1
|
Ulker D, Neal TJ, Crawford A, Armes SP. Thermoresponsive Poly( N, N'-dimethylacrylamide)-Based Diblock Copolymer Worm Gels via RAFT Solution Polymerization: Synthesis, Characterization, and Cell Biology Applications. Biomacromolecules 2023; 24:4285-4302. [PMID: 37616242 PMCID: PMC10498450 DOI: 10.1021/acs.biomac.3c00635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/09/2023] [Indexed: 08/26/2023]
Abstract
RAFT solution polymerization is used to polymerize 2-hydroxypropyl methacrylate (HPMA). The resulting PHPMA precursor is then chain-extended using N,N'-dimethylacrylamide (DMAC) to produce a series of thermoresponsive PHPMA-PDMAC diblock copolymers. Such amphiphilic copolymers can be directly dispersed in ice-cold water and self-assembled at 20 °C to form spheres, worms, or vesicles depending on their copolymer composition. Construction of a pseudo-phase diagram is required to identify the pure worm phase, which corresponds to a rather narrow range of PDMAC DPs. Such worms form soft, free-standing gels in aqueous solution at around ambient temperature. Rheology studies confirm the thermoresponsive nature of such worms, which undergo a reversible worm-to-sphere on cooling below ambient temperature. This morphological transition leads to in situ degelation, and variable temperature 1H NMR studies indicate a higher degree of (partial) hydration for the weakly hydrophobic PHPMA chains at lower temperatures. The trithiocarbonate end-group located at the end of each PDMAC chain can be removed by treatment with excess hydrazine. The resulting terminal secondary thiol group can form disulfide bonds via coupling, which produces PHPMA-PDMAC-PHPMA triblock copolymer chains. Alternatively, this reactive thiol group can be used for conjugation reactions. A PHPMA141-PDMAC36 worm gel was used to store human mesenchymal stem cells (MSCs) for up to three weeks at 37 °C. MSCs retrieved from this gel subsequently underwent proliferation and maintained their ability to differentiate into osteoblastic cells.
Collapse
Affiliation(s)
- Damla Ulker
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, UK
- Faculty
of Pharmacy, Department of Pharmaceutical Basic Sciences, Near East University, Nicosia, Northern Cyprus TR-99138, Turkey
| | - Thomas J. Neal
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, UK
| | - Aileen Crawford
- School
of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield, South Yorkshire S10 2TA, UK
| | - Steven P. Armes
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, UK
| |
Collapse
|
2
|
Ikkene D, Six JL, Ferji K. Progress in Aqueous Dispersion RAFT PISA. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
McBride RJ, Miller JF, Blanazs A, Hähnle HJ, Armes SP. Synthesis of High Molecular Weight Water-Soluble Polymers as Low-Viscosity Latex Particles by RAFT Aqueous Dispersion Polymerization in Highly Salty Media. Macromolecules 2022; 55:7380-7391. [PMID: 36118598 PMCID: PMC9476848 DOI: 10.1021/acs.macromol.2c01071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/30/2022] [Indexed: 11/29/2022]
Abstract
![]()
We report the synthesis of sterically-stabilized diblock
copolymer
particles at 20% w/w solids via reversible addition–fragmentation
chain transfer (RAFT) aqueous dispersion polymerization of N,N′-dimethylacrylamide (DMAC) in
highly salty media (2.0 M (NH4)2SO4). This is achieved by selecting a well-known zwitterionic water-soluble
polymer, poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC),
to act as the salt-tolerant soluble precursor block. A relatively
high degree of polymerization (DP) can be targeted for the salt-insoluble
PDMAC block, which leads to the formation of a turbid free-flowing
dispersion of PDMAC-core particles by a steric stabilization mechanism. 1H NMR spectroscopy studies indicate that relatively high DMAC
conversions (>99%) can be achieved within a few hours at 30 °C.
Aqueous GPC analysis indicates high blocking efficiencies and unimodal
molecular weight distributions, although dispersities increase monotonically
as higher degrees of polymerization (DPs) are targeted for the PDMAC
block. Particle characterization techniques include dynamic light
scattering (DLS) and electrophoretic light scattering (ELS) using
a state-of-the-art instrument that enables accurate ζ potential
measurements in a concentrated salt solution. 1H NMR spectroscopy
studies confirm that dilution of the as-synthesized dispersions using
deionized water lowers the background salt concentration and hence
causes in situ molecular dissolution of the salt-intolerant PDMAC
chains, which leads to a substantial thickening effect and the formation
of transparent gels. Thus, this new polymerization-induced self-assembly
(PISA) formulation enables high molecular weight water-soluble polymers
to be prepared in a highly convenient, low-viscosity form. In principle,
such aqueous PISA formulations are highly attractive: there are various
commercial applications for high molecular weight water-soluble polymers,
while the well-known negative aspects of using a RAFT agent (i.e.,
its cost, color, and malodor) are minimized when targeting such high
DPs.
Collapse
Affiliation(s)
- Rory J. McBride
- Chemistry Department, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - John F. Miller
- Enlighten Scientific LLC, Hillsborough, North Carolina 27278, United States
| | - Adam Blanazs
- BASF SE, RAM/OB - B001, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Hans-Joachim Hähnle
- BASF SE, RAM/OB - B001, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Steven P. Armes
- Chemistry Department, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
4
|
Beattie DL, Deane OJ, Mykhaylyk OO, Armes SP. RAFT aqueous dispersion polymerization of 4-hydroxybutyl acrylate: effect of end-group ionization on the formation and colloidal stability of sterically-stabilized diblock copolymer nanoparticles. Polym Chem 2022. [DOI: 10.1039/d1py01562a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(2-hydroxyethyl acrylate)-poly(4-hydroxybutyl acrylate) nano-objects are prepared by aqueous polymerization-induced self-assembly (PISA) using an ionic RAFT agent.
Collapse
Affiliation(s)
- Deborah L. Beattie
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Oliver J. Deane
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Oleksandr O. Mykhaylyk
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Steven P. Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| |
Collapse
|
5
|
Tenhu H, Baddam V, Välinen L, Kuckling L. Morphological transitions of cationic PISA particles by salt, triflate ions and temperature; comparison of three polycations. Polym Chem 2022. [DOI: 10.1039/d2py00301e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three strong polycation stabilizers, poly((vinylbenzyl) trimethylammonium chloride), PVBTMAC, poly((2-(methacryloyloxy)ethyl)trimethylammonium chloride), PMOTAC, and poly((3-acrylamidopropyl) trimethylammonium chloride), PAMPTMAC have been synthesized with reversible addition-fragmentation chain transfer, RAFT, reactions. Solubilities of the polycations...
Collapse
|
6
|
Zhang T, Zhan C, Huang X, Huang Y, Zong L, Hong L, Ngai T. Adaptive Morphology of Surface‐Segregated Micelles Synthesized from Polymerization‐Induced Self‐Assembly Co‐Mediated by a Binary Mixture of Macro‐RAFT Agents. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tongtong Zhang
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Chengdong Zhan
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Xiangyue Huang
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Yinghui Huang
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Lina Zong
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Liangzhi Hong
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - To Ngai
- Department of Chemistry The Chinese University of Hong Kong Shatin N.T. Hong Kong
| |
Collapse
|
7
|
Chan DH, Kynaston EL, Lindsay C, Taylor P, Armes SP. Block Copolymer Nanoparticles are Effective Dispersants for Micrometer-Sized Organic Crystalline Particles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30235-30243. [PMID: 34151553 PMCID: PMC8289232 DOI: 10.1021/acsami.1c08261] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/09/2021] [Indexed: 05/08/2023]
Abstract
Well-defined sterically stabilized diblock copolymer nanoparticles of 29 nm diameter are prepared by RAFT aqueous emulsion polymerization of methyl methacrylate using a dithiobenzoate-capped poly(glycerol monomethacrylate) precursor. These nanoparticles are evaluated as a dispersant for the preparation of organic crystalline microparticles via ball milling. This is exemplified for azoxystrobin, which is a broad-spectrum fungicide that is widely used to protect various food crops. Laser diffraction and optical microscopy studies indicate the formation of azoxystrobin microparticles of approximately 2 μm diameter after ball milling for 10 min at 400 rpm. Nanoparticle adsorption at the surface of these azoxystrobin microparticles is confirmed by electron microscopy studies. The extent of nanoparticle adsorption on the azoxystrobin microparticles can be quantified using a supernatant assay based on solution densitometry. This technique indicates an adsorbed amount of approximately 5.5 mg m-2, which is sufficient to significantly reduce the negative zeta potential exhibited by azoxystrobin. Moreover, this adsorbed amount appears to be essentially independent of the nature of the core-forming block, with similar data being obtained for both poly(methyl methacrylate)- and poly(2,2,2-trifluoroethyl methacrylate)-based nanoparticles. Finally, X-ray photoelectron spectroscopy studies confirm attenuation of the underlying N1s signal arising from the azoxystrobin microparticles by the former adsorbed nanoparticles, suggesting a fractional surface coverage of approximately 0.24. This value is consistent with a theoretical surface coverage of 0.25 calculated from the adsorption isotherm data. Overall, this study suggests that sterically stabilized diblock copolymer nanoparticles may offer a useful alternative approach to traditional soluble copolymer dispersants for the preparation of suspension concentrates affecting the context of agrochemical applications.
Collapse
Affiliation(s)
- Derek
H. H. Chan
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Emily L. Kynaston
- Syngenta,
Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K.
| | - Christopher Lindsay
- Syngenta,
Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K.
| | - Philip Taylor
- Syngenta,
Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K.
| | - Steven P. Armes
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| |
Collapse
|
8
|
Baddam V, Välinen L, Tenhu H. Thermoresponsive Polycation-Stabilized Nanoparticles through PISA. Control of Particle Morphology with a Salt. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vikram Baddam
- Department of Chemistry, University of Helsinki, PB 55, Helsinki 00014, Finland
| | - Lauri Välinen
- Department of Chemistry, University of Helsinki, PB 55, Helsinki 00014, Finland
| | - Heikki Tenhu
- Department of Chemistry, University of Helsinki, PB 55, Helsinki 00014, Finland
| |
Collapse
|
9
|
Shevchenko NN, Pankova GA, Shabsel’s BM, Laishevkina SG, Baigil’din VA. Emulsifier-Free Emulsion Copolymerization of Methyl Methacrylate As a Method of Obtaining Cationic Particles for Diagnostics of Tick-Borne Encephalitis Virus. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x20020118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Wang H, Vendrame L, Fliedel C, Chen S, Gayet F, Manoury E, Zhang X, D’Agosto F, Lansalot M, Poli R. Core-Cross-Linked Micelles Made by RAFT Polymerization with a Polycationic Outer Shell Based on Poly(1-methyl-4-vinylpyridinium). Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hui Wang
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
| | - Lorenzo Vendrame
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
| | - Christophe Fliedel
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
| | - Si Chen
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
| | - Florence Gayet
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
| | - Eric Manoury
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
| | - Xuewei Zhang
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Franck D’Agosto
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Muriel Lansalot
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Rinaldo Poli
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Institut Universitaire de France, 1, rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|
11
|
Li D, Chen X, Zeng M, Ji J, Wang Y, Yang Z, Yuan J. Synthesis of AB n -type colloidal molecules by polymerization-induced particle-assembly (PIPA). Chem Sci 2020; 11:2855-2860. [PMID: 34084344 PMCID: PMC8157509 DOI: 10.1039/d0sc00219d] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 12/31/2022] Open
Abstract
Conventional synthesis of colloidal molecules (CMs) mainly depends on particle-based self-assembly of patchy building blocks. However, direct access to CMs by the self-assembly of isotropic colloidal subunits remains challenging. Here, we report the mass production of AB n -type CMs by polymerization-induced particle-assembly (PIPA), using a linear ABC triblock terpolymer system. Starting from diblock copolymer spheres, the association of spheres takes place in situ during the polymerization of the third block. The third blocks aggregate into attractive domains, which connect spheres into CMs. The stability of CMs is ensured, as long as the conversions are limited to ca. 50%, and the pH is low. The valence of AB n -type CMs (n = 2-6) is determined by the volume ratio of the polymer blocks. By tuning the volume ratio, 78.5% linear AB2-type CMs are yielded. We demonstrate that polymerization-induced particle-assembly is successful for the scalable fabrication of AB n -type CMs (50 g L-1), and can be easily extended to vastly different triblock terpolymers, for a wide range of applications.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Xi Chen
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Min Zeng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Jinzhao Ji
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yun Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Zhenzhong Yang
- Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Jinying Yuan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
12
|
Romero-Azogil L, Penfold NJW, Armes SP. Tuning the hydroxyl functionality of block copolymer worm gels modulates their thermoresponsive behavior. Polym Chem 2020. [DOI: 10.1039/d0py00834f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Partial replacement of a hydroxyl-functional steric stabilizer with a poly(ethylene glycol)-based stabilizer modulates the thermoresponsive behavior of block copolymer worm gels prepared via aqueous polymerization-induced self-assembly.
Collapse
Affiliation(s)
- Lucia Romero-Azogil
- Departamento de Química Orgánica y Farmacéutica
- Facultad de Farmacia
- Universidad de Sevilla
- 41012 Sevilla
- Spain
| | | | - Steven P. Armes
- Department of Chemistry
- Dainton Building
- University of Sheffield
- Brook Hill
- Sheffield
| |
Collapse
|
13
|
Rahman MA, Cha Y, Yuan L, Pageni P, Zhu T, Jui MS, Tang C. Polymerization-Induced Self-Assembly of Metallo-Polyelectrolyte Block Copolymers. JOURNAL OF POLYMER SCIENCE 2020; 58:77-83. [PMID: 34337427 PMCID: PMC8324045 DOI: 10.1002/pola.29439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/25/2019] [Indexed: 11/08/2022]
Abstract
Cobaltocenium-containing polyelectrolyte block copolymer nanoparticles were prepared via polymerization-induced self-assembly (PISA) using aqueous dispersion RAFT polymerization. The cationic steric stabilizer was a macromolecular chain-transfer agent (macro-CTA) based on poly (2-cobaltocenium amidoethyl methacrylate chloride) (PCoAEMACl), and the core-forming block was poly(2-hydroxypropyl methacrylate) (PHPMA). Stable cationic spherical nanoparticles were formed in aqueous solution with low dispersity without adding any salts. The chain extension of macro-CTA with HPMA was efficient and fast. The effects of block copolymer compositions, solid content, charge density, and addition of salts were studied. It was found that the degree of polymerization of both the stabilizer PCoAEMACl and the core-forming PHPMA had a strong influence on the size of nanoparticles.
Collapse
Affiliation(s)
- Md Anisur Rahman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Yujin Cha
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Liang Yuan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Parasmani Pageni
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Tianyu Zhu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Moumita Sharmin Jui
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| |
Collapse
|
14
|
Qu S, Liu R, Duan W, Zhang W. RAFT Dispersion Polymerization in the Presence of Block Copolymer Nanoparticles and Synthesis of Multicomponent Block Copolymer Nanoassemblies. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00879] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Wenfeng Duan
- State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co., Ltd., Beijing 100123, China
| | | |
Collapse
|
15
|
Penfold NJW, Whatley JR, Armes SP. Thermoreversible Block Copolymer Worm Gels Using Binary Mixtures of PEG Stabilizer Blocks. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02491] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nicholas J. W. Penfold
- Department of Chemistry, Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Jessica R. Whatley
- Department of Chemistry, Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Steven P. Armes
- Department of Chemistry, Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
16
|
Wright DB, Thompson MP, Touve MA, Carlini AS, Gianneschi NC. Enzyme-Responsive Polymer Nanoparticles via Ring-Opening Metathesis Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2018; 40:e1800467. [PMID: 30176076 DOI: 10.1002/marc.201800467] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/30/2018] [Indexed: 12/25/2022]
Abstract
Open-to-air aqueous-phase ring-opening metathesis polymerization-induced self-assembly (ROMPISA) is reported for forming well-defined peptide polymer nanoparticles at room temperature and with high solids concentrations (10 w/w%). For these materials, ROMPISA is shown to provide control over molecular weight with high conversion while open-to-air. Moreover, these peptide polymer nanoparticles can spontaneously rearrange into larger aggregate scaffolds in the presence of the proteolytic enzyme, thermolysin. This work demonstrates the robust nature of ROMPISA, highlighted here for the preparation of stimuli-responsive nanostructures in one pot, in air.
Collapse
Affiliation(s)
- Daniel B Wright
- Department of Chemistry, Department of Materials Science and Engineering, Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208-3113, USA
| | - Matthew P Thompson
- Department of Chemistry, Department of Materials Science and Engineering, Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208-3113, USA
| | - Mollie A Touve
- Department of Chemistry, Department of Materials Science and Engineering, Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208-3113, USA
| | - Andrea S Carlini
- Department of Chemistry, Department of Materials Science and Engineering, Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208-3113, USA.,Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Nathan C Gianneschi
- Department of Chemistry, Department of Materials Science and Engineering, Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208-3113, USA
| |
Collapse
|
17
|
Zhou D, Kuchel RP, Dong S, Lucien FP, Perrier S, Zetterlund PB. Polymerization-Induced Self-Assembly under Compressed CO2
: Control of Morphology Using a CO2
-Responsive MacroRAFT Agent. Macromol Rapid Commun 2018; 40:e1800335. [DOI: 10.1002/marc.201800335] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/12/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Dewen Zhou
- Centre for Advanced Macromolecular Design; School of Chemical Engineering; University of New South Wales; Sydney NSW 2052 Australia
| | - Rhiannon P. Kuchel
- Mark Wainwright Analytical Centre; University of New South Wales; Sydney NSW 2052 Australia
| | - Siming Dong
- Centre for Advanced Macromolecular Design; School of Chemical Engineering; University of New South Wales; Sydney NSW 2052 Australia
| | - Frank P. Lucien
- Centre for Advanced Macromolecular Design; School of Chemical Engineering; University of New South Wales; Sydney NSW 2052 Australia
| | - Sébastien Perrier
- Department of Chemistry; University of Warwick; Gibbet Hill; Coventry CV4 7AL UK
- Faculty of Pharmacy and Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville VIC 3052 Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design; School of Chemical Engineering; University of New South Wales; Sydney NSW 2052 Australia
| |
Collapse
|
18
|
Wang X, Shen L, An Z. Dispersion polymerization in environmentally benign solvents via reversible deactivation radical polymerization. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.05.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Ekkelenkamp AE, Elzes MR, Engbersen JFJ, Paulusse JMJ. Responsive crosslinked polymer nanogels for imaging and therapeutics delivery. J Mater Chem B 2018; 6:210-235. [PMID: 32254164 DOI: 10.1039/c7tb02239e] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Water-soluble, nano-sized crosslinked polymer networks, or nanogels, are delivery vehicles, which have highly interesting properties for therapeutic delivery and imaging. Nanogels may also possess responsive properties, depending on the employed polymers, allowing controlled release of therapeutics or image contrast generation upon exposure to physical or (bio)chemical cues. In this review, polymer nanogels are explored for application in imaging as well as for controlled drug and gene delivery. Moreover, nanogels are explored as responsive biomaterials and future applications are highlighted.
Collapse
Affiliation(s)
- Antonie E Ekkelenkamp
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P. O. Box 217, 7500 AE, Enschede, The Netherlands.
| | | | | | | |
Collapse
|
20
|
Penfold NJW, Parnell AJ, Molina M, Verstraete P, Smets J, Armes SP. Layer-By-Layer Self-Assembly of Polyelectrolytic Block Copolymer Worms on a Planar Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14425-14436. [PMID: 29148796 PMCID: PMC5789390 DOI: 10.1021/acs.langmuir.7b03571] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/16/2017] [Indexed: 05/30/2023]
Abstract
Cationic and anionic block copolymer worms are prepared by polymerization-induced self-assembly via reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion copolymerization of 2-hydroxypropyl methacrylate and glycidyl methacrylate (GlyMA), using a binary mixture of a nonionic poly(ethylene oxide) macromolecular RAFT agent and either a cationic poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride) or an anionic poly(potassium 3-sulfopropyl methacrylate) macromolecular RAFT agent. In each case, covalent stabilization of the worm cores was achieved via reaction of the epoxide groups on the GlyMA repeat units with 3-mercaptopropyltriethoxysilane. Aqueous electrophoresis studies indicated a pH-independent mean zeta potential of +40 mV and -39 mV for the cationic and anionic copolymer worms, respectively. These worms are expected to mimic the rigid rod behavior of water-soluble polyelectrolyte chains in the absence of added salt. The kinetics of adsorption of the cationic worms onto a planar anionic silicon wafer was examined at pH 5 and was found to be extremely fast at 1.0 w/w % copolymer concentration in the absence of added salt. Scanning electron microscopy (SEM) analysis indicated that a relatively constant worm surface coverage of 16% was achieved at 20 °C for adsorption times ranging from just 2 s up to 2 min. Furthermore, the successive layer-by-layer deposition of cationic and anionic copolymer worms onto planar surfaces was investigated using SEM, ellipsometry, and surface zeta potential measurements. These techniques confirmed that the deposition of oppositely charged worms resulted in a monotonic increase in the mean layer thickness, with a concomitant surface charge reversal occurring on addition of each new worm layer. Unexpectedly, two distinct linear regimes were observed when plotting the mean layer thickness against the total number of adsorbed worm layers, with a steeper gradient (corresponding to thicker layers) being observed after the deposition of six worm layers.
Collapse
Affiliation(s)
- Nicholas J. W. Penfold
- Department
of Chemistry, The University of Sheffield,
Dainton Building, Brook
Hill, Sheffield S3 7HF, U.K.
| | - Andrew J. Parnell
- Department
of Physics & Astronomy, The University
of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Marta Molina
- Department
of Chemistry, The University of Sheffield,
Dainton Building, Brook
Hill, Sheffield S3 7HF, U.K.
| | | | - Johan Smets
- Procter
& Gamble, Temselaan
100, 1853 Strombeek
Bever, Belgium
| | - Steven P. Armes
- Department
of Chemistry, The University of Sheffield,
Dainton Building, Brook
Hill, Sheffield S3 7HF, U.K.
| |
Collapse
|
21
|
Wright DB, Touve MA, Adamiak L, Gianneschi NC. ROMPISA: Ring-Opening Metathesis Polymerization-Induced Self-Assembly. ACS Macro Lett 2017; 6:925-929. [PMID: 35650892 DOI: 10.1021/acsmacrolett.7b00408] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Herein we report a polymerization-induced self-assembly (PISA) process with ring-opening metathesis polymerization (ROMP). We utilize a peptide-based norbornenyl monomer as a hydrophobic unit to provide a range of nanostructures at room temperature yet at high solids concentrations of 20 wt % in combination with an oligoethylene glycol based norbornenyl monomer. Evaluation of the polymerizations under mild conditions highlight that good control is maintained along with high monomer conversion of greater than 99%, indicating that the living polymerization is unaffected during the PISA process. The demonstration broadens the scope of the PISA process to a new living polymerization methodology toward the development of easily accessible and highly functionalized nanostructures in situ.
Collapse
Affiliation(s)
- Daniel B. Wright
- Department
of Chemistry, ‡Department of Materials Science
and Engineering, and §Department of Biomedical Engineering, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208-3113, United States of America
- Department of Chemistry and Biochemistry, ⊥Department of NanoEngineering, and #Materials Science and
Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States of America
| | - Mollie A. Touve
- Department
of Chemistry, ‡Department of Materials Science
and Engineering, and §Department of Biomedical Engineering, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208-3113, United States of America
- Department of Chemistry and Biochemistry, ⊥Department of NanoEngineering, and #Materials Science and
Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States of America
| | - Lisa Adamiak
- Department
of Chemistry, ‡Department of Materials Science
and Engineering, and §Department of Biomedical Engineering, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208-3113, United States of America
- Department of Chemistry and Biochemistry, ⊥Department of NanoEngineering, and #Materials Science and
Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States of America
| | - Nathan C. Gianneschi
- Department
of Chemistry, ‡Department of Materials Science
and Engineering, and §Department of Biomedical Engineering, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208-3113, United States of America
- Department of Chemistry and Biochemistry, ⊥Department of NanoEngineering, and #Materials Science and
Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States of America
| |
Collapse
|
22
|
Yuan B, He X, Qu Y, Gao C, Eiser E, Zhang W. In situ synthesis of a self-assembled AB/B blend of poly(ethylene glycol)-b-polystyrene/polystyrene by dispersion RAFT polymerization. Polym Chem 2017. [DOI: 10.1039/c7py00339k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A diblock-copolymer/homopolymer self-assembled blend was synthesized through dispersion RAFT polymerization, and its morphology changed with a decreasing ratio of diblock-copolymer/homopolymer.
Collapse
Affiliation(s)
- Bing Yuan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xin He
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yaqing Qu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Chengqiang Gao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Erika Eiser
- Cavendish Laboratory
- University of Cambridge
- Cambridge CB3 0HE
- UK
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
23
|
Penfold NJW, Lovett JR, Verstraete P, Smets J, Armes SP. Stimulus-responsive non-ionic diblock copolymers: protonation of a tertiary amine end-group induces vesicle-to-worm or vesicle-to-sphere transitions. Polym Chem 2017. [DOI: 10.1039/c6py01076h] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Morpholine-functionalised poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer vesicles are transformed into worms or spheres on lowering the solution pH.
Collapse
Affiliation(s)
| | | | | | - Johan Smets
- Procter & Gamble
- Eurocor NV/SA
- 1853 Strombeek-Bever
- Belgium
| | | |
Collapse
|
24
|
Abstract
Stimuli-responsive polymers respond to a variety of external stimuli, which include optical, electrical, thermal, mechanical, redox, pH, chemical, environmental and biological signals. This paper is concerned with the process of forming such polymers by RAFT polymerization.
Collapse
|
25
|
Ng G, Yeow J, Xu J, Boyer C. Application of oxygen tolerant PET-RAFT to polymerization-induced self-assembly. Polym Chem 2017. [DOI: 10.1039/c7py00442g] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The inhibitory effects of molecular oxygen in PET-RAFT polymerization can be overcome by the addition of singlet oxygen quenchers. This oxygen tolerant approach is compatible with a range of organic solvents and can be used to synthesize nanoparticles according to a PISA process.
Collapse
Affiliation(s)
- Gervase Ng
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
26
|
Zhou D, Dong S, Kuchel RP, Perrier S, Zetterlund PB. Polymerization induced self-assembly: tuning of morphology using ionic strength and pH. Polym Chem 2017. [DOI: 10.1039/c7py00552k] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is demonstrated how the morphology of polymeric nanoparticles produced via polymerization-induced self-assembly (PISA) in dispersion can be conveniently tuned via the pH and ionic strength.
Collapse
Affiliation(s)
- Dewen Zhou
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Siming Dong
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Rhiannon P. Kuchel
- Mark Wainwright Analytical Centre
- University of New South Wales
- Sydney
- Australia
| | - Sebastien Perrier
- Department of Chemistry
- The University of Warwick
- Coventry
- UK
- Faculty of Pharmacy and Pharmaceutical Sciences
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
27
|
Chen S, Chang X, Sun P, Zhang W. Versatile multicompartment nanoparticles constructed with two thermo-responsive, pH-responsive and hydrolytic diblock copolymers. Polym Chem 2017. [DOI: 10.1039/c7py01182b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Multicompartment block copolymer nanoparticles constructed with two smart diblock copolymers are prepared and their versatile morphology upon stimuli is demonstrated.
Collapse
Affiliation(s)
- Shengli Chen
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xueying Chang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Pingchuan Sun
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
28
|
Penfold NJW, Ning Y, Verstraete P, Smets J, Armes SP. Cross-linked cationic diblock copolymer worms are superflocculants for micrometer-sized silica particles. Chem Sci 2016; 7:6894-6904. [PMID: 28567260 PMCID: PMC5450592 DOI: 10.1039/c6sc03732a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023] Open
Abstract
A series of linear cationic diblock copolymer nanoparticles are prepared by polymerization-induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) using a binary mixture of non-ionic and cationic macromolecular RAFT agents, namely poly(ethylene oxide) (PEO113, Mn = 4400 g mol-1; Mw/Mn = 1.08) and poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride) (PQDMA125, Mn = 31 800 g mol-1, Mw/Mn = 1.19). A detailed phase diagram was constructed to determine the maximum amount of PQDMA125 stabilizer block that could be incorporated while still allowing access to a pure worm copolymer morphology. Aqueous electrophoresis studies indicated that zeta potentials of +35 mV could be achieved for such cationic worms over a wide pH range. Core cross-linked worms were prepared via statistical copolymerization of glycidyl methacrylate (GlyMA) with HPMA using a slightly modified PISA formulation, followed by reacting the epoxy groups of the GlyMA residues located within the worm cores with 3-aminopropyl triethoxysilane (APTES), and concomitant hydrolysis/condensation of the pendent silanol groups with the secondary alcohol on the HPMA residues. TEM and DLS studies confirmed that such core cross-linked cationic worms remained colloidally stable when challenged with either excess methanol or a cationic surfactant. These cross-linked cationic worms are shown to be much more effective bridging flocculants for 1.0 μm silica particles at pH 9 than the corresponding linear cationic worms (and also various commercial high molecular weight water-soluble polymers.). Laser diffraction studies indicated silica aggregates of around 25-28 μm diameter when using the former worms but only 3-5 μm diameter when employing the latter worms. Moreover, SEM studies confirmed that the cross-linked worms remained intact after their adsorption onto the silica particles, whereas the much more delicate linear worms underwent fragmentation under the same conditions. Similar results were obtained with 4 μm silica particles.
Collapse
Affiliation(s)
- Nicholas J W Penfold
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ;
| | - Yin Ning
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ;
| | - Pierre Verstraete
- Procter & Gamble, Eurocor NV/SA , Temselaan 100 , 1853 Strombeek-Bever , Belgium
| | - Johan Smets
- Procter & Gamble, Eurocor NV/SA , Temselaan 100 , 1853 Strombeek-Bever , Belgium
| | - Steven P Armes
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ;
| |
Collapse
|
29
|
Canning S, Smith GN, Armes SP. A Critical Appraisal of RAFT-Mediated Polymerization-Induced Self-Assembly. Macromolecules 2016; 49:1985-2001. [PMID: 27019522 PMCID: PMC4806311 DOI: 10.1021/acs.macromol.5b02602] [Citation(s) in RCA: 666] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/01/2016] [Indexed: 12/16/2022]
Abstract
Recently, polymerization-induced self-assembly (PISA) has become widely recognized as a robust and efficient route to produce block copolymer nanoparticles of controlled size, morphology, and surface chemistry. Several reviews of this field have been published since 2012, but a substantial number of new papers have been published in the last three years. In this Perspective, we provide a critical appraisal of the various advantages offered by this approach, while also pointing out some of its current drawbacks. Promising future research directions as well as remaining technical challenges and unresolved problems are briefly highlighted.
Collapse
Affiliation(s)
- Sarah
L. Canning
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Gregory N. Smith
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| |
Collapse
|
30
|
Shi P, Qu Y, Liu C, Khan H, Sun P, Zhang W. Redox-Responsive Multicompartment Vesicles of Ferrocene-Containing Triblock Terpolymer Exhibiting On-Off Switchable Pores. ACS Macro Lett 2016; 5:88-93. [PMID: 35668584 DOI: 10.1021/acsmacrolett.5b00928] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multicompartment vesicles of ferrocene-containing triblock terpolymer containing on-off switchable pores in the vesicular membrane are prepared by seeded RAFT polymerization. In these multicompartment vesicles, the incompatible solvophobic poly(4-vinylbenzyl ferrocenecarboxylate) (PVFC) and poly(benzyl methacrylate) (PBzMA) blocks form the porous phase-segregated membrane and the solvophilic poly[2-(dimethylamino) ethyl methacrylate] block locates at the inner and outer sides of the membrane. These porous multicompartment vesicles are redox-responsive and the membrane pores can be on-off switched through redox triggering. These porous multicompartment vesicles are deemed to be new nanoassembly of ABC triblock terpolymer and are anticipated to be a smart host to load and release guests.
Collapse
Affiliation(s)
- Pengfei Shi
- Key Laboratory of Functional
Polymer Materials of the Ministry of Education, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Institute of
Polymer Chemistry, Nankai University, Tianjin 300071, China
| | - Yaqing Qu
- Key Laboratory of Functional
Polymer Materials of the Ministry of Education, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Institute of
Polymer Chemistry, Nankai University, Tianjin 300071, China
| | - Chonggao Liu
- Key Laboratory of Functional
Polymer Materials of the Ministry of Education, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Institute of
Polymer Chemistry, Nankai University, Tianjin 300071, China
| | - Habib Khan
- Key Laboratory of Functional
Polymer Materials of the Ministry of Education, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Institute of
Polymer Chemistry, Nankai University, Tianjin 300071, China
| | - Pingchuang Sun
- Key Laboratory of Functional
Polymer Materials of the Ministry of Education, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Institute of
Polymer Chemistry, Nankai University, Tianjin 300071, China
| | - Wangqing Zhang
- Key Laboratory of Functional
Polymer Materials of the Ministry of Education, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Institute of
Polymer Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|