1
|
Abarca-Ortega A, González-Bermúdez B, Plaza GR. Enhancing micropipette aspiration with artificial-intelligence analysis. Biophys J 2024; 123:2860-2868. [PMID: 38600698 PMCID: PMC11393679 DOI: 10.1016/j.bpj.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/16/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
The micropipette-aspiration technique is commonly used in the field of mechanobiology, offering a variety of measurement types. To extract biophysical parameters from the experiments, numerical analysis is required. Although previous works have developed techniques for the partial automation of these analyses, these approaches are relatively time consuming for the researchers. In this article, we describe the development and application of an artificial-intelligence tool for the completely automatic analysis of micropipette-aspiration experiments. The use of this tool is compared with previous methods and the impressive reduction in the time required for these analyses is discussed. The new tool opens new possibilities for the micropipette-aspiration technique by enabling dealing with large numbers of experiments and real-time measurements.
Collapse
Affiliation(s)
- Aldo Abarca-Ortega
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile; Departamento de Ciencia de Materiales, ETSI de Caminos, Universidad Politécnica de Madrid, Madrid, Spain; Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alracón, Spain.
| | - Blanca González-Bermúdez
- Departamento de Ciencia de Materiales, ETSI de Caminos, Universidad Politécnica de Madrid, Madrid, Spain; Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alracón, Spain; Instituto de Investigación Sanitaria Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Gustavo R Plaza
- Departamento de Ciencia de Materiales, ETSI de Caminos, Universidad Politécnica de Madrid, Madrid, Spain; Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alracón, Spain; Instituto de Investigación Sanitaria Hospital Clínico San Carlos, IdISSC, Madrid, Spain.
| |
Collapse
|
2
|
Ghoytasi I, Bavi O, Kaazempur Mofrad MR, Naghdabadi R. An in-silico study on the mechanical behavior of colorectal cancer cell lines in the micropipette aspiration process. Comput Biol Med 2024; 178:108744. [PMID: 38889631 DOI: 10.1016/j.compbiomed.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/17/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Cancer alters the structural integrity and morphology of cells. Consequently, the cell function is overshadowed. In this study, the micropipette aspiration process is computationally modeled to predict the mechanical behavior of the colorectal cancer cells. The intended cancer cells are modeled as an incompressible Neo-Hookean visco-hyperelastic material. Also, the micropipette is assumed to be rigid with no deformation. The proposed model is validated with an in-vitro study. To capture the equilibrium and time-dependent behaviors of cells, ramp, and creep tests are respectively performed using the finite element method. Through the simulations, the effects of the micropipette geometry and the aspiration pressure on the colorectal cancer cell lines are investigated. Our findings indicate that, as the inner radius of the micropipette increases, despite the increase in deformation rate and aspirated length, the time to reach the equilibrium state increases. Nevertheless, it is obvious that increasing the tip curvature radius has a small effect on the change of the aspirated length. But, due to the decrease in the stress concentration, it drastically reduces the equilibrium time and increases the deformation rate significantly. Interestingly, our results demonstrate that increasing the aspiration pressure somehow causes the cell stiffening, thereby reducing the upward trend of deformation rate, equilibrium time, and aspirated length. Our findings provide valuable insights for researchers in cell therapy and cancer treatment and can aid in developing more precise microfluidic.
Collapse
Affiliation(s)
- Ibrahim Ghoytasi
- Department of Mechanical Engineering, Sharif University of Technology, 89694-14588, Tehran, Iran
| | - Omid Bavi
- Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran.
| | - Mohammad Reza Kaazempur Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Reza Naghdabadi
- Department of Mechanical Engineering, Sharif University of Technology, 89694-14588, Tehran, Iran; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 89694-14588, Tehran, Iran.
| |
Collapse
|
3
|
Ibrahim KA, Naidu AS, Miljkovic H, Radenovic A, Yang W. Label-Free Techniques for Probing Biomolecular Condensates. ACS NANO 2024; 18:10738-10757. [PMID: 38609349 DOI: 10.1021/acsnano.4c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Biomolecular condensates play important roles in a wide array of fundamental biological processes, such as cellular compartmentalization, cellular regulation, and other biochemical reactions. Since their discovery and first observations, an extensive and expansive library of tools has been developed to investigate various aspects and properties, encompassing structural and compositional information, material properties, and their evolution throughout the life cycle from formation to eventual dissolution. This Review presents an overview of the expanded set of tools and methods that researchers use to probe the properties of biomolecular condensates across diverse scales of length, concentration, stiffness, and time. In particular, we review recent years' exciting development of label-free techniques and methodologies. We broadly organize the set of tools into 3 categories: (1) imaging-based techniques, such as transmitted-light microscopy (TLM) and Brillouin microscopy (BM), (2) force spectroscopy techniques, such as atomic force microscopy (AFM) and the optical tweezer (OT), and (3) microfluidic platforms and emerging technologies. We point out the tools' key opportunities, challenges, and future perspectives and analyze their correlative potential as well as compatibility with other techniques. Additionally, we review emerging techniques, namely, differential dynamic microscopy (DDM) and interferometric scattering microscopy (iSCAT), that have huge potential for future applications in studying biomolecular condensates. Finally, we highlight how some of these techniques can be translated for diagnostics and therapy purposes. We hope this Review serves as a useful guide for new researchers in this field and aids in advancing the development of new biophysical tools to study biomolecular condensates.
Collapse
|
4
|
González-Bermúdez B, Kobayashi H, Abarca-Ortega A, Córcoles-Lucas M, González-Sánchez M, De la Fuente M, Guinea GV, Elices M, Plaza GR. Aging is accompanied by T-cell stiffening and reduced interstitial migration through dysfunctional nuclear organization. Immunology 2022; 167:622-639. [PMID: 36054660 DOI: 10.1111/imm.13559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023] Open
Abstract
Age-associated changes in T-cell function play a central role in immunosenescence. The role of aging in the decreased T-cell repertoire, primarily because of thymic involution, has been extensively studied. However, increasing evidence indicates that aging also modulates the mechanical properties of cells and the internal ordering of diverse cell components. Cellular functions are generally dictated by the biophysical phenotype of cells, which itself is also tightly regulated at the molecular level. Based on previous evidence suggesting that the relative nuclear size contributes to variations of T-cell stiffness, here we examined whether age-associated changes in T-cell migration are dictated by biophysical parameters, in part through nuclear cytoskeleton organization and cell deformability. In this study, we first performed longitudinal analyses of a repertoire of 111 functional, biophysical and biomolecular features of the nucleus and cytoskeleton of mice CD4+ and CD8+ T cells, in both naive and memory state. Focusing on the pairwise correlations, we found that age-related changes in nuclear architecture and internal ordering were correlated with T-cell stiffening and declined interstitial migration. A similarity analysis confirmed that cell-to-cell variation was a direct result of the aging process and we applied regression models to identify biomarkers that can accurately estimate individuals' age. Finally, we propose a biophysical model for a comprehensive understanding of the results: aging involves an evolution of the relative nuclear size, in part through DNA-hypomethylation and nuclear lamin B1, which implies an increased cell stiffness, thus inducing a decline in cell migration.
Collapse
Affiliation(s)
- Blanca González-Bermúdez
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Materials Science, E.T.S.I. de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
- IdISSC, Madrid, Spain
| | - Hikaru Kobayashi
- Department of Genetics, Physiology and Microbiology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Aldo Abarca-Ortega
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Materials Science, E.T.S.I. de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Miguel Córcoles-Lucas
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Materials Science, E.T.S.I. de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Mónica González-Sánchez
- Department of Genetics, Physiology and Microbiology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Gustavo V Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Materials Science, E.T.S.I. de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
- IdISSC, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Manuel Elices
- Department of Materials Science, E.T.S.I. de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Gustavo R Plaza
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Materials Science, E.T.S.I. de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
- IdISSC, Madrid, Spain
| |
Collapse
|
5
|
González-Bermúdez B, Abarca-Ortega A, González-Sánchez M, De la Fuente M, Plaza GR. Possibilities of using T-cell biophysical biomarkers of ageing. Expert Rev Mol Med 2022; 24:e35. [PMID: 36111609 PMCID: PMC9884748 DOI: 10.1017/erm.2022.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/02/2022] [Accepted: 09/10/2022] [Indexed: 11/07/2022]
Abstract
Ageing is interrelated with the development of immunosenescence. This article focuses on one of the cell sets of the adaptive immune system, T cells, and provides a review of the known changes in T cells associated with ageing. Such fundamental changes affect both cell molecular content and internal ordering. However, acquiring a complete description of the changes at these levels would require extensive measurements of parameters and, furthermore, important fine details of the internal ordering that may be difficult to detect. Therefore, an alternative approach for the characterisation of cells consists of the performance of physical measurements of the whole cell, such as deformability measurements or migration measurements: the physical parameters, complementing the commonly used chemical biomarkers, may contribute to a better understanding of the evolution of T-cell states during ageing. Mechanical measurements, among other biophysical measurements, have the advantage of their relative simplicity: one single parameter agglutinates the complex effects of the variety of changes that gradually appear in cells during ageing.
Collapse
Affiliation(s)
- Blanca González-Bermúdez
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain
- Department of Materials Science, E.T.S.I. de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Aldo Abarca-Ortega
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain
- Department of Materials Science, E.T.S.I. de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Mónica González-Sánchez
- Department of Genetics, Physiology and Microbiology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Gustavo R. Plaza
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain
- Department of Materials Science, E.T.S.I. de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| |
Collapse
|
6
|
Sun W, Gao X, Lei H, Wang W, Cao Y. Biophysical Approaches for Applying and Measuring Biological Forces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105254. [PMID: 34923777 PMCID: PMC8844594 DOI: 10.1002/advs.202105254] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 05/13/2023]
Abstract
Over the past decades, increasing evidence has indicated that mechanical loads can regulate the morphogenesis, proliferation, migration, and apoptosis of living cells. Investigations of how cells sense mechanical stimuli or the mechanotransduction mechanism is an active field of biomaterials and biophysics. Gaining a further understanding of mechanical regulation and depicting the mechanotransduction network inside cells require advanced experimental techniques and new theories. In this review, the fundamental principles of various experimental approaches that have been developed to characterize various types and magnitudes of forces experienced at the cellular and subcellular levels are summarized. The broad applications of these techniques are introduced with an emphasis on the difficulties in implementing these techniques in special biological systems. The advantages and disadvantages of each technique are discussed, which can guide readers to choose the most suitable technique for their questions. A perspective on future directions in this field is also provided. It is anticipated that technical advancement can be a driving force for the development of mechanobiology.
Collapse
Affiliation(s)
- Wenxu Sun
- School of SciencesNantong UniversityNantong226019P. R. China
| | - Xiang Gao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Hai Lei
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| | - Wei Wang
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Yi Cao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
7
|
Optical interferometry based micropipette aspiration provides real-time sub-nanometer spatial resolution. Commun Biol 2021; 4:610. [PMID: 34021241 PMCID: PMC8140111 DOI: 10.1038/s42003-021-02121-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/12/2021] [Indexed: 11/09/2022] Open
Abstract
Micropipette aspiration (MPA) is an essential tool in mechanobiology; however, its potential is far from fully exploited. The traditional MPA technique has limited temporal and spatial resolution and requires extensive post processing to obtain the mechanical fingerprints of samples. Here, we develop a MPA system that measures pressure and displacement in real time with sub-nanometer resolution thanks to an interferometric readout. This highly sensitive MPA system enables studying the nanoscale behavior of soft biomaterials under tension and their frequency-dependent viscoelastic response.
Collapse
|
8
|
Cell properties assessment using optimized dielectrophoresis-based cell stretching and lumped mechanical modeling. Sci Rep 2021; 11:2341. [PMID: 33504827 PMCID: PMC7840762 DOI: 10.1038/s41598-020-78411-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
Cells mechanical property assessment has been a promising label-free method for cell differentiation. Several methods have been proposed for single-cell mechanical properties analysis. Dielectrophoresis (DEP) is one method used for single-cell mechanical property assessment, cell separation, and sorting. DEP method has overcome weaknesses of other techniques, including compatibility with microfluidics, high throughput assessment, and high accuracy. However, due to the lack of a general and explicit model for this method, it has not been known as an ideal cell mechanical property evaluation method. Here we present an explicit model using the most general electromagnetic equation (Maxwell Stress Tensor) for single-cell mechanical evaluation based on the DEP method. For proof of concept, we used the proposed model for differentiation between three different types of cells, namely erythrocytes, peripheral blood mononuclear cells (PBMC), and an epithelial breast cancer cells line (T-47D). The results show that, by a lumped parameter that depends on cells' mechanical and electrical properties, the proposed model can successfully distinguish between the mentioned cell types that can be in a single blood sample. The proposed model would open up the chance to use a mechanical assessment method for cell searching in parallel with other methods.
Collapse
|
9
|
González-Bermúdez B, Kobayashi H, Navarrete Á, Nyblad C, González-Sánchez M, de la Fuente M, Fuentes G, Guinea GV, García C, Plaza GR. Single-cell biophysical study reveals deformability and internal ordering relationship in T cells. SOFT MATTER 2020; 16:5669-5678. [PMID: 32519732 DOI: 10.1039/d0sm00648c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Deformability and internal ordering are key features related to cell function, particularly critical for cells that routinely undergo large deformations, like T cells during extravasation and migration. In the measurement of cell deformability, a considerable variability is typically obtained, masking the identification of possible interrelationships between deformability, internal ordering and cell function. We report the development of a single-cell methodology that combines measurements of living-cell deformability, using micropipette aspiration, and three-dimensional confocal analysis of the nucleus and cytoskeleton. We show that this single-cell approach can serve as a powerful tool to identify appropriate parameters that characterize deformability within a population of cells, not readably discernable in population-averaged data. By applying this single-cell methodology to mouse CD4+ T cells, our results demonstrate that the relative size of the nucleus, better than other geometrical or cytoskeletal features, effectively determines the overall deformability of the cells within the population.
Collapse
Affiliation(s)
- Blanca González-Bermúdez
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain. and Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain
| | - Hikaru Kobayashi
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Álvaro Navarrete
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Chile
| | - César Nyblad
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain. and Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain
| | - Mónica González-Sánchez
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Mónica de la Fuente
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Gonzalo Fuentes
- Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain and Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, E-28040 Madrid, Spain
| | - Gustavo V Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain. and Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain and Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Claudio García
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Chile
| | - Gustavo R Plaza
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain. and Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
10
|
Gong B, Wei X, Qian J, Lin Y. Modeling and Simulations of the Dynamic Behaviors of Actin-Based Cytoskeletal Networks. ACS Biomater Sci Eng 2019; 5:3720-3734. [DOI: 10.1021/acsbiomaterials.8b01228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bo Gong
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xi Wei
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Jin Qian
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Advances in Micropipette Aspiration: Applications in Cell Biomechanics, Models, and Extended Studies. Biophys J 2019; 116:587-594. [PMID: 30683304 DOI: 10.1016/j.bpj.2019.01.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/29/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022] Open
Abstract
With five decades of sustained application, micropipette aspiration has enabled a wide range of biomechanical studies in the field of cell mechanics. Here, we provide an update on the use of the technique, with a focus on recent developments in the analysis of the experiments, innovative microaspiration-based approaches, and applications in a broad variety of cell types. We first recapitulate experimental variations of the technique. We then discuss analysis models focusing on important limitations of widely used biomechanical models, which underpin the urge to adopt the appropriate ones to avoid misleading conclusions. The possibilities of performing different studies on the same cell are also considered.
Collapse
|
12
|
González-Bermúdez B, Li Q, Guinea GV, Peñalva MA, Plaza GR. Probing the effect of tip pressure on fungal growth: Application to Aspergillus nidulans. Phys Rev E 2017; 96:022402. [PMID: 28950493 DOI: 10.1103/physreve.96.022402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Indexed: 11/07/2022]
Abstract
The study of fungal cells is of great interest due to their importance as pathogens and as fermenting fungi and for their appropriateness as model organisms. The differential pressure between the hyphal cytoplasm and the bordering medium is essential for the growth process, because the pressure is correlated with the growth rate. Notably, during the invasion of tissues, the external pressure at the tip of the hypha may be different from the pressure in the surrounding medium. We report the use of a method, based on the micropipette-aspiration technique, to study the influence of this external pressure at the hyphal tip. Moreover, this technique makes it possible to study hyphal growth mechanics in the case of very thin hyphae, not accessible to turgor pressure probes. We found a correlation between the local pressure at the tip and the growth rate for the species Arpergillus nidulans. Importantly, the proposed method allows one to measure the pressure at the tip required to arrest the hyphal growth. Determining that pressure could be useful to develop new medical treatments for fungal infections. Finally, we provide a mechanical model for these experiments, taking into account the cytoplasm flow and the wall deformation.
Collapse
Affiliation(s)
- Blanca González-Bermúdez
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain.,Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain
| | - Qingxuan Li
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain.,Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain
| | - Gustavo V Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain.,Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Miguel A Peñalva
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Gustavo R Plaza
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain.,Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain.,Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, People's Republic of China
| |
Collapse
|
13
|
Shen Y, Cheng Y, Uyeda TQP, Plaza GR. Cell Mechanosensors and the Possibilities of Using Magnetic Nanoparticles to Study Them and to Modify Cell Fate. Ann Biomed Eng 2017; 45:2475-2486. [PMID: 28744841 DOI: 10.1007/s10439-017-1884-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022]
Abstract
The use of magnetic nanoparticles (MNPs) is a promising technique for future advances in biomedical applications. This idea is supported by the availability of MNPs that can target specific cell components, the variety of shapes of MNPs and the possibility of finely controlling the applied magnetic forces. To examine this opportunity, here we review the current developments in the use of MNPs to mechanically stimulate cells and, specifically, the cell mechanotransduction systems. We analyze the cell components that may act as mechanosensors and their effect on cell fate and we focus on the promising possibilities of controlling stem-cell differentiation, inducing cancer-cell death and treating nervous-system diseases.
Collapse
Affiliation(s)
- Yajing Shen
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yu Cheng
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Taro Q P Uyeda
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China.,Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Gustavo R Plaza
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China. .,Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Spain.
| |
Collapse
|
14
|
Improved Measurement of Elastic Properties of Cells by Micropipette Aspiration and Its Application to Lymphocytes. Ann Biomed Eng 2017; 45:1375-1385. [DOI: 10.1007/s10439-017-1795-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/10/2017] [Indexed: 10/24/2022]
|