1
|
Kim E, Ramos Figueroa AL, Schrock M, Zhang E, Newcomb CJ, Bao Z, Michalek L. A guide for nanomechanical characterization of soft matter via AFM: From mode selection to data reporting. STAR Protoc 2025; 6:103809. [PMID: 40449004 PMCID: PMC12166430 DOI: 10.1016/j.xpro.2025.103809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/05/2025] [Accepted: 04/16/2025] [Indexed: 06/02/2025] Open
Abstract
Atomic force microscopy (AFM) enables high-resolution mechanical characterization of soft materials at the nanoscale. It offers unique advantages over conventional mechanical testing methods by providing spatially resolved properties, requiring minimal sample preparation, and allowing measurements under controlled environmental conditions. This comprehensive guide provides a practical framework for conducting reproducible nanomechanical measurements on soft matter using AFM. Readers will learn how to select appropriate AFM modes, choose and calibrate suitable cantilevers, prepare samples, and optimize measurement parameters for soft materials. Four operational AFM modes are described: intermittent contact mode, nanomechanical imaging, force modulation, and force spectroscopy. We detail their principles, mechanisms, and trade-offs while offering practical advice for experiment execution, data analysis, and result reporting. This protocol seeks to guide researchers to execute consistent and comparable AFM measurements, bridge the gap between theoretical knowledge and practical implementation, and address key challenges in standardization and reproducibility within the field of soft matter nano-mechanics.
Collapse
Affiliation(s)
- Eunyoung Kim
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | - Max Schrock
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Christina J Newcomb
- Stanford Nano Shared Facilities, Stanford University, Stanford, CA 94305, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Lukas Michalek
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Zheng Y, Celik U, Vorwald C, Leach JK, Liu GY. High-Resolution Atomic Force Microscopy Investigation of Alginate Hydrogel Materials in Aqueous Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25631-25637. [PMID: 39558643 PMCID: PMC11952139 DOI: 10.1021/acs.langmuir.4c03554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Alginate hydrogels are frequently used in 3D bioprinting and tissue repair and regeneration. Establishing the structure-property-performance correlation of these materials would benefit significantly from high-resolution structural characterization in aqueous environments from the molecular level to continuum. This study overcomes technical challenges and enables high-resolution atomic force microscopy (AFM) imaging of hydrated alginate hydrogels in aqueous media. By combining a new sample preparation protocol with extremely gentle tapping mode AFM imaging, we characterized the morphology and regional mechanical properties of the hydrated alginate. Upon cross-linking, basic units of these hydrogel materials consist of egg-box dimers, which assemble into long fibrils. These fibrils congregate and pile up, forming a sponge-like structure, whose pore size and distribution depend on the cross-linking conditions. At the exterior, surface tension impacts the piling of fibrils, leading to stripe-like features. These structural features contribute to local, regional, and macroscopic mechanics. The outcome provides new insights into its structural characteristics from nanometers to tens of micrometers, i.e., at the dimensions pertaining to biomaterial and hydrogel-cell interactions. Collectively, the results advance our knowledge of the structure and mechanics from the nanometer to continuum, facilitating advanced applications in hydrogel biomaterials.
Collapse
Affiliation(s)
- Yunbo Zheng
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Umit Celik
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Charlotte Vorwald
- Department of Biomedical Engineering, University of California, Davis, California 95616, United States
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, California 95616, United States; Department of Orthopaedic Surgery, UC Davis, Health, Sacramento, California 95817, United States
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
3
|
López-Serrano C, Côté-Paradis Y, Habenstein B, Loquet A, Le Coz C, Ruel J, Laroche G, Durrieu MC. Integrating Mechanics and Bioactivity: A Detailed Assessment of Elasticity and Viscoelasticity at Different Scales in 2D Biofunctionalized PEGDA Hydrogels for Targeted Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39165-39180. [PMID: 39041490 PMCID: PMC11600396 DOI: 10.1021/acsami.4c10755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Methods for promoting and controlling the differentiation of human mesenchymal stem cells (hMSCs) in vitro before in vivo transplantation are crucial for the advancement of tissue engineering and regenerative medicine. In this study, we developed poly(ethylene glycol) diacrylate (PEGDA) hydrogels with tunable mechanical properties, including elasticity and viscoelasticity, coupled with bioactivity achieved through the immobilization of a mixture of RGD and a mimetic peptide of the BMP-2 protein. Despite the key relevance of hydrogel mechanical properties for cell culture, a standard for its characterization has not been proposed, and comparisons between studies are challenging due to the different techniques employed. Here, a comprehensive approach was employed to characterize the elasticity and viscoelasticity of these hydrogels, integrating compression testing, rheology, and atomic force microscopy (AFM) microindentation. Distinct mechanical behaviors were observed across different PEGDA compositions, and some consistent trends across multiple techniques were identified. Using a photoactivated cross-linker, we controlled the functionalization density independently of the mechanical properties. X-ray photoelectrin spectroscopy and fluorescence microscopy were employed to evaluate the functionalization density of the materials before the culturing of hMSCs on them. The cells cultured on all functionalized hydrogels expressed an early osteoblast marker (Runx2) after 2 weeks, even in the absence of a differentiation-inducing medium compared to our controls. Additionally, after only 1 week of culture with osteogenic differentiation medium, cells showed accelerated differentiation, with clear morphological differences observed among cells in the different conditions. Notably, cells on stiff but stress-relaxing hydrogels exhibited an overexpression of the osteocyte marker E11. This suggests that the combination of the functionalization procedure with the mechanical properties of the hydrogel provides a potent approach to promoting the osteogenic differentiation of hMSCs.
Collapse
Affiliation(s)
- Cristina López-Serrano
- Univ.
Bordeaux, CNRS, Bordeaux INP, CBMN, UMR
5248, Pessac 33600, France
- Laboratoire
d’Ingénierie de Surface, Centre de Recherche sur les
Matériaux Avancés, Département de Génie
des Mines, de la Métallurgie et des Matériaux, Université Laval, Québec, QC G1 V 0A6, Canada
- Axe
médecine régénératrice, Centre de Recherche
du Centre Hospitalier Universitaire de Québec, Hôpital
St-François d’Assise, Québec, QC G1L
3L5, Canada
| | - Yeva Côté-Paradis
- Laboratoire
d’Ingénierie de Surface, Centre de Recherche sur les
Matériaux Avancés, Département de Génie
des Mines, de la Métallurgie et des Matériaux, Université Laval, Québec, QC G1 V 0A6, Canada
- Axe
médecine régénératrice, Centre de Recherche
du Centre Hospitalier Universitaire de Québec, Hôpital
St-François d’Assise, Québec, QC G1L
3L5, Canada
| | - Birgit Habenstein
- Univ.
Bordeaux, CNRS, INSERM, IECB, US1, UAR 3033, F-33600 Pessac, France
| | - Antoine Loquet
- Univ.
Bordeaux, CNRS, INSERM, IECB, US1, UAR 3033, F-33600 Pessac, France
| | - Cédric Le Coz
- Univ.
Bordeaux, CNRS, Bordeaux INP, LCPO, UMR
5629, F-33600 Pessac, France
| | - Jean Ruel
- Département
de Génie Mécanique, Université
Laval, Québec, QC G1V 0A6, Canada
| | - Gaétan Laroche
- Laboratoire
d’Ingénierie de Surface, Centre de Recherche sur les
Matériaux Avancés, Département de Génie
des Mines, de la Métallurgie et des Matériaux, Université Laval, Québec, QC G1 V 0A6, Canada
- Axe
médecine régénératrice, Centre de Recherche
du Centre Hospitalier Universitaire de Québec, Hôpital
St-François d’Assise, Québec, QC G1L
3L5, Canada
| | | |
Collapse
|
4
|
Piacenti AR, Adam C, Hawkins N, Wagner R, Seifert J, Taniguchi Y, Proksch R, Contera S. Nanoscale Rheology: Dynamic Mechanical Analysis over a Broad and Continuous Frequency Range Using Photothermal Actuation Atomic Force Microscopy. Macromolecules 2024; 57:1118-1127. [PMID: 38370912 PMCID: PMC10867883 DOI: 10.1021/acs.macromol.3c02052] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 02/20/2024]
Abstract
Polymeric materials are widely used in industries ranging from automotive to biomedical. Their mechanical properties play a crucial role in their application and function and arise from the nanoscale structures and interactions of their constitutive polymer molecules. Polymeric materials behave viscoelastically, i.e., their mechanical responses depend on the time scale of the measurements; quantifying these time-dependent rheological properties at the nanoscale is relevant to develop, for example, accurate models and simulations of those materials, which are needed for advanced industrial applications. In this paper, an atomic force microscopy (AFM) method based on the photothermal actuation of an AFM cantilever is developed to quantify the nanoscale loss tangent, storage modulus, and loss modulus of polymeric materials. The method is then validated on styrene-butadiene rubber (SBR), demonstrating the method's ability to quantify nanoscale viscoelasticity over a continuous frequency range up to 5 orders of magnitude (0.2-20,200 Hz). Furthermore, this method is combined with AFM viscoelastic mapping obtained with amplitude modulation-frequency modulation (AM-FM) AFM, enabling the extension of viscoelastic quantification over an even broader frequency range and demonstrating that the novel technique synergizes with preexisting AFM techniques for quantitative measurement of viscoelastic properties. The method presented here introduces a way to characterize the viscoelasticity of polymeric materials and soft and biological matter in general at the nanoscale for any application.
Collapse
Affiliation(s)
- Alba R. Piacenti
- Clarendon
Laboratory, Department of Physics, University
of Oxford, OX1 3PU Oxford, U.K.
| | - Casey Adam
- Clarendon
Laboratory, Department of Physics, University
of Oxford, OX1 3PU Oxford, U.K.
- Department
of Engineering Science, University of Oxford, OX1 3PJ Oxford, U.K.
| | - Nicholas Hawkins
- Department
of Engineering Science, University of Oxford, OX1 3PJ Oxford, U.K.
| | - Ryan Wagner
- School
of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jacob Seifert
- Clarendon
Laboratory, Department of Physics, University
of Oxford, OX1 3PU Oxford, U.K.
| | | | - Roger Proksch
- Asylum
Research – An Oxford Instruments Company, Santa Barbara, California 93117, United States
| | - Sonia Contera
- Clarendon
Laboratory, Department of Physics, University
of Oxford, OX1 3PU Oxford, U.K.
| |
Collapse
|
5
|
Majood M, Agrawal O, Garg P, Selvam A, Yadav SK, Singh S, Kalyansundaram D, Verma YK, Nayak R, Mohanty S, Mukherjee M. Carbon quantum dot-nanocomposite hydrogel as Denovo Nexus in rapid chondrogenesis. BIOMATERIALS ADVANCES 2024; 157:213730. [PMID: 38101066 DOI: 10.1016/j.bioadv.2023.213730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
The incapability of cartilage to naturally regenerate and repair chronic muscular injuries urges the development of competent bionic rostrums. There is a need to explore faster strategies for chondrogenic engineering using mesenchymal stem cells (MSCs). Along these lines, rapid chondrocyte differentiation would benefit the transplantation demand affecting osteoarthritis (OA) and rheumatoid arthritis (RA) patients. In this report, a de novo nanocomposite was constructed by integrating biogenic carbon quantum dot (CQD) filler into synthetic hydrogel prepared from dimethylaminoethyl methacrylate (DMAEMA) and acrylic acid (AAc). The dominant structural integrity of synthetic hydrogel along with the chondrogenic differentiation potential of garlic peel derived CQDs led to faster chondrogenesis within 14 days. By means of extensive chemical and morphological characterization techniques, we illustrate that the hydrogel nanocomposite possesses lucrative features to influence rapid chondrogenesis. These results were further corroborated by bright field imaging, Alcian blue staining and Masson trichome staining. Thus, this stratagem of chondrogenic engineering conceptualizes to be a paragon in clinical wound care for the rapid manufacturing of chondrocytes.
Collapse
Affiliation(s)
- Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida 201313, India
| | - Omnarayan Agrawal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida 201313, India
| | - Piyush Garg
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida 201313, India
| | - Abhyavartin Selvam
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida 201313, India; Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida 201313, India
| | - Sunil Kumar Yadav
- Center of Biomedical Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Sonu Singh
- Center of Biomedical Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Dinesh Kalyansundaram
- Center of Biomedical Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Yogesh Kumar Verma
- Division of Stem Cell & Gene Therapy Research, Institute of Nuclear Medicine & Allied Sciences, Delhi 110054, India
| | - Ranu Nayak
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida 201313, India
| | - Sujata Mohanty
- Stem Cell Facility, DBT center of Excellence, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida 201313, India.
| |
Collapse
|
6
|
Lallemang M, Akintayo CO, Wenzel C, Chen W, Sielaff L, Ripp A, Jessen HJ, Balzer BN, Walther A, Hugel T. Hierarchical Mechanical Transduction of Precision-Engineered DNA Hydrogels with Sacrificial Bonds. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59714-59721. [PMID: 38095074 DOI: 10.1021/acsami.3c15135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Engineering the response to external signals in mechanically switchable hydrogels is important to promote smart materials applications. However, comparably little attention has focused on embedded precision mechanisms for autonomous nonlinear response in mechanical profiles in hydrogels, and we lack understanding of how the behavior from the molecular scale transduces to the macroscale. Here, we design a nonlinear stress-strain response into hydrogels by engineering sacrificial DNA hairpin loops into model network hydrogels formed from star-shaped building blocks. We characterize the force-extension response of single DNA hairpins and are able to describe how the specific topology influences the nonlinear mechanical behavior at different length scales. For this purpose, we utilize force spectroscopy as well as microscopic and macroscopic deformation tests. This study contributes to a better understanding of designing nonlinear strain-adaptive features into hydrogel materials.
Collapse
Affiliation(s)
- Max Lallemang
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Cecilia Oluwadunsin Akintayo
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz 55128, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Christiane Wenzel
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Weixiang Chen
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz 55128, Germany
| | - Lucca Sielaff
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
| | - Alexander Ripp
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
| | - Henning J Jessen
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
| | - Bizan N Balzer
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg 79104, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz 55128, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| |
Collapse
|
7
|
Leontev A, Rozental L, Freger V. Dynamics of underwater microparticle adhesion to soft hydrated surfaces: Modeling and analysis by time-dependent AFM force spectroscopy. J Colloid Interface Sci 2023; 651:464-476. [PMID: 37556904 DOI: 10.1016/j.jcis.2023.07.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
HYPOTHESIS Understanding the attachment and detachment of microparticles and living cells to surfaces is crucial for developing antifouling strategies. Hydrogel coatings have shown promise in reducing fouling and particle adhesion due to their softness and high water content, yet the mechanisms involved are dynamic and complex, and relevant parameters are not easily accessible. AFM-based force spectroscopy (FS) experiments with colloidal probe particles is a direct way of evaluating adhesive and mechanical relaxational dynamics, yet their interpretation and modeling has been challenging. The present study proposes and examines several dynamic models, suitable for quantitative analysis of FS results with model probe particle on hydrogels surfaces. EXPERIMENTS FS were performed using polyethylene glycol (PEG) hydrogels and polystyrene microspheres including particle attachement to the hydrogel surface (loading), holding the particle on the surface with a constant force for variable times (dwell) and pulling the particle away from the surface (unloading) FINDINGS: It was found that a viscoelastic extension of the classical JKR model with energy of adhesion unevenly distributed over the contact area and vanishing at its circumferences accurately described all FS experiments and yielded physically consistent viscoelastic and adhesive dynamic parameters, steadily changing with dwell time and applied force. The observed time evolution and force dependence were rationalized as combination of osmotic and osmo-mechnical relaxation in the contact region.
Collapse
Affiliation(s)
- Aleksandr Leontev
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa, Israel
| | - Lina Rozental
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa, Israel
| | - Viatcheslav Freger
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa, Israel; Grand Technion Energy Program, Technion - IIT, Haifa, Israel; Russel Berrie Nanotechnology Institute, Technion - IIT, Haifa, Israel.
| |
Collapse
|
8
|
Olivero E, Gawronska E, Manimuda P, Jivani D, Chaggan FZ, Corey Z, de Almeida TS, Kaplan-Bie J, McIntyre G, Wodo O, Nalam PC. Gradient porous structures of mycelium: a quantitative structure-mechanical property analysis. Sci Rep 2023; 13:19285. [PMID: 37935723 PMCID: PMC10630317 DOI: 10.1038/s41598-023-45842-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023] Open
Abstract
Gradient porous structures (GPS) are characterized by structural variations along a specific direction, leading to enhanced mechanical and functional properties compared to homogeneous structures. This study explores the potential of mycelium, the root part of a fungus, as a biomaterial for generating GPS. During the intentional growth of mycelium, the filamentous network undergoes structural changes as the hyphae grow away from the feed substrate. Through microstructural analysis of sections obtained from the mycelium tissue, systematic variations in fiber characteristics (such as fiber radii distribution, crosslink density, network density, segment length) and pore characteristics (including pore size, number, porosity) are observed. Furthermore, the mesoscale mechanical moduli of the mycelium networks exhibit a gradual variation in local elastic modulus, with a significant change of approximately 50% across a 30 mm thick mycelium tissue. The structure-property analysis reveals a direct correlation between the local mechanical moduli and the network crosslink density of the mycelium. This study presents the potential of controlling growth conditions to generate mycelium-based GPS with desired functional properties. This approach, which is both sustainable and economically viable, expands the applications of mycelium-based GPS to include filtration membranes, bio-scaffolds, tissue regeneration platforms, and more.
Collapse
Affiliation(s)
- Eric Olivero
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, 14226, USA
| | - Elzbieta Gawronska
- Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, 42201, Czestochowa, Poland
| | | | - Devyani Jivani
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, 14226, USA
| | | | - Zachary Corey
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, 14226, USA
| | | | | | - Gavin McIntyre
- Ecovative Design LLC, 60 Cohoes Ave, Green Island, NY, 12183, USA
| | - Olga Wodo
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, 14226, USA.
| | - Prathima C Nalam
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, 14226, USA.
| |
Collapse
|
9
|
ShakeriHosseinabad F, Frost B, Said S, Xu C, Behnoudfar D, Amini K, Momodu D, Mahinpey N, Egberts P, Miller TS, Roberts EPL. Electrode Materials for Enhancing the Performance and Cycling Stability of Zinc Iodide Flow Batteries at High Current Densities. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37433014 DOI: 10.1021/acsami.3c03785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Aqueous redox flow battery systems that use a zinc negative electrode have a relatively high energy density. However, high current densities can lead to zinc dendrite growth and electrode polarization, which limit the battery's high power density and cyclability. In this study, a perforated copper foil with a high electrical conductivity was used on the negative side, combined with an electrocatalyst on the positive electrode in a zinc iodide flow battery. A significant improvement in the energy efficiency (ca. 10% vs using graphite felt on both sides) and cycling stability at a high current density of 40 mA cm-2 was observed. A long cycling stability with a high areal capacity of 222 mA h cm-2 is obtained in this study, which is the highest reported areal capacity for zinc-iodide aqueous flow batteries operating at high current density, in comparison to previous studies. Additionally, the use of a perforated copper foil anode in combination with a novel flow mode was discovered to achieve consistent cycling at exceedingly high current densities of >100 mA cm-2. In situ and ex situ characterization techniques, including in situ atomic force microscopy coupled with in situ optical microscopy and X-ray diffraction, are applied to clarify the relationship between zinc deposition morphology on the perforated copper foil and battery performance in two different flow field conditions. With a portion of the flow going through the perforations, a significantly more uniform and compact zinc deposition was observed compared to the case where all of the flow passed over the surface of the electrode. Results from modeling and simulation support the conclusion that the flow of a fraction of electrolyte through the electrode enhances mass transport, enabling a more compact deposit.
Collapse
Affiliation(s)
- Fatemeh ShakeriHosseinabad
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary T2N 1N4, Alberta, Canada
| | - Brandon Frost
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| | - Samia Said
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| | - Chaochen Xu
- Department Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary AB T2N 1N4, Canada
| | - Diba Behnoudfar
- School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kiana Amini
- Harvard John A. Paulson School of Engineering and Applied Sciences, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Damilola Momodu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary T2N 1N4, Alberta, Canada
| | - Nader Mahinpey
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary T2N 1N4, Alberta, Canada
| | - Philip Egberts
- Department Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary AB T2N 1N4, Canada
| | - Thomas S Miller
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| | - Edward P L Roberts
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary T2N 1N4, Alberta, Canada
| |
Collapse
|
10
|
Surface characterization of an ultra-soft contact lens material using an atomic force microscopy nanoindentation method. Sci Rep 2022; 12:20013. [PMID: 36411325 PMCID: PMC9678857 DOI: 10.1038/s41598-022-24701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
As new ultra-soft materials are being developed for medical devices and biomedical applications, the comprehensive characterization of their physical and mechanical properties is both critical and challenging. To characterize the very low surface modulus of the novel biomimetic lehfilcon A silicone hydrogel contact lens coated with a layer of a branched polymer brush structure, an improved atomic force microscopy (AFM) nanoindentation method has been applied. This technique allows for precise contact-point determination without the effects of viscous squeeze-out upon approaching the branched polymer. Additionally, it allows individual brush elements to be mechanically characterized in the absence of poroelastic effects. This was accomplished by selecting an AFM probe with a design (tip size, geometry, and spring constant) that was especially suited to measuring the properties of soft materials and biological samples. The enhanced sensitivity and accuracy of this method allows for the precise measurement of the very soft lehfilcon A material, which has an extremely low elastic modulus in the surface region (as low as 2 kPa) and extremely high elasticity (nearly 100%) in an aqueous environment. The surface-characterization results not only reveal the ultra-soft nature of the lehfilcon A lens surface but also demonstrate that the elastic modulus exhibits a 30 kPa/200 nm gradient with depth due to the disparity between the modulus of the branched polymer brushes and the SiHy substrate. This surface-characterization methodology may be applied to other ultra-soft materials and medical devices.
Collapse
|
11
|
Interactions between infernan and calcium: From the molecular level to the mechanical properties of microgels. Carbohydr Polym 2022; 292:119629. [DOI: 10.1016/j.carbpol.2022.119629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/05/2022] [Accepted: 05/14/2022] [Indexed: 11/20/2022]
|
12
|
Joshi J, Homburg SV, Ehrmann A. Atomic Force Microscopy (AFM) on Biopolymers and Hydrogels for Biotechnological Applications-Possibilities and Limits. Polymers (Basel) 2022; 14:1267. [PMID: 35335597 PMCID: PMC8949482 DOI: 10.3390/polym14061267] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 02/01/2023] Open
Abstract
Atomic force microscopy (AFM) is one of the microscopic techniques with the highest lateral resolution. It can usually be applied in air or even in liquids, enabling the investigation of a broader range of samples than scanning electron microscopy (SEM), which is mostly performed in vacuum. Since it works by following the sample surface based on the force between the scanning tip and the sample, interactions have to be taken into account, making the AFM of irregular samples complicated, but on the other hand it allows measurements of more physical parameters than pure topography. This is especially important for biopolymers and hydrogels used in tissue engineering and other biotechnological applications, where elastic properties, surface charges and other parameters influence mammalian cell adhesion and growth as well as many other effects. This review gives an overview of AFM modes relevant for the investigations of biopolymers and hydrogels and shows several examples of recent applications, focusing on the polysaccharides chitosan, alginate, carrageenan and different hydrogels, but depicting also a broader spectrum of materials on which different AFM measurements are reported in the literature.
Collapse
Affiliation(s)
- Jnanada Joshi
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Sarah Vanessa Homburg
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| |
Collapse
|
13
|
Zeimaran E, Pourshahrestani S, Fathi A, Razak NABA, Kadri NA, Sheikhi A, Baino F. Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Acta Biomater 2021; 136:1-36. [PMID: 34562661 DOI: 10.1016/j.actbio.2021.09.034] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Successful tissue regeneration requires a scaffold with tailorable biodegradability, tissue-like mechanical properties, structural similarity to extracellular matrix (ECM), relevant bioactivity, and cytocompatibility. In recent years, injectable hydrogels have spurred increasing attention in translational medicine as a result of their tunable physicochemical properties in response to the surrounding environment. Furthermore, they have the potential to be implanted via minimally invasive procedures while enabling deep penetration, which is considered a feasible alternative to traditional open surgical procedures. However, polymeric hydrogels may lack sufficient stability and bioactivity in physiological environments. Composite hydrogels containing bioactive glass (BG) particulates, synergistically combining the advantages of their constituents, have emerged as multifunctional biomaterials with tailored mechanical properties and biological functionalities. This review paper highlights the recent advances in injectable composite hydrogel systems based on biodegradable polymers and BGs. The influence of BG particle geometry, composition, and concentration on gel formation, rheological and mechanical behavior as well as hydration and biodegradation of injectable hydrogels have been discussed. The applications of these composite hydrogels in tissue engineering are additionally described, with particular attention to bone and skin. Finally, the prospects and current challenges in the development of desirable injectable bioactive hydrogels for tissue regeneration are discussed to outline a roadmap for future research. STATEMENT OF SIGNIFICANCE: Developing a biomaterial that can be readily available for surgery, implantable via minimally invasive procedures, and be able to effectively stimulate tissue regeneration is one of the grand challenges in modern biomedicine. This review summarizes the state-of-the-art of injectable bioactive glass-polymer composite hydrogels to address several challenges in bone and soft tissue repair. The current limitations and the latest evolutions of these composite biomaterials are critically examined, and the roles of design parameters, such as composition, concentration, and size of the bioactive phase, and polymer-glass interactions on the rheological, mechanical, biological, and overall functional performance of hydrogels are detailed. Existing results and new horizons are discussed to provide a state-of-the-art review that may be useful for both experienced and early-stage researchers in the biomaterials community.
Collapse
|
14
|
Cafolla C, Voïtchovsky K. Real-time tracking of ionic nano-domains under shear flow. Sci Rep 2021; 11:19540. [PMID: 34599212 PMCID: PMC8486851 DOI: 10.1038/s41598-021-98137-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
The behaviour of ions at solid-liquid interfaces underpins countless phenomena, from the conduction of nervous impulses to charge transfer in solar cells. In most cases, ions do not operate as isolated entities, but in conjunction with neighbouring ions and the surrounding solution. In aqueous solutions, recent studies suggest the existence of group dynamics through water-mediated clusters but results allowing direct tracking of ionic domains with atomic precision are scarce. Here, we use high-speed atomic force microscopy to track the evolution of Rb+, K+, Na+ and Ca2+ nano-domains containing 20 to 120 ions adsorbed at the surface of mica in aqueous solution. The interface is exposed to a shear flow able to influence the lateral motion of single ions and clusters. The results show that, when in groups, metal ions tend to move with a relatively slow dynamics, as can be expected from a correlated group motion, with an average residence timescale of ~ 1-2 s for individual ions at a given atomic site. The average group velocity of the clusters depends on the ions' charge density and can be explained by the ion's hydration state. The lateral shear flow of the fluid is insufficient to desorb ions, but indirectly influences the diffusion dynamics by acting on ions in close vicinity to the surface. The results provide insights into the dynamics of ion clusters when adsorbed onto an immersed solid under shear flow.
Collapse
Affiliation(s)
- Clodomiro Cafolla
- grid.8250.f0000 0000 8700 0572Physics Department, Durham University, Durham, DH1 3LE UK
| | - Kislon Voïtchovsky
- grid.8250.f0000 0000 8700 0572Physics Department, Durham University, Durham, DH1 3LE UK
| |
Collapse
|
15
|
Denzer BR, Kulchar RJ, Huang RB, Patterson J. Advanced Methods for the Characterization of Supramolecular Hydrogels. Gels 2021; 7:158. [PMID: 34698172 PMCID: PMC8544384 DOI: 10.3390/gels7040158] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022] Open
Abstract
With the increased research on supramolecular hydrogels, many spectroscopic, diffraction, microscopic, and rheological techniques have been employed to better understand and characterize the material properties of these hydrogels. Specifically, spectroscopic methods are used to characterize the structure of supramolecular hydrogels on the atomic and molecular scales. Diffraction techniques rely on measurements of crystallinity and help in analyzing the structure of supramolecular hydrogels, whereas microscopy allows researchers to inspect these hydrogels at high resolution and acquire a deeper understanding of the morphology and structure of the materials. Furthermore, mechanical characterization is also important for the application of supramolecular hydrogels in different fields. This can be achieved through atomic force microscopy measurements where a probe interacts with the surface of the material. Additionally, rheological characterization can investigate the stiffness as well as the shear-thinning and self-healing properties of the hydrogels. Further, mechanical and surface characterization can be performed by micro-rheology, dynamic light scattering, and tribology methods, among others. In this review, we highlight state-of-the-art techniques for these different characterization methods, focusing on examples where they have been applied to supramolecular hydrogels, and we also provide future directions for research on the various strategies used to analyze this promising type of material.
Collapse
Affiliation(s)
- Bridget R. Denzer
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; (B.R.D.); (R.B.H.)
| | - Rachel J. Kulchar
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA;
| | - Richard B. Huang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; (B.R.D.); (R.B.H.)
| | - Jennifer Patterson
- Biomaterials and Regenerative Medicine Group, IMDEA Materials Institute, Getafe, 28906 Madrid, Spain
- Independent Consultant, 3000 Leuven, Belgium
| |
Collapse
|
16
|
Collinson DW, Sheridan RJ, Palmeri MJ, Brinson LC. Best practices and recommendations for accurate nanomechanical characterization of heterogeneous polymer systems with atomic force microscopy. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101420] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Raak N, Jaros D, Rohm H. Acid-induced gelation of enzymatically cross-linked caseinates: Small and large deformation rheology in relation to water holding capacity and micro-rheological properties. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Viscoelastic characterization of the crosslinking of β-lactoglobulin on emulsion drops via microcapsule compression and interfacial dilational and shear rheology. J Colloid Interface Sci 2021; 583:404-413. [DOI: 10.1016/j.jcis.2020.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/18/2022]
|
19
|
Ferrag C, Li S, Jeon K, Andoy NM, Sullan RMA, Mikhaylichenko S, Kerman K. Polyacrylamide hydrogels doped with different shapes of silver nanoparticles: Antibacterial and mechanical properties. Colloids Surf B Biointerfaces 2021; 197:111397. [DOI: 10.1016/j.colsurfb.2020.111397] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 01/01/2023]
|
20
|
Joyner K, Yang S, Duncan GA. Microrheology for biomaterial design. APL Bioeng 2020; 4:041508. [PMID: 33415310 PMCID: PMC7775114 DOI: 10.1063/5.0013707] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/30/2020] [Indexed: 11/15/2022] Open
Abstract
Microrheology analyzes the microscopic behavior of complex materials by measuring the diffusion and transport of embedded particle probes. This experimental method can provide valuable insight into the design of biomaterials with the ability to connect material properties and biological responses to polymer-scale dynamics and interactions. In this review, we discuss how microrheology can be harnessed as a characterization method complementary to standard techniques in biomaterial design. We begin by introducing the core principles and instruments used to perform microrheology. We then review previous studies that incorporate microrheology in their design process and highlight biomedical applications that have been supported by this approach. Overall, this review provides rationale and practical guidance for the utilization of microrheological analysis to engineer novel biomaterials.
Collapse
Affiliation(s)
- Katherine Joyner
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - Sydney Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
21
|
Narasimhan BN, Ting MS, Kollmetz T, Horrocks MS, Chalard AE, Malmström J. Mechanical Characterization for Cellular Mechanobiology: Current Trends and Future Prospects. Front Bioeng Biotechnol 2020; 8:595978. [PMID: 33282852 PMCID: PMC7689259 DOI: 10.3389/fbioe.2020.595978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
Accurate mechanical characterization of adherent cells and their substrates is important for understanding the influence of mechanical properties on cells themselves. Recent mechanobiology studies outline the importance of mechanical parameters, such as stress relaxation and strain stiffening on the behavior of cells. Numerous techniques exist for probing mechanical properties and it is vital to understand the benefits of each technique and how they relate to each other. This mini review aims to guide the reader through the toolbox of mechanical characterization techniques by presenting well-established and emerging methods currently used to assess mechanical properties of substrates and cells.
Collapse
Affiliation(s)
- Badri Narayanan Narasimhan
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Matthew S. Ting
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Tarek Kollmetz
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Matthew S. Horrocks
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Anaïs E. Chalard
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Jenny Malmström
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
22
|
Sandin JN, Aryal SP, Wilkop T, Richards CI, Grady ME. Near Simultaneous Laser Scanning Confocal and Atomic Force Microscopy (Conpokal) on Live Cells. J Vis Exp 2020:10.3791/61433. [PMID: 32865532 PMCID: PMC7680637 DOI: 10.3791/61433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Techniques available for micro- and nano-scale mechanical characterization have exploded in the last few decades. From further development of the scanning and transmission electron microscope, to the invention of atomic force microscopy, and advances in fluorescent imaging, there have been substantial gains in technologies that enable the study of small materials. Conpokal is a portmanteau that combines confocal microscopy with atomic force microscopy (AFM), where a probe "pokes" the surface. Although each technique is extremely effective for the qualitative and/or quantitative image collection on their own, Conpokal provides the capability to test with blended fluorescence imaging and mechanical characterization. Designed for near simultaneous confocal imaging and atomic force probing, Conpokal facilitates experimentation on live microbiological samples. The added insight from paired instrumentation provides co-localization of measured mechanical properties (e.g., elastic modulus, adhesion, surface roughness) by AFM with subcellular components or activity observable through confocal microscopy. This work provides a step by step protocol for the operation of laser scanning confocal and atomic force microscopy, simultaneously, to achieve same cell, same region, confocal imaging, and mechanical characterization.
Collapse
Affiliation(s)
- Joree N Sandin
- Department of Mechanical Engineering, University of Kentucky
| | | | - Thomas Wilkop
- Department of Physiology, University of Kentucky; UK Light Microscopy Core, University of Kentucky
| | - Christopher I Richards
- Department of Chemistry, University of Kentucky; UK Light Microscopy Core, University of Kentucky
| | - Martha E Grady
- Department of Mechanical Engineering, University of Kentucky;
| |
Collapse
|
23
|
Garcia R. Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. Chem Soc Rev 2020; 49:5850-5884. [PMID: 32662499 DOI: 10.1039/d0cs00318b] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Fast, high-resolution, non-destructive and quantitative characterization methods are needed to develop materials with tailored properties at the nanoscale or to understand the relationship between mechanical properties and cell physiology. This review introduces the state-of-the-art force microscope-based methods to map at high-spatial resolution the elastic and viscoelastic properties of soft materials. The experimental methods are explained in terms of the theories that enable the transformation of observables into material properties. Several applications in materials science, molecular biology and mechanobiology illustrate the scope, impact and potential of nanomechanical mapping methods.
Collapse
Affiliation(s)
- Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| |
Collapse
|
24
|
Wideband Magnetic Excitation System for Atomic Force Microscopy Cantilevers with Megahertz-Order Resonance Frequency. Sci Rep 2020; 10:9133. [PMID: 32499532 PMCID: PMC7272457 DOI: 10.1038/s41598-020-65980-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/12/2020] [Indexed: 11/08/2022] Open
Abstract
Small cantilevers with a megahertz-order resonance frequency provide excellent sensitivity and speed in liquid-environment atomic force microscopy (AFM). However, stable and accurate oscillation control of a small cantilever requires the photothermal excitation, which has hindered their applications to the studies on photo-sensitive materials. Here, we develop a magnetic excitation system with a bandwidth wider than 4 MHz, enabling a light-free excitation of small cantilevers. In the system, a cantilever with a magnetic bead is driven by a magnetic field generated by a coil. In the coil driver, a differentiation circuit is used for compensating the frequency dependence of the coil impedance and keeping the current constant. By implementing several differentiation circuits with different frequency ranges, we enable to drive various cantilevers having different resonance frequencies with sufficient excitation efficiency. In contrast to the conventional coil driver with a closed-loop circuit, the developed one consists of an open-loop circuit and hence can be stably operated regardless of the coil design. With the developed system, atomic-resolution imaging of mica in liquid using a small cantilever with a megahertz-order resonance frequency is demonstrated. This development should lead to the future applications of AFM with small cantilevers to the studies on various photo-sensitive materials and phenomena.
Collapse
|
25
|
Alam K, Hasan A, Iqbal M, Umer J, Piya S. Experimental study on the mechanical properties of biological hydrogels of different concentrations. Technol Health Care 2020; 28:685-695. [PMID: 32200364 DOI: 10.3233/thc-191984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Biological hydrogels provide a conducive three-dimensional extracellular matrix environment for encapsulating and cultivating living cells. Microenvironmental modulus of hydrogels dictates several characteristics of cell functions such as proliferation, adhesion, self-renewal, differentiation, migration, cell morphology and fate. Precise measurement of the mechanical properties of gels is necessary for investigating cellular mechanobiology in a variety of applications in tissue engineering. Elastic properties of gels are strongly influenced by the amount of crosslinking density. OBJECTIVE The main purpose of the present study was to determine the elastic modulus of two types of well-known biological hydrogels: Agarose and Gelatin Methacryloyl. METHODS Mechanical properties such as Young's modulus, fracture stress and failure strain of the prescribed gels with a wide range of concentrations were determined using tension and compression tests. RESULTS The elastic modulus, failure stress and strain were found to be strongly influenced when the amount of concentration in the hydrogels was changed. The elastic modulus for a lower level of concentration, not considered in this study, was also predicted using statistical analysis. CONCLUSIONS Closed matching of the mechanical properties of the gels revealed that the bulk tension and compression tests could be confidently used for assessing mechanical properties of delicate biological hydrogels.
Collapse
Affiliation(s)
- Khurshid Alam
- Mechanical and Industrial Engineering Department, Sultan Qaboos University, Al-Khoud, Sultanate of Oman
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Muhammad Iqbal
- School of Energy Geoscience Infrastructure and Society, Heriot Watt University, Edinburgh, UK
| | - Jamal Umer
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Leicestershire, UK
| | - Sujan Piya
- Mechanical and Industrial Engineering Department, Sultan Qaboos University, Al-Khoud, Sultanate of Oman
| |
Collapse
|
26
|
Li H, Choi YS, Rutland MW, Atkin R. Nanotribology of hydrogels with similar stiffness but different polymer and crosslinker concentrations. J Colloid Interface Sci 2020; 563:347-353. [PMID: 31887698 DOI: 10.1016/j.jcis.2019.12.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS The stiffness has been found to regulate hydrogel performances and applications. However, the key interfacial properties of hydrogels, like friction and adhesion are not controlled by the stiffness, but are altered by the structure and composition of hydrogels, like polymer volume fraction and crosslinking degree. EXPERIMENTS Colloidal probe atomic force microscopy has been use to investigate the relationship between tribological properties (friction and adhesion) and composition of hydrogels with similar stiffness, but different polymer volume fractions and crosslinking degrees. FINDINGS The interfacial normal and lateral (friction) forces of hydrogels are not directly correlated to the stiffness, but altered by the hydrogel structure and composition. For normal force measurements, the adhesion increases with polymer volume fraction but decreases with crosslinking degree. For lateral force measurements, friction increases with polymer volume fraction, but decreases with crosslinking degree. In the low normal force regime, friction is mainly adhesion-controlled and increases significantly with the adhesion and polymer volume fraction. In the high normal force regime, friction is predominantly load-controlled and shows slow increase with normal force.
Collapse
Affiliation(s)
- Hua Li
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia.
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Mark W Rutland
- School of Chemical Science and Engineering, KTH Royal Institute of Technology, SE100 44, Sweden; Surfaces, Processes and Formulation, RISE Research Institutes of Sweden, SE114 86 Stockholm, Sweden
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
27
|
Cennamo N, Maniglio D, Tatti R, Zeni L, Bossi AM. Deformable molecularly imprinted nanogels permit sensitivity-gain in plasmonic sensing. Biosens Bioelectron 2020; 156:112126. [PMID: 32275577 DOI: 10.1016/j.bios.2020.112126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 12/23/2022]
Abstract
Soft molecularly imprinted nanogels (nanoMIPs), selective for human transferrin (HTR), were prepared via a template assisted synthesis. Owing to their soft matter, the nanoMIPs were observed to deform at binding to HTR: while no relevant changes were observed in the hydrodynamic sizes of HTR-free compared to HTR-loaded nanoMIPs, the HTR binding resulted in a significant increment of the nanoMIP stiffness, with the mean Young's modulus measured by AFM passing from 17 ± 6 kPa to 56 ± 18 kPa. When coupled to a plastic optical fibre (POF) plasmonic platform, the analyte-induced nanoMIP-deformations amplified the resonance shift, enabling to attain ultra-low sensitivities (LOD = 1.2 fM; linear dynamic range of concentrations from 1.2 fM to 1.8 pM). Therefore, soft molecularly imprinted nanogels that obey to analyte-induced deformation stand as a novel class of sensitivity-gain structures for plasmonic sensing.
Collapse
Affiliation(s)
- Nunzio Cennamo
- University of Campania Luigi Vanvitelli, Department of Engineering, Via Roma 29, 81031, Aversa, Italy
| | - Devid Maniglio
- University of Trento, Department of Industrial Engineering, BIOtech Research Center, Via Delle Regole 101, Mattarello, 38123, Trento, Italy
| | - Roberta Tatti
- University of Verona, Department of Biotechnology, Strada Le Grazie 15, 37134, Verona, Italy
| | - Luigi Zeni
- University of Campania Luigi Vanvitelli, Department of Engineering, Via Roma 29, 81031, Aversa, Italy
| | - Alessandra Maria Bossi
- University of Verona, Department of Biotechnology, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
28
|
Irfan M, Khan M, Rehman TU, Ali I, Shah LA, Khattak NS, Khan MS. Synthesis and Rheological Survey of Xanthan Gum Based Terpolymeric Hydrogels. ACTA ACUST UNITED AC 2020. [DOI: 10.1515/zpch-2019-1574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Abstract
Graft copolymerization technique was used to synthesize novel biopolymer based terpolymeric hydrogels of xanthan gum (Gx), acrylic acid and N-Isopropyl acrylamide (NIPAM) by using chemical crosslinker N,N′-methylene bisacrylamide (MBA), ammonium persulphate (APS) as a redox initiator and sodium dodecyl sulphate (SDS) for particle size stabilization. The synthesized hydrogels were characterized through FT-IR and SEM techniques, which confirmed the hydrogels formation. Detailed rheology was investigated through applying various rheological models like Bingham model, modified Bingham model and Ostwald power law model to the hydrogels which revealed that the hydrogels were appeared to have shear thinning, non-Newtonian behavior and more elastic. Modified Bingham model provided best fit understanding to our prepared materials. The maximum activation energy (Ea) 13.87 kJ/mol was obtained for composition having more Gx compared to others, showing a strong relationship with viscosity. The hydrogels has potential to find applications in food industry, cosmetics, degradation of dyes and removal of heavy metals from waste water.
Collapse
Affiliation(s)
- Muhammad Irfan
- Polymer laboratory, National Center of Excellence in Physical Chemistry, University of Peshawar , KPK, 25120 , Pakistan
| | - Mansoor Khan
- Polymer laboratory, National Center of Excellence in Physical Chemistry, University of Peshawar , KPK, 25120 , Pakistan
| | - Tanzil ur Rehman
- Polymer laboratory, National Center of Excellence in Physical Chemistry, University of Peshawar , KPK, 25120 , Pakistan
| | - Ijaz Ali
- Polymer laboratory, National Center of Excellence in Physical Chemistry, University of Peshawar , KPK, 25120 , Pakistan
| | - Luqman Ali Shah
- Polymer laboratory, National Center of Excellence in Physical Chemistry, University of Peshawar , KPK, 25120 , Pakistan , Phone: +92-91-9216766, Fax: 92-91-9216671, E-mail:
| | - Noor Saeed Khattak
- Polymer laboratory, National Center of Excellence in Physical Chemistry, University of Peshawar , KPK, 25120 , Pakistan
| | - Muhammad Salim Khan
- Polymer laboratory, National Center of Excellence in Physical Chemistry, University of Peshawar , KPK, 25120 , Pakistan
| |
Collapse
|
29
|
Efremov YM, Okajima T, Raman A. Measuring viscoelasticity of soft biological samples using atomic force microscopy. SOFT MATTER 2020; 16:64-81. [PMID: 31720656 DOI: 10.1039/c9sm01020c] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mechanical properties play important roles at different scales in biology. At the level of a single cell, the mechanical properties mediate mechanosensing and mechanotransduction, while at the tissue and organ levels, changes in mechanical properties are closely connected to disease and physiological processes. Over the past three decades, atomic force microscopy (AFM) has become one of the most widely used tools in the mechanical characterization of soft samples, ranging from molecules, cell organoids and cells to whole tissue. AFM methods can be used to quantify both elastic and viscoelastic properties, and significant recent developments in the latter have been enabled by the introduction of new techniques and models for data analysis. Here, we review AFM techniques developed in recent years for examining the viscoelastic properties of cells and soft gels, describe the main steps in typical data acquisition and analysis protocols, and discuss relevant viscoelastic models and how these have been used to characterize the specific features of cellular and other biological samples. We also discuss recent trends and potential directions for this field.
Collapse
Affiliation(s)
- Yuri M Efremov
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA and Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Takaharu Okajima
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Arvind Raman
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
30
|
Shoaib T, Yuh C, Wimmer MA, Schmid TM, Espinosa-Marzal RM. Nanoscale insight into the degradation mechanisms of the cartilage articulating surface preceding OA. Biomater Sci 2020; 8:3944-3955. [DOI: 10.1039/d0bm00496k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Osteoarthritis (OA) is a degenerative disease and leading cause of disability globally. We report the a fundamental study of the mechanisms underlying deterioration of hydrated cartilage in the presence of elevated calcium content preceding OA.
Collapse
Affiliation(s)
- Tooba Shoaib
- Materials Science and Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Catherine Yuh
- Department of Orthopedics
- Rush University Medical Center
- Chicago
- USA
| | - Markus A. Wimmer
- Department of Orthopedics
- Rush University Medical Center
- Chicago
- USA
| | - Thomas M. Schmid
- Department of Orthopedics
- Rush University Medical Center
- Chicago
- USA
| | - Rosa M. Espinosa-Marzal
- Materials Science and Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
- Civil and Environmental Engineering Department
| |
Collapse
|
31
|
Bonyadi SZ, Atten M, Dunn AC. Self-regenerating compliance and lubrication of polyacrylamide hydrogels. SOFT MATTER 2019; 15:8728-8740. [PMID: 31553022 DOI: 10.1039/c9sm01607d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pristine hydrogel surfaces typically have low friction, which is controlled by composition, slip speeds, and immediate slip history. The stiffness of such samples is typically measured with bulk techniques, and is assumed to be homogeneous at the surface. While the surface properties of homogeneous hydrogel samples are generally controlled by composition, the surface also interfaces with the open bath, which distinguishes it from the bulk. In this work, we disrupt as-molded polyacrylamide surfaces with abrasive wear and connect the effects on the surface stiffness and lubrication to the wear events. At both the nanoscale and the microscale, quasistatic indentations reveal a stiffer surface by up to two times following wear events, even considering roughness. Longitudinal experiments with a series of wear episodes interposed with periods of re-equilibration show that increased stiffness is reversible: more compliant surfaces regenerate within 24 hours. The timescale suggests an osmotic swelling mechanism, and we postulate that abrasive wear removes a swollen surface layer, revealing the stiffer bulk. The newly-revealed bulk becomes the surface, which re-swells over time. We quantify the effects on the self-lubricating ability of these surfaces following abrasive wear using micro-tribometry. The lubrication curve shows that robust low friction is maintained, and that the friction becomes less dependent upon the sliding speed. The unique ability of these materials to regenerate swollen surfaces and maintain robust low friction following abrasive wear is promising for designing their slip behavior into aqueous soft robotics components or biomedicine applications.
Collapse
Affiliation(s)
- Shabnam Z Bonyadi
- Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, MechSE @ UIUC, 1206 W Green St, MC 244, Urbana, IL 61801, USA.
| | - Michael Atten
- Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, MechSE @ UIUC, 1206 W Green St, MC 244, Urbana, IL 61801, USA.
| | - Alison C Dunn
- Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, MechSE @ UIUC, 1206 W Green St, MC 244, Urbana, IL 61801, USA.
| |
Collapse
|
32
|
Çolak A, Li B, Blass J, Koynov K, Del Campo A, Bennewitz R. The mechanics of single cross-links which mediate cell attachment at a hydrogel surface. NANOSCALE 2019; 11:11596-11604. [PMID: 31169854 DOI: 10.1039/c9nr01784d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The response of cultured cells to the mechanical properties of hydrogel substrates depends ultimately on the response of single crosslinks to external forces exerted at cell attachment points. We prepared hydrogels by co-polymerization of poly(ethylene glycol diacrylate) (PEGDA) and carboxy poly(ethylene glycol) acrylate (ACPEG-COOH) and confirmed fibroblast spreading on the hydrogel after the ACPEG linker was functionalized with the RGD cell adhesive motif. We performed specific force spectroscopy experiments on the same ACPEG linkers in order to probe the mechanics of single cross-links which mediate the cell attachment and spreading. Measurements were performed with tips of an atomic force microscope (AFM) functionalized with streptavidin and ACPEG linkers functionalized with biotin. We compared hydrogels of varying elastic modulus between 4 and 41 kPa which exhibited significant differences in cell spreading. An effective spring constant for the displacement of single cross-links at the hydrogel surface was derived from the distributions of rupture force and molecular stiffness. A factor of ten in the elastic modulus E of the hydrogel corresponded to a factor of five in the effective spring constant k of single crosslinks, indicating a transition in scaling with the mesh size ξ from the macroscopic E∝ξ-3 to the molecular k∝ξ-2. The quantification of stiffness and deformation at the molecular length scale contributes to the discussion of mechanisms in force-regulated phenomena in cell biology.
Collapse
Affiliation(s)
- Arzu Çolak
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Rubiano A, Galitz C, Simmons CS. Mechanical Characterization by Mesoscale Indentation: Advantages and Pitfalls for Tissue and Scaffolds. Tissue Eng Part C Methods 2019; 25:619-629. [PMID: 30848168 DOI: 10.1089/ten.tec.2018.0372] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Regenerative medicine and tissue engineering are hindered by the lack of consistent measurements and standards for the mechanical characterization of tissue and scaffolds. Indentation methods for soft matter are favored because of their compatibility with small, arbitrarily shaped samples, but contact mechanics models required to interpret data are often inappropriate for soft, viscous materials. In this study, we demonstrate indentation experiments on a variety of human biopsies, animal tissue, and engineered scaffolds, and we explore the complexities of fitting analytical models to these data. Although objections exist to using Hertz contact models for soft, viscoelastic biological materials since soft matter violates their original assumptions, we demonstrate the experimental conditions that enable consistency and comparability (regardless of arguable misappropriation). Appropriate experimental conditions involving sample hydration, the indentation depth, and the ratio of the probe size to sample thickness enable repeatable metrics that are valuable when comparing synthetic scaffolds and host tissue, and bounds on these parameters are carefully described and discussed. We have also identified a reliable quasistatic parameter that can be derived from indentation data to help researchers compare results across materials and experiments. Although Hertz contact mechanics and linear viscoelastic models may constitute oversimplification for biological materials, the reporting of such simple metrics alongside more complex models is expected to support researchers in tissue engineering and regenerative medicine by providing consistency across efforts to characterize soft matter. Impact Statement To engineer replacement tissue requires a deep understanding of its biomechanical properties. Mesoscale indentation (between micron and millimeter length scales) is well-suited to characterize tissue and engineered replacements as it accommodates small, oddly shaped samples. However, it is easy to run afoul of the assumptions for common contact models when working with biological materials. In this study, we describe experimental procedures and modeling approaches that allow researchers to take advantage of indentation for biomechanical characterization while minimizing its weaknesses.
Collapse
Affiliation(s)
- Andrés Rubiano
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, Gainesville, Florida
| | - Carly Galitz
- Department of Mathematics, College of Liberal Arts and Sciences, Gainesville, Florida
| | - Chelsey S Simmons
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, Gainesville, Florida.,J. Crayton Pruitt Family Department of Biomedical Engineering Herbert Wertheim College of Engineering, Gainesville, Florida.,Division of Cardiovascular Medicine, College of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
34
|
Abstract
A computationally lean model for the coarse-grained description of contact mechanics of hydrogels is proposed and characterized. It consists of a simple bead-spring model for the interaction within a chain, potentials describing the interaction between monomers and mold or confining walls, and a coarse-grained potential reflecting the solvent-mediated effective repulsion between non-bonded monomers. Moreover, crosslinking only takes place after the polymers have equilibrated in their mold. As such, the model is able to reflect the density, solvent quality, and the mold hydrophobicity that existed during the crosslinking of the polymers. Finally, such produced hydrogels are exposed to sinusoidal indenters. The simulations reveal a wavevector-dependent effective modulus E * ( q ) with the following properties: (i) stiffening under mechanical pressure, and a sensitivity of E * ( q ) on (ii) the degree of crosslinking at large wavelengths, (iii) the solvent quality, and (iv) the hydrophobicity of the mold in which the polymers were crosslinked. Finally, the simulations provide evidence that the elastic heterogeneity inherent to hydrogels can suffice to pin a compressed hydrogel to a microscopically frictionless wall that is undulated at a mesoscopic length scale. Although the model and simulations of this feasibility study are only two-dimensional, its generalization to three dimensions can be achieved in a straightforward fashion.
Collapse
|
35
|
Shah LA, Javed R, Khan A, Bibi I, Khattak NS, Alam S. One-Pot Synthesis and Rheological Study of Cationic Poly (3-acrylamidopropyltrimethyl ammoniumchloride) P(APTMACl) Polymer Hydrogels. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/zpch-2018-1310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Abstract
The main objective of this research work is to explore the complete and extensive rheological studies of cationic poly (3-acrylamidopropyl trimethyl ammonium chloride) P(APTMACl) hydrogel, prepared by free radical polymerization method at room temperature. Hydrogel was characterized by various techniques such as SEM, FTIR and TGA, whereas rheological properties of synthesized hydrogel were obtained using frequency sweep and frequency curve analysis in different temperature range. Storage modulus (G′) and loss modulus (G′′) were investigated as a function of angular frequencies and shear stress at various temperatures. Rheological models like Bingham plastic model, modified Bingham and Ostwald power law were applied to understand the rheological performance of the gels. Flow curves obtained at different temperatures indicate that P(APTMACl) hydrogel shows a non-Newtonian pseudo plastic behavior. All results concluded that rheology is a powerful tool to study the complete visco-elastic behavior of polymer hydrogel for multiple applications.
Collapse
Affiliation(s)
- Luqman Ali Shah
- National Centre of Excellence in Physical Chemistry, University of Peshawar , Peshawar, KPK, 25120 , Pakistan , Tel.: +92-3455707518, Fax: +92919216671, e-mail:
| | - Rida Javed
- National Centre of Excellence in Physical Chemistry, University of Peshawar , Peshawar, KPK, 25120 , Pakistan
| | - Abbas Khan
- Department of Chemistry , Abdulwali Khan University Mardan , Mardan, KPK , Pakistan
| | - Irum Bibi
- Department of Chemistry , Hazara University Mansehra , Mansehra, KPK , Pakistan
| | - Noor Saeed Khattak
- National Centre of Excellence in Physical Chemistry, University of Peshawar , Peshawar, KPK, 25120 , Pakistan
| | - Sultan Alam
- Department of Chemistry , University of Malakand , Chakdara, KPK, 18800 , Pakistan
| |
Collapse
|
36
|
|
37
|
Booth MJ, Restrepo Schild V, Downs FG, Bayley H. Functional aqueous droplet networks. MOLECULAR BIOSYSTEMS 2018; 13:1658-1691. [PMID: 28766622 DOI: 10.1039/c7mb00192d] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Droplet interface bilayers (DIBs), comprising individual lipid bilayers between pairs of aqueous droplets in an oil, are proving to be a useful tool for studying membrane proteins. Recently, attention has turned to the elaboration of networks of aqueous droplets, connected through functionalized interface bilayers, with collective properties unachievable in droplet pairs. Small 2D collections of droplets have been formed into soft biodevices, which can act as electronic components, light-sensors and batteries. A substantial breakthrough has been the development of a droplet printer, which can create patterned 3D droplet networks of hundreds to thousands of connected droplets. The 3D networks can change shape, or carry electrical signals through defined pathways, or express proteins in response to patterned illumination. We envisage using functional 3D droplet networks as autonomous synthetic tissues or coupling them with cells to repair or enhance the properties of living tissues.
Collapse
Affiliation(s)
- Michael J Booth
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | | | | | | |
Collapse
|
38
|
Lai Y, Hu Y. Probing the swelling-dependent mechanical and transport properties of polyacrylamide hydrogels through AFM-based dynamic nanoindentation. SOFT MATTER 2018; 14:2619-2627. [PMID: 29577116 DOI: 10.1039/c7sm02351k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrogels are composed of a crosslinked polymer network and water. The constitutive behaviors of hydrogels have been modeled based on Flory-Huggins theory. Within this model, the thermodynamic and kinetic parameters are assumed to be of constant values and are typically characterized through swelling tests. Since most hydrogels can absorb a large amount of solvent from the dry state to the swollen state, and the network size and solvent concentration of the hydrogels change significantly, the assumption of constant values of the thermodynamic and kinetic properties as the network swells is questionable. In this work, we have experimentally shown that even for the simple neutral polyacrylamide (PAAm) hydrogels, their mechanical responses cannot be fully described by the Flory-Huggins theory with constant thermodynamic parameters: N (number of chains per unit volume of dry polymers) and χ (polymer-solvent interaction parameter). For a more complete and precise characterization of the hydrogels, we measure the evolving properties of the gels as the network swells. Here, we use dynamic indentation to measure the poroelastic properties (shear modulus G, Poisson's ratio ν and diffusivity D) of the hydrogels under a wide range of swelling ratios. We also use linear perturbation to build the link between G, ν and N, χ, and plot the thermodynamic parameters in the Flory-Huggins theory as a function of the hydrogel swelling ratio. Consequently, the validity of the hydrogel models based on Flory-Huggins theory can be quantitatively examined.
Collapse
Affiliation(s)
- Yang Lai
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
39
|
Urueña JM, McGhee EO, Angelini TE, Dowson D, Sawyer WG, Pitenis AA. Normal Load Scaling of Friction in Gemini Hydrogels. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biotri.2018.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Rubiano A, Delitto D, Han S, Gerber M, Galitz C, Trevino J, Thomas RM, Hughes SJ, Simmons CS. Viscoelastic properties of human pancreatic tumors and in vitro constructs to mimic mechanical properties. Acta Biomater 2018; 67:331-340. [PMID: 29191507 PMCID: PMC5797706 DOI: 10.1016/j.actbio.2017.11.037] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 01/18/2023]
Abstract
UNLABELLED Pancreatic ductal adenocarcinoma (PDAC) is almost universally fatal, in large part due to a protective fibrotic barrier generated by tumor-associated stromal (TAS) cells. This barrier is thought to promote cancer cell survival and confounds attempts to develop effective therapies. We present a 3D in vitro system that replicates the mechanical properties of the PDAC microenvironment, representing an invaluable tool for understanding the biology of the disease. Mesoscale indentation quantified viscoelastic metrics of resected malignant tumors, inflamed chronic pancreatitis regions, and histologically normal tissue. Both pancreatitis (2.15 ± 0.41 kPa, Mean ± SD) and tumors (5.46 ± 3.18 kPa) exhibit higher Steady-State Modulus (SSM) than normal tissue (1.06 ± 0.25 kPa; p < .005). The average viscosity of pancreatitis samples (63.2 ± 26.7 kPa·s) is significantly lower than that of both normal tissue (252 ± 134 kPa·s) and tumors (349 ± 222 kPa·s; p < .005). To mimic this remodeling behavior, PDAC and TAS cells were isolated from human PDAC tumors. Conditioned medium from PDAC cells was used to culture TAS-embedded collagen hydrogels. After 7 days, TAS-embedded gels in control medium reached SSM (1.45 ± 0.12 kPa) near normal pancreas, while gels maintained with conditioned medium achieved higher SSM (3.38 ± 0.146 kPa) consistent with tumors. Taken together, we have demonstrated an in vitro system that recapitulates in vivo stiffening of PDAC tumors. In addition, our quantification of viscoelastic properties suggests that elastography algorithms incorporating viscosity may be able to more accurately distinguish between pancreatic cancer and pancreatitis. STATEMENT OF SIGNIFICANCE Understanding tumor-stroma crosstalk in pancreatic ductal adenocarcinoma (PDAC) is challenged by a lack of stroma-mimicking model systems. To design appropriate models, pancreatic tissue must be characterized with a method capable of evaluating in vitro models as well. Our indentation-based characterization tool quantified the distinct viscoelastic signatures of inflamed resections from pancreatitis, tumors from PDAC, and otherwise normal tissue to inform development of mechanically appropriate engineered tissues and scaffolds. We also made progress toward a 3D in vitro system that recapitulates mechanical properties of tumors. Our in vitro model of stromal cells in collagen and complementary characterization system can be used to investigate mechanisms of cancer-stroma crosstalk in PDAC and to propose and test innovative therapies.
Collapse
Affiliation(s)
- Andres Rubiano
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, United States
| | - Daniel Delitto
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Song Han
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Michael Gerber
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Carly Galitz
- Department of Mathematics, College of Liberal Arts and Sciences, University of Florida, United States
| | - Jose Trevino
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Ryan M Thomas
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Steven J Hughes
- Department of Surgery, College of Medicine, University of Florida, United States
| | - Chelsey S Simmons
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, United States; J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, United States.
| |
Collapse
|
41
|
|
42
|
Shoaib T, Heintz J, Lopez-Berganza JA, Muro-Barrios R, Egner SA, Espinosa-Marzal RM. Stick-Slip Friction Reveals Hydrogel Lubrication Mechanisms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:756-765. [PMID: 28961012 DOI: 10.1021/acs.langmuir.7b02834] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The lubrication behavior of the hydrated biopolymers that constitute tissues in organisms differs from that outlined by the classical Stribeck curve, and studying hydrogel lubrication is a key pathway to understand the complexity of biolubrication. Here, we have investigated the frictional characteristics of polyacrylamide (PAAm) hydrogels with various acrylamide concentrations, exhibiting Young's moduli (E) that range from 1 to 40 kPa, as a function of applied normal load and sliding velocities by colloid probe lateral force microscopy. The speed-dependence of the friction force shows an initial decrease in friction with increasing velocity, while, above a transition velocity V*, friction increases with speed. This study reveals two different boundary lubrication mechanisms characterized by distinct scaling laws. An unprecedented and comprehensive study of the lateral force loops reveals intermittent friction or stick-slip above and below V*, with characteristics that depend on the hydrogel network, applied load, and sliding velocity. Our work thus provides insight into the closely tied parameters governing hydrogel lubrication mechanisms, and stick-slip friction.
Collapse
Affiliation(s)
- Tooba Shoaib
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , 205 North Matthews Avenue, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Joerg Heintz
- Health Care Engineering Systems Center, University of Illinois at Urbana-Champaign , 1206 West Clark Street, Urbana, Illinois 61801, United States
| | - Josue A Lopez-Berganza
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , 205 North Matthews Avenue, Urbana, Illinois 61801, United States
| | - Raymundo Muro-Barrios
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Simon A Egner
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Rosa M Espinosa-Marzal
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , 205 North Matthews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
43
|
|
44
|
Shoaib T, Carmichael A, Corman RE, Shen Y, Nguyen TH, Ewoldt RH, Espinosa-Marzal RM. Self-adaptive hydrogels to mineralization. SOFT MATTER 2017; 13:5469-5480. [PMID: 28812774 DOI: 10.1039/c7sm01058c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mineralized biological tissues, whose behavior can range from rigid to compliant, are an essential component of vertebrates and invertebrates. Little is known about how the behavior of mineralized yet compliant tissues can be tuned by the degree of mineralization. In this work, a synthesis route to tune the structure and mechanical response of agarose gels via ionic crosslinking and mineralization has been developed. A combination of experimental techniques demonstrates that crosslinking via cooperative hydrogen bonding in agarose gels is disturbed by calcium ions, but they promote ionic crosslinking that modifies the agarose network. Further, it is shown that the rearrangement of the hydrogel network helps to accommodate precipitated minerals into the network -in other words, the hydrogel self-adapts to the precipitated mineral- while maintaining the viscoelastic behavior of the hydrogel, despite the reinforcement caused by mineralization. This work not only provides a synthesis route to design biologically inspired soft composites, but also helps to understand the change of properties that biomineralization can cause to biological tissues, organisms and biofilms.
Collapse
Affiliation(s)
- Tooba Shoaib
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Stewart DC, Rubiano A, Dyson K, Simmons CS. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms. PLoS One 2017; 12:e0177561. [PMID: 28582392 PMCID: PMC5459328 DOI: 10.1371/journal.pone.0177561] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/28/2017] [Indexed: 11/30/2022] Open
Abstract
While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17–16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models.
Collapse
Affiliation(s)
- Daniel C. Stewart
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Andrés Rubiano
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Kyle Dyson
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, United States of America
| | - Chelsey S. Simmons
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States of America
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, United States of America
- Division of Cardiovascular Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
46
|
Bonhome-Espinosa AB, Campos F, Rodriguez IA, Carriel V, Marins JA, Zubarev A, Duran JDG, Lopez-Lopez MT. Effect of particle concentration on the microstructural and macromechanical properties of biocompatible magnetic hydrogels. SOFT MATTER 2017; 13:2928-2941. [PMID: 28357436 DOI: 10.1039/c7sm00388a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We analyze the effect of nanoparticle concentration on the physical properties of magnetic hydrogels consisting of polymer networks of the human fibrin biopolymer with embedded magnetic particles, swollen by a water-based solution. We prepared these magnetic hydrogels by polymerization of mixtures consisting mainly of human plasma and magnetic nanoparticles with OH- functionalization. Microscopic observations revealed that magnetic hydrogels presented some cluster-like knots that were connected by several fibrin threads. By contrast, nonmagnetic hydrogels presented a homogeneous net-like structure with only individual connections between pairs of fibers. The rheological analysis demonstrated that the rigidity modulus, as well as the viscoelastic moduli, increased quadratically with nanoparticle content following a square-like function. Furthermore, we found that time for gel point was shorter in the presence of magnetic nanoparticles. Thus, we can conclude that nanoparticles favor the cross-linking process, serving as nucleation sites for the attachment of the fibrin polymer. Attraction between the positive groups of the fibrinogen, from which the fibrin is polymerized, and the negative OH- groups of the magnetic particle surface qualitatively justifies the positive role of the nanoparticles in the enhancement of the mechanical properties of the magnetic hydrogels. Indeed, we developed a theoretical model that semiquantitatively explains the experimental results by assuming the indirect attraction of the fibrinogen through the attached nanoparticles. Due to this attraction the monomers condense into nuclei of the dense phase and by the end of the polymerization process the nuclei (knots) of the dense phase cross-link the fibrin threads, which enhances their mechanical properties.
Collapse
|
47
|
Nalam PC, Lee HS, Bhatt N, Carpick RW, Eckmann DM, Composto RJ. Nanomechanics of pH-Responsive, Drug-Loaded, Bilayered Polymer Grafts. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12936-12948. [PMID: 28221026 DOI: 10.1021/acsami.6b14116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stimuli-responsive polymer films play an important role in the development of smart antibacterial coatings. In this study, we consider complementary architectures of polyelectrolyte films, including a thin chitosan layer (CH), poly(acrylic acid) (PAA) brushes, and a bilayer structure of CH grafted to PAA brushes (CH/PAA) as possible candidates for targeted drug delivery platforms. Atomic force microscopy (AFM) was employed to study the structure-mechanical property relationship for these mono- and bi-layered polymer grafts at pH 7.4 and 4.0, corresponding to physiological and biofilm formation conditions, respectively. Herein, the surface interactions between polymer grafts and the negatively charged silica colloid attached to an AFM lever are considered as representative interactions between the antibacterial coating and a bacteria/biofilm. The bilayered structure of CH/PAA showed significantly reduced adhesive interactions in comparison to pure CH but slightly higher interactions in comparison to PAA films. Among PAA and CH/PAA films, upon grafting CH over the PAA brushes, the normal stiffness increased by 10-fold at pH 7.4 and 20-fold at pH 4.0. Notably, the study also showed that the addition of an antibiotic drug such as multicationic Tobramycin (TOB) impacts the mechanical properties of the antibacterial coatings. Competition between TOB and water molecules for the PAA chains is shown to determine the structural properties of PAA and CH/PAA films loaded with TOB. At high pH (7.4), the TOB molecules, which remain multicationic, strongly interact with polyanionic PAA, thereby reducing the film's compressibility. On the contrary, at low pH (4.0), the water molecules preferentially interact with TOB in comparison to uncharged PAA chains and, upon TOB release, results in a stronger film collapse together with an increase in adhesive interactions between the probe, the surface, and the elastic modulus of the film. The bacterial proliferation on these platforms when compared to the measured mechanical properties shows a direct correlation; hence, understanding nanomechanical properties can provide insights into designing new antibacterial polymer coatings.
Collapse
Affiliation(s)
| | | | - Nupur Bhatt
- Department of Molecular Biology and Genetics, Cornell University , Ithaca, New York 14853-2703, United States
| | | | | | | |
Collapse
|
48
|
Wagner R, Killgore J. Reconstructing the distributed force on an atomic force microscope cantilever. NANOTECHNOLOGY 2017; 28:104002. [PMID: 28085006 PMCID: PMC11404189 DOI: 10.1088/1361-6528/aa5965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A methodology is developed to reconstruct the force applied to an atomic force microscopy (AFM) cantilever given the shape in which it vibrates. This is accomplished by rewriting Bernoulli-Euler beam theory such that the force on the cantilever is approximated as a linear superposition of the theoretical cantilever eigenmodes. The weighting factors in this summation are calculated from the amplitude and phase measured along the length of the cantilever. The accuracy of the force reconstruction is shown to depend on the frequency at which the measurement is performed, the number of discrete points measured along the length of the cantilever, and the signal-to-noise ratio of the measured signal. In contrast to other AFM force reconstruction techniques, this method can reconstruct the distribution of force applied over the length of the AFM cantilever. However, this method performs poorly for localized forces applied to the cantilever, such as is typical of most tip-sample interaction forces. Proof of concept experiments are performed on an electrostatically excited cantilever and the expected force distribution is recovered. This force reconstruction technique offers previously unavailable insight into the distributed forces experienced by an AFM cantilever.
Collapse
Affiliation(s)
- Ryan Wagner
- Applied Chemicals and Materials, Division, National Institute of Standards and Technology Boulder, CO 80305, United States of America
| | | |
Collapse
|
49
|
|
50
|
|