1
|
Flores-Bocanegra L, González-Hernández EE, Soto-Sosa A, González-Trujano ME, Cristians S. Phytochemical analysis and evaluation of the inhibitory effect of the Cunila lythrifolia Benth aerial parts on abdominal pain and some digestive enzymes. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118991. [PMID: 39490712 DOI: 10.1016/j.jep.2024.118991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Cunila lythrifolia Benth. (Lamiaceae) commonly named "poleo de monte" is a Mexican plant known since pre-Hispanic times because of the properties of its aerial parts to treat respiratory and gastrointestinal conditions, for postpartum care, and as an aphrodisiac. AIM OF THE STUDY To obtain preclinical evidence of the pharmacological properties of C. lythrifolia on abdominal pain and some digestive enzymes, as well as its chemical composition. MATERIAL AND METHODS The preclinical safety of a decoction was evaluated by the Lorke method in mice. The antinociceptive effect was assessed using the acetic acid-induced writhing test in mice, and the mechanism of action was explored by the co-administration of naloxone. Additionally, the inhibition of the lipase and α-amylase was carried out using a colorimetric assay to calculate the percentage of inhibition. The isolation of specialized metabolites was carried out using chromatographic techniques, and characterization was established with MS, NMR, and chiroptical analysis. The volatile components of the aerial parts were identified by GC-MS analysis of the essential oils, and by HSPM coupled with GC-MS. An analytical method by UHPLC was validated under the guidelines of the ICH, for the quantification of 1. RESULTS The LD50 of the aqueous extract is higher than 5 g/kg. The decoction and the essential oil have an antinociceptive effect at 100 and 10 mg/kg, respectively. The essential oil was active against the lipase enzyme (96-76 % of inhibition). The isolated compounds from the decoction were linarin (1), 7-O-[2-O-acetyl-β-D-glucopyranosyl-(1 → 2)-[α-L-rhamnopyranosyl-(1 → 6)]-β-D-glucopyranoside] (2), lithospermic acid (3), rosmarinic acid (4), and citrusin C (5). Compound 1 showed an antinociceptive effect at 316 mg/kg. A UHPLC method was validated for the quantification of 1 in three different batches. The volatiloma analysis revealed that menthofuran (10), β-caryophyllene (22), spathulenol (31), and caryophyllene oxide (32) are the major constituents in the aerial parts. (±)-cunildone (27) a new menthofuran derivative was isolated from the essential oil of the fresh aerial parts. CONCLUSION The results of these studies demonstrate the preclinical safety and validate the traditional use of C. lythrifolia as an antinociceptive agent. Contribute to the chemical identification of the species and to the quality control and establish a method for quantitative analysis of the plant. Overall promoting the rational use and quality control of C. lythrifolia.
Collapse
Affiliation(s)
- Laura Flores-Bocanegra
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| | | | - Aldo Soto-Sosa
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, 14370, Mexico
| | - Sol Cristians
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México. Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| |
Collapse
|
2
|
Guadarrama-Enríquez O, Moreno-Pérez GF, González-Trujano ME, Ángeles-López GE, Ventura-Martínez R, Díaz-Reval I, Cano-Martínez A, Pellicer F, Baenas N, Moreno DA, García-Viguera C. Antinociceptive and antiedema effects produced in rats by Brassica oleracea var. italica sprouts involving sulforaphane. Inflammopharmacology 2023; 31:3217-3226. [PMID: 37728726 PMCID: PMC10692002 DOI: 10.1007/s10787-023-01326-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/26/2023] [Indexed: 09/21/2023]
Abstract
Natural products are recognized as potential analgesics since many of them are part of modern medicine to relieve pain without serious adverse effects. The aim of this study was to investigate the antinociceptive and anti-inflammatory activities of an aqueous extract of Brassica oleracea var. italica sprouts (AEBS) and one of its main reported bioactive metabolites sulforaphane (SFN). Antinociceptive activity of the AEBS (30, 100, and 300 mg/kg, i.p. or 1000 and 2000 mg/kg, p.o.) and SFN (0.1 mg/kg, i.p.) was evaluated in the plantar test in rats to reinforce its analgesic-like activity at central level using the reference drug tramadol (TR, 50 mg/kg, i.p.). The anti-inflammatory-like response was determined in the carrageenan-induced oedema at the same dosages for comparison with ketorolac (KET, 20 mg/kg, i.p.) or indomethacin (INDO, 20 mg/kg, p.o.). A histological analysis of the swollen paw was included to complement the anti-inflammatory response. Additionally, acute toxicity observed in clinical analgesics as the most common adverse effects, such as sedation and/or gastric damage, was also explored. As a result, central and peripheral action of the AEBS was confirmed using enteral and parenteral administration, in which significant reduction of the nociceptive and inflammatory responses resembled the effects of TR, KET, or INDO, respectively, involving the presence of SFN. No adverse or toxic effects were observed in the presence of the AEBS or SFN. In conclusion, this study supports that Brassica oleracea var. italica sprouts are a potential source of antinociceptive natural products such as SFN for therapy of pain alone and associated to an inflammation condition.
Collapse
Affiliation(s)
- Omar Guadarrama-Enríquez
- Laboratorio de Neurofarmacología de Productos Naturales. Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370, Tlalpan. C.P, Ciudad de Mexico, México
| | - Gabriel Fernando Moreno-Pérez
- Laboratorio de Neurofarmacología de Productos Naturales. Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370, Tlalpan. C.P, Ciudad de Mexico, México
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales. Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370, Tlalpan. C.P, Ciudad de Mexico, México.
| | - Guadalupe Esther Ángeles-López
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Col. Ciudad Universitaria, Alcaldía Coyoacán, 04510, Ciudad de Mexico, México
| | - Rosa Ventura-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Col. Ciudad Universitaria, Alcaldía Coyoacán, 04510, Ciudad de Mexico, México
| | - Irene Díaz-Reval
- Laboratorio de "Farmacología del Dolor" del Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, 28045, Colima, Col, Mexico
| | - Agustina Cano-Martínez
- Departamento de Fisiología, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Col. Sección XVI, Tlalpan. C.P, 14080, Ciudad de Mexico, México
| | - Francisco Pellicer
- Laboratorio de Neurofarmacología de Productos Naturales. Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370, Tlalpan. C.P, Ciudad de Mexico, México
| | - Nieves Baenas
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, Espinardo, 30100, Murcia, Spain
| | - Diego A Moreno
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS, CSIC, Campus de Espinardo - 25, 30100, Murcia, Spain
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS, CSIC, Campus de Espinardo - 25, 30100, Murcia, Spain.
| |
Collapse
|
3
|
Zeng W, Yang J, Yan G, Zhu Z. CaSO 4 Increases Yield and Alters the Nutritional Contents in Broccoli ( Brassica oleracea L. Var. italica) Microgreens under NaCl Stress. Foods 2022; 11:3485. [PMID: 36360098 PMCID: PMC9656751 DOI: 10.3390/foods11213485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Broccoli (Brassica oleracea L. Var. italica) microgreens are rich in various nutrients, especially sulforaphane. NaCl application is an effective method to reduce nitrate content, and to improve sulforaphane content; however, NaCl application is associated with a risk in productivity reduction. Ca application is a well-known approach to cope with salt stress. Thus, we hypothesized that adding CaSO4 may mitigate the adverse effects of NaCl stress, and enhance the quality of broccoli microgreens. In this study, we conducted an experiment to investigate the effects of a combined treatment of NaCl and CaSO4 on the fresh yield, glucosinolates (GS), sulforaphane, nitrate, and mineral element contents of broccoli microgreens. The results showed that the incorporation of CaSO4 into NaCl solution unexpectedly increased the yield of the leaf area. Moreover, the addition of CaSO4 ameliorated the decline in GS under NaCl stress, and induced the accumulation of Ca and S. The nitrate content decreased more than three times, and sulforaphane content also decreased in the combined treatment of NaCl and CaSO4. This study proposes that the incorporation of CaSO4 into NaCl solution increases the yield, and alleviates the unfavorable effects induced by NaCl stress on the quality of broccoli microgreens. This study provides a novel approach for microgreens production.
Collapse
Affiliation(s)
- Wenjing Zeng
- College of Environmental and Resource Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Jing Yang
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Guochao Yan
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhujun Zhu
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
4
|
Zhuang L, Huang G, Li X, Xiao J, Guo L. Effect of different LED lights on aliphatic glucosinolates metabolism and biochemical characteristics in broccoli sprouts. Food Res Int 2022; 154:111015. [DOI: 10.1016/j.foodres.2022.111015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/22/2022]
|
5
|
Saleem U, Bibi S, Shah MA, Ahmad B, Saleem A, Chauhdary Z, Anwar F, Javaid N, Hira S, Akhtar MF, Shah GM, Khan MS, Muhammad H, Qasim M, Alqarni M, Algarni MA, Blundell R, Vargas-De-La-Cruz C, Herrera-Calderon O, Alhasani RH. Anti-Parkinson's evaluation of Brassica juncea leaf extract and underlying mechanism of its phytochemicals. FRONT BIOSCI-LANDMRK 2021; 26:1031-1051. [PMID: 34856751 DOI: 10.52586/5007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/30/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022]
Abstract
Background: Parkinson's disease (PD) is associated with progressive neuronal damage and dysfunction. Oxidative stress helps to regulate neurodegenerative and neuronal dysfunction. Natural compounds could attenuate oxidative stress in a variety of neurological disorders. B. juncea is a rich source of antioxidants. The present study aimed to evaluate the therapeutic potential of B. juncea leaves for the treatment of PD by applying behavioral, in vivo and in silico studies. For in vivo studies rats were divided into six groups (n = 6). Group-I served as normal control (vehicle control). Group-II was disease control (haloperidol 1 mg/kg). Group-III was kept as a standard group (L-Dopa 100 mg/kg + carbidopa 25 mg/kg). Groups (IV-VI) were the treatment groups, receiving extract at 200-, 400- and 600 mg/kg doses respectively, for 21 days orally. Results: In vivo study results showed that the extract was found to improve muscles strength, motor coordination, and balance in PD. These behavioral outcomes were consistent with the recovery of endogenous antioxidant defence in biochemical analysis which was further corroborated with histopathological ameliorations. Dopamine levels increased and monoamine oxidase B (MAO-B) levels decreased dose-dependently in the brain during the study. Herein, we performed molecular docking analysis of the proposed extracted phytochemicals has explained that four putative phytochemicals (sinapic acid, rutin, ferulic acid, and caffeic acid) have presented very good results in terms of protein-ligand binding interactions as well as absorption, distribution, metabolism, excretion & toxicity (ADMET) profile estimations. Conclusion: The undertaken study concluded the anti-Parkinson activity of B. juncea and further suggests developments on its isolated compounds in PD therapeutics.
Collapse
Affiliation(s)
- Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, 38000 Faisalabad, Pakistan
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, 650091 Kunming, Yunnan, China
- International Joint Research Center for Sustainable Utilization of CordycepsBioresouces in China and South-east Asia, Yunnan University, 650091 Kunming, Yunnan, China
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, 38000 Faisalabad, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, 54000 Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, 38000 Faisalabad, Pakistan
| | - Zunera Chauhdary
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, 38000 Faisalabad, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, 54000 Lahore, Pakistan
| | - Nimra Javaid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, 38000 Faisalabad, Pakistan
| | - Sundas Hira
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, 54000 Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, 54000 Lahore, Pakistan
| | - Ghulam Mujtaba Shah
- Department of Botany, Faculty of Biological and Health Sciences, Hazara University, 21120 Mansehra, Pakistan
| | - Muhammad Saad Khan
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, 57000 Sahiwal, Pakistan
| | - Haji Muhammad
- Department of Chemistry, Federal Urdu University of Arts, Science & Technology, 75300 Karachi, Pakistan
| | - Muhammad Qasim
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, 75270 Karachi, Pakistan
| | - Mohammad Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, 21944 Taif, Saudi Arabia
| | - Majed A Algarni
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, 21944 Taif, Saudi Arabia
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Msida, Malta
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology, Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, 15001 Lima, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, 15001 Lima, Peru
| | - Oscar Herrera-Calderon
- Department of Pharmacology, Bromatology, Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, 15001 Lima, Peru
| | - Reem Hasaballah Alhasani
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, 21961 Makkah, Saudi Arabia
| |
Collapse
|
6
|
Agulló V, González-Trujano ME, Hernandez-Leon A, Estrada-Camarena E, Pellicer F, García-Viguera C. Antinociceptive effects of maqui-berry ( Aristotelia chilensis (Mol.) Stuntz). Int J Food Sci Nutr 2021; 72:947-955. [PMID: 33719824 DOI: 10.1080/09637486.2021.1895727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Maqui-berry is characterised by presenting a high concentration of (poly)phenols, accounting anthocyanins (cyanidin and delphinidin) for over 85% of the total. These coloured flavonoids have demonstrated potential neurological activity, but the evidence of their antinociceptive properties is scarce. In order to cover this gap, different doses (suitable for human administration) of a maqui-berry powder (1.6% anthocyanin), using enteral and parenteral routes of administration, were compared at central and peripheral levels using a nociceptive pain model (formalin test) in mice. Gastric damage analysis as possible adverse effects of analgesic and anti-inflammatory drugs was also explored. Dose-antinociceptive response was confirmed using both routes of administration and in both neurogenic and inflammatory phases of the formalin test, without gastric damage. In conclusion, these preliminary data provide evidence of pharmacological properties of maqui-berry to alleviate nociceptive pain.
Collapse
Affiliation(s)
- Vicente Agulló
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México.,Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Grupo Calidad, Bioactividad y Seguridad, Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Murcia, Spain
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Alberto Hernandez-Leon
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Erika Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Francisco Pellicer
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Grupo Calidad, Bioactividad y Seguridad, Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
7
|
Le TN, Chiu CH, Hsieh PC. Bioactive Compounds and Bioactivities of Brassica oleracea L. var. Italica Sprouts and Microgreens: An Updated Overview from a Nutraceutical Perspective. PLANTS 2020; 9:plants9080946. [PMID: 32727144 PMCID: PMC7465980 DOI: 10.3390/plants9080946] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Sprouts and microgreens, the edible seedlings of vegetables and herbs, have received increasing attention in recent years and are considered as functional foods or superfoods owing to their valuable health-promoting properties. In particular, the seedlings of broccoli (Brassica oleracea L. var. Italica) have been highly prized for their substantial amount of bioactive constituents, including glucosinolates, phenolic compounds, vitamins, and essential minerals. These secondary metabolites are positively associated with potential health benefits. Numerous in vitro and in vivo studies demonstrated that broccoli seedlings possess various biological properties, including antioxidant, anticancer, anticancer, antimicrobial, anti-inflammatory, anti-obesity and antidiabetic activities. The present review summarizes the updated knowledge about bioactive compounds and bioactivities of these broccoli products and discusses the relevant mechanisms of action. This review will serve as a potential reference for food selections of consumers and applications in functional food and nutraceutical industries.
Collapse
|
8
|
Garcia-Ibañez P, Moreno DA, Nuñez-Gomez V, Agudelo A, Carvajal M. Use of elicitation in the cultivation of Bimi® for food and ingredients. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2099-2109. [PMID: 31875967 DOI: 10.1002/jsfa.10233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cruciferous foods rich in health-promoting metabolites are of particular interest to consumers as well as being a good source of bioactives-enriched ingredients. Several elicitors have been used to stimulate the biosynthesis and accumulation of secondary metabolites in foods; however, little is known about the response of new hybrid varieties, such as Bimi®, under field-crop production conditions. Therefore, this study was designed to evaluate the effect of salicylic acid (200 μmol L-1 , SA), methyl jasmonate (100 μmol L-1 , MeJA), and their combination on Bimi plant organs (inflorescences and aerial vegetative tissues - stems and leaves). For this, the composition of the glucosinolates present in the tissues was evaluated. Also, aqueous extracts of the plant material, obtained with different times of extraction with boiling water, were studied. RESULTS The results indicate that the combined treatment (SA + MeJA) significantly increased the content of glucosinolates in the inflorescences and that MeJA was the most effective elicitor in leaves. Regarding the aqueous extracts, the greatest amount of glucosinolates was extracted at 30 min - except for the leaves elicited with MeJA, for which 15 min was optimal. CONCLUSION The elicitation in the field enriched leaves in glucobrassicin (GB), 4-methoxyglucobrassicin (MGB), and neoglucobrassicin (NGB) and stems and inflorescences in glucoraphanin, 4-hydroxyglucobrassicin, GB, MGB, and NGB. In this way, this enhanced vegetable material favored the presence of bioactives in the extracts, which is of great interest regarding enriched foods and ingredients with added value obtained from them. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Paula Garcia-Ibañez
- Aquaporins Group, Department of Plant Nutrition, CEBAS-CSIC, Murcia, Spain
- Phytochemistry and Healthy Foods Lab, Department of Food Science Technology, CEBAS-CSIC, Murcia, Spain
| | - Diego A Moreno
- Phytochemistry and Healthy Foods Lab, Department of Food Science Technology, CEBAS-CSIC, Murcia, Spain
| | - Vanessa Nuñez-Gomez
- Phytochemistry and Healthy Foods Lab, Department of Food Science Technology, CEBAS-CSIC, Murcia, Spain
| | - Agatha Agudelo
- R&D Special Collaborative Projects, Sakata Seed Ibérica S.L.U., Valencia, Spain
- IBMCP, Universidad Politécnica de Valencia, Valencia, Spain
| | - Micaela Carvajal
- Aquaporins Group, Department of Plant Nutrition, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
9
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
10
|
Abellán Á, Domínguez-Perles R, Moreno DA, García-Viguera C. Sorting out the Value of Cruciferous Sprouts as Sources of Bioactive Compounds for Nutrition and Health. Nutrients 2019; 11:E429. [PMID: 30791362 PMCID: PMC6412956 DOI: 10.3390/nu11020429] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/19/2022] Open
Abstract
Edible sprouts with germinating seeds of a few days of age are naturally rich in nutrients and other bioactive compounds. Among them, the cruciferous (Brassicaceae) sprouts stand out due to their high contents of glucosinolates (GLSs) and phenolic compounds. In order to obtain sprouts enriched in these phytochemicals, elicitation is being increasing used as a sustainable practice. Besides, the evidence regarding the bioavailability and the biological activity of these compounds after their dietary intake has also attracted growing interest in recent years, supporting the intake of the natural food instead of enriched ingredients or extracts. Also, there is a growing interest regarding their uses, consumption, and applications for health and wellbeing, in different industrial sectors. In this context, the present review aims to compile and update the available knowledge on the fundamental aspects of production, enrichment in composition, and the benefits upon consumption of diverse edible cruciferous sprouts, which are sources of phenolic compounds and glucosinolates, as well as the evidence on their biological actions in diverse pathophysiological situations and the molecular pathways involved.
Collapse
Affiliation(s)
- Ángel Abellán
- Phytochemistry and Healthy Foods Lab, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Campus Universitario de Espinardo 25, 30100 Murcia, Spain.
| | - Raúl Domínguez-Perles
- Phytochemistry and Healthy Foods Lab, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Campus Universitario de Espinardo 25, 30100 Murcia, Spain.
| | - Diego A Moreno
- Phytochemistry and Healthy Foods Lab, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Campus Universitario de Espinardo 25, 30100 Murcia, Spain.
| | - Cristina García-Viguera
- Phytochemistry and Healthy Foods Lab, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Campus Universitario de Espinardo 25, 30100 Murcia, Spain.
| |
Collapse
|
11
|
Broccoli sprouts produce abdominal antinociception but not spasmolytic effects like its bioactive metabolite sulforaphane. Biomed Pharmacother 2018; 107:1770-1778. [DOI: 10.1016/j.biopha.2018.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/22/2018] [Accepted: 09/03/2018] [Indexed: 11/20/2022] Open
|
12
|
Martins T, Colaço B, Venâncio C, Pires MJ, Oliveira PA, Rosa E, Antunes LM. Potential effects of sulforaphane to fight obesity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2837-2844. [PMID: 29363750 DOI: 10.1002/jsfa.8898] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
Obesity is linked to the onset of many diseases such as diabetes mellitus, cardiovascular diseases and cancer, among others. The prevalence of obesity nearly doubled worldwide between 1980 and 2014. Simultaneously, in the last decade, the effects of sulforaphane as a potential treatment for obesity have been investigated, with promising results. Fruits and vegetables and their processed agri-food co-products are good sources of natural health-promoting compounds. Brassica crops are among the most produced crops in the world and are a good source of glucoraphanin, which, following hydrolysis, releases sulforaphane. The Brassicaceae family generates large amounts of co-products with no intended use, causing negative economic and environmental impact. Valorization of these co-products could be achieved through their exploitation for the extraction of bioactive compounds such as sulforaphane. However, the extraction process still needs further improvement for its economic feasibility. This article reviews the potential effects of sulforaphane in the treatment of obesity, linked to the relevance of giving Brassica co-products added value, which is of key importance for the competitiveness of farmers and the agri-food industry. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tânia Martins
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Bruno Colaço
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Animal Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Animal Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Maria J Pires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Eduardo Rosa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís M Antunes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Laboratory Animal Science Group, Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
- Institute for Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal
| |
Collapse
|