1
|
Park S, Kwon O, Lee H, Cho Y, Yeun J, Yoon SH, Sun SY, Huh Y, Yu WD, Park S, Son N, Jeon S, Lee S, Kim DS, Lee SY, Son JG, Lee KJ, Kim YI, Lim JH, Yoo J, Lee TG, Son MY, Im SG. Xenogeneic-free culture of human intestinal stem cells on functional polymer-coated substrates for scalable, clinical-grade stem cell therapy. Nat Commun 2024; 15:10492. [PMID: 39622824 PMCID: PMC11612142 DOI: 10.1038/s41467-024-54653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024] Open
Abstract
The need for basement membrane extract (BME) with undefined constituents, such as Matrigel, for intestinal stem cell (ISC) culture in traditional systems poses a significant barrier that must be overcome for the development of clinical-grade, scalable, ready-to-use ISCs. Here, we propose a functional polymer-based xenogeneic-free dish for the culture of intestinal stem cells (XF-DISC), ensuring substantially prolonged maintenance of ISCs derived from 3-dimensional human intestinal organoids (ISCs3D-hIO). XF-DISC enables remarkable expandability, exhibiting a 24-fold increase in cell numbers within 30 days, with long-term maintenance of ISCs3D-hIO for more than 30 consecutive passages (>210 days). In addition, XF-DISC is fully compatible with a cell banking system. Notably, human pluripotent stem cell-derived ISCs3D-hIO cultured on XF-DISC are successfully transplanted into intestinal injury and inflammation mouse models, leading to engraftment and regeneration of damaged mouse intestinal epithelium. As a reliable and scalable xenogeneic-free ISC3D-hIO culture method, XF-DISC is highly promising for the development of regenerative ISC therapy for human intestinal diseases.
Collapse
Affiliation(s)
- Seonghyeon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Ohman Kwon
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hana Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Younghak Cho
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jemin Yeun
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Sung Hyun Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Sang Yu Sun
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Yubin Huh
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won Dong Yu
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Sohee Park
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Naeun Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Sojeong Jeon
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Sugi Lee
- Digital Biotech Innovation Center, KRIBB, Daejeon, Republic of Korea
| | - Dae-Soo Kim
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
- Digital Biotech Innovation Center, KRIBB, Daejeon, Republic of Korea
| | - Sun Young Lee
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jin Gyeong Son
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Kyung Jin Lee
- R&D Institute, ORGANOIDSCIENCES Ltd., Seongnam, Republic of Korea
| | - Yong Il Kim
- R&D Institute, ORGANOIDSCIENCES Ltd., Seongnam, Republic of Korea
| | - Jin Hong Lim
- Department of Surgery, Gangnam Severance Hospital, Pancreatobiliary Cancer Clinic, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jongman Yoo
- R&D Institute, ORGANOIDSCIENCES Ltd., Seongnam, Republic of Korea
- Organoid Standards Initiative (OSI), Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- CHA Organoid Research Center, CHA University, Seongnam, Republic of Korea
| | - Tae Geol Lee
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea.
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
- Organoid Standards Initiative (OSI), Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.
- KAIST Stem Cell Center, Department of Chemical and Biomolecular Engineering, Graduate School of Stem Cell & Regenerative Biology, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Yuan P, Chen M, Lu X, Yang H, Wang L, Bai T, Zhou W, Liu T, Yu S. Application of advanced surface modification techniques in titanium-based implants: latest strategies for enhanced antibacterial properties and osseointegration. J Mater Chem B 2024; 12:10516-10549. [PMID: 39311411 DOI: 10.1039/d4tb01714e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Titanium-based implants, renowned for their excellent mechanical properties, corrosion resistance, and biocompatibility, have found widespread application as premier implant materials in the medical field. However, as bioinert materials, they often face challenges such as implant failure caused by bacterial infections and inadequate osseointegration post-implantation. Thus, to address these issues, researchers have developed various surface modification techniques to enhance the surface properties and bioactivity of titanium-based implants. This review aims to outline several key surface modification methods for titanium-based implants, including acid etching, sol-gel method, chemical vapor deposition, electrochemical techniques, layer-by-layer self-assembly, and chemical grafting. It briefly summarizes the advantages, limitations, and potential applications of these technologies, presenting readers with a comprehensive perspective on the latest advances and trends in the surface modification of titanium-based implants.
Collapse
Affiliation(s)
- Pingyun Yuan
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Mi Chen
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Xiaotong Lu
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Hui Yang
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Lan Wang
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Tian Bai
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Wenhao Zhou
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Tao Liu
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Sen Yu
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| |
Collapse
|
3
|
Amna T, Shamshi Hassan M, Algethami JS, Aljuaid A, Alfarsi A, Alnefaie R, Sheikh FA, Khil MS. Characterization of Gold-Enhanced Titania: Boosting Cell Proliferation and Combating Bacterial Infestation. Tissue Eng Regen Med 2024; 21:711-721. [PMID: 38520636 PMCID: PMC11187044 DOI: 10.1007/s13770-024-00630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND In this study an approach was made to efficaciously synthesize gold enhanced titania nanorods by electrospinning. This study aims to address effects of gold enhanced titania nanorods on muscle precursor cells. Additionally, implant related microbial infections are prime cause of various disastrous diseases. So, there is predictable demand for synthesis of novel materials with multifunctional adaptability. METHODS Herein, gold nanoparticles were attached on titania nanorods and described using many sophisticated procedures such as XRD, SEM, EDX and TEM. Antimicrobial studies were probed against Gram-negative Escherichia coli. C2C12 cell lines were exposed to various doses of as-prepared gold enhanced titania nanorods in order to test in vitro cytotoxicity and proliferation. Cell sustainability was assessed through Cell Counting Kit-8 assay at regular intervals. A phase-contrast microscope was used to examine morphology of exposed C2C12 cells and confocal laser scanning microscope was used to quantify cell viability. RESULTS The findings indicate that titania nanorods enhanced with gold exhibit superior antimicrobial efficacy compared to pure titania. Furthermore, newly synthesized gold-enhanced titania nanorods illustrate that cell viability follows a time and concentration dependent pattern. CONCLUSION Consequently, our study provides optimistic findings indicating that titania nanorods adorned with gold hold significant potential as foundational resource for developing forthcoming antimicrobial materials, suitable for applications both in medical and biomedical fields. This work also demonstrates that in addition to being extremely biocompatible, titania nanorods with gold embellishments may be used in a range of tissue engineering applications in very near future.
Collapse
Affiliation(s)
- Touseef Amna
- Department of Biology, Faculty of Science, Al-Baha University, P.O. Box 1988, 65799, Al-Baha, Saudi Arabia.
| | - M Shamshi Hassan
- Department of Chemistry, Faculty of Science, Al-Baha University, P.O. Box 1988, 65799, Al-Baha, Saudi Arabia.
| | - Jari S Algethami
- Department of Chemistry, College of Science and Arts, Najran University, P.O. Box 1988, 11001, Najran, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, 11001, Najran, Saudi Arabia
| | - Alya Aljuaid
- Department of Biology, College of Science and Humanities, Shaqra University, Shaqra, Saudi Arabia
| | - Anas Alfarsi
- Department of Chemistry, Faculty of Science, Al-Baha University, P.O. Box 1988, 65799, Al-Baha, Saudi Arabia
| | - Rasha Alnefaie
- Department of Biology, Faculty of Science, Al-Baha University, P.O. Box 1988, 65799, Al-Baha, Saudi Arabia
| | - Faheem A Sheikh
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Myung-Seob Khil
- Department of Organic Materials and Textile Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
4
|
Wu X, Li L, Tao W, Hong H, Zhang L, Zheng S, Yang R, Li Q, Li X, Qiu H, Chen J. Built-up sodium alginate/chlorhexidine multilayer coating on dental implants with initiating anti-infection and cyto-compatibility sequentially for soft-tissue sealing. BIOMATERIALS ADVANCES 2023; 151:213491. [PMID: 37295195 DOI: 10.1016/j.bioadv.2023.213491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Soft-tissue sealing at transmucosal sites is very important for preventing the invasion of pathogens and maintaining the long-term stability and function of dental implants. However, the colonization of oral pathogens on the implant surface and surrounding soft tissues can disturb the early establishment of soft-tissue sealing and even induce peri-implant infection. The purpose of this study was to construct two antibacterial coatings with 5 or 10 sodium alginate/chlorhexidine bilayers on titanium surfaces using layer-by-layer self-assembly technology to promote soft-tissue sealing. The corresponding chemical composition, surface topography, wettability and release behaviour were investigated to prove that the resultant coating of sodium alginate and chlorhexidine was coated on the porous titanium surface. In-vitro and in-vivo antibacterial results showed that both prepared coatings inhibited or killed the bacteria on their surfaces and the surrounding areas to prevent plaque biofilm formation, especially the coating with 10 bilayers. Although both coatings inhibited the initial adhesion of fibroblasts, the cytocompatibility gradually improved with coating degradation. More importantly, both coatings achieved cell adhesion and proliferation in an in-vitro bacterial environment and effectively alleviated bacteria-induced subcutaneous inflammation in-vivo. Therefore, this study demonstrated that the multilayered coating could prevent implant-related infections in the initial stage of implant surgery and then improve soft-tissue integration with implant devices.
Collapse
Affiliation(s)
- Xiaoqin Wu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Liqi Li
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Wei Tao
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Huilei Hong
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Lijie Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Shunli Zheng
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Runhuai Yang
- Department of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Quanli Li
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Xiangyang Li
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China.
| | - Hua Qiu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China.
| | - Jialong Chen
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China.
| |
Collapse
|
5
|
Multifunctionalized carbon-fiber-reinforced polyetheretherketone implant for rapid osseointegration under infected environment. Bioact Mater 2022; 24:236-250. [PMID: 36606257 PMCID: PMC9803906 DOI: 10.1016/j.bioactmat.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022] Open
Abstract
Carbon fiber reinforced polyetheretherketone (CFRPEEK) possesses a similar elastic modulus to that of human cortical bone and is considered as a promising candidate to replace metallic implants. However, the bioinertness and deficiency of antibacterial activities impede its application in orthopedic and dentistry. In this work, titanium plasma immersion ion implantation (Ti-PIII) is applied to modify CFRPEEK, achieving unique multi-hierarchical nanostructures and active sites on the surface. Then, hybrid polydopamine (PDA)@ZnO-EDN1 nanoparticles (NPs) are introduced to construct versatile surfaces with improved osteogenic and angiogenic properties and excellent antibacterial properties. Our study established that the modified CFRPEEK presented favorable stability and cytocompatibility. Compared with bare CFRPEEK, improved osteogenic differentiation of rat mesenchymal stem cells (BMSCs) and vascularization of human umbilical vein endothelial cells (HUVECs) are found on the functionalized surface due to the zinc ions and EDN1 releasing. In vitro bacteriostasis assay confirms that hybrid PDA@ZnO NPs on the functionalized surface provided an effective antibacterial effect. Moreover, the rat infected model corroborates the enhanced antibiosis and osteointegration of the functionalized CFRPEEK. Our findings indicate that the multilevel nanostructured PDA@ZnO-EDN1 coated CFRPEEK with enhanced antibacterial, angiogenic, and osteogenic capacity has great potential as an orthopedic/dental implant material for clinical application.
Collapse
|
6
|
Antibacterial Adhesion Strategy for Dental Titanium Implant Surfaces: From Mechanisms to Application. J Funct Biomater 2022; 13:jfb13040169. [PMID: 36278638 PMCID: PMC9589972 DOI: 10.3390/jfb13040169] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Dental implants are widely used to restore missing teeth because of their stability and comfort characteristics. Peri-implant infection may lead to implant failure and other profound consequences. It is believed that peri-implantitis is closely related to the formation of biofilms, which are difficult to remove once formed. Therefore, endowing titanium implants with anti-adhesion properties is an effective method to prevent peri-implant infection. Moreover, anti-adhesion strategies for titanium implant surfaces are critical steps for resisting bacterial adherence. This article reviews the process of bacterial adhesion, the material properties that may affect the process, and the anti-adhesion strategies that have been proven effective and promising in practice. This article intends to be a reference for further improvement of the antibacterial adhesion strategy in clinical application and for related research on titanium implant surfaces.
Collapse
|
7
|
Wang B, Bian A, Jia F, Lan J, Yang H, Yan K, Xie L, Qiao H, Chang X, Lin H, Zhang H, Huang Y. "Dual-functional" strontium titanate nanotubes designed based on fusion peptides simultaneously enhancing anti-infection and osseointegration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112650. [PMID: 35034822 DOI: 10.1016/j.msec.2022.112650] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 12/31/2022]
Abstract
Currently, there is an increasing clinical demand for implants that effectively resist bacterial infections while promoting osseointegration. In this study, the fusion peptide technology was used to linearly fuse the antimicrobial peptide (AMP, HHC36) and the bone-promoting peptide (RGD), so that the titanium (Ti)-based implant modified by the polypeptide had the dual function of "antibacterial-promoting bone". Firstly, self-organized vertically-oriented strontium-doped titanium dioxide nanotubes (STN) were manufactured by anodizing and hydrothermal synthesis methods. Secondly, the fusion peptide (HHC36-RGD) was loaded into the tubular structure by a simple vacuum-assisted physical adsorption method. Finally, STN loaded with HHC36-RGD (H-R-STN) was obtained. The characterization results demonstrated that the surface of the H-R-STN had a roughness and hydrophilicity that promoted cell adhesion. Additionally, electrochemical tests showed that H-R-STN coating can reduce the corrosion rate of pure Ti. The fusion peptide and Sr2+ in H-R-STN were released in the initial fast and subsequent slow kinetic model. Expected, H-R-STN can kill more than 99% of clinically common pathogenic bacteria (Staphylococcus aureus and Escherichia coli), and significantly inhibit the formation of bacterial biofilms. Simultaneously, under the synergistic effect of RGD in the fusion peptide and strontium in STN, H-R-STN markedly promoted the adhesion and proliferation of mouse osteoblasts, and significantly promoted osteogenic markers (alkaline phosphatase, runt-related transcription, collagen, mineralization) expression. In summary, the bifunctional titanium-based implant constructed by H-R-STN in this article can effectively prevent bacterial infections and promote early osseointegration. The main advantage of the titanium surface treatment method of the study was that its simplicity, low cost, especially its versatility made it a promising anti-infective bone repair material.
Collapse
Affiliation(s)
- Bingbing Wang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Anqi Bian
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Fenghuan Jia
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Jingpin Lan
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Hao Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ke Yan
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Lei Xie
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Haixia Qiao
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Xiaotong Chang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - He Lin
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Hui Zhang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Yong Huang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China.
| |
Collapse
|
8
|
Lee SJ, Nah H, Ko WK, Lee D, Moon HJ, Lee JS, Heo M, Hwang YS, Bang JB, An SH, Heo DN, Kwon IK. Facile Preparation of β-Cyclodextrin-grafted Chitosan Electrospun Nanofibrous Scaffolds as a Hydrophobic Drug Delivery Vehicle for Tissue Engineering Applications. ACS OMEGA 2021; 6:28307-28315. [PMID: 34723027 PMCID: PMC8552460 DOI: 10.1021/acsomega.1c04481] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/24/2021] [Indexed: 05/05/2023]
Abstract
Despite advances in the bio-tissue engineering area, the technical basis to directly load hydrophobic drugs on chitosan (CTS) electrospun nanofibers (ENs) has not yet been fully established. In this study, we fabricated CTS ENs by using an electrospinning (ELSP) system, followed by surface modification using succinyl-beta-cyclodextrin (β-CD) under mild conditions. The β-CD-modified CTS (βCTS) ENs had slightly increased hydrophobicity compared to pristine CTS ENs as well as decreased residual amine content on the surface. Through FTIR spectroscopy and thermogravimetric analysis (TGA), we characterized the surface treatment physiochemically. In the drug release test, we demonstrated the stable and sustained release of a hydrophobic drug (e.g., dexamethasone) loaded on β-CD ENs. During in vitro biocompatibility assessments, the grafting of β-CD was shown to not reduce cell viability compared to pristine CTS ENs. Additionally, cells proliferated well on β-CD ENs, and this was confirmed by F-actin fluorescence staining. Overall, the material and strategies developed in this study have the potential to load a wide array of hydrophobic drugs. This could be applied as a drug carrier for a broad range of tissue engineering applications.
Collapse
Affiliation(s)
- Sang Jin Lee
- Department
of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Haram Nah
- Department
of Dentistry, Graduate School, Kyung Hee
University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Wan-Kyu Ko
- Department
of Neurosurgery, CHA University, CHA Bundang
Medical Center, Gyeonggi-do 13496, Republic of Korea
| | - Donghyun Lee
- Laboratory
Animal Center, Daegu-Gyeongbuk Medical Innovation
Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Ho-Jin Moon
- Department
of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jae Seo Lee
- Department
of Dentistry, Graduate School, Kyung Hee
University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Min Heo
- Department
of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yu-Shik Hwang
- Department
of Maxillofacial Biomedical Engineering and Institute of Oral Biology,
School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae Beum Bang
- Department
of Dental Education, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemum-gu, Seoul 02447, Republic of Korea
| | - Sang-Hyun An
- Laboratory
Animal Center, Daegu-Gyeongbuk Medical Innovation
Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Dong Nyoung Heo
- Department
of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Il Keun Kwon
- Department
of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
9
|
Han M, Dong Z, Li J, Luo J, Yin D, Sun L, Tao S, Zhen L, Yang J, Li J. Mussel-inspired self-assembly engineered implant coatings for synergistic anti-infection and osteogenesis acceleration. J Mater Chem B 2021; 9:8501-8511. [PMID: 34553738 DOI: 10.1039/d1tb01607e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Implant associated infections (IAI) and poor osseointegration are the two major causes for titanium implant failure, leading to subsequent financial burden and physical sufferings. Therefore, advanced implants with excellent anti-infection and osseointegration performance are needed. In this work, mussel-inspired tannic acid (TA) mediated layer-by-layer (LbL) self-assembly was used for fabricating bonded polyethylene glycol (PEG) and 8DSS (8 repeating units of aspartate-serine-serine) coatings (Ti/8DSS/PEG) on the surface of titanium implants. The coating is designed to simultaneously reduce bacterial adhesion through the super-hydrophilic effect of PEG and promote osseointegration through the effective biomineralization of 8DSS. The obtained Ti/8DSS/PEG implant exhibits superior anti-biofouling capabilities (anti-protein adhesion and anti-bacterial adhesion against S. aureus and E. coli) and excellent biocompatibility. Meanwhile, the Ti/8DSS/PEG implant accelerates osteoblast differentiation and presents significantly better osteogenic ability than bare titanium implants in vivo. This mussel-inspired TA mediated LbL self-assembly method is expected to provide a multifunctional and robust platform for surface engineering in bone repair.
Collapse
Affiliation(s)
- Mingyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. .,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhiyun Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.,Med-X Center for Materials, Sichuan University, Chengdu 610065, P. R. China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Derong Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Lizhong Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. .,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Siying Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. .,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Zhen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. .,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. .,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Tamayo JA, Riascos M, Vargas CA, Baena LM. Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry. Heliyon 2021; 7:e06892. [PMID: 34027149 PMCID: PMC8120950 DOI: 10.1016/j.heliyon.2021.e06892] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/27/2021] [Accepted: 04/21/2021] [Indexed: 11/18/2022] Open
Abstract
Additive Manufacturing (AM) or rapid prototyping technologies are presented as one of the best options to produce customized prostheses and implants with high-level requirements in terms of complex geometries, mechanical properties, and short production times. The AM method that has been more investigated to obtain metallic implants for medical and biomedical use is Electron Beam Melting (EBM), which is based on the powder bed fusion technique. One of the most common metals employed to manufacture medical implants is titanium. Although discovered in 1790, titanium and its alloys only started to be used as engineering materials for biomedical prostheses after the 1950s. In the biomedical field, these materials have been mainly employed to facilitate bone adhesion and fixation, as well as for joint replacement surgeries, thanks to their good chemical, mechanical, and biocompatibility properties. Therefore, this study aims to collect relevant and up-to-date information from an exhaustive literature review on EBM and its applications in the medical and biomedical fields. This AM method has become increasingly popular in the manufacturing sector due to its great versatility and geometry control.
Collapse
Affiliation(s)
- José A. Tamayo
- Grupo Calidad, Metrología y Producción, Instituto Tecnológico Metropolitano (ITM), Medellín, Colombia
| | - Mateo Riascos
- Grupo Calidad, Metrología y Producción, Instituto Tecnológico Metropolitano (ITM), Medellín, Colombia
| | - Carlos A. Vargas
- Grupo Materiales Avanzados y Energía (Matyer), Instituto Tecnológico Metropolitano (ITM), Medellín, Colombia
| | - Libia M. Baena
- Grupo de Química Básica, Aplicada y Ambiente (Alquimia), Instituto Tecnológico Metropolitano (ITM), Medellín, Colombia
| |
Collapse
|
11
|
Guo LL, Cheng YF, Ren X, Gopinath K, Lu ZS, Li CM, Xu LQ. Simultaneous deposition of tannic acid and poly(ethylene glycol) to construct the antifouling polymeric coating on Titanium surface. Colloids Surf B Biointerfaces 2021; 200:111592. [DOI: 10.1016/j.colsurfb.2021.111592] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/11/2022]
|
12
|
Chen J, Hu G, Li T, Chen Y, Gao M, Li Q, Hao L, Jia Y, Wang L, Wang Y. Fusion peptide engineered "statically-versatile" titanium implant simultaneously enhancing anti-infection, vascularization and osseointegration. Biomaterials 2020; 264:120446. [PMID: 33069134 DOI: 10.1016/j.biomaterials.2020.120446] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
Although antimicrobial titanium implants can prevent biomaterial-associated infection (BAI) in orthopedics, they display cytotoxicity and delayed osseointegration. Therefore, versatile implants are desirable for simultaneously inhibiting BAI and promoting osseointegration, especially "statically-versatile" ones with nonessential external stimulations for facilitating applications. Herein, we develop a "statically-versatile" titanium implant by immobilizing an innovative fusion peptide (FP) containing HHC36 antimicrobial sequence and QK angiogenic sequence via sodium borohydride reduction promoted Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC-SB), which shows higher immobilization efficiency than traditional CuAAC with sodium ascorbate reduction (CuAAC-SA). The FP-engineered implant exhibits over 96.8% antimicrobial activity against four types of clinical bacteria (S. aureus, E. coli, P. aeruginosa and methicillin-resistant S. aureus), being stronger than that modified with mixed peptides. This can be mechanistically attributed to the larger bacterial accessible surface area of HHC36 sequence. Notably, the implant can simultaneously enhance cellular proliferation, up-regulate expressions of angiogenesis-related genes/proteins (VEGF and VEGFR-2) of HUVECs and osteogenesis-related genes/proteins (ALP, COL-1, RUNX-2, OPN and OCN) of hBMSCs. In vivo assay with infection and non-infection bone-defect model reveals that the FP-engineered implant can kill 99.63% of S. aureus, and simultaneously promote vascularization and osseointegration. It is believed that this study presents an excellent strategy for developing "statically-versatile" orthopedic implants.
Collapse
Affiliation(s)
- Junjian Chen
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510006, China
| | - Guansong Hu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China; School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Tianjie Li
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Yunhua Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China; School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Qingtao Li
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510006, China
| | - Lijing Hao
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Yongguang Jia
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Lin Wang
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510006, China.
| | - Yingjun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China; School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
13
|
You JB, Lee B, Choi Y, Lee CS, Peter M, Im SG, Lee SS. Nanoadhesive layer to prevent protein absorption in a poly(dimethylsiloxane) microfluidic device. Biotechniques 2020; 69:404-409. [PMID: 32372656 DOI: 10.2144/btn-2020-0025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Poly(dimethylsiloxane) (PDMS) is widely used as a microfluidics platform material; however, it absorbs various molecules, perturbing specific chemical concentrations in microfluidic channels. We present a simple solution to prevent adsorption into a PDMS microfluidic device. We used a vapor-phase-deposited nanoadhesive layer to seal PDMS microfluidic channels. Absorption of fluorescent molecules into PDMS was efficiently prevented in the nanolayer-treated PDMS device. Importantly, when cultured in a nanolayer-treated PDMS device, yeast cells exhibited the expected concentration-dependent response to a mating pheromone, including mating-specific morphological and gene expression changes, while yeast cultured in an untreated PDMS device did not properly respond to the pheromone. Our method greatly expands microfluidic applications that require precise control of molecule concentrations.
Collapse
Affiliation(s)
- Jae Bem You
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Byungjin Lee
- Department of Chemical Engineering & Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yunho Choi
- Department of Chemical & Biomolecular Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering & Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Matthias Peter
- Institute for Biochemistry, ETH Zürich, Zürich, CH 8093, Switzerland
| | - Sung Gap Im
- Department of Chemical & Biomolecular Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Sung Sik Lee
- Institute for Biochemistry, ETH Zürich, Zürich, CH 8093, Switzerland.,Scientific Center for Optical & Electron Microscopy (ScopeM), ETH Zürich, Zürich, CH 8093, Switzerland
| |
Collapse
|
14
|
Abstract
At the biointerface where materials and microorganisms meet, the organic and synthetic worlds merge into a new science that directs the design and safe use of synthetic materials for biological applications. Vapor deposition techniques provide an effective way to control the material properties of these biointerfaces with molecular-level precision that is important for biomaterials to interface with bacteria. In recent years, biointerface research that focuses on bacteria-surface interactions has been primarily driven by the goals of killing bacteria (antimicrobial) and fouling prevention (antifouling). Nevertheless, vapor deposition techniques have the potential to create biointerfaces with features that can manipulate and dictate the behavior of bacteria rather than killing or deterring them. In this review, we focus on recent advances in antimicrobial and antifouling biointerfaces produced through vapor deposition and provide an outlook on opportunities to capitalize on the features of these techniques to find unexplored connections between surface features and microbial behavior.
Collapse
Affiliation(s)
- Trevor B. Donadt
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Rong Yang
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
15
|
Youn YH, Lee SJ, Choi GR, Lee HR, Lee D, Heo DN, Kim BS, Bang JB, Hwang YS, Correlo VM, Reis RL, Im SG, Kwon IK. Simple and facile preparation of recombinant human bone morphogenetic protein-2 immobilized titanium implant via initiated chemical vapor deposition technique to promote osteogenesis for bone tissue engineering application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:949-958. [PMID: 30948131 DOI: 10.1016/j.msec.2019.03.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 09/13/2018] [Accepted: 03/13/2019] [Indexed: 01/07/2023]
Abstract
Over the past few decades, titanium (Ti) implants have been widely used to repair fractured bones. To promote osteogenesis, immobilization of osteoinductive agents, such as recombinant human bone morphogenic protein-2 (rhBMP2), onto the Ti surface is required. In this study, we prepared rhBMP2 immobilized on glycidyl methacrylate (GMA) deposited Ti surface through initiated chemical vapor deposition (iCVD) technique. After preparation, the bio-functionalized Ti surface was characterized by physicochemical analysis. For in vitro analysis, the developed Ti was evaluated by cell proliferation, alkaline phosphatase activity, calcium deposition, and real-time polymerase chain reaction to verify their osteogenic activity against human adipose-derived stem cells (hASCs). The GMA deposited Ti surface was found to effectively immobilize a large dose of rhBMP2 as compared to untreated Ti. Additionally, rhBMP2 immobilized on Ti showed significantly enhanced osteogenic differentiation and increased calcium deposition with nontoxic cell viability. These results clearly confirm that our strategy may provide a simple, solvent-free strategy to prepare an osteoinductive Ti surface for bone tissue engineering applications.
Collapse
Affiliation(s)
- Yun Hee Youn
- Interdisciplinary Program for Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, GMR, Portugal
| | - Sang Jin Lee
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Go Ro Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hak Rae Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Donghyun Lee
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Byung-Soo Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jae Beum Bang
- Department of Dental Education, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yu-Shik Hwang
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Vitor M Correlo
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, GMR, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, GMR, Portugal; Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
16
|
Physicochemical characterization of albumin immobilized on different TiO2 surfaces for use in implant materials. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.12.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Chouirfa H, Bouloussa H, Migonney V, Falentin-Daudré C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater 2019; 83:37-54. [PMID: 30541702 DOI: 10.1016/j.actbio.2018.10.036] [Citation(s) in RCA: 498] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/09/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
Implanted biomaterials play a key role in the current success of orthopedic and dental procedures. Pure titanium and its alloys are the most commonly used materials for permanent implants in contact with bone. However, implant-related infections remain among the leading reasons for failure. The most critical pathogenic event in the development of infection on biomaterials is biofilm formation, which starts immediately after bacterial adhesion. In the last decade, numerous studies reported the ability of titanium surface modifications and coatings to minimize bacterial adhesion, inhibit biofilm formation and provide effective bacterial killing to protect implanted biomaterials. In the present review, the different strategies to prevent infection onto titanium surfaces are reported: surface modification and coatings by antibiotics, antimicrobial peptides, inorganic antibacterial metal elements and antibacterial polymers. STATEMENT OF SIGNIFICANCE: Implanted biomaterials play a key role in the current success of orthopedic and dental procedures. Pure titanium and its alloys are the most commonly used materials for permanent implants in contact with bone. Microbial infection is one of the main causes of implant failure. Currently, the global infection risk is 2-5% in orthopedic surgery. Numerous solutions exist to render titanium surfaces antibacterial. The LBPS team is an expert on the functionalization of titanium surfaces by using bioactive polymers to improve the biologiocal response. In this review, the different strategies to prevent infection are reported onto titanium and titanium alloy surfaces such as surface modification by antibiotics, antimicrobial peptides, inorganic antibacterial metal elements and antibacterial polymers.
Collapse
|
18
|
Li R, Lian X, Wang Z, Wang Y. Radical Cation Initiated Surface Polymerization on Photothermal Rubber for Smart Antifouling Coatings. Chemistry 2018; 25:183-188. [PMID: 30325541 DOI: 10.1002/chem.201804526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Indexed: 12/13/2022]
Abstract
Biofouling on surfaces of various materials has attracted considerable attention in biomedical and marine industries. Surface grafting based on covalent surface-initiated polymerization offers a popular route to address this problem by providing diverse robust polymer coatings capable of preventing the biofouling in complex environments. However, the existing methods for synthesizing polymer coatings are complicated and rigorous, or require special catalysts, greatly limiting their practical applications. In this work, a radical-cation-based surface-initiated polymerization protocol to graft the surface of darkened trans-polyisoprene (TPI) rubber with a thermo-responsive smart polymer, poly(N-isopropylacrylamide) (PNIPAM), through a simple iodine doping process is reported. A series of characterizations were performed to provide adequate evidence to confirm the successful grafting. Combining the thermal sensitivity of PNIPAM with the photothermal conversion ability of the darkened rubber, efficient bacteria-killing and antifouling capabilities were successfully achieved as a result of temperature-controlled iodine release and switchable amphiphilicity of PNIPAM.
Collapse
Affiliation(s)
- Ruiting Li
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xiaodong Lian
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Zhen Wang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yapei Wang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
19
|
Yoo J, Birke A, Kim J, Jang Y, Song SY, Ryu S, Kim BS, Kim BG, Barz M, Char K. Cooperative Catechol-Functionalized Polypept(o)ide Brushes and Ag Nanoparticles for Combination of Protein Resistance and Antimicrobial Activity on Metal Oxide Surfaces. Biomacromolecules 2018; 19:1602-1613. [DOI: 10.1021/acs.biomac.8b00135] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Alexander Birke
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz,, Duesbergweg 10-14, 55128 Mainz, Germany
| | | | - Yeongseon Jang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | | | | | | | | | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz,, Duesbergweg 10-14, 55128 Mainz, Germany
| | | |
Collapse
|
20
|
The use of heparin chemistry to improve dental osteogenesis associated with implants. Carbohydr Polym 2016; 157:1750-1758. [PMID: 27987891 DOI: 10.1016/j.carbpol.2016.11.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/08/2016] [Accepted: 11/20/2016] [Indexed: 01/06/2023]
Abstract
In this study, we designed a hybrid Ti by heparin modifying the Ti surface followed by Growth/differentiation factor-5 (GDF-5) loading. After that, products were characterized by physicochemical analysis. Quantitative analysis of functionalized groups was also confirmed. The release behavior of GDF-5 grafted samples was confirmed for up to 21days. The surface modification process was found to be successful and to effectively immobilize GDF-5 and provide for its sustained release behavior. As an in vitro test, GDF-5 loaded Ti showed significantly enhanced osteogenic differentiation with increased calcium deposition under nontoxic conditions against periodontal ligament stem cells (PDLSc). Furthermore, an in vivo result showed that GDF-5 loaded Ti had a significant influence on new bone formation in a rabbit model. These results clearly confirmed that our strategy may suggest a useful paradigm by inducing osseo-integration as a means to remodeling and healing of bone defects for restorative procedures in dentistry.
Collapse
|
21
|
Heo DN, Ko WK, Lee HR, Lee SJ, Lee D, Um SH, Lee JH, Woo YH, Zhang LG, Lee DW, Kwon IK. Titanium dental implants surface-immobilized with gold nanoparticles as osteoinductive agents for rapid osseointegration. J Colloid Interface Sci 2016; 469:129-137. [DOI: 10.1016/j.jcis.2016.02.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
|
22
|
Wang PX, Dong YS, Lu XW, Du J, Wu ZQ. Marrying mussel inspired chemistry with photoiniferters: a novel strategy for surface functionalization. Polym Chem 2016. [DOI: 10.1039/c6py01223j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We demonstrated a novel strategy of marrying mussel inspired chemistry with photoiniferters for surface functionalization.
Collapse
Affiliation(s)
- Pei-Xi Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yi-Shi Dong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xiao-Wen Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Jun Du
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Zhao-Qiang Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|