1
|
Freko S, Weiß LJK, Simmel FC, Wolfrum B. Direct Single-Impact Electrochemistry Using Silver Nanoparticles as a "Digital" Readout for Biosensing Applications. ACS Sens 2025. [PMID: 40515724 DOI: 10.1021/acssensors.5c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
Direct single-impact electrochemistry is a rapidly evolving analytical method based on the collision of redox-active species, such as silver nanoparticles (AgNPs), with a biased microelectrode. The collision results in distinct current spikes due to partial or complete oxidation of a particle. In recent years, this technique has been applied in various biosensing strategies as a "digital" readout technique. It offers the quantification of analytes using discrete signals, as opposed to conventional amplitude-based methods. In this review, we explore the latest advancements in direct single-impact electrochemistry for biosensing applications. In addition, we summarize the key factors influencing the "digital" readout performance and their interrelationships, including particle size and corona, electrode size and potential, electrolyte composition, particle mass transport toward the electrode, and data acquisition. Considering recent experimental developments and theoretical principles, we have identified guidelines that are expected to facilitate and accelerate the development of novel direct impact-based sensing platforms, particularly for point-of-care (POC) applications.
Collapse
Affiliation(s)
- Sebastian Freko
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Garching 85748, Germany
- Department of Medicine I, Cardiology, Angiology, Pneumology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich 81675, Germany
| | - Lennart J K Weiß
- Department of Bioscience, TUM School of Natural Sciences, Technical University Munich, Garching 85748, Germany
| | - Friedrich C Simmel
- Department of Bioscience, TUM School of Natural Sciences, Technical University Munich, Garching 85748, Germany
| | - Bernhard Wolfrum
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Garching 85748, Germany
| |
Collapse
|
2
|
Egbe ON, Morrissey BHP, Kerton FM, Stockmann TJ. Anodic expulsion of Cu nanoparticles from a polycrystalline Cu substrate: a novel corrosion and single entity study approach. NANOSCALE 2025; 17:10609-10619. [PMID: 40165617 DOI: 10.1039/d4nr04863f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cu is the dominant heterogeneous metal catalyst for CO2 reduction (CO2R) in combatting climate change, which often relies on Cu oxides (CuO or Cu2O). This is complicated by the relatively facile reduction of Cu oxides to metallic Cu that precedes CO2R, leading to potential morphological surface restructuring and lowered electrocatalysis. Herein, the anodic ejection of Cu/Cu oxide nanoparticles (NPs) from polycrystalline Cu is tracked through scanning electrochemical microscopy in substrate generation/tip collection (SECM-SG/TC) mode. Single entity electrochemical (SEE) detection of Cu0 and Cu oxide NPs was recorded through the electrocatalytic amplification (ECA) of the CO2R and O2 evolution reaction (OER). The frequency (f) of NP impacts decreases concomitantly with increasing tip-substrate distance, while increasing the absolute value of the ultramicroelectrode (UME) tip potential (Etip, negatively for CO2R and positively for OER) resulted in an increase in stochastic NP impact peak current (ip) commensurate with increasing overpotential. Complementary finite element simulations provide insight into the NP catalyzed CO2R catalytic rate constants as well as the rate of passivation. If substrate oxidation is entirely avoided and cathodic Esub maintained, then no NP ejection was observed. Anodic potentials are often used to oxidize Cu substrates making them more electrocatalytically active as well as to regenerate Cu oxide catalyst layers. We demonstrate that SEE detection offers a potential means of monitoring corrosion/loss of Cu material as well as quantitative kinetics measurement.
Collapse
Affiliation(s)
- Oforbuike N Egbe
- Memorial University of Newfoundland, Chemistry Department, Core Science Facility, 45 Arctic Ave, St. John's, NL A1C 5S7, Canada.
| | - Bradley H P Morrissey
- Memorial University of Newfoundland, Chemistry Department, Core Science Facility, 45 Arctic Ave, St. John's, NL A1C 5S7, Canada.
| | - Francesca M Kerton
- Memorial University of Newfoundland, Chemistry Department, Core Science Facility, 45 Arctic Ave, St. John's, NL A1C 5S7, Canada.
| | - Talia Jane Stockmann
- Memorial University of Newfoundland, Chemistry Department, Core Science Facility, 45 Arctic Ave, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
3
|
Weiß LJK, Nikić M, Simmel FC, Wolfrum B. Stochastic Impact Electrochemistry of Alkanethiolate-Functionalized Silver Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410306. [PMID: 40079073 PMCID: PMC12019921 DOI: 10.1002/smll.202410306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/28/2025] [Indexed: 03/14/2025]
Abstract
This study uses single-impact experiments to explore how the nanoparticles' surface chemistry influences their redox activity. 20 and 40 nm-sized silver nanoparticles are functionalized with alkanethiol ligands of various chain lengths (n = 3, 6, 8, and 11) and moieties (carboxyl ─COOH / hydroxyl ─OH), and the critical role of the particle shell is systematically examined. Short COOH-terminated ligands enable efficient charge transfer, resulting in higher impact rates and fast, high-amplitude transients. Even elevated potentials fail to overcome tunneling barriers for ligand lengths of n ≥ 6 and risk oxidizing the electrode, forming an insulating layer. Electrostatic interactions play a key role in governing reaction dynamics. In general, particles with a COOH-group exhibit higher impact rates and current amplitudes in KCl than those with an OH-group. This effect is more pronounced for 40 nm-sized particles; although, they rarely oxidize completely. The influence of electrolyte composition-concentration, pH, and a biologically relevant electrolyte-reveals that its impact on the redox activity can be as critical as that of the particle shell, with both determining particle adsorption and electron tunneling. These findings provide insights into the complex interdependencies at the electrode-particle-electrolyte interface, aiding the design of custom redox-active (silver) nanoparticles for ultrasensitive electrochemical sensing.
Collapse
Affiliation(s)
- Lennart J. K. Weiß
- Physics of Synthetic Biological Systems (E14)Department of BioscienceSchool of Natural SciencesTechnical University of Munich80333MünchenGermany
- NeuroelectronicsMunich Institute of Biomedical EngineeringSchool of ComputationInformation and TechnologyTechnical University of Munich80333MünchenGermany
| | - Marta Nikić
- NeuroelectronicsMunich Institute of Biomedical EngineeringSchool of ComputationInformation and TechnologyTechnical University of Munich80333MünchenGermany
| | - Friedrich C. Simmel
- Physics of Synthetic Biological Systems (E14)Department of BioscienceSchool of Natural SciencesTechnical University of Munich80333MünchenGermany
| | - Bernhard Wolfrum
- NeuroelectronicsMunich Institute of Biomedical EngineeringSchool of ComputationInformation and TechnologyTechnical University of Munich80333MünchenGermany
| |
Collapse
|
4
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Lu SM, Wang HW, Chen M, Xie BK, Long YT. Unlocking Single Particle Anisotropy in Real-Time for Photoelectrochemistry Processes at the Nanoscale. Angew Chem Int Ed Engl 2024; 63:e202404170. [PMID: 38781086 DOI: 10.1002/anie.202404170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The key to rationally and rapidly designing high-performance materials is the monitoring and comprehension of dynamic processes within individual particles in real-time, particularly to gain insight into the anisotropy of nanoparticles. The intrinsic property of nanoparticles typically varies from one crystal facet to the next under realistic working conditions. Here, we introduce the operando collision electrochemistry to resolve the single silver nanoprisms (Ag NPs) anisotropy in photoelectrochemistry. We directly identify the effect of anisotropy on the plasmonic-assisted electrochemistry at the single NP/electrolyte interface. The statistical collision frequency shows that heterogeneous diffusion coefficients among crystal facets facilitate Ag NPs to undergo direction-dependent mass transfer toward the gold ultramicroelectrode. Subsequently, the current amplitudes of transient events indicate that the anisotropy enables variations in dynamic interfacial electron transfer behaviors during photothermal processes. The results presented here demonstrate that the measurement precision of collision electrochemistry can be extended to the sub-nanoparticle level, highlighting the potential for high-throughput material screening with comprehensive kinetics information at the nanoscale.
Collapse
Affiliation(s)
- Si-Min Lu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| | - Hao-Wei Wang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| | - Mengjie Chen
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| | - Bao-Kang Xie
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| |
Collapse
|
6
|
Liang Y, Jiang Y, Fang L, Dai Z, Zhang S, Zhou Y, Cai Y, Wang D, Wang Z, Ye X, Liang B. Periodic magnetic modulation enhanced electrochemical analysis for highly sensitive determination of genomic DNA methylation. Anal Biochem 2024; 690:115509. [PMID: 38508332 DOI: 10.1016/j.ab.2024.115509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/02/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
DNA methylation aberrations have a strong correlation with cancer in early detection, diagnosis, and prognosis, which make them possible candidate biomarkers. Electrochemical biosensors offer rapid protocols for detecting DNA methylation status with minimal pretreatment of samples. However, the inevitable presence of background current in the time domain, including electrochemical noise and variations, limits the detection performance of these biosensors, especially for low concentration analytes. Here, we propose an ultrasensitive frequency-domain electrochemical analysis strategy to effectively separate the weak signals from background current. To achieve this, we employed periodic magnetic field modulation of magnetic beads (MBs) on and off the electrode surface to generate a periodic electrochemical signal for subsequent frequency-domain analysis. By capturing labeled MBs with as low as 0.5 pg of DNA, we successfully demonstrated a highly sensitive electrochemical method for determination of genome-wide DNA methylation levels. We also validated the effectiveness of this methodology using DNA samples extracted from three types of hepatocellular carcinoma (HCC) cell lines. The results revealed varying genomic methylation levels among different HCC cell lines, indicating the potential application of this approach for early-stage cancer detection in terms of DNA methylation status.
Collapse
Affiliation(s)
- Yitao Liang
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, PR China
| | - Yu Jiang
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, PR China
| | - Lu Fang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Zhen Dai
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, PR China
| | - Shanshan Zhang
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, PR China
| | - Yue Zhou
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, PR China
| | - Yu Cai
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, PR China
| | - Dong Wang
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, PR China
| | - Zhaoyang Wang
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, PR China
| | - Xuesong Ye
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, PR China.
| | - Bo Liang
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, PR China; Binjiang Institute of Zhejiang University, Hangzhou, 310053, PR China.
| |
Collapse
|
7
|
Singletary T, Drazer G, Marschilok AC, Takeuchi ES, Takeuchi KJ, Colosqui CE. Kinetic trapping of nanoparticles by solvent-induced interactions. NANOSCALE 2024; 16:5374-5382. [PMID: 38375739 DOI: 10.1039/d3nr06469g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Theoretical analysis based on mean field theory indicates that solvent-induced interactions (i.e. structural forces due to the rearrangement of wetting solvent molecules) not considered in DLVO theory can induce the kinetic trapping of nanoparticles at finite nanoscale separations from a well-wetted surface, under a range of ubiquitous physicochemical conditions for inorganic nanoparticles of common materials (e.g., metal oxides) in water or simple molecular solvents. This work proposes a simple analytical model that is applicable to arbitrary materials and simple solvents to determine the conditions for direct particle-surface contact or kinetic trapping at finite separations, by using experimentally measurable properties (e.g., Hamaker constants, interfacial free energies, and nanoparticle size) as input parameters. Analytical predictions of the proposed model are verified by molecular dynamics simulations and numerical solution of the Smoluchowski diffusion equation.
Collapse
Affiliation(s)
- Troy Singletary
- Mechanical Engineering Department, Stony Brook University, Stony Brook, NY 11794, USA.
| | - German Drazer
- Mechanical and Aerospace Engineering Department, Rutgers University, NJ 08854, USA
| | - Amy C Marschilok
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- The Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, NY 11794, USA
| | - Esther S Takeuchi
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- The Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, NY 11794, USA
| | - Kenneth J Takeuchi
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- The Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, NY 11794, USA
| | - Carlos E Colosqui
- Mechanical Engineering Department, Stony Brook University, Stony Brook, NY 11794, USA.
- The Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, NY 11794, USA
| |
Collapse
|
8
|
Lu Y, Ma T, Lan Q, Liu B, Liang X. Single entity collision for inorganic water pollutants measurements: Insights and prospects. WATER RESEARCH 2024; 248:120874. [PMID: 37979571 DOI: 10.1016/j.watres.2023.120874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
In the context of aquatic environmental issues, dynamic analysis of nano-sized inorganic water pollutants has been one of the key topics concerning their seriously amplified threat to natural ecosystems and life health. Its ultimate challenge is to reach a single-entity level of identification especially towards substantial amount of inorganic pollutants formed as natural or manufactured nanoparticles (NPs), which enter the water environments along with the potential release of constituents or other contaminating species that may have coprecipitated or adsorbed on the particles' surface. Here, we introduced a 'nano-impacts' approach-single entity collision electrochemistry (SECE) promising for in-situ characterization and quantification of nano-sized inorganic pollutants at single-entity level based on confinement-controlled electrochemistry. In comparison with ensemble analytical tools, advantages and features of SECE point at understanding 'individual' specific fate and effect under its free-motion condition, contributing to obtain more precise information for 'ensemble' nano-sized pollutants on assessing their mixture exposure and toxicity in the environment. This review gives a unique insight about the single-entity collision measurements of various inorganic water pollutants based on recent trends and directions of state-of-the-art single entity electrochemistry, the prospects for exploring nano-impacts in the field of inorganic water pollutants measurements were also put forward.
Collapse
Affiliation(s)
- Yuanyuan Lu
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tingting Ma
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingwen Lan
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Boyi Liu
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinqiang Liang
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Liu EZ, Popescu SR, Eden A, Chung J, Roehrich B, Sepunaru L. The role of applied potential on particle sizing precision in single-entity blocking electrochemistry. Electrochim Acta 2023; 472:143397. [PMID: 39070043 PMCID: PMC11283758 DOI: 10.1016/j.electacta.2023.143397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Blocking electrochemistry, a subfield of single-entity electrochemistry, enables in-situ sizing of redox-inactive particles. This method exploits the adsorptive impact of individual insulating particles on a microelectrode, which decreases the electrochemically active surface area of the electrode. Against the background of an electroactive redox reaction in solution, each individual impacting particle results in a discrete current drop, with the magnitude of the drop corresponding to the size of the blocking particle. One significant limitation of this technique is "edge effects", resulting from the inhomogeneous flux of the redox species' diffusion due to increased mass transport to the edge of the disk electrode surface. "Edge effects" cause increased errors in size detection, resulting in poor analytical precision. Here, we use computational simulations to demonstrate that inhomogeneous diffusional edge flux of quasi-reversible redox species is mitigated at lowered overpotentials. This phenomenon is further illustrated experimentally by lowering the applied potential such that the system is operating under a kinetically-controlled regime instead of a diffusion-limited regime, which mitigates edge effects and increases particle sizing precision significantly. In addition, we found this method to be generalizable, as the precision enhancement is not limited to geometrically spherical particles but also occurs for cubic particles. This work presents a simple, novel methodology for edge effect mitigation with general applicability across different particle types.
Collapse
Affiliation(s)
- Eric Z. Liu
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Sofia Rivalta Popescu
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Alexander Eden
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Julia Chung
- Interdepartmental Program in Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Brian Roehrich
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, United States
| |
Collapse
|
10
|
Zhang H, Gao G, Chen Y, Lin L, Wang D, Fan Y, Liu Y, Zhao Q, Zhi J. Effect of cell settlement on the electrochemical collision behaviors of single microbes. Anal Chim Acta 2023; 1283:341949. [PMID: 37977779 DOI: 10.1016/j.aca.2023.341949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Electrochemical collision technique has emerged as a powerful approach to detect the intrinsic properties of single entities. The diffusion model, together with migration and convection processes are generally used to describe the transport and collision processes of single entities. However, things become more complicated concerning microbes because of their relatively large size, inherent motility and biological activities. In this work, the electrochemical collision behaviors of four different microorganisms: Escherichia coli (Gram-negative bacteria), Staphylococcus aureus, Bacillus subtilis (Gram-positive bacteria) and Saccharomyces cerevisiae (fungus) were systematically detected and compared using a blocking strategy. By using K4Fe(CN)6 as redox probe, the downwards step-like signals were recorded in the collision process of all the three bacteria, whereas the collision of S. cerevisiae was rarely detected. To further investigate the underlying reason for the abnormal collision behavior of S. cerevisiae, the effect of cell settlement was discussed. The results indicated that ellipsoidal S. cerevisiae with a cell size larger than 2 μm exhibited a cell sedimentation rate of 261.759 nm s-1, which is dozens of times higher than the other three bacteria. By further enhanced convection near the microelectrode or positioned the microelectrode at the bottom of electrochemical cell, the collision signals of S. cerevisiae were successfully detected, indicating cell sedimentation is a nonnegligible force in large cell transport. This study fully addressed the effect of cell settlement on the transport of microbial cells and provided two strategies to counteract this effect, which benefit for the deeper understanding and further application of electrochemical collision technique in single-cell detection.
Collapse
Affiliation(s)
- Hanxin Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Guanyue Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Yafei Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lan Lin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yining Fan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yanran Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qi Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jinfang Zhi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
11
|
Lu SM, Vannoy KJ, Dick JE, Long YT. Multiphase Chemistry under Nanoconfinement: An Electrochemical Perspective. J Am Chem Soc 2023; 145:25043-25055. [PMID: 37934860 DOI: 10.1021/jacs.3c07374] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Most relevant systems of interest to modern chemists rarely consist of a single phase. Real-world problems that require a rigorous understanding of chemical reactivity in multiple phases include the development of wearable and implantable biosensors, efficient fuel cells, single cell metabolic characterization techniques, and solar energy conversion devices. Within all of these systems, confinement effects at the nanoscale influence the chemical reaction coordinate. Thus, a fundamental understanding of the nanoconfinement effects of chemistry in multiphase environments is paramount. Electrochemistry is inherently a multiphase measurement tool reporting on a charged species traversing a phase boundary. Over the past 50 years, electrochemistry has witnessed astounding growth. Subpicoampere current measurements are routine, as is the study of single molecules and nanoparticles. This Perspective focuses on three nanoelectrochemical techniques to study multiphase chemistry under nanoconfinement: stochastic collision electrochemistry, single nanodroplet electrochemistry, and nanopore electrochemistry.
Collapse
Affiliation(s)
- Si-Min Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Kathryn J Vannoy
- Department of Chemistry, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
12
|
Nazmutdinov RR, Shermokhamedov SA, Zinkicheva TT, Ulstrup J, Xiao X. Understanding molecular and electrochemical charge transfer: theory and computations. Chem Soc Rev 2023; 52:6230-6253. [PMID: 37551138 DOI: 10.1039/d2cs00006g] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Electron, proton, and proton-coupled electron transfer (PCET) are crucial elementary processes in chemistry, electrochemistry, and biology. We provide here a gentle overview of retrospective and currently developing theoretical formalisms of chemical, electrochemical and biological molecular charge transfer processes, with examples of how to bridge electron, proton, and PCET theory with experimental data. We offer first a theoretical minimum of molecular electron, proton, and PCET processes in homogeneous solution and at electrochemical interfaces. We illustrate next the use of the theory both for simple electron transfer processes, and for processes that involve molecular reorganization beyond the simplest harmonic approximation, with dissociative electron transfer and inclusion of all charge transfer parameters. A core example is the electrochemical reduction of the S2O82- anion. This is followed by discussion of core elements of proton and PCET processes and the electrochemical dihydrogen evolution reaction on different metal, semiconductor, and semimetal (say graphene) electrode surfaces. Other further focus is on stochastic chemical rate theory, and how this concept can rationalize highly non-traditional behaviour of charge transfer processes in mixed solvents. As a second major area we address ("long-range") chemical and electrochemical electron transfer through molecular frameworks using notions of superexchange and hopping. Single-molecule and single-entity electrochemistry are based on electrochemical scanning probe microscopies. (In operando) scanning tunnelling microscopy (STM) and atomic force microscopy (AFM) are particularly emphasized, with theoretical notions and new molecular electrochemical phenomena in the confined tunnelling gap. Single-molecule surface structure and electron transfer dynamics are illustrated by self-assembled thiol molecular monolayers and by more complex redox target molecules. This discussion also extends single-molecule electrochemistry to bioelectrochemistry of complex redox metalloproteins and metalloenzymes. Our third major area involves computational overviews of molecular and electronic structure of the electrochemical interface, with new computational challenges. These relate to solvent dynamics in bulk and confined space (say carbon nanostructures), electrocatalysis, metallic and semiconductor nanoparticles, d-band metals, carbon nanostructures, spin catalysis and "spintronics", and "hot" electrons. Further perspectives relate to metal-organic frameworks, chiral surfaces, and spintronics.
Collapse
Affiliation(s)
- Renat R Nazmutdinov
- Department of Inorganic Chemistry, Kazan National Research Technological University, K. Marx Str., 68, 420015 Kazan, Republic of Tatarstan, Russian Federation.
| | - Shokirbek A Shermokhamedov
- Department of Inorganic Chemistry, Kazan National Research Technological University, K. Marx Str., 68, 420015 Kazan, Republic of Tatarstan, Russian Federation.
| | - Tamara T Zinkicheva
- Department of Inorganic Chemistry, Kazan National Research Technological University, K. Marx Str., 68, 420015 Kazan, Republic of Tatarstan, Russian Federation.
| | - Jens Ulstrup
- Department of Inorganic Chemistry, Kazan National Research Technological University, K. Marx Str., 68, 420015 Kazan, Republic of Tatarstan, Russian Federation.
- Department of Chemistry, Technical University of Denmark, Building 207, Kemitorvet, 2800 Kongens Lyngby, Denmark.
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
13
|
Wang Q, Lin J, Li S, Tian H, Zhang D, Xin Q. Label-Free Detection of Single Living Bacteria: Single-Entity Electrochemistry Targeting Metabolic Products. Anal Chem 2023; 95:13082-13090. [PMID: 37603710 DOI: 10.1021/acs.analchem.3c01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
This study presents a novel approach employing single-entity electrochemistry for the label-free detection of living Escherichia coli. By examination of the collision signals generated from the reduction of hydrogen peroxide, a metabolic product of E. coli that accumulates on the cell surface, the concentration of living bacteria can be determined. Within a broad concentration range from 3.0 × 107 to 1.0 × 109 cells/mL, cell aggregation was not observed. Cell migration in the solution was primarily governed by diffusion, exhibiting a diffusion coefficient of 6.8 × 10-9 cm2/s. The collision frequency exhibits a linear relationship with the cell concentration, aligning well with theoretical predictions. Through statistical analysis of each collision signal's integrated charge quantity, the metabolic activity of single cells can be assessed. This method was applied to a cytotoxicity assay, where it monitored the decline in living cell numbers and metabolic activities in addition to identifying potential cell damage during antibiotic treatment.
Collapse
Affiliation(s)
- Qingwen Wang
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Jun Lin
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Shuang Li
- Zhejiang Energy Technology Co., Ltd., Hangzhou 310023, P. R. China
| | - Huike Tian
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Dong Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Xiasha Campus, Hangzhou 310018, P. R. China
| | - Qing Xin
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| |
Collapse
|
14
|
Moazzenzade T, Huskens J, Lemay SG. Utilizing the Oxygen Reduction Reaction in Particle Impact Electrochemistry: A Step toward Mediator-Free Digital Electrochemical Sensors. ACS OMEGA 2023; 8:31265-31270. [PMID: 37663480 PMCID: PMC10468766 DOI: 10.1021/acsomega.3c03576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023]
Abstract
The current blockade particle impact method opens a route toward highly parallelized single-entity electrochemical assays. An important limitation is, however, that a redox mediator must be present in the sample, which can detrimentally interfere with molecular recognition processes. Dissolved O2 that is naturally present in aqueous solutions under ambient conditions can in principle serve as a suitable mediator via the oxygen reduction reaction (ORR). Here, we demonstrate the validity of this concept by performing current blockade experiments to capture and detect individual microparticles at Pt microelectrodes using solely the ORR. The readout modality is independent of the absolute O2 concentration, allowing operation under varying conditions. We further determine how the trajectories of individual microparticles are influenced by the combination of electrophoresis and electroosmotic flows and how these can be utilized to provide continuous detection of cationic particles in water for environmental monitoring.
Collapse
Affiliation(s)
- Taghi Moazzenzade
- Faculty of Science and Technology and
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jurriaan Huskens
- Faculty of Science and Technology and
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Serge G. Lemay
- Faculty of Science and Technology and
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
15
|
Bai YY, Yang YJ, Xu Y, Yang XY, Zhang ZL. Current Lifetime of Single-Nanoparticle Electrochemical Collision for In Situ Monitoring Nanoparticles Agglomeration and Aggregation. Anal Chem 2023; 95:4429-4434. [PMID: 36812093 DOI: 10.1021/acs.analchem.2c05016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
In situ monitoring of the agglomeration/aggregation process of nanoparticles (NPs) is crucial because it seriously affects cell entry, biosafety, catalytic performance of NPs, and so on. Nevertheless, it remains hard to monitor the solution phase agglomeration/aggregation of NPs via conventional techniques such as electron microscopy, which requires sample pretreatment and cannot represent native state NPs in solution. Considering that single-nanoparticle electrochemical collision (SNEC) is powerful to detect NPs in solution at the single-particle level, and the current lifetime, which refers to the time that current intensity decays to 1/e of the original value, is skilled in distinguishing different sized NPs, herein, a current lifetime-based SNEC has been developed to distinguish a single Au NP (d = 18 nm) from its agglomeration/aggregation. Based on this, the agglomeration/aggregation process of small-sized NPs and the discrimination of agglomeration vs aggregation have been carefully investigated at the single-particle level. Results showed that the agglomeration/aggregation of Au NPs (d = 18 nm) in 0.8 mM HClO4 climbed from 19% to 69% over two hours, whereas there was no visible granular sediment, and Au NPs tended to agglomerate rather than aggregate irreversibly under normal conditions. Hence, the proposed current lifetime-based SNEC could serve as a complementary method to in situ monitor the agglomeration/aggregation of small-sized NPs in solution at the single-particle level and provide effective guidance for the practical application of NPs.
Collapse
Affiliation(s)
- Yi-Yan Bai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China.,Department of Chemistry, Yuncheng University, Yuncheng 044000, People's Republic of China
| | - Yan-Ju Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ying Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xiao-Yan Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
16
|
Chen M, Lu SM, Wang HW, Long YT. Monitoring Photoinduced Interparticle Chemical Communication In Situ. Angew Chem Int Ed Engl 2023; 62:e202215631. [PMID: 36637164 DOI: 10.1002/anie.202215631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023]
Abstract
Monitoring interparticle chemical communication plays a critical role in the nanomaterial synthesis as this communication controls the final structure and stability of global nanoparticles (NPs). Yet most ensemble analytical techniques, which could only reveal average macroscopic information, are unable to elucidate NP-to-NP interactions. Herein, we employ stochastic collision electrochemistry to track the morphology transformation of Ag NPs in photochemical process at the single NP level. By further statistical analysis of time-resolved current transients, we quantitatively determine the dynamic chemical potential difference and interparticle communication between populations of large and small Ag NPs. The high sensitivity of stochastic collision electrochemistry enables the in situ investigation of chemical communication-dependent transformation kinetics of NPs in photochemical process, shedding light on designing nanomaterials.
Collapse
Affiliation(s)
- Mengjie Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Si-Min Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hao-Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
17
|
Peng H, Grob L, Weiß LJK, Hiendlmeier L, Music E, Kopic I, F Teshima T, Rinklin P, Wolfrum B. Inkjet-printed 3D micro-ring-electrode arrays for amperometric nanoparticle detection. NANOSCALE 2023; 15:4006-4013. [PMID: 36727303 DOI: 10.1039/d2nr05640b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chip-based impact electrochemistry can provide means to measure nanoparticles in solution by sensing their stochastic collisions on appropriately-polarized microelectrodes. However, a planar microelectrode array design still restricts the particle detection to the chip surface and does not allow detection in 3D environments. In this work, we report a fast fabrication process for 3D microelectrode arrays by combining ink-jet printing with laser-patterning. To this end, we printed 3D pillars from polyacrylate ink as a scaffold. Then, the metal structures are manufactured via sputtering and laser-ablation. Finally, the chip is passivated with a parylene-C layer and the electrode tips are created via laser-ablation in a vertical alignment. As a proof of principle, we employ our 3D micro-ring-electrode arrays for single impact recordings from silver nanoparticles.
Collapse
Affiliation(s)
- Hu Peng
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, Garching, 85748, Germany.
| | - Leroy Grob
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, Garching, 85748, Germany.
| | - Lennart Jakob Konstantin Weiß
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, Garching, 85748, Germany.
| | - Lukas Hiendlmeier
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, Garching, 85748, Germany.
| | - Emir Music
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, Garching, 85748, Germany.
| | - Inola Kopic
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, Garching, 85748, Germany.
| | - Tetsuhiko F Teshima
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, Garching, 85748, Germany.
- Medical & Health Informatics Laboratories NTT Research Incorporated 940 Stewart Dr, Sunnyvale, CA 94085, USA
| | - Philipp Rinklin
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, Garching, 85748, Germany.
| | - Bernhard Wolfrum
- Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, Garching, 85748, Germany.
| |
Collapse
|
18
|
Lu SM, Chen JF, Wang HF, Hu P, Long YT. Mass Transport and Electron Transfer at the Electrochemical-Confined Interface. J Phys Chem Lett 2023; 14:1113-1123. [PMID: 36705310 DOI: 10.1021/acs.jpclett.2c03479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single entity measurements based on the stochastic collision electrochemistry provide a promising and versatile means to study single molecules, single particles, single droplets, etc. Conceptually, mass transport and electron transfer are the two main processes at the electrochemically confined interface that underpin the most transient electrochemical responses resulting from the stochastic and discrete behaviors of single entities at the microscopic scale. This perspective demonstrates how to achieve controllable stochastic collision electrochemistry by effectively altering the two processes. Future challenges and opportunities for stochastic collision electrochemistry are also highlighted.
Collapse
Affiliation(s)
- Si-Min Lu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023P. R. China
| | - Jian-Fu Chen
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Hai-Feng Wang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Peijun Hu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
- School of Chemistry and Chemical Engineering, The Queen's University of Belfast, BelfastBT9 5AG, U.K
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023P. R. China
| |
Collapse
|
19
|
Liu C, Ma Y, Xu Z, You Y, Bai S, Nan J, Wang L. Galvani Potential-Dependent Single Collision/Fusion Impacts at Liquid/Liquid Interface: Faradic or Capacitive? J Phys Chem B 2022; 126:9705-9714. [PMID: 36356196 DOI: 10.1021/acs.jpcb.2c05741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A new subtype of nano-impacts by emulsion droplets via reorganization of the electric double layer (EDL) at the liquid/liquid interface (LLI) is reported. This subtype shows anodic, bipolar, and cathodic transient currents with a potential of zero charge (PZC) dependence, revealing the non-faradic characteristic of single fusion impacts. In addition, the absolute integrated mean charge is proportional to the Galvani potential at the ITIES, indicating that the EDL at the LLI may obey the discrete Helmholtz model. The exact PZC point is interpolated from the fitting curve, and the droplet size distribution is estimated from the integrated charge distribution. Moreover, the different values of Epzc between single fusion impacts of MgCl2 droplets and pure water droplets is due to the specific absorption between Mg2+ and antagonistic anion in the organic phase. The influence of the concentration of the supporting electrolyte is also investigated. The above work gives physicochemical insights into the EDL at the micropipette-supported LLI and provides potential application to measure micro/nanoscale heterogeneous media without catalytic, reactive, or charge-transfer activity via impact experiments at LLI.
Collapse
Affiliation(s)
- Cheng Liu
- School of Chemistry, South China Normal University, Guangzhou510006, China
| | - Yamin Ma
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Zhidan Xu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Yongtao You
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Silan Bai
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Junmin Nan
- School of Chemistry, South China Normal University, Guangzhou510006, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| |
Collapse
|
20
|
Enhanced single-nanoparticle collisions for the hydrogen evolution reaction in a confined microchannel. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64034-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Manyepedza T, Courtney JM, Snowden A, Jones CR, Rees NV. Impact Electrochemistry of MoS 2: Electrocatalysis and Hydrogen Generation at Low Overpotentials. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:17942-17951. [PMID: 36330166 PMCID: PMC9619928 DOI: 10.1021/acs.jpcc.2c06055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/07/2022] [Indexed: 06/16/2023]
Abstract
MoS2 materials have been extensively studied as hydrogen evolution reaction (HER) catalysts. In this study nanoparticulate MoS2 is explored as a HER catalyst through impact voltammetry. The onset potential was found to be -0.10 V (vs RHE) at pH 2, which was confirmed to be due to HER by scale-up of the impact experiment to generate and collect a sufficient volume of the gas to enable its identification as hydrogen via gas chromatography. This is in contrast to electrodeposited MoS2, which was found to be stable in pH 2 sulfuric acid solution with an onset potential of -0.29 V (vs RHE), in good agreement with literature. XPS was used to categorize the materials and confirm the chemical composition of both nanoparticles and electrodeposits, with XRD used to analyze the crystal structure of the nanoparticles. The early onset of HER was postulated from kinetic analysis to be due to the presence of nanoplatelets of about 1-3 trilayers participating in the impact reactions, and AFM imaging confirmed the presence of these platelets.
Collapse
|
22
|
The electrochemical behaviour of suspended Prussian Blue nanoparticles in forced convection conditions. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Wong R, Batchelor-McAuley C, Yang M, Compton RG. Electrochemical Heterogeneity at the Nanoscale: Diffusion to Partially Active Nanocubes. J Phys Chem Lett 2022; 13:7689-7693. [PMID: 35960147 PMCID: PMC9421898 DOI: 10.1021/acs.jpclett.2c01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
How does heterogeneity in activity affect the response of nanoparticles? This problem is key to studying the structure-activity relationship of new electrocatalytic materials. However, addressing this problem theoretically and to a high degree of accuracy requires the use of three-dimensional electrochemical simulations that have, until recently, been challenging to undertake. To start to probe this question, we investigate how the diffusion-limited flux to a cube changes as a function of the number of active faces. Importantly, it is clearly demonstrated how the flux is not linearly proportional to the active surface area of the material due to the faces of the cube not having diffusional independence, meaning that the flux to each face reflects the activity or not of nearby faces. These results have clear and important implications for experimental work that uses a correlation-based approach to evidence changes in activity at the nanoscale.
Collapse
|
24
|
Khan R, Andreescu D, Hassan MH, Ye J, Andreescu S. Nanoelectrochemistry Reveals Selective Interactions of Perfluoroalkyl Substances (PFASs) with Silver Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202209164. [DOI: 10.1002/anie.202209164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Reem Khan
- Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Daniel Andreescu
- Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Mohamed H. Hassan
- Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Jingyun Ye
- Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Silvana Andreescu
- Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| |
Collapse
|
25
|
Weiß LJK, Music E, Rinklin P, Banzet M, Mayer D, Wolfrum B. On-Chip Electrokinetic Micropumping for Nanoparticle Impact Electrochemistry. Anal Chem 2022; 94:11600-11609. [PMID: 35900877 DOI: 10.1021/acs.analchem.2c02017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Single-entity electrochemistry is a powerful technique to study the interactions of nanoparticles at the liquid-solid interface. In this work, we exploit Faradaic (background) processes in electrolytes of moderate ionic strength to evoke electrokinetic transport and study its influence on nanoparticle impacts. We implemented an electrode array comprising a macroscopic electrode that surrounds a set of 62 spatially distributed microelectrodes. This configuration allowed us to alter the global electrokinetic transport characteristics by adjusting the potential at the macroscopic electrode, while we concomitantly recorded silver nanoparticle impacts at the microscopic detection electrodes. By focusing on temporal changes of the impact rates, we were able to reveal alterations in the macroscopic particle transport. Our findings indicate a potential-dependent micropumping effect. The highest impact rates were obtained for strongly negative macroelectrode potentials and alkaline solutions, albeit also positive potentials lead to an increase in particle impacts. We explain this finding by reversal of the pumping direction. Variations in the electrolyte composition were shown to play a critical role as the macroelectrode processes can lead to depletion of ions, which influences both the particle oxidation and the reactions that drive the transport. Our study highlights that controlled on-chip micropumping is possible, yet its optimization is not straightforward. Nevertheless, the utilization of electro- and diffusiokinetic transport phenomena might be an appealing strategy to enhance the performance in future impact-based sensing applications.
Collapse
Affiliation(s)
- Lennart J K Weiß
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 11, Garching 85748, Germany
| | - Emir Music
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 11, Garching 85748, Germany
| | - Philipp Rinklin
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 11, Garching 85748, Germany
| | - Marko Banzet
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Bernhard Wolfrum
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 11, Garching 85748, Germany
| |
Collapse
|
26
|
Moazzenzade T, Walstra T, Yang X, Huskens J, Lemay SG. Ring Ultramicroelectrodes for Current-Blockade Particle-Impact Electrochemistry. Anal Chem 2022; 94:10168-10174. [PMID: 35792954 PMCID: PMC9310007 DOI: 10.1021/acs.analchem.2c01503] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In current-blockade impact electrochemistry, insulating particles are detected amperometrically as they impinge upon a micro- or nanoelectrode via a decrease in the faradaic current caused by a redox mediator. A limit of the method is that analytes of a given size yield a broad distribution of response amplitudes due to the inhomogeneities of the mediator flux at the electrode surface. Here, we overcome this limitation by introducing microfabricated ring-shaped electrodes with a width that is significantly smaller than the size of the target particles. We show that the relative step size is somewhat larger and exhibits a narrower distribution than at a conventional ultramicroelectrode of equal diameter.
Collapse
Affiliation(s)
- Taghi Moazzenzade
- MESA+ Institute and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Tieme Walstra
- MESA+ Institute and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Xiaojun Yang
- MESA+ Institute and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jurriaan Huskens
- MESA+ Institute and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Serge G Lemay
- MESA+ Institute and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
27
|
Khan R, Andreescu D, Hassan MH, Ye J, Andreescu S. Nanoelectrochemistry Reveals Selective Interactions of Perfluoroalkyl Substances (PFASs) with Silver Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Reem Khan
- Clarkson University Chemistry and Biomolecular Science UNITED STATES
| | - Daniel Andreescu
- Clarkson University Chemistry and Biomolecular Science 8 Clarkson Ave 13699 Potsdam UNITED STATES
| | - Mohamed H. Hassan
- Clarkson University Chemistry and Biomolecular Science UNITED STATES
| | - Jingyun Ye
- Clarkson University Chemistry and Biomolecular Science UNITED STATES
| | - Silvana Andreescu
- Clarkson University Chemistry and Biomolecular Science 8 Clarskon Ave 13699 Potsdam UNITED STATES
| |
Collapse
|
28
|
Weiß LJK, Rinklin P, Thakur B, Music E, Url H, Kopic I, Hoven D, Banzet M, von Trotha T, Mayer D, Wolfrum B. Prototype Digital Lateral Flow Sensor Using Impact Electrochemistry in a Competitive Binding Assay. ACS Sens 2022; 7:1967-1976. [PMID: 35801574 DOI: 10.1021/acssensors.2c00728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work demonstrates a lateral flow assay concept on the basis of stochastic-impact electrochemistry. To this end, we first elucidate requirements to employ silver nanoparticles as redox-active labels. Then, we present a prototype that utilizes nanoimpacts from biotinylated silver nanoparticles as readouts to detect free biotin in solution based on competitive binding. The detection is performed in a membrane-based microfluidic system, where free biotin and biotinylated particles compete for streptavidin immobilized on embedded latex beads. Excess nanoparticles are then registered downstream at an array of detection electrodes. In this way, we establish a proof of concept that serves as a blueprint for future "digital" lateral flow sensors.
Collapse
Affiliation(s)
- Lennart J K Weiß
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Philipp Rinklin
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Bhawana Thakur
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Emir Music
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Heike Url
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Inola Kopic
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Darius Hoven
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Marko Banzet
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Tassilo von Trotha
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Bernhard Wolfrum
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| |
Collapse
|
29
|
Kaliyaraj Selva Kumar A, Compton RG. Understanding Carbon Nanotube Voltammetry: Distinguishing Adsorptive and Thin Layer Effects via "Single-Entity" Electrochemistry. J Phys Chem Lett 2022; 13:5557-5562. [PMID: 35696318 PMCID: PMC9234977 DOI: 10.1021/acs.jpclett.2c01500] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 05/24/2023]
Abstract
Cyclic voltammetry of ensembles of nanotube-modified electrodes fails to distinguish between signals from electroactive material adsorbed on the tubes from those due to a thin-layer response of analyte material occluded in the pores of the ensemble. We demonstrate that the distinction can be clearly made by combining cyclic voltammetry with single-entity measurements and provide proof of concept for the case of b-MWCNTs and the oxidation of 4-hexylresorcinol (HR), where the increased signals seen at the modified electrode are concluded to arise from thin-layer diffusion and not adsorptive effects. The physical insights are generic to porous, conductive composites.
Collapse
|
30
|
Jiang C, Liu S, Zhang T, Liu Q, Alvarez PJJ, Chen W. Current Methods and Prospects for Analysis and Characterization of Nanomaterials in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7426-7447. [PMID: 35584364 DOI: 10.1021/acs.est.1c08011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Analysis and characterization of naturally occurring and engineered nanomaterials in the environment are critical for understanding their environmental behaviors and defining real exposure scenarios for environmental risk assessment. However, this is challenging primarily due to the low concentration, structural heterogeneity, and dynamic transformation of nanomaterials in complex environmental matrices. In this critical review, we first summarize sample pretreatment methods developed for separation and preconcentration of nanomaterials from environmental samples, including natural waters, wastewater, soils, sediments, and biological media. Then, we review the state-of-the-art microscopic, spectroscopic, mass spectrometric, electrochemical, and size-fractionation methods for determination of mass and number abundance, as well as the morphological, compositional, and structural properties of nanomaterials, with discussion on their advantages and limitations. Despite recent advances in detecting and characterizing nanomaterials in the environment, challenges remain to improve the analytical sensitivity and resolution and to expand the method applications. It is important to develop methods for simultaneous determination of multifaceted nanomaterial properties for in situ analysis and characterization of nanomaterials under dynamic environmental conditions and for detection of nanoscale contaminants of emerging concern (e.g., nanoplastics and biological nanoparticles), which will greatly facilitate the standardization of nanomaterial analysis and characterization methods for environmental samples.
Collapse
Affiliation(s)
- Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Songlin Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| |
Collapse
|
31
|
Lu SM, Li MY, Long YT. Dynamic Chemistry Interactions: Controlled Single-Entity Electrochemistry. J Phys Chem Lett 2022; 13:4653-4659. [PMID: 35604854 DOI: 10.1021/acs.jpclett.2c00960] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single-entity electrochemistry (SEE) provides powerful means to measure single cells, single particles, and even single molecules at the nanoscale by diverse well-defined interfaces. The nanoconfined electrode interface has significantly enhanced structural, electrical, and compositional characteristics that have great effects on the assay limitation and selectivity of single-entity measurement. In this Perspective, after introducing the dynamic chemistry interactions of the target and electrode interface, we present a fundamental understanding of how these dynamic interactions control the features of the electrode interface and thus the stochastic and discrete electrochemical responses of single entities under nanoconfinement. Both stochastic single-entity collision electrochemistry and nanopore electrochemistry as examples in this Perspective explore how these interactions alter the transient charge transfer and mass transport. Finally, we discuss the further challenges and opportunities in SEE, from the design of sensing interfaces to hybrid spectro-electrochemical methods, theoretical models, and advanced data processing.
Collapse
Affiliation(s)
- Si-Min Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Meng-Yin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
32
|
Influence of conductive additives in a nano-impact electrochemistry study of single LiMn2O4 particles. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
33
|
Kaliyaraj Selva Kumar A, Compton RG. Single-Entity “Nano-Catalysis”: Carbon Nanotubes and the VO 2+/VO 2+ Redox Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Archana Kaliyaraj Selva Kumar
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, Great Britain
| | - Richard G. Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, Great Britain
| |
Collapse
|
34
|
Ahmadinasab N, Stockmann TJ. Single entity electrochemical detection of as‐prepared metallic and dielectric nanoparticle stochastic impacts in a phosphonium ionic liquid. ChemElectroChem 2022. [DOI: 10.1002/celc.202200162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nazanin Ahmadinasab
- Memorial University of Newfoundland Chemistry 1 Arctic Ave A1C 5S7 St. John's CANADA
| | - Talia Jane Stockmann
- Memorial University of Newfoundland Chemistry 1 Arctic Ave A1C 5S7 St. John's CANADA
| |
Collapse
|
35
|
Silver nanoparticles modified electrodes for electroanalysis: An updated review and a perspective. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
36
|
Pandey P, Bhattarai N, Su L, Wang X, Leng F, Gerst-man B, Chapagain PP, He J. Detecting Individual Proteins and Their Surface Charge Variations in Solution by the Potentiometric Nanoimpact Method. ACS Sens 2022; 7:555-563. [PMID: 35060380 PMCID: PMC10631516 DOI: 10.1021/acssensors.1c02385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Label-free detection and analysis of proteins in their natural form and their dynamic interactions with substrates at the single-molecule level are important for both fundamental studies and various applications. Herein, we demonstrate a simple potentiometric method to achieve this goal by detecting the native charge of protein in solution by utilizing the principle of single-entity electrochemistry techniques. When a charged protein moves near the vicinity of a floating carbon nanoelectrode connected to a high-impedance voltage meter, the distinct local electrostatic potential changes induced by the transient collision event of protein, also called the "nanoimpact" event, can be captured by the nanoelectrode as a potential probe. This potentiometric method is highly sensitive for charged proteins, and low-molecular-weight proteins less than 10 kDa can be detected in low-salt-concentration electrolytes. By analyzing the shape and magnitude of the recorded time-resolved potential change and its time derivative, we can reveal the charge and motion of the protein in the nonspecific protein-surface interaction event. The charge polarity variations of the proteins at different pH values were also successfully probed. Compared with synthetic spherical nanoparticles, the statistical analysis of many single-molecule nanoimpact events revealed a large variation in the recorded transient potential signals, which may be attributed to the intrinsic protein dynamics and surface charge heterogeneity, as suggested by the finite element method and molecular dynamic simulations.
Collapse
Affiliation(s)
- Popular Pandey
- Physics Department, Florida International University, Miami, Florida, 33199, USA
| | - Nisha Bhattarai
- Physics Department, Florida International University, Miami, Florida, 33199, USA
| | - Linjia Su
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA
| | - Xuewen Wang
- Physics Department, Florida International University, Miami, Florida, 33199, USA
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, 33199, USA
| | - Bernard Gerst-man
- Physics Department, Florida International University, Miami, Florida, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, 33199, USA
| | - Prem P. Chapagain
- Physics Department, Florida International University, Miami, Florida, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, 33199, USA
| | - Jin He
- Physics Department, Florida International University, Miami, Florida, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, 33199, USA
| |
Collapse
|
37
|
Pensa E, Bogawat Y, Simmel FC, Santiago I. Single DNA Origami Detection by Nanoimpact Electrochemistry. ChemElectroChem 2022; 9:e202101696. [PMID: 35875253 PMCID: PMC9302979 DOI: 10.1002/celc.202101696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/16/2022] [Indexed: 11/19/2022]
Abstract
DNA has emerged as the material of choice for producing supramolecular building blocks of arbitrary geometry from the 'bottom up'. Characterisation of these structures via electron or atomic force microscopy usually requires their surface immobilisation. In this work, we developed a nanoimpact electrochemistry platform to detect DNA self-assembled origami structures in solution, using the intercalator methylene blue as a redox probe. Here, we report the electrochemical detection of single DNA origami collisions at Pt microelectrodes. Our work paves the way towards the characterisation of DNA nanostructures in solution via nanoimpact electrochemistry.
Collapse
Affiliation(s)
- Evangelina Pensa
- Physics Department and ZNN Technische Universität München Am Coulombwall 4a 85748 Garching Germany
| | - Yash Bogawat
- Physics Department and ZNN Technische Universität München Am Coulombwall 4a 85748 Garching Germany
| | - Friedrich C Simmel
- Physics Department and ZNN Technische Universität München Am Coulombwall 4a 85748 Garching Germany
| | - Ibon Santiago
- Physics Department and ZNN Technische Universität München Am Coulombwall 4a 85748 Garching Germany
| |
Collapse
|
38
|
Bognár Z, de Jonge MI, Gyurcsányi RE. In situ silver nanoparticle coating of virions for quantification at single virus level. NANOSCALE 2022; 14:2296-2303. [PMID: 35081610 DOI: 10.1039/d1nr07607h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In situ labelling and encapsulation of biological entities, such as of single viruses, may provide a versatile approach to modulate their functionality and facilitate their detection at single particle level. Here, we introduce a novel virus metallization approach based on in situ coating of viruses in solution with silver nanoparticles (AgNP) in a two-step synthetic process, i.e. surface activation with a tannic acid - Sn(II) coordination complex, which subsequently induces silver ion (I) reduction. The metalic coating on the virus surface opens the opportunity for electrochemical quantification of the AgNP-tagged viruses by nano-impact electrochemistry on a microelectrode with single particle sensitivity, i.e. enable the detection of particles oherwise undetectable. We show that the silver coating of the virus particles impacting the electrode can be oxidized to produce distinct current peaks the frequency of which show a linear correlation with the virus count. The proof of the concept was done with inactivated Influenza A (H3N2) viruses resulting in their quantitation down to the femtomolar concentrations (ca. 5 × 107 particles per mL) using 50 s counting sequences.
Collapse
Affiliation(s)
- Zsófia Bognár
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
- MTA-BME Lendület Chemical Nanosensors Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Marien I de Jonge
- Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Philips van Leydenlaan 15, 6525 EX Nijmegen, The Netherlands
| | - Róbert E Gyurcsányi
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
- MTA-BME Lendület Chemical Nanosensors Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- MTA-BME Computation Driven Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
39
|
Elliott JR, Compton RG. Local diffusion indicators: a new tool for analysis of electrochemical mass transport. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
A review of optical methods for ultrasensitive detection and characterization of nanoparticles in liquid media with a focus on the wide field surface plasmon microscopy. Anal Chim Acta 2022; 1204:339633. [DOI: 10.1016/j.aca.2022.339633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/27/2022]
|
41
|
Azimzadeh Sani M, Pavlopoulos NG, Pezzotti S, Serva A, Cignoni P, Linnemann J, Salanne M, Gaigeot M, Tschulik K. Unexpectedly High Capacitance of the Metal Nanoparticle/Water Interface: Molecular‐Level Insights into the Electrical Double Layer. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mahnaz Azimzadeh Sani
- Analytical Chemistry II Faculty of Chemistry and Biochemistry Ruhr University Bochum 44801 Bochum Germany
| | | | - Simone Pezzotti
- Physical Chemistry II Faculty of Chemistry and Biochemistry Ruhr University Bochum 44780 Bochum Germany
| | - Alessandra Serva
- Sorbonne Université CNRS Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX 75005 Paris France
| | - Paolo Cignoni
- Analytical Chemistry II Faculty of Chemistry and Biochemistry Ruhr University Bochum 44801 Bochum Germany
| | - Julia Linnemann
- Analytical Chemistry II Faculty of Chemistry and Biochemistry Ruhr University Bochum 44801 Bochum Germany
| | - Mathieu Salanne
- Sorbonne Université CNRS Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX 75005 Paris France
- Institut Universitaire de France (IUF) 75231 Paris Cedex 05 France
| | | | - Kristina Tschulik
- Analytical Chemistry II Faculty of Chemistry and Biochemistry Ruhr University Bochum 44801 Bochum Germany
| |
Collapse
|
42
|
Azimzadeh Sani M, Pavlopoulos NG, Pezzotti S, Serva A, Cignoni P, Linnemann J, Salanne M, Gaigeot M, Tschulik K. Unexpectedly High Capacitance of the Metal Nanoparticle/Water Interface: Molecular-Level Insights into the Electrical Double Layer. Angew Chem Int Ed Engl 2022; 61:e202112679. [PMID: 34796598 PMCID: PMC9300121 DOI: 10.1002/anie.202112679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 11/29/2022]
Abstract
The electrical double-layer plays a key role in important interfacial electrochemical processes from catalysis to energy storage and corrosion. Therefore, understanding its structure is crucial for the progress of sustainable technologies. We extract new physico-chemical information on the capacitance and structure of the electrical double-layer of platinum and gold nanoparticles at the molecular level, employing single nanoparticle electrochemistry. The charge storage ability of the solid/liquid interface is larger by one order-of-magnitude than predicted by the traditional mean-field models of the double-layer such as the Gouy-Chapman-Stern model. Performing molecular dynamics simulations, we investigate the possible relationship between the measured high capacitance and adsorption strength of the water adlayer formed at the metal surface. These insights may launch the active tuning of solid-solvent and solvent-solvent interactions as an innovative design strategy to transform energy technologies towards superior performance and sustainability.
Collapse
Affiliation(s)
- Mahnaz Azimzadeh Sani
- Analytical Chemistry II Faculty of Chemistry and BiochemistryRuhr University Bochum44801BochumGermany
| | | | - Simone Pezzotti
- Physical Chemistry II Faculty of Chemistry and BiochemistryRuhr University Bochum44780BochumGermany
| | - Alessandra Serva
- Sorbonne UniversitéCNRSPhysico-chimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX75005ParisFrance
| | - Paolo Cignoni
- Analytical Chemistry II Faculty of Chemistry and BiochemistryRuhr University Bochum44801BochumGermany
| | - Julia Linnemann
- Analytical Chemistry II Faculty of Chemistry and BiochemistryRuhr University Bochum44801BochumGermany
| | - Mathieu Salanne
- Sorbonne UniversitéCNRSPhysico-chimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX75005ParisFrance
- Institut Universitaire de France (IUF)75231Paris Cedex 05France
| | | | - Kristina Tschulik
- Analytical Chemistry II Faculty of Chemistry and BiochemistryRuhr University Bochum44801BochumGermany
| |
Collapse
|
43
|
Argentou E, Amador C, Massey Brooker AD, Bakalis S, Fryer PJ, Zhang ZJ. Modulating the surface and mechanical properties of textile by oil-in-water emulsion design. RSC Adv 2022; 12:2160-2170. [PMID: 35425269 PMCID: PMC8979224 DOI: 10.1039/d1ra07961a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022] Open
Abstract
The synergistic effect of oil viscosity and oil droplet size on the deposition profile of oil on cotton fabric was studied using polydimethylsiloxane (PDMS) as a model oil-in-water emulsion system. Under the same preparation conditions, low viscosity PDMS produced emulsions containing small droplets, which resulted in a uniform surface deposition profile, whilst high viscosity PDMS resulted in a localised deposition profile. Interfacial phenomena such as wicking and penetration of PDMS into cotton fabrics were found to be viscosity-dependent, which agrees with the surface deposition data. Both mechanical characterisation (friction, compression, stiffness) and consumer evaluation confirm that the fabrics treated by the emulsion containing low viscosity PDMS were preferred, suggesting that a homogeneous surface deposition and an excellent penetration profile of PDMS are critical for maximising tactile sensorial benefits, which could be accomplished by optimising the emulsion formulation to contain oil of low viscosity and small PDMS droplets. The synergistic effect of oil viscosity and oil droplet size on the deposition profile of oil on cotton fabric was studied using polydimethylsiloxane (PDMS) as a model oil-in-water emulsion system.![]()
Collapse
Affiliation(s)
- Evangelia Argentou
- School of Chemical Engineering, University of Birmingham Edgbaston Birmingham U.K. B15 2TT UK .,Procter & Gamble, Newcastle Innovation Centre Newcastle-upon-Tyne U.K. NE12 9TS UK
| | - Carlos Amador
- Procter & Gamble, Newcastle Innovation Centre Newcastle-upon-Tyne U.K. NE12 9TS UK
| | | | - Serafim Bakalis
- School of Chemical Engineering, University of Birmingham Edgbaston Birmingham U.K. B15 2TT UK .,Department of Food Science, University of Copenhagen Rolighedsvej 26 Frederiksberg DK-1958 Denmark
| | - Peter J Fryer
- School of Chemical Engineering, University of Birmingham Edgbaston Birmingham U.K. B15 2TT UK
| | - Zhenyu Jason Zhang
- School of Chemical Engineering, University of Birmingham Edgbaston Birmingham U.K. B15 2TT UK
| |
Collapse
|
44
|
Bai YY, Feng ZT, Yang YJ, Yang XY, Zhang ZL. Current Lifetime of Single-Nanoparticle Collision for Sizing Nanoparticles. Anal Chem 2021; 94:1302-1307. [PMID: 34957818 DOI: 10.1021/acs.analchem.1c04502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accurate size analysis of nanoparticles (NPs) is vital for nanotechnology. However, this cannot be realized based on conventional single-nanoparticle collision (SNC) because the current intensity, a thermodynamic parameter of SNC for sizing NPs, is always smaller than the theoretical value due to the effect of NP movements on the electrode surface. Herein, a size-dependent dynamic parameter of SNC, current lifetime, which refers to the time that the current intensity decays to 1/e of the original value, was originally utilized to distinguish differently sized NPs. Results showed that the current lifetime increased with NP size. After taking the current lifetime into account rather than the current intensity, the overlap rates for the peak-type current transients of differently sized Pt NPs (10 and 15 nm) and Au NPs (18 and 35 nm) reduced from 73 and 7% to 45 and 0%, respectively, which were closer to the theoretical values (29 and 0%). Hence, the proposed SNC dynamics-based method holds great potential for developing reliable electrochemical approaches to evaluate NP sizes accurately.
Collapse
Affiliation(s)
- Yi-Yan Bai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhi-Tao Feng
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Yan-Ju Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xiao-Yan Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
45
|
Single Co 3O 4 Nanocubes Electrocatalyzing the Oxygen Evolution Reaction: Nano-Impact Insights into Intrinsic Activity and Support Effects. Int J Mol Sci 2021; 22:ijms222313137. [PMID: 34884941 PMCID: PMC8658644 DOI: 10.3390/ijms222313137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 01/24/2023] Open
Abstract
Single-entity electrochemistry allows for assessing electrocatalytic activities of individual material entities such as nanoparticles (NPs). Thus, it becomes possible to consider intrinsic electrochemical properties of nanocatalysts when researching how activity relates to physical and structural material properties. Conversely, conventional electrochemical techniques provide a normalized sum current referring to a huge ensemble of NPs constituting, along with additives (e.g., binders), a complete catalyst-coated electrode. Accordingly, recording electrocatalytic responses of single NPs avoids interferences of ensemble effects and reduces the complexity of electrocatalytic processes, thus enabling detailed description and modelling. Herein, we present insights into the oxygen evolution catalysis at individual cubic Co3O4 NPs impacting microelectrodes of different support materials. Simulating diffusion at supported nanocubes, measured step current signals can be analyzed, providing edge lengths, corresponding size distributions, and interference-free turnover frequencies. The provided nano-impact investigation of (electro-)catalyst-support effects contradicts assumptions on a low number of highly active sites.
Collapse
|
46
|
Chung J, Hertler P, Plaxco KW, Sepunaru L. Catalytic Interruption Mitigates Edge Effects in the Characterization of Heterogeneous, Insulating Nanoparticles. J Am Chem Soc 2021; 143:18888-18898. [PMID: 34735140 DOI: 10.1021/jacs.1c04971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Blocking electrochemistry, a subfield of nanochemistry, enables nondestructive, in situ measurement of the concentration, size, and size heterogeneity of highly dilute, nanometer-scale materials. This approach, in which the adsorptive impact of individual particles on a microelectrode prevents charge exchange with a freely diffusing electroactive redox mediator, has expanded the scope of electrochemistry to the study of redox-inert materials. A limitation, however, remains: inhomogeneous current fluxes associated with enhanced mass transfer occurring at the edges of planar microelectrodes confound the relationship between the size of the impacting particle and the signal it generates. These "edge effects" lead to the overestimation of size heterogeneity and, thus, poor sample characterization. In response, we demonstrate here the ability of catalytic current amplification (EC') to reduce this problem, an effect we term "electrocatalytic interruption". Specifically, we show that the increase in mass transport produced by a coupled chemical reaction significantly mitigates edge effects, returning estimated particle size distributions much closer to those observed using ex situ electron microscopy. In parallel, electrocatalytic interruption enhances the signal observed from individual particles, enabling the detection of particles significantly smaller than is possible via conventional blocking electrochemistry. Finite element simulations indicate that the rapid chemical kinetics created by this approach contributes to the amplification of the electronic signal to restore analytical precision and reliably detect and characterize the heterogeneity of nanoscale electro-inactive materials.
Collapse
Affiliation(s)
- Julia Chung
- Interdepartmental Program in Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Phoebe Hertler
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Kevin W Plaxco
- Interdepartmental Program in Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States.,Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
47
|
Engelbrekt C, Nazmutdinov RR, Shermukhamedov S, Ulstrup J, Zinkicheva TT, Xiao X. Complex single‐molecule and molecular scale entities in electrochemical environments: Mechanisms and challenges. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Christian Engelbrekt
- Department of Chemistry Technical University of Denmark Building 207, DK0‐2800 Kgs. Lyngby Denmark
| | - Renat R. Nazmutdinov
- Department of Inorganic Chemistry Kazan National Research Technological University Karl Marx Str. 68 Kazan 420015 Russian Federation
| | - Shokirbek Shermukhamedov
- Department of Inorganic Chemistry Kazan National Research Technological University Karl Marx Str. 68 Kazan 420015 Russian Federation
| | - Jens Ulstrup
- Department of Chemistry Technical University of Denmark Building 207, DK0‐2800 Kgs. Lyngby Denmark
| | - Tamara T. Zinkicheva
- Department of Inorganic Chemistry Kazan National Research Technological University Karl Marx Str. 68 Kazan 420015 Russian Federation
| | - Xinxin Xiao
- Department of Chemistry Technical University of Denmark Building 207, DK0‐2800 Kgs. Lyngby Denmark
| |
Collapse
|
48
|
|
49
|
Roehrich B, Liu EZ, Silverstein R, Sepunaru L. Detection and Characterization of Single Particles by Electrochemical Impedance Spectroscopy. J Phys Chem Lett 2021; 12:9748-9753. [PMID: 34591489 DOI: 10.1021/acs.jpclett.1c02822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present an electrochemical impedance spectroscopy (EIS) technique that can detect and characterize single particles as they collide with an electrode in solution. This extension of single-particle electrochemistry offers more information than typical amperometric single-entity measurements, as EIS can isolate concurrent capacitive, resistive, and diffusional processes on the basis of their time scales. Using a simple model system, we show that time-resolved EIS can detect individual polystyrene particles that stochastically collide with an electrode. Discrete changes are observed in various equivalent circuit elements, corresponding to the physical properties of the single particles. The advantages of EIS are leveraged to separate kinetic and diffusional processes, enabling enhanced precision in measurements of the size of the particles. In a broader context, the frequency analysis and single-object resolution afforded by this technique can provide valuable insights into single pseudocapacitive microparticles, electrocatalysts, and other energy-relevant materials.
Collapse
Affiliation(s)
- Brian Roehrich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Eric Z Liu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Ravit Silverstein
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
50
|
Defnet PA, Zhang B. Collision, Adhesion, and Oxidation of Single Ag Nanoparticles on a Polysulfide-Modified Microelectrode. J Am Chem Soc 2021; 143:16154-16162. [PMID: 34549950 DOI: 10.1021/jacs.1c07164] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the collision, adhesion, and oxidation behavior of single silver nanoparticles (Ag NPs) on a polysulfide-modified gold microelectrode. Despite its remarkable success in volume analysis for smaller Ag NPs, the method of NP-collision electrochemistry has failed to analyze particles greater than 50 nm due to uncontrollable collision behavior and incomplete NP oxidation. Herein, we describe the unique capability of an ultrathin polysulfide layer in controlling the collision behavior of Ag NPs by drastically improving their sticking probability on the electrode. The ultrathin sulfurous layer is formed on gold by sodium thiosulfate electro-oxidation and serves both as an adhesive interface for colliding NPs and as a preconcentrated reactive medium to chemically oxidize Ag to form Ag2S. Rapid particle dissolution is further promoted by the presence of bulk sodium thiosulfate serving as a Lewis base, which drastically improves the solubility of generated Ag2S by a factor of 1013. The combined use of polysulfide and sodium thiosulfate allows us to observe a 25× increase in NP detection frequency, a 3× increase in peak amplitude, and more complete oxidation for larger Ag NPs. By recognizing how volumetric analysis using transmission electron microscopy (TEM) may overestimate quasi-spherical NPs, we believe we can have full NP oxidation for particles up to 100 nm. By focusing on the electrode/solution interface for more effective NP-electrode contact, we expect that the knowledge learned from this study will greatly benefit future NP collision systems for mechanistic studies in single-entity electrochemistry as well as designing ultrasensitive biochemical sensors.
Collapse
Affiliation(s)
- Peter A Defnet
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|