1
|
Kathyola TA, Chang SY, Willneff EA, Willis CJ, Cibin G, Wilson P, Kroner AB, Shotton EJ, Dowding PJ, Schroeder SLM. How non-aqueous media direct the reaction of Ca(OH) 2 with CO 2 to different forms of CaCO 3: operando mid-infrared and X-ray absorption spectroscopy studies. Phys Chem Chem Phys 2025; 27:9668-9675. [PMID: 40260471 DOI: 10.1039/d4cp04774e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Time-resolved structural changes taking place during the reaction of Ca(OH)2 and CO2 forming different CaCO3 polymorphs, in aqueous and non-aqueous environments, were recorded operando using mid-infrared (mid-IR) and X-ray absorption near-edge structure (XANES) spectroscopy. Results show that Ca(OH)2 directly transforms into calcite in a pure water dispersion. In methanolic media with low water content, calcium di-methylcarbonate (Ca(OCOOCH3)2) is formed, which is hydrolysed to amorphous calcium carbonate (ACC) and vaterite in the presence of sufficient water. The addition of toluene shifts the equilibrium composition further from Ca(OH)2 to ACC and the crystalline forms of CaCO3, probably by affecting the activity of the methoxide intermediate. It can facilitate the formation of aragonite. No Ca(OH)2 conversion was detected in pure ethanol, isopropanol and toluene dispersions, except for nanoscale Ca(OH)2 in ethanolic dispersion, which formed calcium di-ethylcarbonate (Ca(OCOOCH2CH3)2). Our findings underline that vaterite formation is driven by the solution and solid state chemistry related to the reaction via alkoxides and carbonic acid esters of the alcohols, rather than the nucleation process in solution. The alcohol in these systems does not just act as a solvent but as a reactant.
Collapse
Affiliation(s)
- Thokozile A Kathyola
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK.
- Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, UK
| | | | | | - Colin J Willis
- Infineum UK Limited, Abingdon, Oxfordshire, OX13 6BB, UK
| | | | - Paul Wilson
- Infineum UK Limited, Abingdon, Oxfordshire, OX13 6BB, UK
| | - Anna B Kroner
- Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, UK
| | | | | | - Sven L M Schroeder
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK.
- Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, UK
| |
Collapse
|
2
|
Mordini D, Besirske P, García-Ruiz JM, Montalti M, Menichetti A. Localized Light-Induced Precipitation of Inorganic Materials. Chempluschem 2025; 90:e202400487. [PMID: 39576467 DOI: 10.1002/cplu.202400487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/07/2024] [Indexed: 01/16/2025]
Abstract
The light-induced control in the fabrication of materials is a field in continuous development. So far, photo-induced processes have been used mostly for organic polymeric materials. However, there is a recent, increasing interest in exploring the possibility of using these techniques to induce the precipitation of inorganic materials. This perspective paper outlines the main principles of the light-induced precipitation of inorganic materials, focusing on the recent papers published in this field. The description of the mechanisms and the materials involved in these light-induced processes highlight their many possibilities and future challenges, which could pave the way for significant advancements in this exciting technology.
Collapse
Affiliation(s)
- Dario Mordini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna
| | - Patricia Besirske
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Juan Manuel García-Ruiz
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018, San Sebastian, Spain
- Instituto Andaluz de Ciencias de la Tierra, CSIC, Av. De las Palmeras 4, 18151-, Armilla, Granada, Spain
| | - Marco Montalti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Dario Campana 71, 47922, Rimini, Italy
| | - Arianna Menichetti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Dario Campana 71, 47922, Rimini, Italy
| |
Collapse
|
3
|
Kathyola T, Willneff EA, Willis CJ, Dowding PJ, Schroeder SLM. Reactive CaCO 3 Formation from CO 2 and Methanolic Ca(OH) 2 Dispersions: Transient Methoxide Salts, Carbonate Esters and Sol-Gels. ACS PHYSICAL CHEMISTRY AU 2024; 4:555-567. [PMID: 39364354 PMCID: PMC11447961 DOI: 10.1021/acsphyschemau.4c00041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 10/05/2024]
Abstract
A combination of ex situ and in situ characterization techniques was used to determine the mechanism of calcium carbonate (CaCO3) formation from calcium hydroxide (Ca(OH)2) dispersions in methanol/water (CH3OH/H2O) systems. Mid-infrared (mid-IR) analysis shows that in the absence of carbon dioxide (CO2) Ca(OH)2 establishes a reaction equilibrium with CH3OH, forming calcium hydroxide methoxide (Ca(OH)(OCH3)) and calcium methoxide (Ca(OCH3)2). Combined ex situ mid-IR, thermogravimetric analysis (TGA), X-ray diffraction (XRD), X-ray absorption spectroscopy and scanning electron microscopy examination of the reaction product formed in the presence of CO2 reveals the formation of calcium dimethylcarbonate (Ca(OCOOCH3)2). This strongly suggests that carbonation takes place by reaction with the Ca(OCH3)2 formed from a Ca(OH)2 and CH3OH reaction. Time-resolved XRD indicates that in the presence of H2O the Ca(OCOOCH3)2 ester releases CH3OH and CO2, forming ACC, which subsequently transforms into vaterite and then calcite. TGA reveals that thermal decomposition of Ca(OCOOCH3)2 in the absence of H2O mainly leads to the reformation of Ca(OCH3)2, but this is accompanied by a significant parallel reaction that releases dimethylether (CH3OCH3) and CO2. CaCO3 is the final product in both decomposition pathways. For CH3OH/H2O mixtures containing more than 50 mol % H2O, direct formation of calcite from Ca(OH)2 becomes the dominant pathway, although the formation of some Ca(OCOOCH3)2 was still evident in the in situ mid-IR spectra of 20 and 40 mol % CH3OH systems. In the presence of ≤20 mol % H2O, hydrolysis of the ester led to the formation of an ACC sol-gel. In both the 90 and 100 mol % CH3OH systems, diffusion-limited ACC → vaterite → calcite transformations were observed. Traces of aragonite were also detected. We believe that this is the first time that these reaction pathways during the carbonation of Ca(OH)2 in a methanolic phase have been systematically and experimentally characterized.
Collapse
Affiliation(s)
- Thokozile
A. Kathyola
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
- Diamond
Light Source, Harwell UK Science & Innovation Campus, Didcot OX11 0DE, U.K.
| | - Elizabeth A. Willneff
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
- School
of Design, University of Leeds, Leeds LS2 9JT, U.K.
| | | | | | - Sven L. M. Schroeder
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
- Diamond
Light Source, Harwell UK Science & Innovation Campus, Didcot OX11 0DE, U.K.
| |
Collapse
|
4
|
Bi S, Ye J, Tian P, Ning G. Insight from Boric Acid into Bioskeleton Formation: Inscribed Circle Effect on the Edge-Base Plate Growth. Inorg Chem 2024; 63:12740-12751. [PMID: 38941498 DOI: 10.1021/acs.inorgchem.4c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Complex morphologies in nature often arise from the assembly of elemental building blocks, leading to diverse and intricate structures. Understanding the mechanisms that govern the formation of these complex morphologies remains a significant challenge. In particular, the edge-base plate growth of biogenic crystals plays a crucial role in directing the development of intricate bioskeleton morphologies. However, the factors and regulatory processes that govern edge-base plate growth remain insufficiently understood. Inspired by biological skeletons and based on the soluble property of boric acid (BA) in both water and alcohols, we obtained a series of novel BA morphologies, including coccolith, and anemone biological skeletons. Here, we unveil the "inscribed circle effect", a concise mathematical model that reveals the underlying causative factors and regulatory mechanisms driving edge-base plate growth. Our findings illuminate how variations in solvent environments can exert control over the edge-base plate growth pathways, thereby resulting in the formation of diverse and complex morphologies. This understanding holds significant potential for guiding the chemical synthesis of bioskeleton materials.
Collapse
Affiliation(s)
- Shengnan Bi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Peng Tian
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| |
Collapse
|
5
|
Ruiz-Agudo C, Cölfen H. Exploring the Potential of Nonclassical Crystallization Pathways to Advance Cementitious Materials. Chem Rev 2024; 124:7538-7618. [PMID: 38874016 PMCID: PMC11212030 DOI: 10.1021/acs.chemrev.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Understanding the crystallization of cement-binding phases, from basic units to macroscopic structures, can enhance cement performance, reduce clinker use, and lower CO2 emissions in the construction sector. This review examines the crystallization pathways of C-S-H (the main phase in PC cement) and other alternative binding phases, particularly as cement formulations evolve toward increasing SCMs and alternative binders as clinker replacements. We adopt a nonclassical crystallization perspective, which recognizes the existence of critical intermediate steps between ions in solution and the final crystalline phases, such as solute ion associates, dense liquid phases, amorphous intermediates, and nanoparticles. These multistep pathways uncover innovative strategies for controlling the crystallization of binding phases through additive use, potentially leading to highly optimized cement matrices. An outstanding example of additive-controlled crystallization in cementitious materials is the synthetically produced mesocrystalline C-S-H, renowned for its remarkable flexural strength. This highly ordered microstructure, which intercalates soft matter between inorganic and brittle C-S-H, was obtained by controlling the assembly of individual C-S-H subunits. While large-scale production of cementitious materials by a bottom-up self-assembly method is not yet feasible, the fundamental insights into the crystallization mechanism of cement binding phases presented here provide a foundation for developing advanced cement-based materials.
Collapse
Affiliation(s)
- Cristina Ruiz-Agudo
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| |
Collapse
|
6
|
Jembere AL, Genet MB, Sintayehu B. Evaluation of precipitated CaCO 3 produced from locally available limestone as a reinforcement filler for PVC pipe. Sci Rep 2024; 14:11234. [PMID: 38755188 PMCID: PMC11099005 DOI: 10.1038/s41598-024-58594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/01/2024] [Indexed: 05/18/2024] Open
Abstract
The current experimental work aimed at developing PCC through two major process steps: dissolution and precipitation, using raw materials domestically available as SL, which are intensively used in construction inputs. The pH level was the decisive parameter used to determine the time required to complete the dissolution and carbonation processes during precipitation. The optimal pH levels were found to be 13 for dissolution and 7.1 for precipitation, respectively. The produced PCC was characterized based on chemical analysis, crystallinity, and morphology, showing an increment of CaCO3 content exceeding 99%, sharper crystal peaks, and predominantly calcite PCC. The compatibility of the PCC was assessed by incorporating 25%, 50%, 75%, and 100% of PCC with commercial filler, followed by selected mechanical tests, such as stress at yield, density, and elongation at break. The results indicated that mixing ratios of 25%, 50%, and 75% of PCC with the commercial filler met the standards, with stress at a yield above 45 MPa and density within the range of 1.35 to 1.46 g/cm3. However, complete substitution slightly lowered these properties. Nevertheless, the elongation at break was acceptable at all treatment levels.
Collapse
Affiliation(s)
- Addis Lemessa Jembere
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Melkamu Birlie Genet
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Bantelay Sintayehu
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
7
|
Toffolo MB, Pinkas I, Gallo AÁ, Boaretto E. Crystallinity assessment of anthropogenic calcites using Raman micro-spectroscopy. Sci Rep 2023; 13:12971. [PMID: 37563197 PMCID: PMC10415260 DOI: 10.1038/s41598-023-39842-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Anthropogenic calcite is a form of calcium carbonate produced through pyrotechnological activities, and it is the main component of materials such as lime binders and wood ash. This type of calcite is characterized by a significantly lower degree of crystallinity compared with its geogenic counterparts, as a result of different formation processes. The crystallinity of calcite can be determined using infrared spectroscopy in transmission mode, which allows decoupling particle size effect from atomic order and thus effectively distinguish anthropogenic and geogenic calcites. On the contrary, Raman micro-spectroscopy is still in the process of developing a reference framework for the assessment of crystallinity in calcite. Band broadening has been identified as one of the proxies for crystallinity in the Raman spectra of geogenic and anthropogenic calcites. Here we analyze the full width at half maximum of calcite bands in various geogenic and anthropogenic materials, backed against an independent crystallinity reference based on infrared spectroscopy. Results are then used to assess the crystallinity of anthropogenic calcite in archaeological lime binders characterized by different states of preservation, including samples affected by the formation of secondary calcite, and tested on micromorphology thin sections in which lime binders are embedded in sediments.
Collapse
Affiliation(s)
- Michael B Toffolo
- Geochronology and Geology Program, Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo Sierra de Atapuerca 3, 09002, Burgos, Spain.
| | - Iddo Pinkas
- Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl Street, 7610001, Rehovot, Israel
| | - Ana Álvaro Gallo
- Geochronology and Geology Program, Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo Sierra de Atapuerca 3, 09002, Burgos, Spain
| | - Elisabetta Boaretto
- D-REAMS Radiocarbon Dating Laboratory, Scientific Archaeology Unit, Weizmann Institute of Science, 234 Herzl Street, 7610001, Rehovot, Israel
| |
Collapse
|
8
|
Chelazzi D, Baglioni P. From Nanoparticles to Gels: A Breakthrough in Art Conservation Science. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10744-10755. [PMID: 37487238 PMCID: PMC10413966 DOI: 10.1021/acs.langmuir.3c01324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Indexed: 07/26/2023]
Abstract
Cultural heritage is a crucial resource to increase our society's resilience. However, degradation processes, enhanced by environmental and anthropic risks, inevitably affect works of art, hindering their accessibility and socioeconomic value. In response, interfacial and colloidal chemistry has proposed valuable solutions over the past decades, overcoming the limitations of traditional restoration materials and granting cost- and time-effective remedial conservation of the endangered artifacts. Ranging from inorganic nanoparticles to hybrid composites and soft condensed matter (gels, microemulsions), a wide palette of colloidal systems has been made available to conservators worldwide, targeting the consolidation, cleaning, and protection of works of art. The effectiveness and versatility of the proposed solutions allow the safe and effective treatment of masterpieces belonging to different cultural and artistic productions, spanning from classic ages to the Renaissance and modern/contemporary art. Despite these advancements, the formulation of materials for the preservation of cultural heritage is still an open, exciting field, where recent requirements include coping with the imperatives of the Green Deal to foster the production of sustainable, low-toxicity, and environmentally friendly systems. This review gives a critical overview starting from pioneering works up to the latest advancements in colloidal systems for art conservation, a challenging topic where effective solutions can be transversal to multiple sectors even beyond cultural heritage preservation, from the pharmaceutical and food industry, to cosmetics, tissue engineering, and detergency.
Collapse
Affiliation(s)
- David Chelazzi
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Piero Baglioni
- CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Rodriguez-Navarro C, Monasterio-Guillot L, Burgos-Ruiz M, Ruiz-Agudo E, Elert K. Unveiling the secret of ancient Maya masons: Biomimetic lime plasters with plant extracts. SCIENCE ADVANCES 2023; 9:eadf6138. [PMID: 37075113 PMCID: PMC10115411 DOI: 10.1126/sciadv.adf6138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ancient Maya produced some of the most durable lime plasters on Earth, yet how this was achieved remains a secret. Here, we show that ancient Maya plasters from Copan (Honduras) include organics and have a calcite cement with meso-to-nanostructural features matching those of calcite biominerals (e.g., shells). To test the hypothesis that the organics could play a similar toughening role as (bio)macromolecules in calcium carbonate biominerals, we prepared plaster replicas adding polysaccharide-rich bark extracts from Copan's local trees following an ancient Maya building tradition. We show that the replicas display similar features as the organics-containing ancient Maya plasters and demonstrate that, as in biominerals, in both cases, their calcite cement includes inter- and intracrystalline organics that impart a marked plastic behavior and enhanced toughness while increasing weathering resistance. Apparently, the lime technology developed by ancient Maya, and likely other ancient civilizations that used natural organic additives to prepare lime plasters, fortuitously exploited a biomimetic route for improving carbonate binders performance.
Collapse
|
10
|
Song M, Lan T, Meng Y, Ju T, Chen Z, Shen P, Du Y, Deng Y, Han S, Jiang J. Effect of microbially induced calcium carbonate precipitation treatment on the solidification and stabilization of municipal solid waste incineration fly ash (MSWI FA) - Based materials incorporated with metakaolin. CHEMOSPHERE 2022; 308:136089. [PMID: 36028130 DOI: 10.1016/j.chemosphere.2022.136089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Microbially induced calcium carbonate precipitation (MICP) has been considered as a potential treatment method for the solidification and stabilization of municipal solid waste incineration fly ash (MSWI-FA).The main obstacle for MICP treatment of MSWI-FA is the harsh environment which causes the bacteria fail to maintain their urease activity effectively, thus decreases the solidification effect and material properties. Currently, there is no research on blending metakaolin (MK) as a protective carrier for the bacteria into the MSWI-FA. The effect of the MICP process on the curing properties of MSWI FA-based cementing materials in the MK and MSWI-FA reaction system is largely unknown. In this study, different mixing ratios of MK were used to adjust the Ca/Si/Al ratio in the mixture, and the properties of the cementing material (MSWI-FA mixed with MK and water) and the MICP-treated material (MSWI-FA mixed with MK and bacterial solution) were investigated. This study contributes to find suitable additives to promote effect of MICP on the solidification of MSWI-FA and the improvement of material properties. The results showed when the mixing ratio of MSWI FA was 90 wt %, the MICP treatment was able to increase the compressive strength of the samples up to 0.99 Mp, and the compressive strength of samples reached 1.46 MPa, when the mixing ratio of MSWI FA was 80 wt %. Though the metakaolin did not show inhibitory effect on the urease activity, the compressive strength of the MICP-treated samples did not further show a significant increase when the mixture of MK was increased from 20 wt% to 30 wt%. Further investigation suggested that MICP activities of bacteria utilizing calcium sources could have an impact on the formation/deformation of calcium-containing hydration products in the reaction system, thus affecting the mechanical and chemical properties of MSWI based materials. MICP treatment is effective in the immobilization of certain heavy metals of MSWI FA, especially for Pb, Cd and Zn. This research shows the potential of using MICP to treat the MSWI fly ash, meanwhile, it is necessary to find suitable reaction system with the proper additives in order to further improve the properties of the MSWI FA based material in terms of mechanical performance.
Collapse
Affiliation(s)
- Mengzhu Song
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tian Lan
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuan Meng
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tongyao Ju
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhehong Chen
- China Tiegong Investment & Construction Group Co., Ltd, China
| | - Pengfei Shen
- China Tiegong Investment & Construction Group Co., Ltd, China
| | - Yufeng Du
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yongchi Deng
- China Tiegong Investment & Construction Group Co., Ltd, China
| | - Siyu Han
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
11
|
Yu BS, Yang HE, Sirohi R, Sim SJ. Novel effective bioprocess for optimal CO 2 fixation via microalgae-based biomineralization under semi-continuous culture. BIORESOURCE TECHNOLOGY 2022; 364:128063. [PMID: 36195219 DOI: 10.1016/j.biortech.2022.128063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
In this study, the effects of microalgae-based biomineralization in a semi-continuous process (M-BSP) on biomass productivity and CO2 fixation rate were investigated. M-BSP significantly improved biomass production and CO2 fixation rate at the second stage of induction by sustaining relatively high photosynthetic rate without exposure to toxic substances (e.g., chlorellin) from aging cells using the microalgae Chlorella HS2. In conventional systems, cells do not receive irradiated light evenly, and many cells age and burst because of the long culture period. In contrast, in the M-BSP, the photosynthesis efficiency increases and biomass production is not inhibited because most of the cells can be harvested during shorter culture period. The accumulated biomass production and CO2 fixation rate of the HS2 cells cultured under M-BSP increased by 4.67- (25 ± 1.09 g/L) and 10.9-fold (30.29 ± 1.79 g/L day-1), respectively, compared to those cultured without the CaCl2 treatment.
Collapse
Affiliation(s)
- Byung Sun Yu
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Ha Eun Yang
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
12
|
Lu J, Ruan S, Liu Y, Wang T, Zeng Q, Yan D. Morphological characteristics of calcium carbonate crystallization in CO 2 pre-cured aerated concrete. RSC Adv 2022; 12:14610-14620. [PMID: 35702215 PMCID: PMC9105646 DOI: 10.1039/d2ra01901a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/08/2022] [Indexed: 01/28/2023] Open
Abstract
Early-stage CO2 curing technology for alkaline construction materials (such as cement concrete) has gained increasing interest owing to the advantages of material properties improvement and high potential of CO2 sinking. Less attention, however, has been paid to morphological characteristics of CaCO3 in carbonated cement concrete. The crystal structure and micromorphology of CaCO3 in an early-age aerated concrete (AC) cured under CO2 gas pressures of 0.1, 1, and 2 bar were investigated. The fabricated AC has a high CO2 sorption capacity (∼35 g CO2 per 100 g cement in a 100 mm cube). The morphological characteristics of CaCO3 were statistically analyzed in terms of long-axis length (b), short-axis length (a), and aspect ratio (K = b/a). As CO2 pressure increases, b is almost unchanged from 0.8–1.8 μm, a decreases from 0.7 to 0.4 μm, and, consequently, K increases from 1.3 to 2.5. The different CaCO3 crystal morphologies in AC are ascribed to the CO2 pressure-associated crystal transformation processes: low gas pressure induces a symmetric CaCO3 growth, while high gas pressure causes a faster calcite growth at the crystal tip ends. The findings would deepen the understanding of CaCO3 crystal formation under different CO2 curing pressures for tuning the microstructure of CO2-cured cement concrete. The work reports different morphological characteristics of CaCO3 formed in an early-age aerated concrete (AC) under different CO2 pressures, uncovering the physicochemical mechanisms of carbonation of cement-based materials affected by CO2 curing.![]()
Collapse
Affiliation(s)
- Jiayu Lu
- College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Shengqian Ruan
- College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Yi Liu
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang, 310027, China
| | - Tao Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang, 310027, China
| | - Qiang Zeng
- College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Dongming Yan
- College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
13
|
The Protection of Building Materials of Historical Monuments with Nanoparticle Suspensions. HERITAGE 2021. [DOI: 10.3390/heritage4040218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Marble and limestone have been extensively used as building materials in historical monuments. Environmental, physical, chemical and biological factors contribute to stone deterioration. The rehabilitation of stone damage and the delay of further deterioration is of utmost importance. Inorganic nanoparticles having chemical and crystallographic affinity with building materials is very important for the formation of protective coatings or overlayers. In the present work, we have tested the possibility of treating calcitic materials with suspensions of amorphous calcium carbonate (am-CaCO3, ACC) and amorphous silica (AmSiO2). Pentelic marble (PM) was selected as the test material to validate the efficiency of the nanoparticle suspension treatment towards dissolution in undersaturated solutions and slightly acidic pH (6.50). Suspensions of ACC and AnSiO2 nanoparticles were prepared by spontaneous precipitation from supersaturated solutions and by tetraethyl orthosilicate (TEOS) hydrolysis, respectively. The suspensions were quite stable (nine days for ACC and months for AmSiO2). ACC and Am SiO2 particles were deposited on the surface of powdered PM. The rates of dissolution of PM were measured in solutions undersaturated with respect to calcite at a constant pH of 6.50. For specimens treated with ACC and AmSiO2 suspensions, the measured dissolution rates were significantly lower. The extent of the rate of dissolution reduction was higher for AmSiO2 particles on PM. Moreover, application of the nanoparticles on the substrate during their precipitation was most efficient method.
Collapse
|
14
|
Bhattacharjee A, Kumar R, Sharma KP. Composite Porous Liquid for Recyclable Sequestration, Storage and In Situ Catalytic Conversion of Carbon Dioxide at Room Temperature. CHEMSUSCHEM 2021; 14:3303-3314. [PMID: 34196112 DOI: 10.1002/cssc.202100931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Permanent pores combined with fluidity renders flow processability to porous liquids otherwise not seen in porous solids. Although porous liquids have been utilized for sequestration of different gases and their separation, there is still a dearth of studies for deploying in situ chemical reactions to convert adsorbed gases into utility chemicals. Here, we show the design and development of a new type of solvent-less and hybrid (meso-)porous liquid composite, which, as demonstrated for the first time, can be used for in situ carbon mineralization of adsorbed CO2 . The recyclable porous liquid composite comprising polymer-surfactant modified hollow silica nanorods and carbonic anhydrase enzyme not only sequesters (5.5 cm3 g-1 at 273 K and 1 atm) and stores CO2 but is also capable of driving an in situ enzymatic reaction for hydration of CO2 to HCO3 - ion, subsequently converting it to CaCO3 due to reaction with pre-dissolved Ca2+ . Light and electron microscopy combined with X-ray diffraction reveals the nucleation and growth of calcite and aragonite crystals. Moreover, the liquid-like property of the porous composite material can be harnessed by executing the same reaction via diffusion of complimentary Ca2+ and HCO3 - ions through different compartments separated by an interfacial channel. These studies provide a proof of concept of deploying chemical reactions within porous liquids for developing utility chemical from adsorbed molecules.
Collapse
Affiliation(s)
- Archita Bhattacharjee
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Raj Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Kamendra P Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
15
|
Baglioni M, Poggi G, Chelazzi D, Baglioni P. Advanced Materials in Cultural Heritage Conservation. Molecules 2021; 26:molecules26133967. [PMID: 34209620 PMCID: PMC8271397 DOI: 10.3390/molecules26133967] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Cultural Heritage is a crucial socioeconomic resource; yet, recurring degradation processes endanger its preservation. Serendipitous approaches in restoration practice need to be replaced by systematically addressing conservation issues through the development of advanced materials for the preservation of the artifacts. In the last few decades, materials and colloid science have provided valid solutions to counteract degradation, and we report here the main highlights in the formulation and application of materials and methodologies for the cleaning, protection and consolidation of works of art. Several types of artifacts are addressed, from murals to canvas paintings, metal objects, and paper artworks, comprising both classic and modern/contemporary art. Systems, such as nanoparticles, gels, nanostructured cleaning fluids, composites, and other functional materials, are reviewed. Future perspectives are also commented, outlining open issues and trends in this challenging and exciting field.
Collapse
|
16
|
Ma L, Zhao L, Li Y, Zhang J. Controllable crystallization of pure vaterite using CO2-storage material and different Ca2+ sources. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Mitra A, Sreedharan SM, Singh R. Concrete Crack Restoration Using Bacterially Induced Calcium Metabolism. Indian J Microbiol 2021; 61:229-233. [PMID: 33927464 DOI: 10.1007/s12088-020-00916-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/08/2020] [Indexed: 12/28/2022] Open
Abstract
Concrete structures are prone to develop cracks and cause devastation. Repair and renovation are not enough to ensure complete eradication of crack development. The entire process is costly and laborious. The microbiologically induced calcium carbonated precipitation can be effective in restoring the cracks. The calcium-based nutrients along with specific bacterial strain have been used in the present investigation. The pellets of calcium as per Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy are deposited in the cracks of the concrete over a period of 7 days of incubation. The presence of bacteria in the calcium precipitates as demonstrated by scanning electron microscope provides adequate strength and adhering quality to the pellets. The effective filling of cracks is confirmed with the help ultrasonic pulse velocity test also. Since, elephantine heritage and high sky buildings have high maintenance costs, the use of present technique will cut down the cost and duration of restoration. Supplementary Information The online version of this article (10.1007/s12088-020-00916-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ashim Mitra
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh India
| | - Smitha Mony Sreedharan
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh India
| | - Rajni Singh
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh India
| |
Collapse
|
18
|
Othman Z, Mohren R, Cillero-Pastor B, Shen Z, Lacroix Y, Guttenplan A, Tahmasebi Birgani Z, Eijssen L, Luider T, van Rijt S, Habibovic P. Comparative proteomic analysis of human mesenchymal stromal cell behavior on calcium phosphate ceramics with different osteoinductive potential. Mater Today Bio 2020; 7:100066. [PMID: 32642640 PMCID: PMC7334494 DOI: 10.1016/j.mtbio.2020.100066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 01/13/2023] Open
Abstract
In recent years, synthetic calcium phosphate (CaP) ceramics have emerged as an alternative to bone grafts in the treatment of large critical-sized bone defects. To successfully substitute for bone grafts, materials must be osteoinductive, that is, they must induce osteogenic differentiation and subsequent bone formation in vivo. Although a set of osteoinductive CaP ceramics has been developed, the precise biological mechanism by which a material directs cells toward osteogenesis and the role of individual chemical and physical properties in this mechanism remain incompletely understood. Here, we used proteomics to compare serum protein adsorption to two CaP ceramics with different osteoinductive potential, namely an osteoinductive β-tricalcium phosphate (TCP) and a non-osteoinductive hydroxyapatite (HA). Moreover, we analyzed the protein profiles of human mesenchymal stromal cells (hMSCs) cultured on these two ceramics. The serum protein adsorption experiments in the absence of cells highlighted the proteins that are highly abundant in the serum and/or have a high affinity to CaP. The extent of adsorption was suggested to be affected by the available surface area for binding and by the ion exchange dynamics on the surface. Several proteins were uniquely expressed by hMSCs on TCP and HA surfaces. Proteins identified as enriched on TCP were involved in processes related to wound healing, cell proliferation, and the production of extracellular matrix. On the other hand, proteins that were enriched on HA were involved in processes related to protein production, translation, localization, and secretion. In addition, we performed a separate proteomics analysis on TCP, HA, and two biphasic calcium phosphates with known osteoinductive potential and performed a clustering analysis on a combination of a set of proteins found to be enriched on osteoinductive materials with a set of proteins already known to be involved in osteogenesis. This yielded two protein networks potentially involved in the process of osteoinduction – one consisting of collagen fragments and collagen-related enzymes and a second consisting of endopeptidase inhibitors and regulatory proteins. The results of this study show that protein profiling can be a useful tool to help understand the effect of biomaterial properties on the interactions between a biomaterial and a biological system. Such understanding will contribute to the design and development of improved biomaterials for (bone) regenerative therapies.
Collapse
Affiliation(s)
- Z. Othman
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - R.J.C. Mohren
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - B. Cillero-Pastor
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Z. Shen
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Y.S.N.W. Lacroix
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - A.P.M. Guttenplan
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Z. Tahmasebi Birgani
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - L. Eijssen
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- Department of Psychiatry and Neuropsychology, MHeNs School for Mental Health and Neuroscience Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - T.M. Luider
- Laboratory of Neuro-Oncology and Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - S. van Rijt
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - P. Habibovic
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
- Corresponding author.
| |
Collapse
|
19
|
Clarà Saracho A, Haigh SK, Hata T, Soga K, Farsang S, Redfern SAT, Marek E. Characterisation of CaCO 3 phases during strain-specific ureolytic precipitation. Sci Rep 2020; 10:10168. [PMID: 32576861 PMCID: PMC7311398 DOI: 10.1038/s41598-020-66831-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/21/2020] [Indexed: 11/30/2022] Open
Abstract
Numerous microbial species can selectively precipitate mineral carbonates with enhanced mechanical properties, however, understanding exactly how they achieve this control represents a major challenge in the field of biomineralisation. We have studied microbial induced calcium carbonate (CaCO3) precipitation (MICP) in three ureolytic bacterial strains from the Sporosarcina family, including S. newyorkensis, a newly isolated microbe from the deep sea. We find that the interplay between structural water and strain-specific amino acid groups is fundamental to the stabilisation of vaterite and that, under the same conditions, different isolates yield distinctly different polymorphs. The latter is found to be associated with different urease activities and, consequently, precipitation kinetics, which change depending on pressure-temperature conditions. Further, CaCO3 polymorph selection also depends on the coupled effect of chemical treatment and initial bacterial concentrations. Our findings provide new insights into strain-specific CaCO3 polymorphic selection and stabilisation, and open up promising avenues for designing bio-reinforced geo-materials that capitalise on the different particle bond mechanical properties offered by different polymorphs.
Collapse
Affiliation(s)
| | - Stuart K Haigh
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Toshiro Hata
- Department of Engineering, Hiroshima University, Hiroshima, 739-8527, Japan
| | - Kenichi Soga
- Department of Engineering, University of California-Berkeley, California, 94720, Berkeley, USA
| | - Stefan Farsang
- Department of Earth Sciences, University of Cambridge, CB2 3EQ, Cambridge, UK
| | - Simon A T Redfern
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Ewa Marek
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| |
Collapse
|
20
|
Maazouz Y, Rentsch I, Lu B, Santoni BLG, Doebelin N, Bohner M. In vitro measurement of the chemical changes occurring within β-tricalcium phosphate bone graft substitutes. Acta Biomater 2020; 102:440-457. [PMID: 31756552 DOI: 10.1016/j.actbio.2019.11.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/18/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
Several mechanisms proposed to explain the osteoinductive potential of calcium phosphates involve surface mineralization ("bioactivity") and mention the occurrence of concentration gradients between the inner and the outer part of the implanted material. Determining the evolution of the local chemical environment occurring inside the pores of an implanted bone graft substitute (BGS) is therefore highly relevant. A quantitative and fast method was developed to measure the chemical changes occurring within the pores of β-Tricalcium Phosphate (β-TCP) granules incubated in a simulated body fluid. A factorial design of experiment was used to test the effect of particle size, specific surface area, microporosity, and purity of the β-TCP granules. Large pH, calcium and phosphate concentration changes were observed inside the BGS and lasted for several days. The kinetics and magnitude of these changes (up to 2 pH units) largely depended on the processing and properties of the granules. Interestingly, processing parameters that increased the kinetics and magnitude of the local chemical changes are parameters considered to favor calcium phosphate osteoinduction, suggesting that the model might be useful to predict the osteoinductive potential of BGSs. STATEMENT OF SIGNIFICANCE: Recent results suggest that in situ mineralization of biomaterials (polymers, ceramics, metals) might be key in their ability to trigger ectopic bone formation. This is the reason why the effect on in situ mineralization of various synthesis parameters of β-tricalcium phosphate granules was studied (size, microporosity, specific surface area, and Ca/P molar ratio). To the best of our knowledge, this is the first article devoted to the chemical changes occurring within the pores of a bone graft substitute. We believe that the manuscript will prove to be highly important in the design and mechanistic understanding of drug-free osteoinductive biomaterials.
Collapse
|
21
|
Li Y, Liu W, Xing F, Wang S, Tang L, Lin S, Dong Z. Carbonation of the synthetic calcium silicate hydrate (C-S-H) under different concentrations of CO2: Chemical phases analysis and kinetics. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
A Review of the Assessment Tools for the Efficiency of Nanolime Calcareous Stone Consolidant Products for Historic Structures. BUILDINGS 2019. [DOI: 10.3390/buildings9110235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present review paper, the term “effectiveness” of nanolime consolidants was redefined by presenting a suite of efficiency parameters/material properties that must be assessed in order to compare available treatments for weathered calcareous stones for historic buildings. Assessment tools in the form of characterization methods for synthetized nanolime dispersions, artificial weathering techniques, and treated calcareous stones were correlated and discussed, giving rise to non-destructive testing methods. The effect of the application method and dispersion medium was also presented. It was concluded that the presented suite of efficiency parameters and characterization techniques can be applied to further studies for the development of mass consolidation procedures in order to reach penetration depths well beyond the 5.5 cm threshold achieved up to date.
Collapse
|
23
|
Synthetic calcium carbonate improves the effectiveness of treatments with nanolime to contrast decay in highly porous limestone. Sci Rep 2019; 9:15278. [PMID: 31649279 PMCID: PMC6813344 DOI: 10.1038/s41598-019-51836-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/09/2019] [Indexed: 11/08/2022] Open
Abstract
Three synthetized polymorphs of calcium carbonate have been tested in combination with the suspension of nanolime particles as potential consolidating agents for contrasting stone decay and overcome some of the limitations of nanolime agents when applied to substrates with large porosity. The modifications induced in the pore network of the Maastricht limestone were analyzed with microscopy and in a non-invasive fashion with small angle neutron scattering and synchrotron radiation micro-computed tomography. A reduction in porosity and pore accessibility at the micrometric scale was detected with the latter technique, and ascribed to the improved pore-filling capacity of the consolidation agent containing CaCO3 particles. These were found to be effectively bound to the carbonated nanolime, strengthening the pore-matrix microstructure. Penetration depth and positive effect on porosity were found to depend on the particle size and shape. Absence of significant changes in the fractal nature of the pore surface at the nanoscale, was interpreted as indication of the negligible contribution of nanolime-based materials in the consolidation of stones with large porosity. However, the results indicate that in such cases, their effectiveness may be enhanced when used in combination with CaCO3 particles, owing to the synergic effect of chemical/structural compatibility and particle size distribution.
Collapse
|
24
|
Basic Protocol for On-Site Testing Consolidant Nanoparticles on Stone Cultural Heritage. HERITAGE 2019. [DOI: 10.3390/heritage2040168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Currently the application of consolidants based on nanoparticles is common practice among restorers. Consolidants should not modify the properties of original materials according to international recommendation, which requires previous studies to decide the optimal option. The selection must be based on empirical results, and not only in the expertise of the restorer, because the consolidant’s effectiveness is influenced by its own properties and other factors such as the characteristics of the artwork (elemental composition, porosity, texture, etc.) and its context (temperature, relative humidity, etc.). Moreover, new protocols must be sustainable and compatible with on-site restoration. A new protocol to test consolidant nanoparticles has been designed and assessed. This is based on easy trials and low-cost techniques—digital microscope, colorimeter, peeling test and ultrasound—that could be employed by restorers in situ. In this paper, different consolidant nanoparticles were tested on stones from two historical quarries. The first treatment was SiO2 nanoparticles, and the second, a new nanocomposite of Ca(OH)2 and ZnO quantum dots that allows us to measure penetration depth easily and discern the treated areas under UV lights. This second treatment was the best option for the studied stones, validating the protocol designed for the choice of consolidants.
Collapse
|
25
|
Historical and Scientific Investigations into the Use of Hydraulic Lime in Korea and Preventive Conservation of Historic Masonry Structures. SUSTAINABILITY 2019. [DOI: 10.3390/su11195169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In addition to non-hydraulic lime, natural hydraulic lime (NHL) is a material widely used to repair and restore historic buildings. In Korea, although lime mortars have been used as important building materials for thousands of years, the sharing of information and technology with other countries has been relatively inactive. While not recognizing the suitability of NHL as a repair material, undesirable materials such as Portland cement have often been selected due to their high strength, ease of use, and hydraulicity, but unfortunately, this has resulted in the irreversible damage of existing elements, especially in historic masonry structures. This study aims to emphasize the need for hydraulic lime for the sustainable preservation of Korea’s architectural heritage. To justify its use, historical and scientific investigations were conducted. By reviewing literature written in the 15th century, it was found that dark limestone was used to manufacture building lime. Based on this, the chemical compositions of different-colored limestone were experimentally analyzed, and significant evidence was found that dicalcium silicate was formed in the quicklime manufactured by calcining blue-green and green-black limestone. Prior to the 19th century, it would have been impossible to record the chemical compositions of various types of limestone, except for visual observations such as color differences. Fortunately, this important information was recorded in royal documents and has been handed down to the present day. Thus, knowledge from 500 years ago could be scientifically interpreted using the latest technology. The link between the historical record and the experimental results shown in this study can contribute to the selection of a suitable material. This is a method for the preventive preservation of historic masonry structures, as it can significantly lower the possibility of future damages caused by efflorescence and freeze–thaw.
Collapse
|
26
|
Camerini R, Poggi G, Chelazzi D, Ridi F, Giorgi R, Baglioni P. The carbonation kinetics of calcium hydroxide nanoparticles: A Boundary Nucleation and Growth description. J Colloid Interface Sci 2019; 547:370-381. [PMID: 30974252 DOI: 10.1016/j.jcis.2019.03.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
HYPOTHESIS The reaction of Ca(OH)2 with CO2 to form CaCO3 (carbonation process) is of high interest for construction materials, environmental applications and art preservation. Here, the "Boundary Nucleation and Growth" model (BNGM) was adopted for the first time to consider the effect of the surface area of Ca(OH)2 nanoparticles on the carbonation kinetics. EXPERIMENTS The carbonation of commercial and laboratory-prepared particles' dispersions was monitored by Fourier Transform Infrared Spectroscopy, and the BNGM was used to analyze the data. The contributions of nucleation and growth of CaCO3 were evaluated separately. FINDINGS During carbonation the boundary regions of the Ca(OH)2 particles are densely populated with CaCO3 nuclei, and transform early with subsequent thickening of slab-like regions centered on the original boundaries. A BNGM limiting case equation was thus used to fit the kinetics, where the transformation rate decreases exponentially with time. The carbonation rate constants, activation energies, and linear growth rate were calculated. Particles with larger size and lower surface area show a decrease of the rate at which the non-nucleated grains between the boundaries transform, and an increase of the ending time of Ca(OH)2 transformation. The effect of temperature on the carbonation kinetics and on the CaCO3 polymorphs formation was evaluated.
Collapse
Affiliation(s)
- R Camerini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - G Poggi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - D Chelazzi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - F Ridi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - R Giorgi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - P Baglioni
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.
| |
Collapse
|
27
|
Tomasin P, Mondin G, Zuena M, El Habra N, Nodari L, Moretto LM. Calcium alkoxides for stone consolidation: Investigating the carbonation process. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.12.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Girginova PI, Galacho C, Veiga R, Santos Silva A, Candeias A. Inorganic Nanomaterials for Restoration of Cultural Heritage: Synthesis Approaches towards Nanoconsolidants for Stone and Wall Paintings. CHEMSUSCHEM 2018; 11:4168-4182. [PMID: 30346657 DOI: 10.1002/cssc.201801982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/17/2018] [Indexed: 06/08/2023]
Abstract
The synthesis of inorganic nanostructured materials for the consolidation of stone and wall paintings is reviewed. To begin, a description of the methods most commonly used to prepare nanoconsolidants is provided, particularly in the frame of colloid chemistry. Some concepts of the carbonation mechanism as well as the transport properties of some of these materials are addressed. An overview of the synthesis methods together with some of the application particularities of the distinct consolidants are presented thereafter. Furthermore, the requisites for efficient consolidants and some drawbacks of the nanoconsolidants are discussed.
Collapse
Affiliation(s)
- Penka I Girginova
- HERCULES Laboratory, University of Évora, Palácio do Vimioso, Largo Marquês de Marialva, 8, 7000-809, Évora, Portugal
- National Laboratory for Civil Engineering-LNEC, Av. do Brasil 101, 1700-066, Lisbon, Portugal
| | - Cristina Galacho
- HERCULES Laboratory, University of Évora, Palácio do Vimioso, Largo Marquês de Marialva, 8, 7000-809, Évora, Portugal
- School of Sciences and Technology-Chemistry Department, University of Évora, Rua Romão Ramalho 59, 7000-671, Évora, Portugal
| | - Rosário Veiga
- National Laboratory for Civil Engineering-LNEC, Av. do Brasil 101, 1700-066, Lisbon, Portugal
| | - António Santos Silva
- National Laboratory for Civil Engineering-LNEC, Av. do Brasil 101, 1700-066, Lisbon, Portugal
| | - António Candeias
- HERCULES Laboratory, University of Évora, Palácio do Vimioso, Largo Marquês de Marialva, 8, 7000-809, Évora, Portugal
- School of Sciences and Technology-Chemistry Department, University of Évora, Rua Romão Ramalho 59, 7000-671, Évora, Portugal
| |
Collapse
|
29
|
Martínez-Ramírez S, Higueruela LR, Cascales I, Martín-Garrido M, Blanco-Varela MT. New approach to nanolime synthesis at ambient temperature. SN APPLIED SCIENCES 2018. [DOI: 10.1007/s42452-018-0122-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
30
|
Rodriguez-Navarro C, Ruiz-Agudo E, Burgos-Cara A, Elert K, Hansen EF. Crystallization and Colloidal Stabilization of Ca(OH) 2 in the Presence of Nopal Juice (Opuntia ficus indica): Implications in Architectural Heritage Conservation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10936-10950. [PMID: 28931282 DOI: 10.1021/acs.langmuir.7b02423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydrated lime (Ca(OH)2) is a vernacular art and building material produced following slaking of CaO in water. If excess water is used, a slurry, called lime putty, forms, which has been the preferred craftsman selection for formulating lime mortars since Roman times. A variety of natural additives were traditionally added to the lime putty to improve its quality. The mucilaginous juice extracted from nopal cladodes has been and still is used as additive incorporated in the slaking water for formulation of lime mortars and plasters, both in ancient Mesoamerica and in the USA Southwest. Little is known on the ultimate effects of this additive on the crystallization and microstructure of hydrated lime. Here, we show that significant changes in habit and size of portlandite crystals occur following slaking in the presence of nopal juice as well as compositionally similar citrus pectin. Both additives contain polysaccharides made up of galacturonic acid and neutral sugar residues. The carboxyl (and hydroxyl) functional groups present in these residues and in their alkaline degradation byproducts, which are deprotonated at the high pH (12.4) produced during lime slaking, strongly interact with newly formed Ca(OH)2 crystals acting in two ways: (a) as nucleation inhibitors, promoting the formation of nanosized crystals, and (b) as habit modifiers, favoring the development of planar habit following their adsorption onto positively charged (0001)Ca(OH)2 faces. Adsorption of polysaccharides on Ca(OH)2 crystals prevents the development of large particles, resulting in a very reactive, nanosized portlandite slurry. It also promotes steric stabilization, which limits aggregation, thus enhancing the colloidal nature of the lime putty. Overall, these effects are very favorable for the preparation of highly plastic lime mortars with enhanced properties.
Collapse
Affiliation(s)
- Carlos Rodriguez-Navarro
- Departamento Mineralogia y Petrologia, Universidad de Granada , Fuentenueva s/n, 18002 Granada, Spain
| | - Encarnacion Ruiz-Agudo
- Departamento Mineralogia y Petrologia, Universidad de Granada , Fuentenueva s/n, 18002 Granada, Spain
| | - Alejandro Burgos-Cara
- Departamento Mineralogia y Petrologia, Universidad de Granada , Fuentenueva s/n, 18002 Granada, Spain
| | - Kerstin Elert
- Departamento Mineralogia y Petrologia, Universidad de Granada , Fuentenueva s/n, 18002 Granada, Spain
| | - Eric F Hansen
- The Getty Conservation Institute , 1200 Getty Center Drive, Suite 700, Los Angeles, California 90049-1684, United States
| |
Collapse
|
31
|
Macías-Sánchez E, Willinger MG, Pina CM, Checa AG. Transformation of ACC into aragonite and the origin of the nanogranular structure of nacre. Sci Rep 2017; 7:12728. [PMID: 28983081 PMCID: PMC5629257 DOI: 10.1038/s41598-017-12673-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/18/2017] [Indexed: 11/09/2022] Open
Abstract
Currently a basic tenet in biomineralization is that biominerals grow by accretion of amorphous particles, which are later transformed into the corresponding mineral phase. The globular nanostructure of most biominerals is taken as evidence of this. Nevertheless, little is known as to how the amorphous-to-crystalline transformation takes place. To gain insight into this process, we have made a high-resolution study (by means of transmission electron microscopy and other associated techniques) of immature tablets of nacre of the gastropod Phorcus turbinatus, where the proportion of amorphous calcium carbonate is high. Tablets displayed a characteristic nanoglobular structure, with the nanoglobules consisting of an aragonite core surrounded by amorphous calcium carbonate together with organic macromolecules. The changes in composition from the amorphous to the crystalline phase indicate that there was a higher content of organic molecules within the former phase. Within single tablets, the crystalline cores were largely co-oriented. According to their outlines, the internal transformation front of the tablets took on a complex digitiform shape, with the individual fingers constituting the crystalline cores of nanogranules. We propose that the final nanogranular structure observed is produced during the transformation of ACC into aragonite.
Collapse
Affiliation(s)
- Elena Macías-Sánchez
- Department of Stratigraphy and Palaeontology, University of Granada, Granada, 18071, Spain.,Andalusian Earth Sciences Institute (IACT), UGR - CSIC, Avd. de las Palmeras 4, Armilla, 18100, Granada, Spain
| | - Marc G Willinger
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin, 14195, Germany.,Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Carlos M Pina
- Department of Crystallography and Mineralogy, Complutense University of Madrid, Geosciences Institute (IGEO) (UCM-CSIC), E-28040, Madrid, Spain
| | - Antonio G Checa
- Department of Stratigraphy and Palaeontology, University of Granada, Granada, 18071, Spain. .,Andalusian Earth Sciences Institute (IACT), UGR - CSIC, Avd. de las Palmeras 4, Armilla, 18100, Granada, Spain.
| |
Collapse
|
32
|
Abstract
Abstract
Cultural heritage objects and structures are subjected to a range of weathering processes that result in their decay and destruction. To slow weathering rates and/or mitigate their effects, several protective and consolidant materials have been used during conservation interventions. Treatments based on organic polymers and alkoxysilanes, as well as some traditional inorganic treatments such as lime water, are in many cases either incompatible and/or show limited efficacy. In recent years nanolimes, that is, dispersions of Ca(OH)2 nanoparticles in alcohol (as well as alcohol dispersions of other alkaline-earth metal hydroxide nanoparticles), have emerged as an effective and compatible conservation material. Here we review recent advances in the synthesis and application of nanolimes in the field of heritage conservation. First, we present an overview of lime-based conservation materials, with an emphasis on the earliest reports on the use of nanolimes. Subsequently, we present the different methods used to synthesize nanolimes. Afterwards, we describe their carbonation and its consolidation effects. Practical application of nanolimes in heritage conservation are summarized, including consolidation of stone, ceramics, lime mortars and mural painting, as well as deacidification of paper, canvas, and wood. The advantages and limitations of this novel nanotechnology for cultural heritage conservation are outlined. Finally, some conclusions and areas for future research are presented.
Collapse
Affiliation(s)
- Carlos Rodriguez-Navarro
- Department of Mineralogy and Petrology , University of Granada , Fuentenueva s/n , 18002 Granada , Spain
| | - Encarnación Ruiz-Agudo
- Department of Mineralogy and Petrology , University of Granada , Fuentenueva s/n , 18002 Granada , Spain
| |
Collapse
|