GPC, FTIR, DSC, WAXS, DMTA, TGA techniques and mechanical tests with particular interest in the microstructure formed during processing and its effect on the copolymers’ mechanical and elastic behaviour. The detailed analysis proved that PBF-b-PTMG and PBT-b-PTMG copolymers represent two kinds of materials with similar chemical structure, some features of thermoplastic elastomers, but evident differences in their physical properties.
Collapse
|
9
|
Post C, Maniar D, Voet VSD, Folkersma R, Loos K. Biobased 2,5-Bis(hydroxymethyl)furan as a Versatile Building Block for Sustainable Polymeric Materials. ACS OMEGA 2023; 8:8991-9003. [PMID: 36936293 PMCID: PMC10018510 DOI: 10.1021/acsomega.2c07629] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Furanic polymers, currently mainly represented by polyethylene 2,5-furandicarboxylate (PEF), also known as polyethylene furanoate, have a fantastic potential to replace fossil-based polymers: for example, polyethylene terephthalate (PET). While 2,5-furandicarboxylic acid (FDCA), a precursor of PEF, and its derived polymers have been studied extensively, 2,5-bis(hydroxymethyl)furan (BHMF) has received relatively little attention so far. Similarly to FDCA, BHMF is a biobased platform chemical derived from renewable sources such as sugars. This review highlights different polymerization techniques for BHMF-based polyesters and addresses BHMF's relative instability during the synthesis of BHMF-derived polymers, including polycarbonates and polyurethanes. Furthermore, the degradability of furanic polyesters is discussed and BHMF's toxicity is briefly elaborated.
Collapse
Affiliation(s)
- Cornelis Post
- Macromolecular
Chemistry & New Polymeric Materials, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
- Circular
Plastics, NHL Stenden University of Applied
Sciences, Van Schaikweg 94, 7811 KL Emmen, The Netherlands
| | - Dina Maniar
- Macromolecular
Chemistry & New Polymeric Materials, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Vincent S. D. Voet
- Circular
Plastics, NHL Stenden University of Applied
Sciences, Van Schaikweg 94, 7811 KL Emmen, The Netherlands
| | - Rudy Folkersma
- Circular
Plastics, NHL Stenden University of Applied
Sciences, Van Schaikweg 94, 7811 KL Emmen, The Netherlands
| | - Katja Loos
- Macromolecular
Chemistry & New Polymeric Materials, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| |
Collapse
|
10
|
Paszkiewicz S, Walkowiak K, Irska I, Zubkiewicz A, Figiel P, Gorący K, El Fray M. Furan-based copoly(ester-ethers) and copoly(ester-amide-ethers). Comparison study on the phase structure, mechanical and thermal properties. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Paszkiewicz S, Irska I, Zubkiewicz A, Walkowiak K, Rozwadowski Z, Dryzek J, Linares A, Nogales A, Ezquerra TA. Supramolecular structure, relaxation behavior and free volume of bio-based poly(butylene 2,5-furandicarboxylate)- block-poly(caprolactone) copolyesters. SOFT MATTER 2023; 19:959-972. [PMID: 36633480 DOI: 10.1039/d2sm01359b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the present study, a fully plant-based sustainable copolyester series, namely poly(butylene 2,5-furandicarboxylate)-block-poly(caprolactone)s (PBF-block-PCL)s were successfully synthesized by melt polycondensation combining butylene 2,5-furandicarboxylate with polycaprolactone diol (PCL) at different weight ratios. Differential scanning calorimetry (DSC) showed that only PBF underwent melting, crystallization from the melt, and cold crystallization. Thermogravimetric analysis (TGA) revealed outstanding thermal stability, exceeding 305 °C, with further improvement in thermal and thermo-oxidative stability with increasing PCL content. Broadband dielectric spectroscopy (BDS) revealed that at low temperatures, below the glass transition (Tg) all copolyesters exhibited two relaxation processes (β1 and β2), whereas the homopolymer PBF exhibited a single β-relaxation, which is associated with local dynamics of the different chemical bonds present in the polymer chain. Additionally, it was proved that an increase in PCL content affected the dynamics of the chain making it more flexible, thus providing an increase in the value of the room temperature free volume fractions (fv) and the value of elongation at break. These effects are accompanied by a decrease in hardness, Young's modulus, and tensile strength. The described synthesis enables a facile approach to obtain novel fully multiblock biobased copolyesters based on PBF and PCL polyesters with potential industrial implementation capabilities.
Collapse
Affiliation(s)
- Sandra Paszkiewicz
- Department of Materials Technologies, West Pomeranian University of Technology, Al. Piastow 19, PL-70310 Szczecin, Poland.
| | - Izabela Irska
- Department of Materials Technologies, West Pomeranian University of Technology, Al. Piastow 19, PL-70310 Szczecin, Poland.
| | - Agata Zubkiewicz
- Department of Physics, West Pomeranian University of Technology, Al. Piastow 48, PL-70311 Szczecin, Poland
| | - Konrad Walkowiak
- Department of Materials Technologies, West Pomeranian University of Technology, Al. Piastow 19, PL-70310 Szczecin, Poland.
| | - Zbigniew Rozwadowski
- Department of Inorganic and Analytical Chemistry, West Pomeranian University of Technology, Al. Piastów 42, PL-71065 Szczecin, Poland
| | - Jerzy Dryzek
- Institute of Nuclear Physics PAS, ul. Radzikowskiego 152, PL-31342 Cracow, Poland
| | - Amelia Linares
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain
| | - Aurora Nogales
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain
| | - Tiberio A Ezquerra
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain
| |
Collapse
|
12
|
Lai J, Huang H, Lin M, Xu Y, Li X, Sun B. Enzyme catalyzes ester bond synthesis and hydrolysis: The key step for sustainable usage of plastics. Front Microbiol 2023; 13:1113705. [PMID: 36713200 PMCID: PMC9878459 DOI: 10.3389/fmicb.2022.1113705] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Petro-plastic wastes cause serious environmental contamination that require effective solutions. Developing alternatives to petro-plastics and exploring feasible degrading methods are two solving routes. Bio-plastics like polyhydroxyalkanoates (PHAs), polylactic acid (PLA), polycaprolactone (PCL), poly (butylene succinate) (PBS), poly (ethylene furanoate) s (PEFs) and poly (ethylene succinate) (PES) have emerged as promising alternatives. Meanwhile, biodegradation plays important roles in recycling plastics (e.g., bio-plastics PHAs, PLA, PCL, PBS, PEFs and PES) and petro-plastics poly (ethylene terephthalate) (PET) and plasticizers in plastics (e.g., phthalate esters, PAEs). All these bio- and petro-materials show structure similarity by connecting monomers through ester bond. Thus, this review focused on bio-plastics and summarized the sequences and structures of the microbial enzymes catalyzing ester-bond synthesis. Most of these synthetic enzymes belonged to α/β-hydrolases with conserved serine catalytic active site and catalyzed the polymerization of monomers by forming ester bond. For enzymatic plastic degradation, enzymes about PHAs, PBS, PCL, PEFs, PES and PET were discussed, and most of the enzymes also belonged to the α/β hydrolases with a catalytic active residue serine, and nucleophilically attacked the ester bond of substrate to generate the cleavage of plastic backbone. Enzymes hydrolysis of the representative plasticizer PAEs were divided into three types (I, II, and III). Type I enzymes hydrolyzed only one ester-bond of PAEs, type II enzymes catalyzed the ester-bond of mono-ester phthalates, and type III enzymes hydrolyzed di-ester bonds of PAEs. Divergences of catalytic mechanisms among these enzymes were still unclear. This review provided references for producing bio-plastics, and degrading or recycling of bio- and petro-plastics from an enzymatic point of view.
Collapse
Affiliation(s)
- Jinghui Lai
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Huiqin Huang
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Mengwei Lin
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Youqiang Xu
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
13
|
Wang G, Dong Y, Hao X, Zhang L, Chi X. Bio-based poly(decylene terephthalate-co-decylene furandicarboxylate)s derived from 2,5-furandicarboxylic acid (FDCA): Synthesis and properties. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Silvianti F, Maniar D, Boetje L, Woortman AJJ, van Dijken J, Loos K. Greener Synthesis Route for Furanic-Aliphatic Polyester: Enzymatic Polymerization in Ionic Liquids and Deep Eutectic Solvents. ACS POLYMERS AU 2022. [DOI: 10.1021/acspolymersau.2c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fitrilia Silvianti
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Dina Maniar
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Laura Boetje
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Albert J. J. Woortman
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Jur van Dijken
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Katja Loos
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| |
Collapse
|
15
|
Li N, Zong MH. (Chemo)biocatalytic Upgrading of Biobased Furanic Platforms to Chemicals, Fuels, and Materials: A Comprehensive Review. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
16
|
Poly(ethylene furanoate-co-ethylene vanillate) biobased copolymers: Impact of the incorporation of vanillic acid units in poly(ethylene furanoate). Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Duval A, Sarbu A, Dalmas F, Albertini D, Avérous L. 2,3-Butanediol as a Biobased Chain Extender for Thermoplastic Polyurethanes: Influence of Stereochemistry on Macromolecular Architectures and Properties. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antoine Duval
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, Strasbourg Cedex 2 67087, France
- Soprema, 14 rue de Saint-Nazaire, Strasbourg 67100, France
| | - Alexandru Sarbu
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, Strasbourg Cedex 2 67087, France
- Soprema, 14 rue de Saint-Nazaire, Strasbourg 67100, France
| | - Florent Dalmas
- Univ. Lyon, INSA Lyon, CNRS, MATEIS, UMR 5510, Villeurbanne 69621, France
| | - David Albertini
- Univ. Lyon, CNRS, INSA Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR 5270, Villeurbanne 69621, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, Strasbourg Cedex 2 67087, France
| |
Collapse
|
18
|
Seithümmer J, Öztürk M, Wunschik DS, Prießen J, Schultz HJ, Dornbusch M, Gutmann JS, Hoffmann-Jacobsen K. Enzymatic synthesis of novel aromatic-aliphatic polyesters with increased hydroxyl group density. Biotechnol J 2022; 17:e2100452. [PMID: 35233978 DOI: 10.1002/biot.202100452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/25/2022] [Accepted: 02/11/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Polyesters with pendant hydroxyl groups are attractive materials which offer additional functionalization points in the polymer chain. In contrast to chemical polycondensation, lipase regioselectivity enables the synthesis of these materials as certain hydroxyl groups remain unaffected during the enzymatic process. METHODS AND MAJOR RESULTS In this study, a combination of synthesis development and reactor design was used for the enzymatic synthesis of an aliphatic-aromatic polyester with two different classes of pendant hydroxyl groups. Using 2,6-bishydroxy(methyl)-p-cresol as diol in lipase catalyzed polycondensation with adipic acid required the addition of hexane diol as third monomer for polycondensation to take place. Reaction conditions were explored in order to identify the preferred reaction conditions for the incorporation of the aromatic diol and the enhancement of the hydroxyl group density. Post-polymerization with glycerol at low temperature integrated additional aliphatic hydroxyl groups, reduced the polydispersity and increased the end group functionality. CONCLUSION A new material with aromatic building blocks and boosted polymer chain reactivity was obtained, which is suggested to find application in various areas of material development from coatings to adhesives. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Julia Seithümmer
- Niederrhein University of Applied Sciences, Chemistry Department and Institute for Coatings and Surface Chemistry, Adlerstr. 32, Krefeld, 47798, Germany.,Institute of Physical Chemistry and CENIDE (Center for Nanointegration), University Duisburg-Essen, Universitätsstraße 5, Essen, 45117, Germany
| | - Melda Öztürk
- Niederrhein University of Applied Sciences, Chemistry Department and Institute for Coatings and Surface Chemistry, Adlerstr. 32, Krefeld, 47798, Germany
| | - Dennis S Wunschik
- Niederrhein University of Applied Sciences, Chemistry Department and Institute for Coatings and Surface Chemistry, Adlerstr. 32, Krefeld, 47798, Germany.,Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, Krefeld, 47798, Germany.,Institute of Physical Chemistry and CENIDE (Center for Nanointegration), University Duisburg-Essen, Universitätsstraße 5, Essen, 45117, Germany
| | - Joscha Prießen
- Niederrhein University of Applied Sciences, Chemistry Department and Institute for Coatings and Surface Chemistry, Adlerstr. 32, Krefeld, 47798, Germany
| | - Heyko J Schultz
- Niederrhein University of Applied Sciences, Chemistry Department and Institute for Coatings and Surface Chemistry, Adlerstr. 32, Krefeld, 47798, Germany
| | - Michael Dornbusch
- Niederrhein University of Applied Sciences, Chemistry Department and Institute for Coatings and Surface Chemistry, Adlerstr. 32, Krefeld, 47798, Germany
| | - Jochen S Gutmann
- Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, Krefeld, 47798, Germany.,Institute of Physical Chemistry and CENIDE (Center for Nanointegration), University Duisburg-Essen, Universitätsstraße 5, Essen, 45117, Germany
| | - Kerstin Hoffmann-Jacobsen
- Niederrhein University of Applied Sciences, Chemistry Department and Institute for Coatings and Surface Chemistry, Adlerstr. 32, Krefeld, 47798, Germany
| |
Collapse
|
19
|
Quattrosoldi S, Guidotti G, Soccio M, Siracusa V, Lotti N. Bio-based and one-day compostable poly(diethylene 2,5-furanoate) for sustainable flexible food packaging: Effect of ether-oxygen atom insertion on the final properties. CHEMOSPHERE 2022; 291:132996. [PMID: 34808204 DOI: 10.1016/j.chemosphere.2021.132996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
In the present work, the effect of ether oxygen atom introduction in a furan ring-containing polymer has been evaluated. Solvent-free polycondensation process permitted the preparation of high molecular weight poly(diethylene 2,5-furandicarboxylate) (PDEF), by reacting the dimethyl ester of 2,5-furandicarboxylic acid with diethylene glycol. After molecular and thermal characterization, PDEF mechanical response and gas barrier properties to O2 and CO2, measured at different temperatures and humidity, were studied and compared with those of poly(butylene 2,5-furandicarboxylate) (PBF) and poly(pentamethylene 2,5-furanoate) (PPeF) previously determined. Both PDEF and PPeF films were amorphous, differently from PBF one. Glass transition temperature of PDEF (24 °C) is between those of PBF (39 °C) and PPeF (13 °C). As concerns mechanical response, PDEF is more flexible (elastic modulus [E] = 673 MPa) than PBF (E = 1290 MPa) but stiffer than PPeF (E = 9 MPa). Moreover, PDEF is the most thermally stable (temperature of maximum degradation rate being 418 for PDEF, 407 for PBF and 414 °C for PPeF) and hydrophilic (water contact angle being 74° for PDEF, 90° for PBF and 93° for PPeF), with gas barrier performances very similar to those of PPeF (O2 and CO2 transmission rate being 0.0022 and 0.0018 for PDEF and, 0.0016 and 0.0014 cm3 cm/m2 d atm for PPeF). Lab scale composting experiments indicated that PDEF and PPeF were compostable, the former degrading faster, in just one day. The results obtained are explained on the basis of the high electronegativity of ether oxygen atom with respect to the carbon one, and the consequent increase of dipoles along the macromolecule.
Collapse
Affiliation(s)
- Silvia Quattrosoldi
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna, Italy.
| | - Valentina Siracusa
- Chemical Science Department, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna, Italy; Interdepartmental Center for Agro-Food Research, CIRI-AGRO, University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Fei X, Wang J, Zhang X, Jia Z, Jiang Y, Liu X. Recent Progress on Bio-Based Polyesters Derived from 2,5-Furandicarbonxylic Acid (FDCA). Polymers (Basel) 2022; 14:E625. [PMID: 35160613 PMCID: PMC8838965 DOI: 10.3390/polym14030625] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
The big challenge today is the upgrading of sustainable materials to replace miscellaneous ones from petroleum resources. Thus, a generic bio-based building block lays the foundation of the huge bio-market to green economy. 2,5-Furandicarboxylic acid (FDCA), a rigid diacid derived from lignocellulose or fructose, represents a great potential as a contender to terephthalic acid (TPA). Recently, studies on the synthesis, modification, and functionalization of bio-based polyesters based on FDCA have attracted widespread attention. To apply furanic polyesters on engineering plastics, packaging materials, electronics, etc., researchers have extended the properties of basic FDCA-based homo-polyesters by directional copolymerization and composite preparation. This review covers the synthesis and performance of polyesters and composites based on FDCA with emphasis bedded on the thermomechanical, crystallization, barrier properties, and biodegradability. Finally, a summary of what has been achieved and the issues waiting to be addressed of FDCA-based polyester materials are suggested.
Collapse
Affiliation(s)
- Xuan Fei
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
- University of Chinese Academy of Sciences, No.19 A, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jinggang Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Xiaoqin Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Zhen Jia
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Yanhua Jiang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Xiaoqing Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| |
Collapse
|
21
|
Kim JH, Kim MS, Kim HJ, Kim JR, Ahn CH. Novel Potentially Biobased Copolyesters Comprising 1,3-Butanediol, 1,4-Cyclohexanedimethanol and Dimethyl Terephthalate; Effect of Different Catalysts on Polymerization Behavior. Macromol Res 2022. [DOI: 10.1007/s13233-022-0008-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
De Vos L, Van de Voorde B, Van Daele L, Dubruel P, Van Vlierberghe S. Poly(alkylene terephthalate)s: From current developments in synthetic strategies towards applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Tian S, Cao X, Luo K, Lin Y, Wang W, Xu J, Guo B. Effects of Nonhydroxyl Oxygen Heteroatoms in Diethylene Glycols on the Properties of 2,5-Furandicarboxylic Acid-Based Polyesters. Biomacromolecules 2021; 22:4823-4832. [PMID: 34669395 DOI: 10.1021/acs.biomac.1c01106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With regard to polyesters based on biobased 2,5-furandicarboxylic acid (FDCA), our work presents a new strategy, heteroatom substitution, to adjust the thermal and gas barrier properties. The effects of nonhydroxyl oxygen heteroatoms in the diols on the properties of FDCA-based polyesters were first investigated by a combination of an experiment and molecular simulation. The results demonstrated that the introduction of oxygen heteroatoms significantly influenced the thermal and gas barrier properties. As for the two model polymers with a very similar skeleton structure, poly(pentylene 2,5-furandicarboxylate) (PPeF) and poly(diethylene glycol 2,5-furandicarboxylate) (PDEF), their Tg exhibited an obviously increasing order. Moreover, they showed similar thermal stability and thermal oxidative stability. Dynamic mechanical analysis, positron annihilation lifetime spectroscopy, and molecular dynamics simulation indicated that the gas barrier properties followed the sequence of PDEF > PPeF mainly due to the decreased chain mobility and smaller fractional free volume. In-depth analysis of the effects of heteroatom substitution has an important directive significance for the design and preparation of new high glass transition temperature or novel excellent gas barrier materials. Through the manipulation of different heteroatoms in the diols, the polyesters with varied properties can be expected.
Collapse
Affiliation(s)
- Sunan Tian
- Key Laboratory of Advanced Materials of Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xingzhong Cao
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiqiang Luo
- Key Laboratory of Advanced Materials of Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanyan Lin
- PetroChina Liaoyang Petrochemical Company, Liaoyang 111003, China
| | - Wenjuan Wang
- PetroChina Liaoyang Petrochemical Company, Liaoyang 111003, China
| | - Jun Xu
- Key Laboratory of Advanced Materials of Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Baohua Guo
- Key Laboratory of Advanced Materials of Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.,Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
| |
Collapse
|
24
|
Bazin A, Avérous L, Pollet E. Lipase-catalyzed synthesis of furan-based aliphatic-aromatic biobased copolyesters: Impact of the solvent. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
25
|
Bianchi E, Soccio M, Siracusa V, Gazzano M, Thiyagarajan S, Lotti N. Poly(butylene 2,4-furanoate), an Added Member to the Class of Smart Furan-Based Polyesters for Sustainable Packaging: Structural Isomerism as a Key to Tune the Final Properties. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:11937-11949. [PMID: 34513341 PMCID: PMC8424682 DOI: 10.1021/acssuschemeng.1c04104] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/07/2021] [Indexed: 05/10/2023]
Abstract
High-molecular-weight poly(butylene 2,4-furanoate) (2,4-PBF), an isomer of well-known poly(butylene 2,5-furanoate) (2,5-PBF), was synthesized through an eco-friendly solvent-free polycondensation process and processed in the form of an amorphous film by compression molding. Molecular characterization was carried out by NMR spectroscopy and GPC analysis, confirming the chemical structure and high polymerization degree. Thermal analyses evidenced a reduction of both glass-to-rubber transition and melting temperatures, as well as a detriment of crystallization capability, for 2,4-PBF with respect to 2,5-PBF. Nevertheless, it was possible to induce crystal phase formation by annealing treatment. Wide-angle X-ray scattering revealed that the crystal lattices developed in the two isomers are distinct from each other. The different isomerism affects also the thermal stability, being 2,4-PBF more thermally inert than 2,5-PBF. Functional properties, such as wettability, mechanical response, and gas barrier capability, were tested on both amorphous and semicrystalline 2,4-PBF films and compared with those of 2,5-PBF. Reduced hydrophilicity was determined for 2,4-isomer, in line with its lower average dipole moment, suggesting better chemical resistance to hydrolysis. Stress-strain tests have evidenced the higher flexibility and toughness of 2,4-PBF with respect to those of 2,5-PBF and the possibility of improving its mechanical resistance by annealing. Finally, the different isomerism deeply affects the gas barrier performance, being the O2- and CO2-transmission rates of 2,4-PBF 50 and 110 times lower, respectively, than those of 2,5-PBF. The gas barrier properties turned out to be outstanding under a dry atmosphere as well as in humid conditions, suggesting the presence of interchain hydrogen bonds. The gas blocking capability decreases after annealing because of the presence of disclination associated with the formation of crystals.
Collapse
Affiliation(s)
- Enrico Bianchi
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Michelina Soccio
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna 40126, Italy
| | - Valentina Siracusa
- Department
of Chemical Science, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Massimo Gazzano
- Institute
of Organic Synthesis and Photoreactivity, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
| | | | - Nadia Lotti
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna 40126, Italy
- Interdepartmental
Center for Agro-Food Research, CIRI-AGRO, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
26
|
Campisano ISP, de Queiros Eugenio E, de Oliveira Veloso C, Dias ML, de Castro AM, Langone MAP. Solvent-free lipase-catalyzed synthesis of linear and thermally stable polyesters obtained from diacids and diols. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Milescu RA, Zhenova A, Vastano M, Gammons R, Lin S, Lau CH, Clark JH, McElroy CR, Pellis A. Polymer Chemistry Applications of Cyrene and its Derivative Cygnet 0.0 as Safer Replacements for Polar Aprotic Solvents. CHEMSUSCHEM 2021; 14:3367-3381. [PMID: 34219405 PMCID: PMC8457101 DOI: 10.1002/cssc.202101125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/01/2021] [Indexed: 06/13/2023]
Abstract
This study explores a binary solvent system composed of biobased Cyrene and its derivative Cygnet 0.0 for application in membrane technology and in biocatalytic synthesis of polyesters. Cygnet-Cyrene blends could represent viable replacements for toxic polar aprotic solvents. The use of a 50 wt % Cygnet-Cyrene mixture makes a practical difference in the production of flat sheet membranes by nonsolvent-induced phase separation. New polymeric membranes from cellulose acetate, polysulfone, and polyimide are manufactured by using Cyrene, Cygnet 0.0, and their blend. The resultant membranes have different morphology when the solvent/mixture and temperature of the casting solution change. Moreover, Cyrene, Cygnet 0.0, and Cygnet-Cyrene are also explored for substituting diphenyl ether for the biocatalytic synthesis of polyesters. The results indicate that Cygnet 0.0 is a very promising candidate for the enzymatic synthesis of high molecular weight polyesters.
Collapse
Affiliation(s)
- Roxana A. Milescu
- Department of ChemistryGreen Chemistry Centre of ExcellenceUniversity of York, HeslingtonYorkYO10 5DDUnited Kingdom
| | - Anna Zhenova
- Department of ChemistryGreen Chemistry Centre of ExcellenceUniversity of York, HeslingtonYorkYO10 5DDUnited Kingdom
- Green Rose, The CatalystBaird Lane, HeslingtonYorkYO10 5GAUnited Kingdom
| | - Marco Vastano
- Department of ChemistryGreen Chemistry Centre of ExcellenceUniversity of York, HeslingtonYorkYO10 5DDUnited Kingdom
| | - Richard Gammons
- Department of ChemistryGreen Chemistry Centre of ExcellenceUniversity of York, HeslingtonYorkYO10 5DDUnited Kingdom
| | - Shiliang Lin
- School of EngineeringThe University of EdinburghRobert Stevenson RoadEdinburghEH9 3JLUnited Kingdom
| | - Cher Hon Lau
- School of EngineeringThe University of EdinburghRobert Stevenson RoadEdinburghEH9 3JLUnited Kingdom
| | - James H. Clark
- Department of ChemistryGreen Chemistry Centre of ExcellenceUniversity of York, HeslingtonYorkYO10 5DDUnited Kingdom
| | - Con R. McElroy
- Department of ChemistryGreen Chemistry Centre of ExcellenceUniversity of York, HeslingtonYorkYO10 5DDUnited Kingdom
| | - Alessandro Pellis
- Department of ChemistryGreen Chemistry Centre of ExcellenceUniversity of York, HeslingtonYorkYO10 5DDUnited Kingdom
- Department of Agrobiotechnology, Institute of Environmental BiotechnologyUniversity of Natural Resources and Life SciencesKonrad Lorenz Strasse 203430Tulln an der DonauAustria
| |
Collapse
|
28
|
Hevilla V, Sonseca A, Echeverría C, Muñoz-Bonilla A, Fernández-García M. Enzymatic Synthesis of Polyesters and Their Bioapplications: Recent Advances and Perspectives. Macromol Biosci 2021; 21:e2100156. [PMID: 34231313 DOI: 10.1002/mabi.202100156] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Indexed: 01/17/2023]
Abstract
This article reviews the most important advances in the enzymatic synthesis of polyesters. In first place, the different processes of polyester enzymatic synthesis, i.e., polycondensation, ring opening, and chemoenzymatic polymerizations, and the key parameters affecting these reactions, such as enzyme, concentration, solvent, or temperature, are analyzed. Then, the latest articles on the preparation of polyesters either by direct synthesis or via modification are commented. Finally, the main bioapplications of enzymatically obtained polyesters, i.e., antimicrobial, drug delivery, or tissue engineering, are described. It is intended to point out the great advantages that enzymatic polymerization present to obtain polymers and the disadvantages found to develop applied materials.
Collapse
Affiliation(s)
- Víctor Hevilla
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| | - Agueda Sonseca
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Camino de Vera, s/n, Valencia, 46022, Spain
| | - Coro Echeverría
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| | - Alexandra Muñoz-Bonilla
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| | - Marta Fernández-García
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| |
Collapse
|
29
|
Kashparova VP, Chernysheva DV, Klushin VA, Andreeva VE, Kravchenko OA, Smirnova NV. Furan monomers and polymers from renewable plant biomass. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Unravelling the para- and ortho-benzene substituent effect on the glass transition of renewable wholly (hetero-)aromatic polyesters bearing 2,5-furandicarboxylic moieties. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Achievements and Trends in Biocatalytic Synthesis of Specialty Polymers from Biomass-Derived Monomers Using Lipases. Processes (Basel) 2021. [DOI: 10.3390/pr9040646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
New technologies for the conversion of biomass into high-value chemicals, including polymers and plastics, is a must and a challenge. The development of green processes in the last decade involved a continuous increase of the interest towards the synthesis of polymers using in vitro biocatalysis. Among the remarkable diversity of new bio-based polymeric products meeting the criteria of sustainability, biocompatibility, and eco-friendliness, a wide range of polyesters with shorter chain length were obtained and characterized, targeting biomedical and cosmetic applications. In this review, selected examples of such specialty polymers are presented, highlighting the recent developments concerning the use of lipases, mostly in immobilized form, for the green synthesis of ε-caprolactone co-polymers, polyesters with itaconate or furan units, estolides, and polyesteramides. The significant process parameters influencing the average molecular weights and other characteristics are discussed, revealing the advantages and limitations of biocatalytic processes for the synthesis of these bio-based polymers.
Collapse
|
32
|
Lalanne L, Nyanhongo GS, Guebitz GM, Pellis A. Biotechnological production and high potential of furan-based renewable monomers and polymers. Biotechnol Adv 2021; 48:107707. [PMID: 33631186 DOI: 10.1016/j.biotechadv.2021.107707] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/08/2021] [Accepted: 01/30/2021] [Indexed: 11/28/2022]
Abstract
Of the 25 million tons of plastic waste produced every year in Europe, 40% of these are not reused or recycled, thus contributing to environmental pollution, one of the major challenges of the 21st century. Most of these plastics are made of petrochemical-derived polymers which are very difficult to degrade and as a result, a lot of research efforts have been made on more environmentally friendly alternatives. Bio-based monomers, derived from renewable raw materials, constitute a possible solution for the replacement of oil-derived monomers, with furan derivatives that emerged as platform molecules having a great potential for the synthesis of biobased polyesters, polyamides and their copolymers. This review article summarizes the latest developments in biotechnological production of furan compounds that can be used in polymer chemistry as well as in their conversion into polymers. Moreover, the biodegradability of the resulting materials is discussed.
Collapse
Affiliation(s)
- Lucie Lalanne
- Polytech Clermont-Ferrand, Department of Biological Engineering, Cézeaux University Campus, 2 Avenue Blaise Pascal, 63178 Aubière cedex, France; University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria
| | - Gibson S Nyanhongo
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria
| | - Georg M Guebitz
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria; Austrian Centre of Industrial Biotechnology, Division Enzymes & Polymers, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria
| | - Alessandro Pellis
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria.
| |
Collapse
|
33
|
|
34
|
Towards increased sustainability for aromatic polyesters: Poly(butylene 2,5-furandicarboxylate) and its blends with poly(butylene terephthalate). POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Martínez-Tong DE, Soccio M, Robles-Hernández B, Guidotti G, Gazzano M, Lotti N, Alegria A. Evidence of Nanostructure Development from the Molecular Dynamics of Poly(pentamethylene 2,5-furanoate). Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel E. Martínez-Tong
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, University of the Basque Country (UPV/EHU). Paseo Manuel Lardizábal 3, 20018 Donostia, Spain
- Centro de Física de Materiales (CFM, CSIC-UPV/EHU), Paseo Manuel Lardizábal 5, 20018 Donostia, Spain
| | - Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Beatriz Robles-Hernández
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, University of the Basque Country (UPV/EHU). Paseo Manuel Lardizábal 3, 20018 Donostia, Spain
- Centro de Física de Materiales (CFM, CSIC-UPV/EHU), Paseo Manuel Lardizábal 5, 20018 Donostia, Spain
| | - Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Massimo Gazzano
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Angel Alegria
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, University of the Basque Country (UPV/EHU). Paseo Manuel Lardizábal 3, 20018 Donostia, Spain
- Centro de Física de Materiales (CFM, CSIC-UPV/EHU), Paseo Manuel Lardizábal 5, 20018 Donostia, Spain
| |
Collapse
|
36
|
Fredi G, Dorigato A, Bortolotti M, Pegoretti A, Bikiaris DN. Mechanical and Functional Properties of Novel Biobased Poly(decylene-2,5-furanoate)/Carbon Nanotubes Nanocomposite Films. Polymers (Basel) 2020; 12:polym12112459. [PMID: 33114218 PMCID: PMC7690911 DOI: 10.3390/polym12112459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022] Open
Abstract
The present work investigates the microstructural, thermo-mechanical, and electrical properties of a promising, but still not thoroughly studied, biobased polymer, i.e., poly(decylene furanoate) (PDeF), and its performance when multi-walled carbon nanotubes (CNTs) are added. After sample preparation by solution mixing and film casting, the microstructural investigation evidences that the fracture surface becomes smoother and more homogeneous with a small fraction of CNTs, and that the production process is suitable to achieve good disentanglement and dispersion of CNTs within the matrix, although some aggregates are still observable. CNTs act as nucleating agents for PDeF crystals, as evidenced by differential scanning calorimetry, as the crystallinity degree increases from 43.2% of neat PDeF to 55.0% with a CNT content of 2 phr, while the crystallization temperature increases from 68.4 °C of PDeF to 91.7 °C of PDeF-CNT-2. A similar trend in crystallinity is confirmed by X-ray diffraction, after detailed Rietveld analysis with a three-phase model. CNTs also remarkably improve the mechanical performance of the bioderived polymer, as the elastic modulus increases up to 123% and the stress at break up to 131%. The strain at break also increases by +71% when a small amount of 0.25 phr of CNTs are added, which is probably the consequence of a more homogeneous microstructure. The long-term mechanical performance is also improved upon CNT addition, as the creep compliance decreases considerably, which was observed for both the elastic and the viscoelastic component. Finally, the films become electrically dissipative for a CNT content of 1 phr and conductive for a CNT amount of 2 phr. This study contributes to highlight the properties of bioderived furan-based polymer PDeF and evidences the potential of CNTs as a promising nanofiller for this matrix.
Collapse
Affiliation(s)
- Giulia Fredi
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (A.D.); (M.B.); (A.P.)
- Correspondence: ; Tel.: +39-0461-283-944
| | - Andrea Dorigato
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (A.D.); (M.B.); (A.P.)
| | - Mauro Bortolotti
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (A.D.); (M.B.); (A.P.)
| | - Alessandro Pegoretti
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (A.D.); (M.B.); (A.P.)
| | - Dimitrios N. Bikiaris
- Chemistry Department, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
37
|
Pellis A, Malinconico M, Guarneri A, Gardossi L. Renewable polymers and plastics: Performance beyond the green. N Biotechnol 2020; 60:146-158. [PMID: 33068793 DOI: 10.1016/j.nbt.2020.10.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022]
Abstract
Renewable bio-based polymers are one of the effective answers that the bioeconomy offers to solve the environmental emergency connected to plastics and more specifically fossil-based plastics. Previous studies have shown that more than 70 % of the natural capital cost associated with plastic derives from the extraction and processing of fossil raw materials and that the price of fossil plastic would be on average 44 % higher if such impact was fully paid by businesses. The disclosure of the hidden costs of plastics will contribute to dispelling the myth of the expensiveness of renewable polymers. Nevertheless, the adoption of bio-based plastics in the market must be motivated by their functional properties and not merely by their green credentials. This article highlights some successful examples of synergies between chemistry and biotechnology in achieving a new generation of bio-based monomers and polymers. Their success is justified by the combination of scientific advances with positive environmental and social fallouts.
Collapse
Affiliation(s)
- Alessandro Pellis
- University of Natural Resources and Life Sciences Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430, Tulln an der Donau, Austria
| | - Mario Malinconico
- Institute for Polymers, Composites and Biomaterials, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Alice Guarneri
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Lucia Gardossi
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy.
| |
Collapse
|
38
|
Liu Y, Song L, Feng N, Jiang W, Jin Y, Li X. Recent advances in the synthesis of biodegradable polyesters by sustainable polymerization: lipase-catalyzed polymerization. RSC Adv 2020; 10:36230-36240. [PMID: 35517080 PMCID: PMC9056969 DOI: 10.1039/d0ra07138b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Over the past three decades, enzymatic polymerization has dramatically developed and gradually broadened as a creative methodology in the construction of polymeric materials with tailor-made structures and properties. Compared with transition metal catalyst polymerizations, enzymatic polymerization is more attractive in the biomedicine field due to the metal-free residue, good biocompatibility, and few by-products. Meanwhile, enzymatic polymerization has far more activity towards macrolides. In this review, the synthesis of lipase-catalyzed polymer materials is systematically summarized, focusing on the synthesis of the complex and well-defined polymers. The enzymatic polyester synthesis was then discussed concerning the different reaction types, including ring-opening polymerization, polycondensation, a combination of ring-opening polymerization with polycondensation, and chemoenzymatic polymerization. Besides, exploration of novel biocatalysts and reaction media was also described, with particular emphasis on the enzymes obtained via immobilization or protein engineering strategies, green solvents, and reactors. Finally, recent developments in catalytic kinetics and mechanistic studies through the use of spectroscopy, mathematics, and computer techniques have been introduced. Besides, we addressed the remaining central issues in enzymatic polymerization and discussed current studies aimed at providing answers.
Collapse
Affiliation(s)
- Ying Liu
- College of Chemistry, Jilin University No. 2699, Qianjin Road Changchun Jilin 130012 PR China
| | - Lijie Song
- First Clinical Hospital, Jilin Province Academy of Traditional Chinese Medicine Changchun 130021 China
| | - Na Feng
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences Zhengzhou Henan 450052 China
| | - Wei Jiang
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences Zhengzhou Henan 450052 China
| | - Yongri Jin
- College of Chemistry, Jilin University No. 2699, Qianjin Road Changchun Jilin 130012 PR China
| | - Xuwen Li
- College of Chemistry, Jilin University No. 2699, Qianjin Road Changchun Jilin 130012 PR China
| |
Collapse
|
39
|
Sokołowska M, Stachowska E, Czaplicka M, El Fray M. Effect of enzymatic
versus
titanium dioxide/silicon dioxide catalyst on crystal structure of ‘green’ poly[(butylene succinate)‐
co
‐(dilinoleic succinate)] copolymers. POLYM INT 2020. [DOI: 10.1002/pi.6104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Martyna Sokołowska
- Faculty of Chemical Technology and Engineering, Department of Polymer and Biomaterials Science West Pomeranian University of Technology Szczecin Poland
| | - Ewa Stachowska
- Division of Metrology and Measurement Systems, Institute of Mechanical Technology Poznan University of Technology Poznan Poland
| | - Michalina Czaplicka
- Division of Metrology and Measurement Systems, Institute of Mechanical Technology Poznan University of Technology Poznan Poland
| | - Miroslawa El Fray
- Faculty of Chemical Technology and Engineering, Department of Polymer and Biomaterials Science West Pomeranian University of Technology Szczecin Poland
| |
Collapse
|
40
|
Maniar D, Silvianti F, Ospina VM, Woortman AJ, van Dijken J, Loos K. On the way to greener furanic-aliphatic poly(ester amide)s: Enzymatic polymerization in ionic liquid. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Enzymatic Polycondensation of 1,6-Hexanediol and Diethyl Adipate: A Statistical Approach Predicting the Key-Parameters in Solution and in Bulk. Polymers (Basel) 2020; 12:polym12091907. [PMID: 32847050 PMCID: PMC7565462 DOI: 10.3390/polym12091907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022] Open
Abstract
Among the various catalysts that can be used for polycondensation reactions, enzymes have been gaining interest for three decades, offering a green and eco-friendly platform towards the sustainable design of renewable polyesters. However, limitations imposed by their delicate nature, render them less addressed. As a case study, we compare herein bulk and solution polycondensation of 1,6-hexanediol and diethyl adipate catalyzed by an immobilized lipase from Candida antarctica. The influence of various parameters including time, temperature, enzyme loading, and vacuum was assessed in the frame of a two-step polymerization with the help of response surface methodology, a statistical technique that investigates relations between input and output variables. Results in solution (diphenyl ether) and bulk conditions showed that a two-hour reaction time was enough to allow adequate oligomer growth for the first step conducted under atmospheric pressure at 100 °C. The number-average molecular weight (Mn) achieved varied between 5000 and 12,000 g·mol-1 after a 24 h reaction and up to 18,500 g∙mol-1 after 48 h. The statistical analysis showed that vacuum was the most influential factor affecting the Mn in diphenyl ether. In sharp contrast, enzyme loading was found to be the most influential parameter in bulk conditions. Recyclability in bulk conditions showed a constant Mn of the polyester over three cycles, while a 17% decrease was noticed in solution. The following work finally introduced a statistical approach that can adequately predict the Mn of poly(hexylene adipate) based on the choice of parameter levels, providing a handy tool in the synthesis of polyesters where the control of molecular weight is of importance.
Collapse
|
42
|
Loos K, Zhang R, Pereira I, Agostinho B, Hu H, Maniar D, Sbirrazzuoli N, Silvestre AJD, Guigo N, Sousa AF. A Perspective on PEF Synthesis, Properties, and End-Life. Front Chem 2020; 8:585. [PMID: 32850625 PMCID: PMC7413100 DOI: 10.3389/fchem.2020.00585] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/05/2020] [Indexed: 11/30/2022] Open
Abstract
This critical review considers the extensive research and development dedicated, in the last years, to a single polymer, the poly(ethylene 2,5-furandicarboxylate), usually simply referred to as PEF. PEF importance stems from the fact that it is based on renewable resources, typically prepared from C6 sugars present in biomass feedstocks, for its resemblance to the high-performance poly(ethylene terephthalate) (PET) and in terms of barrier properties even outperforming PET. For the first time synthesis, properties, and end-life targeting—a more sustainable PEF—are critically reviewed. The emphasis is placed on how synthetic roots to PEF evolved toward the development of greener processes based on ring open polymerization, enzymatic synthesis, or the use of ionic liquids; together with a broader perspective on PEF end-life, highlighting recycling and (bio)degradation solutions.
Collapse
Affiliation(s)
- Katja Loos
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Ruoyu Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Inês Pereira
- Departamento de Química, CICECO - Aveiro Institute of Materials, Universidade de Aveiro, Aveiro, Portugal
| | - Beatriz Agostinho
- Departamento de Química, CICECO - Aveiro Institute of Materials, Universidade de Aveiro, Aveiro, Portugal
| | - Han Hu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Dina Maniar
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | | | - Armando J D Silvestre
- Departamento de Química, CICECO - Aveiro Institute of Materials, Universidade de Aveiro, Aveiro, Portugal
| | - Nathanael Guigo
- Institute of Chemistry UMR 7272, Université Côte d'Azur, Nice, France
| | - Andreia F Sousa
- Departamento de Química, CICECO - Aveiro Institute of Materials, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
43
|
Deshan ADK, Atanda L, Moghaddam L, Rackemann DW, Beltramini J, Doherty WOS. Heterogeneous Catalytic Conversion of Sugars Into 2,5-Furandicarboxylic Acid. Front Chem 2020; 8:659. [PMID: 32850671 PMCID: PMC7413130 DOI: 10.3389/fchem.2020.00659] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Achieving the goal of living in a sustainable and greener society, will need the chemical industry to move away from petroleum-based refineries to bio-refineries. This aim can be achieved by using biomass as the feedstock to produce platform chemicals. A platform chemical, 2,5-furandicarboxylic acid (FDCA) has gained much attention in recent years because of its chemical attributes as it can be used to produce green polymers such polyethylene 2,5-furandicarboxylate (PEF) that is an alternative to polyethylene terephthalate (PET) produced from fossil fuel. Typically, 5-(hydroxymethyl)furfural (HMF), an intermediate product of the acid dehydration of sugars, can be used as a precursor for the production of FDCA, and this transformation reaction has been extensively studied using both homogeneous and heterogeneous catalysts in different reaction media such as basic, neutral, and acidic media. In addition to the use of catalysts, conversion of HMF to FDCA occurs in the presence of oxidants such as air, O2, H2O2, and t-BuOOH. Among them, O2 has been the preferred oxidant due to its low cost and availability. However, due to the low stability of HMF and high processing cost to convert HMF to FDCA, researchers are studying the direct conversion of carbohydrates and biomass using both a single- and multi-phase approach for FDCA production. As there are issues arising from FDCA purification, much attention is now being paid to produce FDCA derivatives such as 2, 5-furandicarboxylic acid dimethyl ester (FDCDM) to circumvent these problems. Despite these technical barriers, what is pivotal to achieve in a cost-effective manner high yields of FDCA and derivatives, is the design of highly efficient, stable, and selective multi-functional catalysts. In this review, we summarize in detail the advances in the reaction chemistry, catalysts, and operating conditions for FDCA production from sugars and carbohydrates.
Collapse
Affiliation(s)
| | - Luqman Atanda
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lalehvash Moghaddam
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Darryn W. Rackemann
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jorge Beltramini
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- IROAST, Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - William O. S. Doherty
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
44
|
Guidotti G, Soccio M, García-Gutiérrez MC, Ezquerra T, Siracusa V, Gutiérrez-Fernández E, Munari A, Lotti N. Fully Biobased Superpolymers of 2,5-Furandicarboxylic Acid with Different Functional Properties: From Rigid to Flexible, High Performant Packaging Materials. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:9558-9568. [PMID: 33796416 PMCID: PMC8007128 DOI: 10.1021/acssuschemeng.0c02840] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/19/2020] [Indexed: 05/10/2023]
Abstract
In the present paper, four fully biobased homopolyesters of 2,5-furandicarboxylic acid (2,5-FDCA) with a high molecular weight have been successfully synthesized by two-stage melt polycondensation, starting from the dimethyl ester of 2,5-FDCA and glycols of different lengths (the number of methylene groups ranged from 3 to 6). The synthesized polyesters have been first subjected to an accurate molecular characterization by NMR and gel-permeation chromatography. Afterward, the samples have been successfully processed into free-standing thin films (thickness comprised between 150 to 180 μm) by compression molding. Such films have been characterized from the structural (by wide-angle X-ray scattering and small-angle X-ray scattering), thermal (by differential scanning calorimetry and thermogravimetric analysis), mechanical (by tensile test), and gas barrier (by permeability measurements) point of view. The glycol subunit length was revealed to be the key parameter in determining the kind and fraction of ordered phases developed by the sample during compression molding and subsequent cooling. After storage at room temperature for one month, only the homopolymers containing the glycol subunit with an even number of -CH2- groups (poly(butylene 2,5-furanoate) (PBF) and poly(hexamethylene 2,5-furanoate) (PHF)) were able to develop a three-dimensional ordered crystalline phase in addition to the amorphous one, the other two appearing completely amorphous (poly(propylene 2,5-furanoate (PPF) and poly(pentamethylene 2,5-furanoate) (PPeF)). From X-ray scattering experiments using synchrotron radiation, it was possible to evidence a third phase characterized by a lower degree of order (one- or two-dimensional), called a mesophase, in all the samples under study, its fraction being strictly related to the glycol subunit length: PPeF was found to be the sample with the highest fraction of mesophase followed by PHF. Such a mesophase, together with the amorphous and the eventually present crystalline phase, significantly impacted the mechanical and barrier properties, these last being particularly outstanding for PPeF, the polyester with the highest fraction of mesophase among those synthesized in the present work.
Collapse
Affiliation(s)
- Giulia Guidotti
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Michelina Soccio
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Mari Cruz García-Gutiérrez
- Instituto
de Estructura de la Materia IEM-CSIC, Consejo Superior de Investigaciones
Científicas, Calle Serrano 121, 28006 Madrid, Spain
| | - Tiberio Ezquerra
- Instituto
de Estructura de la Materia IEM-CSIC, Consejo Superior de Investigaciones
Científicas, Calle Serrano 121, 28006 Madrid, Spain
| | - Valentina Siracusa
- Dipartimento
di Scienze Chimiche, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Edgar Gutiérrez-Fernández
- Instituto
de Estructura de la Materia IEM-CSIC, Consejo Superior de Investigaciones
Científicas, Calle Serrano 121, 28006 Madrid, Spain
| | - Andrea Munari
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Nadia Lotti
- Civil,
Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| |
Collapse
|
45
|
Soccio M, Martínez-Tong DE, Guidotti G, Robles-Hernández B, Munari A, Lotti N, Alegria A. Broadband Dielectric Spectroscopy Study of Biobased Poly(alkylene 2,5-furanoate)s' Molecular Dynamics. Polymers (Basel) 2020; 12:E1355. [PMID: 32560215 PMCID: PMC7361705 DOI: 10.3390/polym12061355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Poly(2,5-alkylene furanoate)s are bio-based, smart, and innovative polymers that are considered the most promising materials to replace oil-based plastics. These polymers can be synthesized using ecofriendly approaches, starting from renewable sources, and result into final products with properties comparable and even better than those presented by their terephthalic counterparts. In this work, we present the molecular dynamics of four 100% bio-based poly(alkylene 2,5-furanoate)s, using broadband dielectric spectroscopy measurements that covered a wide temperature and frequency range. We unveiled complex local relaxations, characterized by the simultaneous presence of two components, which were dependent on thermal treatment. The segmental relaxation showed relaxation times and strengths depending on the glycolic subunit length, which were furthermore confirmed by high-frequency experiments in the molten region of the polymers. Our results allowed determining structure-property relations that are able to provide further understanding about the excellent barrier properties of poly(alkylene 2,5-furanoate)s. In addition, we provide results of high industrial interest during polymer processing for possible industrial applications of poly(alkylene furanoate)s.
Collapse
Affiliation(s)
- Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.M.); (N.L.)
| | - Daniel E. Martínez-Tong
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), P. Manuel Lardizábal 3, E-20018 San Sebastián, Spain; (B.R.-H.); (A.A.)
- Centro de Física de Materiales (CSIC–UPV/EHU), P. Manuel Lardizábal 5, E-20018 San Sebastián, Spain
| | - Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.M.); (N.L.)
| | - Beatriz Robles-Hernández
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), P. Manuel Lardizábal 3, E-20018 San Sebastián, Spain; (B.R.-H.); (A.A.)
- Centro de Física de Materiales (CSIC–UPV/EHU), P. Manuel Lardizábal 5, E-20018 San Sebastián, Spain
| | - Andrea Munari
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.M.); (N.L.)
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.M.); (N.L.)
| | - Angel Alegria
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), P. Manuel Lardizábal 3, E-20018 San Sebastián, Spain; (B.R.-H.); (A.A.)
- Centro de Física de Materiales (CSIC–UPV/EHU), P. Manuel Lardizábal 5, E-20018 San Sebastián, Spain
| |
Collapse
|
46
|
Paszkiewicz S, Irska I, Piesowicz E. Environmentally Friendly Polymer Blends Based on Post-Consumer Glycol-Modified Poly(Ethylene Terephthalate) (PET-G) Foils and Poly(Ethylene 2,5-Furanoate) (PEF): Preparation and Characterization. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2673. [PMID: 32545434 PMCID: PMC7345711 DOI: 10.3390/ma13122673] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 11/21/2022]
Abstract
Environmentally friendly polymer blends between post-consumer PET-G and bio-based poly(ethylene 2,5 furanoate) (PEF) have been prepared. The PET-G granules were obtained from the post-consumer glycol-modified poly(ethylene terephthalate) PET-G foils from Nicrometal S.A. as a result of materials recycling. PEF was synthesized from dimethyl furan-2,5-dicarboxylate and 1,2-ethylene glycol (BioUltra) by a two-stage melt polycondensation process. According to the calculations followed by Hoy's method, one has studied the miscibility of the components in the blend. The molecular structure of PET-G/PEF blends was analyzed by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy, while the morphology of the blends was determined by Scanning Electron Microscopy (SEM). To evaluate phase transition temperatures, as well as the thermal effects in PET-G/PEF blends, Differential Scanning Calorimetry (DSC), Dynamic Mechanical Thermal Analysis (DMTA), and Thermogravimetric Analysis (TGA), were performed. Tensile tests revealed that along with an increase in the amount of PEF, an increase in Young's modulus was observed. Besides, the existence of interfacial interactions between polymers, especially in the case of PET-G/PEF 80/20, enabling the PET-G chains to form a network structure with the PEF by reacting with their functional groups, allows observation of a synergistic effect in the improvement of thermal stability and water absorption.
Collapse
Affiliation(s)
- Sandra Paszkiewicz
- Department of Materials Technologies, West Pomeranian University of Technology in Szczecin, Piastow 19 Av., PL-70310 Szczecin, Poland; (I.I.); (E.P.)
| | | | | |
Collapse
|
47
|
Pellis A, Weinberger S, Gigli M, Guebitz GM, Farmer TJ. Enzymatic synthesis of biobased polyesters utilizing aromatic diols as the rigid component. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Skoczinski P, Espinoza Cangahuala MK, Maniar D, Loos K. Lipase-Catalyzed Transamidation of Urethane-Bond-Containing Ester. ACS OMEGA 2020; 5:1488-1495. [PMID: 32010822 PMCID: PMC6990427 DOI: 10.1021/acsomega.9b03203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Significant improvement in mechanical properties and shape recovery in polyurethanes can be obtained by cross-linking, usually performed in a traditional chemical fashion. Here, we report model studies of enzymatic transamidations of urethane-bond-containing esters to study the principles of an enzymatic build-up of covalent cross-linked polyurethane networks via amide bond formation. The Lipase-catalyzed transamidation reaction of a urethane-bond-containing model ester ethyl 2-(hexylcarbamoyloxy)propanoate with various amines is discussed. A side product was formed, that could be successfully identified, and its synthesis reduced to a minimum (<1%). Furthermore, a noncatalyzed transamidation that is performed without CalB as the catalyst could be observed. Both observations are due to the known high reactivity of amines with urethane bonds.
Collapse
|
49
|
Flores I, Martínez de Ilarduya A, Sardon H, Müller AJ, Muñoz-Guerra S. ROP and crystallization behaviour of partially renewable triblock aromatic-aliphatic copolymers derived from L-lactide. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Qu XL, Jiang M, Wang B, Deng J, Wang R, Zhang Q, Zhou GY, Tang J. A Brønsted Acidic Ionic Liquid as an Efficient and Selective Catalyst System for Bioderived High Molecular Weight Poly(ethylene 2,5-furandicarboxylate). CHEMSUSCHEM 2019; 12:4927-4935. [PMID: 31482679 DOI: 10.1002/cssc.201902020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Green synthesis of bioderived high-molecular-weight poly(ethylene 2,5-furandicarboxylate) (PEF) over metal-free catalysts is a significant challenge. This study focuses on PEF prepared from ethylene glycol and 2,5-furandicarboxylic acid (FDCA) through a direct esterification method with ecofriendly metal-free ionic liquids (ILs) as catalysts. The catalytic activities of a series of imidazolium cations in the presence of various anions are systematically investigated and found to be mainly governed by the anions. Among the ILs studied, 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2 MIM]BF4 ) is identified as the best catalyst, showing excellent catalytic activity, selectivity, and stability, even at low catalyst loadings (0.1 mol % w.r.t. FDCA). Optimization of the polymerization parameters enables [C2 MIM]BF4 -catalyzed production of PEF with a high number-average molecular weight (Mn =5.25×104 g mol-1 ). The relationship between Brønsted acidity and catalytic activity is also investigated and the results show that the trend in catalytic activity is in good agreement with that in Brønsted acidity, as determined by the Hammett method. Additionally, on the basis of experimental results and density functional theory calculations, an electrophilic activation mechanism induced by hydrogen bonds is proposed. This strategy of adjustable acidity and anion structure in ILs provides an opportunity to develop other ILs for bio-based polyesters through green synthesis pathways.
Collapse
Affiliation(s)
- Xiao-Ling Qu
- Jilin University, JieFang Street 2519, Changchun, 130012, Jilin, China
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, Jilin, China
| | - Min Jiang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, Jilin, China
| | - Bing Wang
- Anhui Province Key Laboratory of Biomass Clean Energy and Department of Chemistry, University of Science and Technology of China, Jinzhai Street 96, Hefei, 230026, Anhui, China
| | - Jin Deng
- Anhui Province Key Laboratory of Biomass Clean Energy and Department of Chemistry, University of Science and Technology of China, Jinzhai Street 96, Hefei, 230026, Anhui, China
| | - Rui Wang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, Jilin, China
| | - Qiang Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, Jilin, China
| | - Guang-Yuan Zhou
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, Jilin, China
| | - Jun Tang
- Jilin University, JieFang Street 2519, Changchun, 130012, Jilin, China
| |
Collapse
|