1
|
Kozyra M, Biernasiuk A, Gryta E, Kozyra P, Malm A. Phytochemical Profiling and Biological Activity of the Methanolic Extracts of Cirsium Monspessulanum (L.) Hill. Chem Biodivers 2024; 21:e202400944. [PMID: 38828873 DOI: 10.1002/cbdv.202400944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
The study of new plant species and the identification of their chemical composition may contribute to the discovery of a new breakthrough substances for pharmacotherapeutical applications. For the first time, we examined antioxidant and antimicrobial activity of 70 % v/v methanolic extracts from inflorescences and roots of Cirsium monspessulanum (L.) Hill. obtained by the ASE method. In the (2,2-diphenyl-1-picrylhydrazyl) DPPH analysis, tested extract of inflorescences showed antioxidant activity with an EC50=0.223±0.0479 mg/mL, and (Cupric Ion Reducting Antioxidant Capacity) CUPRAC test assessed the antiradical activity on 14.95±0.13 mgTE/g and for roots the values were EC50=0.307±0.0554 mg/mL and 11.18±0.49 mgTE/g, respectively. Furthermore, extract from the inflorescences possessed the highest antimicrobial activity against Staphylococcus aureus, Staphylococcus epidermidis and Micrococcus luteus with MIC=1.25 mg/mL for each. HPLC/ESI-QTOF-MS/MS method identified 7 phenolic acids and 14 flavonoids in inflorescences extract and only 7 phenolic acids in roots extract. To the best of our knowledge, this is the first qualitative analysis of Cirsium monspessulanum (L.) Hill. and all substances were described for the first time.
Collapse
Affiliation(s)
- Małgorzata Kozyra
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, PL-20093, Lublin, Poland
| | - Anna Biernasiuk
- Department of Pharmaceutical Microbiology, Medical University of Lublin, PL-20093, Lublin, Poland
| | - Elżbieta Gryta
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, PL-20093, Lublin, Poland
| | - Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, PL-20093, Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, PL-20093, Lublin, Poland
| |
Collapse
|
2
|
Liu P, Li Q, Zhu G, Zhang T, Tu D, Zhang F, Finel M, He Y, Ge G. Characterization of the glucuronidating pathway of pectolinarigenin, the major active constituent of the Chinese medicine Daji, in humans and its influence on biological activities. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117280. [PMID: 37797876 DOI: 10.1016/j.jep.2023.117280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Chinese medicine Daji (the aerial part of Cirsium japonicum DC.) and its charred product (Cirsii Japonici Herba Carbonisata) have been widely used as hemostatic agents or diuretic agents to prepare a variety of Chinese herbal formula. Pectolinarigenin (PEC), one of the most abundant constituents in both Daji and its charred product, has been considered as the key effective substance responsible for the major pharmacological activities of Daji, including hemostasis, hepatoprotective, anti-tumor and anti-osteoporosis effects. However, the major metabolic pathways of PEC in humans and the influence of PEC metabolism on its biological activities are poorly understood. AIM OF THE STUDY To characterize the main metabolic pathway(s) and key enzymes of PEC in human biological systems, as well as to reveal the influence of PEC metabolism on its biological activities. MATERIALS AND METHODS The metabolic stability assays of PEC were investigated in human liver microsomes (HLM). The O-glucuronide of PEC was biosynthesized and characterized by nuclear magnetic resonance (NMR) spectroscopy. The key enzymes responsible for O-glucuronidation of PEC in humans were assigned by performing UGT reaction phenotyping, chemical inhibition and enzymatic kinetic assays. The agonist effects of PEC and its O-glucuronide on nuclear factor erythroid2-related factor 2 (Nrf2), Peroxisome proliferator activated receptors (PPARα and PPARβ) were tested at the cellular level. RESULTS PEC could be readily metabolized to form a mono-O-glucuronide in both human liver microsome (HLM) and human intestinal microsome (HIM). The mono-O-glucuronide was bio-synthesized by mouse liver S9 and its structure was fully characterized as PEC-7-O-β-D-glucuronide (PEC-O-7-G). UGT1A1, UGT1A3 and UGT1A9 are key enzymes responsible for PEC-7-O-glucuronidation in HLM, while UGT1A1, UGT1A9 and 1A10 may play key roles in this reaction in HIM. Biological tests revealed that PEC displayed strong agonist effects on Nrf2, PPARα and PPARβ, whereas PEC-7-O-glucuronide showed relatively weak Nrf2 agonist effect and very weak PPAR agonist effects, indicating that PEC-7-O-glucuronidation strongly weaken its agonist effects on Nrf2 and PPAR. CONCLUSIONS Our results demonstrate that 7-O-glucuronidation is the major metabolic pathway of PEC in human tissues, while UGT1A1, 1A3 and 1A9 are key contributing enzymes responsible for PEC-7-O-glucuronidation in human liver. It is also found that PEC 7-O-glucuronidation significantly weakens the Nrf2 and PPAR agonist effects. All these findings are very helpful for the pharmacologists to deep understand the metabolic rates of PEC in humans.
Collapse
Affiliation(s)
- Peiqi Liu
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qian Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guanghao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tiantian Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dongzhu Tu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Feng Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Moshe Finel
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China.
| | - Guangbo Ge
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Lamichhane A, Lamichhane G, Devkota HP. Yellow Himalayan Raspberry ( Rubus ellipticus Sm.): Ethnomedicinal, Nutraceutical, and Pharmacological Aspects. Molecules 2023; 28:6071. [PMID: 37630323 PMCID: PMC10458938 DOI: 10.3390/molecules28166071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Yellow Himalayan raspberry (Rubus ellipticus Sm., Rosaceae) is a native species of the Indian subcontinent, Southern China, and the Philippines, which has been historically used as a traditional medicine and food. All of the parts of this plant have been used in traditional medicine to treat respiratory ailments, diabetes, and gastrointestinal disorder, and as an anti-infective agent. The scientific evaluation revealed a richness of macronutrients, micronutrients, and minerals in the fruits, indicating its potential use as a nutraceutical. Furthermore, this plant has been found to be rich in various secondary metabolites, including polyphenols, flavonoids, anthocyanins, tannins, and terpenoids. Ascorbic acid, kaempferol, gallic acid, and catechin are some of the compounds found in this plant, which have been widely discussed for their health benefits. Furthermore, various extracts and compounds obtained from R. ellipticus have shown antioxidant, antidiabetic, anticancer, anti-inflammatory, nephroprotective, antipyretic, anticonvulsant, and anti-infective activities investigated through different study models. These findings in the literature have validated some of the widespread uses of the fruits in folk medicinal systems and the consumption of this nutritious wild fruit by local communities. In conclusion, R. ellipticus holds strong potential for its development as a nutraceutical. It can also improve the nutritional status of villagers and uplift the economy if properly utilized and marketed.
Collapse
Affiliation(s)
- Ananda Lamichhane
- Collage of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Gopal Lamichhane
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Headquarters for Admissions and Education, Kumamoto University, Kurokami, 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan
- Pharmacy Program, Gandaki University, Pokhara 33700, Nepal
| |
Collapse
|
4
|
Omokhua-Uyi AG, Madikizela B, Aro AO, Abdalla MA, Van Staden J, McGaw LJ. Flavonoids of Chromolaena odorata (L.) R.M.King & H.Rob. as potential leads for treatment against tuberculosis. SOUTH AFRICAN JOURNAL OF BOTANY : OFFICIAL JOURNAL OF THE SOUTH AFRICAN ASSOCIATION OF BOTANISTS = SUID-AFRIKAANSE TYDSKRIF VIR PLANTKUNDE : AMPTELIKE TYDSKRIF VAN DIE SUID-AFRIKAANSE GENOOTSKAP VAN PLANTKUNDIGES 2023; 158:158-165. [PMID: 37206481 PMCID: PMC10182713 DOI: 10.1016/j.sajb.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/21/2023]
Abstract
Tuberculosis (TB) is currently rated as the 13th leading cause of mortality and the second leading cause of death after COVID-19, and above AIDS. Existing challenges relating to the development of multidrug-resistant strains and dangerous side effects of currently used drugs add impetus to the search for additional TB treatments. Hence, interest has grown in the use of medicinal plants as a source of bioactive preparations with efficacy against TB-causing organisms, and also with the ability to ameliorate the negative effects of TB drugs. This study aimed to evaluate the antimycobacterial and hepatoprotective potentials of extracts and isolated flavonoid compounds from invasive Chromolaena odorata. Test organisms used were pathogenic Mycobacterium bovis and M. tuberculosis H37RV, and the fast-growing M. aurum, M. fortuitum and M. smegmatis. The selectivity index (SI) values of the test substances were determined through cytotoxicity assays to promote these extracts and compounds as leads for the development of effective and safe anti-tubercular drugs. The antimycobacterial activity was evaluated using a serial microdilution method, and the SI was calculated from the 50% lethal concentrations calculated from cytotoxicity tests. Hepatoprotective activity was determined using HepG2 liver cells treated with rifampicin as a toxin. The extracts and compounds had a range of antimycobacterial activity with minimum inhibitory concentration (MIC) values ranging from 0.031 to 2.5 mg/mL. Two flavonoid compounds, 5,7,4'-trimethoxy flavanone and 5‑hydroxy-3,7,4'-trimethoxyflavone showed promising antimycobacterial potential, and minimal toxicity was observed, as most SI values were higher than 1. The flavonoid compound 5,7,4'-trimethoxy flavanone had the highest SI (6.452), which was against M. tuberculosis H37RV. The HepG2 cells were reduced to 65% due to toxicity by rifampicin, however, the flavonoid compounds were able to improve cell viability to between 81 and 89% at different concentrations tested. Results obtained indicate that C. odorata may serve as a lead for the development of safe and effective antimycobacterial and hepatoprotective drugs.
Collapse
Affiliation(s)
- A G Omokhua-Uyi
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3201, South Africa
| | - B Madikizela
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - A O Aro
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - M A Abdalla
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - J Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3201, South Africa
| | - L J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| |
Collapse
|
5
|
Cho M, Kim Y, You S, Hwang DY, Jang M. Chlorogenic Acid of Cirsium japonicum Resists Oxidative Stress Caused by Aging and Prolongs Healthspan via SKN-1/Nrf2 and DAF-16/FOXO in Caenorhabditis elegans. Metabolites 2023; 13:metabo13020224. [PMID: 36837843 PMCID: PMC9959019 DOI: 10.3390/metabo13020224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
To evaluate the value of Cirsium japonicum (CJ; thistle) as a material for functional foods, we studied the functional composition of cultivated CJ and the in vitro and in vivo antioxidant activity of the functional substance. The detected phenolics in farmed CJ were chlorogenic acid (CA), linarin (LIN), and pectolinarin (PLIN) by HPLC analysis. As a result of the antioxidant activity of CJ and its phenolics by DPPH and ABTS method, CA had shown the greatest antioxidant activity. We employed Caenorhabditis elegans to validate that in vitro effects of CA are shown in vivo. CA delayed reduction in pumping rate and progeny production during aging of C. elegans. Under both normal and oxidative stress conditions, CA reduced the production of reactive oxygen species (ROS) in worms and increased their lifespan. In particular, CA showed the reducing effect of ROS accumulation due to aging in aged worms (8 days old). To gain insight into the mechanism, we used skn-1/Nrf2 and daf-16/FOXO transformed worms. The CA effects (on catalase activity and lifespan extension) in the wild-type (WT) decreased in skn-1 and daf-16 mutants. In particular, CA strongly relied on daf-16 under mild oxidative condition and skn-1 under overall (from mild to strong) oxidative stress to reduce ROS and extend healthspan. Thus, we conclude that CA, a key bioactive phenolic of CJ, reduces ROS production and ultimately extends healthspan, and this effect is the result of actions of daf-16 or skn-1 at different stages depending on the degree of oxidation or aging. Our results suggest that CJ containing CA can be used as an antiaging material due to its antioxidant properties.
Collapse
Affiliation(s)
- Myogyeong Cho
- Department of Food Technology and Nutrition, Inje University, Gimhae 50834, Republic of Korea
| | - Yebin Kim
- Department of Food Technology and Nutrition, Inje University, Gimhae 50834, Republic of Korea
| | - Sohyeon You
- Bio-Health Convergence, Duksung Women’s University, Seoul 01369, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Miran Jang
- Department of Food Technology and Nutrition, Inje University, Gimhae 50834, Republic of Korea
- Correspondence: ; Tel.: +82-55-320-3234
| |
Collapse
|
6
|
Traditional Uses, Phytochemical Composition, Pharmacological Properties, and the Biodiscovery Potential of the Genus Cirsium. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Medicinal plants are rich in phytochemicals, which have been used as a source of raw material in medicine since ancient times. Presently they are mostly used to treat Henoch–Schonlein purpura, hemoptysis, and bleeding. The manuscript covers the classification, traditional applications, phytochemistry, pharmacology, herbal formulations, and patents of Cirsium. The main goal of this review is to impart recent information to facilitate future comprehensive research and use of Cirsium for the development of therapeutics. We investigated numerous databases PubMed, Google Scholar, Springer, Elsevier, Taylor and Francis imprints, and books on ethnopharmacology. The plants of the genus Cirsium of the family Asteraceae contain 350 species across the world. Phytochemical investigations showed that it contains flavonoids, phenols, polyacetylenes, and triterpenoids. The biological potential of this plant is contributed by these secondary metabolites. Cirsium plants are an excellent and harmless agent for the cure of liver diseases; therefore, they might be a good clinical option for the development of therapeutics for hepatic infections. The phytochemical studies of different Cirsium species and their renowned pharmacological activities could be exploited for pharmaceutic product development. Furthermore, studies are required on less known Cirsium species, particularly on the elucidation of the mode of action of their activities.
Collapse
|
7
|
Yoon S, Kim M, Shin S, Woo J, Son D, Ryu D, Yoo J, Park D, Jung E. Effect of Cirsium japonicum Flower Extract on Skin Aging Induced by Glycation. Molecules 2022; 27:molecules27072093. [PMID: 35408493 PMCID: PMC9000855 DOI: 10.3390/molecules27072093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Advanced glycation end products (AGEs) have recently been increasingly discussed as one factor of skin aging. In this study, we investigated the effects of Cirsium japonicum flower (CFE) extract on glycation in relation to skin aging and skin elasticity. Moreover, we learned the main active constituent of CFE that has effects against glycation. To demonstrate the effects of CFE on glycation, we carried out an in vitro glycation study, 3-dimensional culture, and clinical study. As a result, CFE inhibited formation of AGEs in both bovine serum albumin (BSA)/glucose glycation system and aldehyde-derived glycation system. Moreover, CFE reduced Nε-(carboxymethyl), lysine (CML), and carbonylated proteins that increased by glycation. Furthermore, CFE broke crosslinks of collagen–AGEs and inhibited the increase of matrix metalloproteinase-1 (MMP-1) gene expression by AGEs. In the 3D culture condition, CFE restored the reduction of collagen gel contraction by glycation. Moreover, apigenin was detected as the main active constituent in CFE that has anti-glycation effects. In the clinical study, we confirmed that CFE has effects on skin wrinkles and skin elasticity. Our findings suggest that CFE can be used as a cosmetic or cosmeceutical ingredient for improving skin elasticity and wrinkles. Regulation of AGEs can be an interesting target for anti-aging.
Collapse
|
8
|
Luo W, Wu B, Tang L, Li G, Chen H, Yin X. Recent research progress of Cirsium medicinal plants in China. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114475. [PMID: 34363929 DOI: 10.1016/j.jep.2021.114475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The species of the genus Cirsium have been used as traditional Chinese medicine for hundreds of years. It is believed that Cirsium has the efficacies of cooling blood and stopping bleeding, dispelling blood stasis, detoxifying and eliminating carbuncle. At present, they are mainly used in treatment of the hemoptysis, hematemesis, hemoptysis, hematuria, traumatic bleeding and Henoch-Schonlein purpura. They are widely used in traditional Chinese medicine. AIM This paper systematically collated the classification, traditional use, pharmacological action, phytochemistry and clinical application of Cirsium plants in the past ten years, intending to provide a critical appraisal of current knowledge for future in-depth study and rational development and utilization of Cirsium plants. MATERIAL AND METHODS This paper searched various databases (SciFinder, Science Direct, CNKI, Wiley online library, Spring Link, Web of Science, PubMed, Wanfang Data, Weipu Data), Chinese Pharmacopoeia 2020 Edition, Chinese Flora, Chinese Materia Medica and some local books on ethnopharmacology. RESULTS More than ten species of Cirsium have been used as folk medicine, and modern pharmacological studies have shown that Cirsium has the effects of protecting liver, antioxidation, anti-tumor, anti-inflammation, antibacterial, etc. More than 200 chemical constituents such as flavonoids, triterpenes, sterols, phenylpropanoids have been isolated from Cirsium. Some ingredients show a wide variety of bioactivities including hepatoprotective, anti-inflammatory, antioxidant, anti-tumor and other activities. At present, Cirsium medicinal plants, as traditional Chinese medicine, were mainly used to treat nephritis, Henoch-Schonlein purpura and hemorrhage, although some species used in folk lack of quality control systems. CONCLUSION Cirsium plants are a safe and effective medicine for cooling blood and hemostasis. Recent studies on pharmacology and phytochemistry also provide solid scientific evidences for the traditional application of this genus. It also shows significant hepatoprotective activity and may be a potential clinical candidate for the treatment of liver disease. However, the qualitative and quantitative analysis, pharmacokinetics-pharmacodynamics and mechanism of action also need in-depth study.
Collapse
Affiliation(s)
- Wei Luo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bei Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liangjie Tang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guoyou Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Hulan Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xuemei Yin
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Zhao ZW, Chang HC, Ching H, Lien JC, Huang HC, Wu CR. Antioxidant Effects and Phytochemical Properties of Seven Taiwanese Cirsium Species Extracts. Molecules 2021; 26:molecules26133935. [PMID: 34203213 PMCID: PMC8272034 DOI: 10.3390/molecules26133935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
In the present investigation, we compared the radical-scavenging activities and phenolic contents of seven Taiwanese Cirsium species with a spectrophotometric method. We further analyzed their phytochemical profiles with high-performance liquid chromatography–photodiode array detection (HPLC–DAD). We found that the flower part of Cirsium japonicum var. australe (CJF) showed the best radical-scavenging activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and the hypochlorite ion, for which the equivalents were 6.44 ± 0.17 mg catechin/g, 54.85 ± 0.66 mmol Trolox/g and 418.69 ± 10.52 mmol Trolox/g respectively. CJF also had the highest contents of total phenolics (5.23 ± 0.20 mg catechin/g) and phenylpropanoids (29.73 ± 0.72 mg verbascoside/g). According to the Pearson’s correlation coefficient, there was a positive correlation between the total phenylpropanoid content and ABTS radical-scavenging activities (r = 0.979). The radical-scavenging activities of the phenylpropanoids are closely related to their reducing power (r = 0.986). HPLC chromatograms obtained in validated HPLC conditions confirm that they have different phytochemical profiles by which they can be distinguished. Only CJF contained silicristin (0.66 ± 0.03 mg/g) and silydianin (9.13 ± 0.30 mg/g). CJF contained the highest contents of apigenin (5.56 ± 0.09 mg/g) and diosmetin (2.82 ± 0.10 mg/g). Among the major constituents, silicristin had the best radical-scavenging activities against DPPH (71.68 ± 0.66 mg catechin/g) and ABTS (3.01 ± 0.01 mmol Trolox/g). However, diosmetin had the best reducing power and radical-scavenging activity against the hypochlorite anion (41.57 ± 1.14 mg mmol Trolox/g). Finally, we found that flavonolignans (especial silicristin and silydianin) and diosmetin acted synergistically in scavenging radicals.
Collapse
Affiliation(s)
- Zi-Wei Zhao
- The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hung-Chi Chang
- Department of Golden-Ager Industry Management, College of Management, Chaoyang University of Technology, Taichung 413, Taiwan;
| | - Hui Ching
- Department of Pharmacy, Taichung Hospital, Ministry of Health and Welfare, Taichung 404, Taiwan;
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung 404, Taiwan;
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 404, Taiwan;
| | - Chi-Rei Wu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 404, Taiwan;
- Correspondence: ; Tel.: +886-4-2205-3366 (ext. 5506)
| |
Collapse
|
10
|
Tian L, Jiang M, Chen H, Li J, Huang L, Liu C. Comparative analysis of the complete chloroplast genomes of Cirsium japonicum from China and Korea. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:1468-1470. [PMID: 33969197 PMCID: PMC8079006 DOI: 10.1080/23802359.2021.1912669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cirsium japonicum (C. japonicum) is a traditional Chinese medicine belonging to the family Asteraceae. The previous studies have indicated that the chemical compound content of C. japonicum from different places was different. To distinguish C. japonicum from different geographies, the chloroplast genome of C. japonicum from China was sequenced and compared with that from Korea. The total length of this genome is 152,602 bp, similar to that of Korea (152,606 bp). It has a conservative quartile structure which is composed of a large single-copy (LSC) region, a small single-copy (SSC) region and a pair of inverted repeats (IRs) regions, with lengths of 83,487 bp, 18,721 bp, and 25,197 bp, respectively. It encodes 79 protein-coding, 27 transfer RNAs, and 4 ribosomal RNA genes. The overall GC content of the genome is 37.70%. A total of 20 single nucleotide polymorphisms and 6 insertions and deletions were identified between the chloroplast genome of C. japonicum from China and Korea. These results can be applied to develop molecular markers to distinguish C. japonicum from different geographical origins.
Collapse
Affiliation(s)
- Lixia Tian
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mei Jiang
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haimei Chen
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinglin Li
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Linfang Huang
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chang Liu
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Selection of Suitable Reference Genes for qPCR Gene Expression Analysis of HepG2 and L02 in Four Different Liver Cell Injured Models. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8926120. [PMID: 32733961 PMCID: PMC7376413 DOI: 10.1155/2020/8926120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 06/02/2020] [Indexed: 12/22/2022]
Abstract
Quantitative real-time PCR (qPCR) has become a widely used approach to analyze the expression level of selected genes. However, owing to variations in cell types and drug treatments, a suitable reference gene should be selected according to special experimental design. In this study, we investigated the expression level of ten candidate reference genes in hepatoma carcinoma cell (HepG2) and human hepatocyte cell line (L02) treated with ethanol (EtOH), hydrogen peroxide (H2O2), acetaminophen (APAP), and carbon tetrachloride (CCl4), respectively. To analyze raw cycle threshold values (Cp values) from qPCR run, three reference gene validation programs, including Bestkeeper, geNorm, and NormFinder, were used to evaluate the stability of ten candidate reference genes. The results showed that TATA-box binding protein (TBP) and tubulin beta 2a (TUBB2a) presented the highest stability for normalization under different treatments and were regarded as the most suitable reference genes of HepG2 and L02. In addition, this study not only identified the most stable reference genes of each treatment, but also suggested that β-actin (ACTB), glyceraldehade-3-phosphate dehydrogenase (GAPDH), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ), and beta-2 microglobulin (B2M) were the least stable reference genes in HepG2 and L02. This work was the first report to systematically explore the stability of reference genes in injured models of HepG2 and L02.
Collapse
|
12
|
Goh ZH, Tee JK, Ho HK. An Evaluation of the In Vitro Roles and Mechanisms of Silibinin in Reducing Pyrazinamide- and Isoniazid-Induced Hepatocellular Damage. Int J Mol Sci 2020; 21:3714. [PMID: 32466226 PMCID: PMC7279482 DOI: 10.3390/ijms21103714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis remains a significant infectious lung disease that affects millions of patients worldwide. Despite numerous existing drug regimens for tuberculosis, drug-induced liver injury is a major challenge that limits the effectiveness of these therapeutics. Two drugs that form the backbone of the commonly administered quadruple antitubercular regimen, that is, pyrazinamide (PZA) and isoniazid (INH), are associated with such hepatotoxicity. Yet, we lack safe and effective alternatives to the antitubercular regimen. Consequently, current research largely focuses on exploiting the hepatoprotective effect of nutraceutical compounds as complementary therapy. Silibinin, a herbal product widely believed to protect against various liver diseases, potentially provides a useful solution given its hepatoprotective mechanisms. In our study, we identified silibinin's role in mitigating PZA- and INH-induced hepatotoxicity and elucidated a deeper mechanistic understanding of silibinin's hepatoprotective ability. Silibinin preserved the viability of human foetal hepatocyte line LO2 when co-administered with 80 mM INH and decreased apoptosis induced by a combination of 40 mM INH and 10 mM PZA by reducing oxidative damage to mitochondria, proteins, and lipids. Taken together, this proof-of-concept forms the rational basis for the further investigation of silibinin's hepatoprotective effect in subsequent preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Zhang-He Goh
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; (Z.-H.G.); (J.K.T.)
| | - Jie Kai Tee
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; (Z.-H.G.); (J.K.T.)
- NUS Graduate School for Integrative Sciences & Engineering, Centre for Life Sciences, National University of Singapore, Singapore 119077, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; (Z.-H.G.); (J.K.T.)
- NUS Graduate School for Integrative Sciences & Engineering, Centre for Life Sciences, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
13
|
Jang M, Kim KH, Kim GH. Antioxidant Capacity of Thistle (Cirsium japonicum) in Various Drying Methods and their Protection Effect on Neuronal PC12 Cells and Caenorhabditis elegans. Antioxidants (Basel) 2020; 9:antiox9030200. [PMID: 32121091 PMCID: PMC7139455 DOI: 10.3390/antiox9030200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was, firstly, to evaluate the phenol profile of thistle (Cirsium japonicum, CJ) by High performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS), dried by different methods (90 °C hot-air, 70 °C hot-air, shade-, and freeze-drying). Secondly, we aimed to evaluate the relationship between phenolic compounds content and antioxidant properties. CJ contained chlorogenic acid, linarin, and pectolinarin. Total phenolic contents of CJ significantly decreased under hot-air-drying condition, especially chlorogenic acid contents in CJ have been reduced by 85% and 60% for 90 °C and 70 °C hot-air-drying, respectively. We evaluated the protective effect on adrenal pheochromocytoma (PC12) cells and Caenorhabditis elegans using shade-dried CJ, which has the largest phenolic contents and the strongest antioxidant property. CJ-treated PC 12 cells dose-dependently exhibited the protective effects against reactive oxygen species (ROS), while cell viability increases, lactate dehydrogenase release decreases, and ROS formation decreases. Furthermore, CJ has also shown protection against ROS in C. elegans. Consequently, CJ contributed to lifespan extension under ROS stress without influencing the physiological growth.
Collapse
Affiliation(s)
- Miran Jang
- Department of Food Science, Purdue University, West Lafayette, IN 47906, USA; (M.J.); (K.-H.K.)
- Plant Resources Research Institute, Duksung Women’s University, Seoul 01370, Korea
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, IN 47906, USA; (M.J.); (K.-H.K.)
| | - Gun-Hee Kim
- Plant Resources Research Institute, Duksung Women’s University, Seoul 01370, Korea
- Department of Food and Nutrition, Duksung Women’s University, Seoul 01370, Korea
- Correspondence: ; Tel.: +82-2-901-8496; Fax: +82-2-901-8474
| |
Collapse
|
14
|
Identification of Mitochondrial Ligands with Hepatoprotective Activity from Notopterygii Rhizoma et Radix Using Affinity Ultrafiltration/Liquid Chromatography/Mass Spectrometry. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5729263. [PMID: 31950043 PMCID: PMC6948297 DOI: 10.1155/2019/5729263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/01/2019] [Accepted: 11/04/2019] [Indexed: 01/04/2023]
Abstract
In recent years, the incidence of diseases associated with hepatic injury has increased in prevalence. Targeting the mitochondria to protect liver function has gained momentum due to their central role in energy production, apoptotic cell death, oxidative stress, calcium homeostasis, and lipid metabolism. In this study, we employed a hepatic mitochondria-based centrifugal ultrafiltration/liquid chromatography/mass spectrometry method (CM-HMC) to identify hepatic mitochondria ligands from medicinal herbs (MHs) including Notopterygii Rhizoma et Radix (NRR) that possess hepatic-protective effects. A total of 4 newly identified mitochondrial ligands were successfully identified by CM-HMC. The mitochondria-regulating activities of 3 of the 4 hits were confirmed using isolated mitochondria. The hepatic-protective effects of one of these hits were validated in carbon tetrachloride-damaged human liver L02 cell models. We have thus identified new natural hepatic-protectants that enhance our understanding of the hepatic-protective mechanisms of MHs. CM-HMC was proven to efficiently screen for mitochondrial ligands from MHs.
Collapse
|
15
|
Sun L, Yu D, Wu Z, Wang C, Yu L, Wei A, Wang D. Comparative Transcriptome Analysis and Expression of Genes Reveal the Biosynthesis and Accumulation Patterns of Key Flavonoids in Different Varieties of Zanthoxylum bungeanum Leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13258-13268. [PMID: 31714769 DOI: 10.1021/acs.jafc.9b05732] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Zanthoxylum bungeanum (Rutaceae), a popular food flavoring and traditional Chinese medicine ingredient, is an important cash crop. Its leaves are rich in flavonoids with multiple bioactivities. However, the transcriptional sequencing has not been investigated, and the molecular basis for the flavonoid biosynthesis remains unclear in this plant. This paper, the key flavonoids (epicatechin, rutin, hyperoside, trifolin, quercitrin, and afzelin) contents were determined in the leaves of 10 Z. bungeanum varieties from a common garden. Results show the leaves of Z. bungeanum mainly contained hyperoside (11.410-21.721 mg/g) and quercitrin (9.401-18.016 mg/g). The total content of these key components was the highest in Fengxian Dahongpao (66.012 mg/g) and the lowest in Fugu (32.223 mg/g). Three varieties (Hancheng stingless, Fugu, and Fengxian Dahongpao) with significant differences in the total content of key flavonoids were selected for transcriptome analysis to obtain flavonoid biosynthesis-related genes. In total, 83 522 unigenes were obtained, 40 668 (48.69%) unigenes were annotated, and 6656 differentially expressed genes (DEGs) were identified. Comparison of the other two varieties, Fugu had many differentially expressed genes indicating the particularity of its variety. Flavonoid-related DEGs of 22 structural genes, including three PALs, one CYP73A, three 4CLs, six CHSs, one CHI, one F3H, one DFR, two ANSs, one ANR, one FLS, and two CYP75B1s, as well as nine MYBs were obtained. These structural genes had different expression patterns in different Z. bungeanum varieties. It is worth noting that the genes expressing the flavonoid 3'5' hydroxylase are absent in Z. bungeanum. Furthermore, quantitative real-time PCR experiment showed consistent results in transcriptome analysis. The RNA-Seq data set of this study sheds lights on the molecular mechanism of flavonoid biosynthesis in Z. bungeanum, provides valuable information for the metabolic regulation of flavonoids, and may serve as a guide for future breeding programs.
Collapse
Affiliation(s)
- Leiwen Sun
- College of Forestry , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Danmeng Yu
- College of Forestry , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Zhaochen Wu
- College of Forestry , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Cheng Wang
- College of Forestry , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Li Yu
- College of Forestry , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Anzhi Wei
- College of Forestry , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Dongmei Wang
- College of Forestry , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| |
Collapse
|
16
|
Yang L, Liu J, Wang X, Wang R, Ren F, Zhang Q, Shan Y, Ding S. Characterization of Volatile Component Changes in Jujube Fruits during Cold Storage by Using Headspace-Gas Chromatography-Ion Mobility Spectrometry. Molecules 2019; 24:molecules24213904. [PMID: 31671527 PMCID: PMC6864690 DOI: 10.3390/molecules24213904] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 11/16/2022] Open
Abstract
Volatile components in jujube fruits from Zizyphus jujuba Mill. cv. Dongzao (DZ) and Zizyphus jujuba Mill. cv. Jinsixiaozao (JS) were analyzed under different cold storage periods via headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). Results identified 53 peaks that corresponded to 47 compounds and were mostly alcohols, aldehydes, esters, and ketones. Differences in the volatile components of jujube fruits were revealed in topographic plots and fingerprints. For DZ, 3-pentanone was the characteristic component of fresh fruits. After storage for 15 days, dipropyl disulfide became the most special substance. Moreover, when stored for 30 and 45 days, the fruits had some same volatile components, like 2-pentyl furan and diallyl sulfide. However, for DZ stored for 60 days, esters were the prominent constituent of the volatile components, simultaneously, some new alcohols appeared. For JS, 2-ethyl furan was the representative of fresh fruits, and 2-butoxyethanol content was the most abundant after 15 and 30 days of storage. Different from that in DZ, the content of ester in JS increased after storage for 45 days. Substances such as amyl acetate dimer, methyl salicylate, and linalool greatly contributed to the jujube flavor during the late storage period. Principal component analysis (PCA) showed that fresh samples and refrigerated fruits were effectively distinguished. Heat map clustering analysis displayed the similarity of volatile components in different samples and was in accordance with PCA results. Hence, the volatile components of jujube fruits can be readily identified via HS-GC-IMS, and jujube fruits can be classified at different periods based on the difference of volatile components.
Collapse
Affiliation(s)
- Lvzhu Yang
- Longping Branch Graduate School, Hunan University, Changsha 410125, China.
- Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Jie Liu
- Longping Branch Graduate School, Hunan University, Changsha 410125, China.
- Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Xinyu Wang
- Longping Branch Graduate School, Hunan University, Changsha 410125, China.
- Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Fang Ren
- G.A.S. Department of Shandong Hanon Science Instrument Co., Ltd., Jinan 253000, China.
| | - Qun Zhang
- Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Yang Shan
- Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Shenghua Ding
- Longping Branch Graduate School, Hunan University, Changsha 410125, China.
- Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
17
|
Marengo A, Maxia A, Sanna C, Mandrone M, Bertea CM, Bicchi C, Sgorbini B, Cagliero C, Rubiolo P. Intra-specific variation in the little-known Mediterranean plant Ptilostemon casabonae (L.) Greuter analysed through phytochemical and biomolecular markers. PHYTOCHEMISTRY 2019; 161:21-27. [PMID: 30798201 DOI: 10.1016/j.phytochem.2019.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Ptilostemon casabonae (L.) Greuter is a Mediterranean endemism traditionally used for its health-giving properties. Little is known about this species, therefore this study provides additional information about the phytochemical and biomolecular patterns of this plant, to have a combined fingerprint as a taxonomic tool. Several P. casabonae specimens were therefore collected from three different sites, two from Sardinia (Italy) and one from Corsica and the hydroalcoholic extracts of their aerial parts were investigated through HPLC-PDA-MS/MS analysis to study the phenolic composition. Quercetin, luteolin, kaempferol, apigenin and diosmetin O-glycosides, and caffeoylquinic acid derivatives were found as main components. Samples from the three sites showed similar phenolic profiles, although statistical analyses highlighted some quantitative differences for several compounds. The biomolecular analysis included amplification and sequencing of ITS, 5S-rRNA-NTS and psbA regions. No difference was found in the nucleotides among the P. casabonae samples from different geographical origins; however, a comparison with other Ptilostemon species sequences from Genbank, revealed an interspecific variability of ITS and psbA regions. The combination of the results of the phytochemical and biomolecular studies provide information on P. casabonae useful to depict this little-known plant, which can also be applied for future investigations and to obtain a fingerprint of it. Moreover, the stability of the phenolic profile within the species affords to identify a set of specialised metabolites useful for its chemotaxonomic characterization. At the same time, the stability of the biomolecular profile of P. casabonae, and the identification of sequences specific for this species, enables to identify useful biomolecular markers to distinguish it unequivocally.
Collapse
Affiliation(s)
- Arianna Marengo
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università di Torino, Via P. Giuria 9, 10125, Torino, Italy
| | - Andrea Maxia
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Sezione di Botanica, Università di Cagliari, Viale Sant'Ignazio da Laconi 13, 09123, Cagliari, Italy
| | - Cinzia Sanna
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Sezione di Botanica, Università di Cagliari, Viale Sant'Ignazio da Laconi 13, 09123, Cagliari, Italy
| | - Manuela Mandrone
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Cinzia M Bertea
- Dipartimento di Scienze Della Vita e Biologia Dei Sistemi, Unità di Fisiologia Vegetale, Università di Torino, Via Quarello 15/A, 10135, Torino, Italy
| | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università di Torino, Via P. Giuria 9, 10125, Torino, Italy
| | - Barbara Sgorbini
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università di Torino, Via P. Giuria 9, 10125, Torino, Italy
| | - Cecilia Cagliero
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università di Torino, Via P. Giuria 9, 10125, Torino, Italy
| | - Patrizia Rubiolo
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università di Torino, Via P. Giuria 9, 10125, Torino, Italy.
| |
Collapse
|
18
|
Wang L, Wang N, Zhao Q, Zhang B, Ding Y. Pectolinarin inhibits proliferation, induces apoptosis, and suppresses inflammation in rheumatoid arthritis fibroblast-like synoviocytes by inactivating the phosphatidylinositol 3 kinase/protein kinase B pathway. J Cell Biochem 2019; 120:15202-15210. [PMID: 31020684 DOI: 10.1002/jcb.28784] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 01/15/2023]
Abstract
Rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs), a pathological hallmark of rheumatoid arthritis (RA), exhibit the characteristics of tumor cells. The extracts of Cirsium japonicum var. ussuriense have been shown to possess antitumor and anti-inflammatory activities. Our study aimed to investigate the effects of pectolinarin, a flavonoid compound isolated from C. japonicum var. ussuriense, on RA. Cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. Apoptosis was determined by flow cytometry analysis and Western blot analysis of Bax and Bcl-2 levels. Inflammation was assessed by detecting the expressions and secretion of interleukin (IL)-6 and IL-8 using quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The production of nitric oxide (NO) and prostaglandin E2 (PGE2) was also measured. The effects of pectolinarin on the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathway were examined by Western blot. We found that pectolinarin significantly inhibited cell viability at 24 and 48 hours in a dose-dependently manner in RA-FLSs. Pectolinarin reduced the apoptotic rate, increased Bax level, and decreased Bcl-2 level in RA-FLSs. Pectolinarin inhibited the messenger RNA expression and secretion of IL-6 and IL-8, as well as the production of PGE2 and NO in RA-FLSs. Furthermore, pectolinarin inactivated the phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) pathway in RA-FLSs. Activation of the PI3K/Akt pathway by 740Y-P impaired the effects of pectolinarin on cell viability, apoptosis, and inflammation in RA-FLSs. In conclusion, pectolinarin suppressed cell proliferation and inflammatory response and induced apoptosis in RA-FLSs via inactivation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Laifang Wang
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Na Wang
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Qing Zhao
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Bingyi Zhang
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Yanjie Ding
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| |
Collapse
|
19
|
Comparative antitumor and anti-inflammatory effects of flavonoids, saponins, polysaccharides, essential oil, coumarin and alkaloids from Cirsium japonicum DC. Food Chem Toxicol 2019; 125:422-429. [DOI: 10.1016/j.fct.2019.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/13/2019] [Accepted: 01/20/2019] [Indexed: 11/18/2022]
|
20
|
Roy NS, Kim JA, Choi AY, Ban YW, Park NI, Park KC, Yang HS, Choi IY, Kim S. RNA-Seq De Novo Assembly and Differential Transcriptome Analysis of Korean Medicinal Herb Cirsium japonicum var. spinossimum. Genomics Inform 2018; 16:e34. [PMID: 30602095 PMCID: PMC6440657 DOI: 10.5808/gi.2018.16.4.e34] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
Cirsium japonicum belongs to the Asteraceae or Compositae family and is a medicinal plant in Asia that has a variety of effects, including tumour inhibition, improved immunity with flavones, and antidiabetic and hepatoprotective effects. Silymarin is synthesized by 4-coumaroyl-CoA via both the flavonoid and phenylpropanoid pathways to produce the immediate precursors taxifolin and coniferyl alcohol. Then, the oxidative radicalization of taxifolin and coniferyl alcohol produces silymarin. We identified the expression of genes related to the synthesis of silymarin in C. japonicum in three different tissues, namely, flowers, leaves, and roots, through RNA sequencing. We obtained 51,133 unigenes from transcriptome sequencing by de novo assembly using Trinity v2.1.1, TransDecoder v2.0.1, and CD-HIT v4.6 software. The differentially expressed gene analysis revealed that the expression of genes related to the flavonoid pathway was higher in the flowers, whereas the phenylpropanoid pathway was more highly expressed in the roots. In this study, we established a global transcriptome dataset for C. japonicum. The data shall not only be useful to focus more deeply on the genes related to product medicinal metabolite including flavolignan but also to study the functional genomics for genetic engineering of C. japonicum.
Collapse
Affiliation(s)
- Neha Samir Roy
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea.,Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea
| | - Jung-A Kim
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Korea
| | | | - Yong-Wook Ban
- Department of Forest Environmental System, Kangwon National University, Chuncheon 24341, Korea
| | - Nam-Il Park
- Department of Plant Science, Gangneung Wonju National University, Gangneung 25457, Korea
| | - Kyong-Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| | - Hee-Sun Yang
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea.,Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea
| | - Soonok Kim
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Korea
| |
Collapse
|
21
|
Hu WB, Ouyang KH, Wu GQ, Chen H, Xiong L, Liu X, Wang N, Wang WJ. Hepatoprotective effect of flavonoid-enriched fraction from Cyclocarya paliurus leaves on LPS/D-GalN-induced acute liver failure. J Funct Foods 2018; 48:337-350. [DOI: 10.1016/j.jff.2018.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
22
|
Hu WB, Ouyang KH, Wu GQ, Chen H, Xiong L, Liu X, Wang N, Wang WJ. Hepatoprotective effect of flavonoid-enriched fraction from Cyclocarya paliurus leaves on LPS/D-GalN-induced acute liver failure. J Funct Foods 2018. [DOI: https://doi.org/10.1016/j.jff.2018.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
23
|
Han HS, Shin JS, Lee SB, Park JC, Lee KT. Cirsimarin, a flavone glucoside from the aerial part of Cirsium japonicum var. ussuriense (Regel) Kitam. ex Ohwi, suppresses the JAK/STAT and IRF-3 signaling pathway in LPS-stimulated RAW 264.7 macrophages. Chem Biol Interact 2018; 293:38-47. [PMID: 30053449 DOI: 10.1016/j.cbi.2018.07.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
Cirsium japonicum var. ussuriense (Regel) Kitam. ex Ohwi (C. ussuriense) is known as "Dae-Gye" or "Korean milk thistle". C. ussuriense have long been used as a folk medicinal plant for inflammatory diseases such as hepatitis, nephritis, and mastitis in Korea, China, and Japan. To reveal the anti-inflammatory components of C. ussuriense, we isolated three flavone glycosides (linarin, cirsimarin, and hispidulin-7-O-neohesperidoside) from the aerial part of C. ussuriense and evaluated their inhibitory effects on LPS-induced pro-inflammatory mediators in macrophages. We also investigated the involving molecular mechanisms of cirsimarin. Among three flavone glycosides, cirsimarin showed vastly superior inhibitory potency in LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production. Cirsimarin concentration-dependently inhibited LPS-induced inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in macrophages. Cirsimarin suppressed the production and mRNA expression of tumor necrosis factor- α (TNF-α) and interleukin (IL)-6 in LPS-stimulated RAW 264.7 and bone marrow-derived macrophages. Moreover, molecular data presented that cirsimarin down-regulated the phosphorylation of Janus kinase (JAK)/signal transducer and activator of transcriptions (STATs) and p38 mitogen-activated protein kinase (MAPK), and nuclear translocation of interferon regulatory factor (IRF)-3. Collectively, cirsimarin may be an active ingredient responsible for anti-inflammatory effects of C. ussuriense and it may act as a promising therapeutic against inflammatory diseases by suppressing the JAK/STAT and IRF-3 signaling pathway.
Collapse
Affiliation(s)
- Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea; Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea
| | - Seung-Bin Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea; Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea
| | - Jong Cheol Park
- Department of Oriental Medicine Resources, College of Life Science and Natural Resources, Sunchon National University, Suncheon, 57922, South Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea; Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea.
| |
Collapse
|
24
|
Identification of luteolin 7-O-β-D-glucuronide from Cirsium japonicum and its anti-inflammatory mechanism. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
|
26
|
Yang X, Shao H, Chen Y, Ding N, Yang A, Tian J, Jiang Y, Li G, Jiang Y. In renal hypertension, Cirsium japonicum strengthens cardiac function via the intermedin/nitric oxide pathway. Biomed Pharmacother 2018. [DOI: 10.1016/j.biopha.2018.02.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
27
|
Comparison of the Hepatoprotective Effects of Four Endemic Cirsium Species Extracts from Taiwan on CCl₄-Induced Acute Liver Damage in C57BL/6 Mice. Int J Mol Sci 2018; 19:ijms19051329. [PMID: 29710853 PMCID: PMC5983772 DOI: 10.3390/ijms19051329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 12/19/2022] Open
Abstract
Species of Cirsium (Asteraceae family) have been used in folk hepatoprotective medicine in Taiwan. We collected four Cirsium species—including the aerial part of Cirsium arisanense (CAH), the aerial part of Cirsium kawakamii (CKH), the flower part of Cirsium japonicum DC. var. australe (CJF), and Cirsii Herba (CH)—and then made extractions from them with 70% methanol. We compared the antioxidant contents and activities of these four Cirsium species extracts by a spectrophotometric method and high-performance liquid chromatography⁻photodiode array detector (HPLC-DAD). We further evaluated the hepatoprotective effects of these extracts on CCl₄-induced acute liver damage in C57BL/6 mice. The present study found CAH possesses the highest antioxidant activity among the four Cirsium species, and these antioxidant activities are closely related to phenylpropanoid glycoside (PPG) contents. The extracts decreased serum ALT and AST levels elevated by injection with 0.2% CCl₄. However, only CJF and CH decreased hepatic necrosis. Silibinin decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and hepatic necrosis caused by CCl₄. CJF and CH restored the activities of hepatic antioxidant enzymes and decreased hepatic malondialdehyde (MDA) levels. CJF further restored the expression of hepatic antioxidant enzymes including Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-superoxide dismutase (Mn-SOD), and glutathione S-transferase (GST) proteins. HPLC chromatogram indicated that CKH, CJF, and CH contained silibinin diastereomers (α and β). Only CJF contained diosmetin. Hence, the hepatoprotective mechanism of CJF against CCl₄-induced acute liver damage might be involved in restoring the activities and protein expression of the hepatic antioxidant defense system and inhibiting hepatic inflammation, and these hepatoprotective effects are related to the contents of silibinin diastereomers and diosmetin.
Collapse
|
28
|
Huang W, Wang Y, Jiang X, Sun Y, Zhao Z, Li S. Protective Effect of Flavonoids from Ziziphus jujuba cv. Jinsixiaozao against Acetaminophen-Induced Liver Injury by Inhibiting Oxidative Stress and Inflammation in Mice. Molecules 2017; 22:molecules22101781. [PMID: 29053632 PMCID: PMC6151471 DOI: 10.3390/molecules22101781] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 12/14/2022] Open
Abstract
This study was aimed to investigate the chemical composition, antioxidant activities and hepatoprotective effect of flavonoids from Ziziphus jujuba cv. Jinsixiaozao (ZJF). The composition of ZJF was analyzed by high performance liquid chromatography (HPLC) and Liquid chromatography-mass spectrometry (LC-MS), and antioxidant properties were investigated by biological assays in vitro. The hepatoprotective activity of ZJF was evaluated in acetaminophen (APAP)-treated BALB/c mice. Results indicate that ZJF displayed significant antioxidant capacity. Pretreatment with ZJF significantly decreased APAP-elevated serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and total bilirubin (TB). Activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were enhanced with ZJF administration, while malondialdehyde (MDA) level and glutathione (GSH) depletion were reduced. Meanwhile, ZJF reversed the suppression of nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, and up-regulated the protein expression of NAD(P)H: quinone oxidoreductase 1(NQO1) in liver damage mice. Furthermore, ZJF attenuated APAP-induced inflammatory mediator production, such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β). Expression of p65 showed that ZJF dampened nuclear factor-κB (NF-κB) activation. The results strongly indicate that the hepatoprotective role of ZJF in APAP-induced hepatotoxicity might result from its induction of antioxidant defense via activation of Nrf2 and reduction of inflammation via inhibition of NF-κB.
Collapse
Affiliation(s)
- Weizhen Huang
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 50012, Shandong, China.
| | - Yongjie Wang
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 50012, Shandong, China.
| | - Xiaoyan Jiang
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 50012, Shandong, China.
| | - Yueyue Sun
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 50012, Shandong, China.
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 50012, Shandong, China.
- Shandong Engineering & Technology Research Center for Jujube Food and Drug, 44 West Wenhua Road, Jinan 250012, Shandong, China.
- Shandong Provincial Key Laboratory of Mucosal and Transdermal Drug Delivery Technologies, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Jinan 250101, Shandong, China.
| | - Siying Li
- Department of Pathology and Pathophysiology, School of Basic Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong, China.
| |
Collapse
|
29
|
Apigenin-7-O-β-D-glucuronide inhibits modified low-density lipoprotein uptake and foam cell formation in macrophages. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
30
|
Shirani M, Raeisi R, Heidari-Soureshjani S, Asadi-Samani M, Luther T. A review for discovering hepatoprotective herbal drugs with least side effects on kidney. J Nephropharmacol 2017. [DOI: 10.15171/npj.2017.03] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|