1
|
Selemani MA, Kabandana GKM, Chen C, Martin RS. 3D-Printed Microfluidic-Based Cell Culture System With Analysis to Investigate Macrophage Activation. Electrophoresis 2025. [PMID: 39964958 DOI: 10.1002/elps.8109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 01/30/2025] [Indexed: 02/20/2025]
Abstract
In this paper, we describe the development of 3D-printed microfluidic cell culture devices that can be coupled with a circulation system to study the dynamics of both intracellular and extracellular (release) processes. Key to this approach is the ability to quantitate key analytes on a minutes timescale with either on-line (in this study, quantitating nitric oxide production using an amperometric flow cell) or off-line (in this work, quantitating intracellular itaconate production with LC/MS) analytical measurements. To demonstrate the usefulness of this approach, we chose to study macrophage polarization as a function of the extracellular matrix (silk) fiber size, a major area of research in tissue engineering. It was found that the use of larger fibers (1280 nm vs. smaller 512 nm fibers) led to increases in the production of both nitric oxide and itaconate. These findings set the foundation for future research for the creation of finely tuned microfluidic 3D cell culture approaches in areas where flow and the extracellular matrix play a significant role in barrier transport and where integrated analysis of key markers is needed.
Collapse
Affiliation(s)
- Major A Selemani
- Department of Chemistry, Saint Louis University, St. Louis, Missouri, USA
| | | | - Chengpeng Chen
- Department of Chemistry and Biochemistry, University of Maryland-Baltimore County, Baltimore, Maryland, USA
| | - R Scott Martin
- Department of Chemistry, Saint Louis University, St. Louis, Missouri, USA
- Saint Louis University Center for Additive Manufacturing, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Liu KZ, Tian G, Ko ACT, Geissler M, Malic L, Moon BU, Clime L, Veres T. Microfluidic methods for the diagnosis of acute respiratory tract infections. Analyst 2024; 150:9-33. [PMID: 39440426 DOI: 10.1039/d4an00957f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Acute respiratory tract infections (ARTIs) are caused by sporadic or pandemic outbreaks of viral or bacterial pathogens, and continue to be a considerable socioeconomic burden for both developing and industrialized countries alike. Diagnostic methods and technologies serving as the cornerstone for disease management, epidemiological tracking, and public health interventions are evolving continuously to keep up with the demand for higher sensitivity, specificity and analytical throughput. Microfluidics is becoming a key technology in these developments as it allows for integrating, miniaturizing and automating bioanalytical assays at an unprecedented scale, reducing sample and reagent consumption and improving diagnostic performance in terms of sensitivity, throughput and response time. In this article, we describe relevant ARTIs-pneumonia, influenza, severe acute respiratory syndrome, and coronavirus disease 2019-along with their pathogenesis. We provide a summary of established methods for disease diagnosis, involving nucleic acid amplification techniques, antigen detection, serological testing as well as microbial culture. This is followed by a short introduction to microfluidics and how flow is governed at low volume and reduced scale using centrifugation, pneumatic pumping, electrowetting, capillary action, and propagation in porous media through wicking, for each of these principles impacts the design, functioning and performance of diagnostic tools in a particular way. We briefly cover commercial instruments that employ microfluidics for use in both laboratory and point-of-care settings. The main part of the article is dedicated to emerging methods deriving from the use of miniaturized, microfluidic systems for ARTI diagnosis. Finally, we share our thoughts on future perspectives and the challenges associated with validation, approval, and adaptation of microfluidic-based systems.
Collapse
Affiliation(s)
- Kan-Zhi Liu
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 435 Ellice Avenue, Winnipeg, MB, R3B 1Y6, Canada
| | - Ganghong Tian
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 435 Ellice Avenue, Winnipeg, MB, R3B 1Y6, Canada
| | - Alex C-T Ko
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 435 Ellice Avenue, Winnipeg, MB, R3B 1Y6, Canada
| | - Matthias Geissler
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Lidija Malic
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Byeong-Ui Moon
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Liviu Clime
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Teodor Veres
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| |
Collapse
|
3
|
Chavoshinezhad N, Niknafs B. Innovations in 3D ovarian and follicle engineering for fertility preservation and restoration. Mol Biol Rep 2024; 51:1004. [PMID: 39305382 DOI: 10.1007/s11033-024-09783-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/05/2024] [Indexed: 02/06/2025]
Abstract
In-vitro maturation (IVM) is the process of cultivating early-stage follicles from the primordial to the antral stage and facilitating the maturation of oocytes outside the body within a supportive environment. This intricate procedure requires the careful coordination of various factors to replicate the natural ovarian conditions. Advanced techniques for IVM are designed to mimic the natural ovarian environment and enhance the development of follicles. Three-dimensional (3D) culture systems provide a more biologically relevant setting for follicle growth compared to traditional two-dimensional (2D) cultures. Traditional culture systems, often fail to support the complex process of follicle development effectively. However, modern engineered reproductive tissues and culture systems are making it possible to create increasingly physiological in-vitro models of folliculogenesis. These innovative methods are enabling researchers and clinicians to better replicate the dynamic and supportive environment of the ovary, thereby improving the outcomes of IVM offering new hope for fertility preservation and treatment. This paper focuses on the routine 3D culture, and innovative 3D culture of ovary and follicles, including a tissue engineering scaffolds, microfluidic (dynamic) culture system, organ-on-chip models, EVATAR system, from a clinical perspective to determine the most effective approach for achieving in-vitro maturation of follicles. These techniques provide critical support for ovarian function in various ovarian-associated disorders, including primary ovarian insufficiency (POI), premature ovarian failure (POF), ovarian cancer, and age-related infertility.
Collapse
Affiliation(s)
- Negin Chavoshinezhad
- Immunology research center , Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomy, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Niknafs
- Immunology research center , Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomy, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Nahon DM, Moerkens R, Aydogmus H, Lendemeijer B, Martínez-Silgado A, Stein JM, Dostanić M, Frimat JP, Gontan C, de Graaf MNS, Hu M, Kasi DG, Koch LS, Le KTT, Lim S, Middelkamp HHT, Mooiweer J, Motreuil-Ragot P, Niggl E, Pleguezuelos-Manzano C, Puschhof J, Revyn N, Rivera-Arbelaez JM, Slager J, Windt LM, Zakharova M, van Meer BJ, Orlova VV, de Vrij FMS, Withoff S, Mastrangeli M, van der Meer AD, Mummery CL. Standardizing designed and emergent quantitative features in microphysiological systems. Nat Biomed Eng 2024; 8:941-962. [PMID: 39187664 DOI: 10.1038/s41551-024-01236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/06/2024] [Indexed: 08/28/2024]
Abstract
Microphysiological systems (MPSs) are cellular models that replicate aspects of organ and tissue functions in vitro. In contrast with conventional cell cultures, MPSs often provide physiological mechanical cues to cells, include fluid flow and can be interlinked (hence, they are often referred to as microfluidic tissue chips or organs-on-chips). Here, by means of examples of MPSs of the vascular system, intestine, brain and heart, we advocate for the development of standards that allow for comparisons of quantitative physiological features in MPSs and humans. Such standards should ensure that the in vivo relevance and predictive value of MPSs can be properly assessed as fit-for-purpose in specific applications, such as the assessment of drug toxicity, the identification of therapeutics or the understanding of human physiology or disease. Specifically, we distinguish designed features, which can be controlled via the design of the MPS, from emergent features, which describe cellular function, and propose methods for improving MPSs with readouts and sensors for the quantitative monitoring of complex physiology towards enabling wider end-user adoption and regulatory acceptance.
Collapse
Affiliation(s)
- Dennis M Nahon
- Leiden University Medical Center, Leiden, the Netherlands
| | - Renée Moerkens
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Bas Lendemeijer
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Adriana Martínez-Silgado
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
| | - Jeroen M Stein
- Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Cristina Gontan
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Michel Hu
- Leiden University Medical Center, Leiden, the Netherlands
| | - Dhanesh G Kasi
- Leiden University Medical Center, Leiden, the Netherlands
| | - Lena S Koch
- University of Twente, Enschede, the Netherlands
| | - Kieu T T Le
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sangho Lim
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
| | | | - Joram Mooiweer
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Eva Niggl
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
| | - Nele Revyn
- Delft University of Technology, Delft, the Netherlands
| | | | - Jelle Slager
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Laura M Windt
- Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | - Sebo Withoff
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | | | |
Collapse
|
5
|
Yu Z, Chen Y, Li J, Chen C, Lu H, Chen S, Zhang T, Guo T, Zhu Y, Jin J, Yan S, Chen H. A tempo-spatial controllable microfluidic shear-stress generator for in-vitro mimicking of the thrombus. J Nanobiotechnology 2024; 22:187. [PMID: 38632623 PMCID: PMC11022418 DOI: 10.1186/s12951-024-02334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/09/2024] [Indexed: 04/19/2024] Open
Abstract
Pathological conditions linked to shear stress have been identified in hematological diseases, cardiovascular diseases, and cancer. These conditions often exhibit significantly elevated shear stress levels, surpassing 1000 dyn/cm2 in severely stenotic arteries. Heightened shear stress can induce mechanical harm to endothelial cells, potentially leading to bleeding and fatal consequences. However, current technology still grapples with limitations, including inadequate flexibility in simulating bodily shear stress environments, limited range of shear stress generation, and spatial and temporal adaptability. Consequently, a comprehensive understanding of the mechanisms underlying the impact of shear stress on physiological and pathological conditions, like thrombosis, remains inadequate. To address these limitations, this study presents a microfluidic-based shear stress generation chip as a proposed solution. The chip achieves a substantial 929-fold variation in shear stress solely by adjusting the degree of constriction in branch channels after PDMS fabrication. Experiments demonstrated that a rapid increase in shear stress up to 1000 dyn/cm2 significantly detached 88.2% cells from the substrate. Long-term exposure (24 h) to shear stress levels below 8.3 dyn/cm2 did not significantly impact cell growth. Furthermore, cells exposed to shear stress levels equal to or greater than 8.3 dyn/cm2 exhibited significant alterations in aspect ratio and orientation, following a normal distribution. This microfluidic chip provides a reliable tool for investigating cellular responses to the wide-ranging shear stress existing in both physiological and pathological flow conditions.
Collapse
Affiliation(s)
- Zhihang Yu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Yiqun Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Jingjing Li
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chang Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Huaxiu Lu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Siyuan Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Tingting Zhang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yonggang Zhu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Jing Jin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China.
| | - Sheng Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Yang H, Chen T, Hu Y, Niu F, Zheng X, Sun H, Cheng L, Sun L. A microfluidic platform integrating dynamic cell culture and dielectrophoretic manipulation for in situ assessment of endothelial cell mechanics. LAB ON A CHIP 2023; 23:3581-3592. [PMID: 37417786 DOI: 10.1039/d3lc00363a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The function of vascular endothelial cells (ECs) within the complex vascular microenvironment is typically modulated by biochemical cues, cell-cell interactions, and fluid shear stress. These regulatory factors play a crucial role in determining cell mechanical properties, such as elastic and shear moduli, which are important parameters for assessing cell status. However, most studies on the measurement of cell mechanical properties have been conducted in vitro, which is labor-intensive and time-consuming. Notably, many physiological factors are lacking in Petri dish culture compared with in vivo conditions, leading to inaccurate results and poor clinical relevance. Herein, we developed a multi-layer microfluidic chip that integrates dynamic cell culture, manipulation and dielectrophoretic in situ measurement of mechanical properties. Furthermore, we numerically and experimentally simulated the vascular microenvironment to investigate the effects of flow rate and tumor necrosis factor-alpha (TNF-α) on the Young's modulus of human umbilical vein endothelial cells (HUVECs). Results showed that greater fluid shear stress results in increased Young's modulus of HUVECs, suggesting the importance of hemodynamics in modulating the biomechanics of ECs. In contrast, TNF-α, an inflammation inducer, dramatically decreased HUVEC stiffness, demonstrating an adverse impact on the vascular endothelium. Blebbistatin, a cytoskeleton disruptor, significantly reduced the Young's modulus of HUVECs. In summary, the proposed vascular-mimetic dynamic culture and monitoring approach enables the physiological development of ECs in organ-on-a-chip microsystems for accurately and efficiently studying hemodynamics and pharmacological mechanisms underlying cardiovascular diseases.
Collapse
Affiliation(s)
- Hao Yang
- Robotics and Microsystems Center, College of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, China.
| | - Tao Chen
- Robotics and Microsystems Center, College of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, China.
| | - Yichong Hu
- Robotics and Microsystems Center, College of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, China.
| | - Fuzhou Niu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215000, China
| | - Xinyu Zheng
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Haizhen Sun
- Robotics and Microsystems Center, College of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, China.
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215000, China
| | - Lining Sun
- Robotics and Microsystems Center, College of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, China.
| |
Collapse
|
7
|
Kim SY, Ha SM, Kim DU, Park J, Park S, Hyun KA, Jung HI. Modularized dynamic cell culture platform for efficient production of extracellular vesicles and sequential analysis. LAB ON A CHIP 2023; 23:1852-1864. [PMID: 36825402 DOI: 10.1039/d2lc01129h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Extracellular vesicles (EVs) are nanometer-sized particles naturally secreted by cells for intercellular communication that encapsulate bioactive cargo, such as proteins and RNA, with a lipid bilayer. Tumor cell-derived EVs (tdEVs) are particularly promising biomarkers for cancer research because their contents reflect the cell of origin. In most studies, tdEVs have been obtained from cancer cells cultured under static conditions, thus lacking the ability to recapitulate the microenvironment of cells in vivo. Recent developments in perfusable cell culture systems have allowed oxygen and a nutrient gradient to mimic the physiological and cellular microenvironment. However, as these systems are perfused by circulating the culture medium within the unified structure, independently harvesting cells and EVs at each time point for analysis presents a limitation. In this study, a modularized cell culture system is designed for the perfusion and real-time collection of EVs. The system consists of three detachable chambers, one each for fresh medium, cell culture, and EV collection. The fresh medium flows from the medium chamber to the culture chamber at a flow rate controlled by the hydraulic pressure injected with a syringe pump. When the culture medium containing EVs exceeds a certain volume within the chamber, it overflows into the collection chamber to harvest EVs. The compact and modularized chambers are highly interoperable with conventional cell culture modalities used in the laboratory, thus enabling various EV-based assays.
Collapse
Affiliation(s)
- Seo Yeon Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
| | - Seong Min Ha
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
| | - Dong-Uk Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
| | - Junhyun Park
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
| | - Sunyoung Park
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
- The DABOM Inc., 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Kyung-A Hyun
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
| | - Hyo-Il Jung
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
- The DABOM Inc., 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| |
Collapse
|
8
|
Chen J, Yuan Z, Tu Y, Hu W, Xie C, Ye L. Experimental and computational models to investigate intestinal drug permeability and metabolism. Xenobiotica 2023; 53:25-45. [PMID: 36779684 DOI: 10.1080/00498254.2023.2180454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Oral administration is the preferred route for drug administration that leads to better therapy compliance. The intestine plays a key role in the absorption and metabolism of oral drugs, therefore, new intestinal models are being continuously proposed, which contribute to the study of intestinal physiology, drug screening, drug side effects, and drug-drug interactions.Advances in pharmaceutical processes have produced more drug formulations, causing challenges for intestinal models. To adapt to the rapid evolution of pharmaceuticals, more intestinal models have been created. However, because of the complexity of the intestine, few models can take all aspects of the intestine into account, and some functions must be sacrificed to investigate other areas. Therefore, investigators need to choose appropriate models according to the experimental stage and other requirements to obtain the desired results.To help researchers achieve this goal, this review summarised the advantages and disadvantages of current commonly used intestinal models and discusses possible future directions, providing a better understanding of intestinal models.
Collapse
Affiliation(s)
- Jinyuan Chen
- Institute of Scientific Research, Southern Medical University, Guangzhou, P.R. China.,TCM-Integrated Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ziyun Yuan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Yifan Tu
- Boehringer-Ingelheim, Connecticut, P.R. USA
| | - Wanyu Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Cong Xie
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ling Ye
- TCM-Integrated Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
9
|
Perfusion culture of endothelial cells under shear stress on microporous membrane in a pressure-driven microphysiological system. J Biosci Bioeng 2023; 135:79-85. [PMID: 36253250 DOI: 10.1016/j.jbiosc.2022.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
This paper reports perfusion culture of human umbilical vein endothelial cells (HUVECs) on a microporous membrane in a pressure-driven microphysiological system (PD-MPS), which we developed previously as a multi-throughput perfusion culture platform. We designed fluidic culture unit with microporous membrane to culture HUVECs under fluidic shear stress and constructed a perfusion culture model in the PD-MPS platform. Four fluidic culture units were arranged in the microplate-sized device, which enables four-throughput assay for characterization of HUVECs under flow. Medium flow was generated above and below the membrane by sequential pneumatic pressure to apply physiological shear stress to HUVECs. HUVECs exhibited aligned morphology to the direction of the flow with shear stress of 11.5-17.7 dyn/cm2 under the flow condition, while they randomly aligned under static culture condition in a 6 well plate. We also observed 3.3- and 5.0-fold increase in the expression levels of the thrombomodulin and endothelial nitric oxide synthase mRNAs, respectively, under the flow condition in the PD-MPS compared to the static culture in 6 well plate. We also observed actin filament aligned to the direction of flow in HUVECs cultured under the flow condition.
Collapse
|
10
|
Jo B, Morimoto Y, Takeuchi S. 3D-Printed Centrifugal Pump Driven by Magnetic Force in Applications for Microfluidics in Biological Analysis. Adv Healthc Mater 2022; 11:e2200593. [PMID: 35608243 DOI: 10.1002/adhm.202200593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/17/2022] [Indexed: 01/28/2023]
Abstract
In recent years, microfluidic systems have been extensively utilized for biological analysis. The integration of pumps in microfluidic systems requires precise control of liquids and effort-intensive set-ups for multiplexed experiments. In this study, a 3D-printed centrifugal pump driven by magnetic force is presented for microfluidics and biological analysis. The permanent magnets implemented in the centrifugal pump synchronized the rotation of the driving and operating parts. Precise control of the flow rate and a wide range and variety of flow profiles are achieved by controlling the rotational speed of the motor in the driving part. The compact size and contactless driving part allow simple set-ups within commercially available culture dishes and tubes. It is demonstrated that the fabricated 3D-printed centrifugal pump can induce laminar flow in a microfluidic device, perfusion culture of in vitro tissues, and alignment of cells under shear stress. This device has a high potential for applications in microfluidic devices and perfusion culture of cells.
Collapse
Affiliation(s)
- Byeongwook Jo
- Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuya Morimoto
- Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shoji Takeuchi
- Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.,International Research for Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
11
|
Boonyaphon K, Li Z, Kim SJ. Gravity-driven preprogrammed microfluidic recirculation system for parallel biosensing of cell behaviors. Anal Chim Acta 2022; 1233:340456. [DOI: 10.1016/j.aca.2022.340456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/01/2022]
|
12
|
Sugiura S, Satoh T, Shin K, Onuki-Nagasaki R, Kanamori T. Perfusion culture of multi-layered HepG2 hepatocellular carcinoma cells in a pressure-driven microphysiological system. J Biosci Bioeng 2022; 134:348-355. [PMID: 35963667 DOI: 10.1016/j.jbiosc.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
Here we report the perfusion culture of a multi-layered tissue composed of HepG2 cells (a human hepatoma line) in a pressure-driven microphysiological system (PD-MPS), which we developed previously as a multi-throughput perfusion culture platform. The perfusion culture of multi-layered tissue model was constructed by inserting a modified commercially available permeable membrane insert into the PD-MPS. HepG2 cells were layered on the membrane, and culture medium was perfused both through and below the membrane. The seeded density (number of cells/cm2) of the culture model is 70 times that of static culture in a conventional 35-mm culture dish. Pressure-driven circulation of the medium in our compact device (8.6 × 7.0 × 4.5 cm3), which comprised two perfusion-culture modules and a pneumatic connection port, enabled perfusion culture of two multi-layered tissues (initially 1 × 105 cells). To obtain insight into the basic functionality of the multi-layered tissues as hepatocytes, we compared albumin production and urea synthesis between perfusion cultures and static cultures. The HepG2 cells grew and secreted increasing amounts of albumin throughout 20 days of perfusion culture, whereas albumin secretion did not increase under static culture conditions. In addition, on day 20, the amount of albumin secreted by the HepG2 cells in the microfluidic device was 68% of that in the conventional culture dish, which was seeded with the same number of cells but had a 70 times larger culture area. These features of high-density culture of functioning cells in a compact device support the application of PD-MPS in single- and multi-organ MPS.
Collapse
Affiliation(s)
- Shinji Sugiura
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Taku Satoh
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Stem Cell Evaluation Technology Research Association, Astellas Pharma, 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Kazumi Shin
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Reiko Onuki-Nagasaki
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Stem Cell Evaluation Technology Research Association, Astellas Pharma, 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Toshiyuki Kanamori
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
13
|
A Review of Functional Analysis of Endothelial Cells in Flow Chambers. J Funct Biomater 2022; 13:jfb13030092. [PMID: 35893460 PMCID: PMC9326639 DOI: 10.3390/jfb13030092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
The vascular endothelial cells constitute the innermost layer. The cells are exposed to mechanical stress by the flow, causing them to express their functions. To elucidate the functions, methods involving seeding endothelial cells as a layer in a chamber were studied. The chambers are known as parallel plate, T-chamber, step, cone plate, and stretch. The stimulated functions or signals from endothelial cells by flows are extensively connected to other outer layers of arteries or organs. The coculture layer was developed in a chamber to investigate the interaction between smooth muscle cells in the middle layer of the blood vessel wall in vascular physiology and pathology. Additionally, the microfabrication technology used to create a chamber for a microfluidic device involves both mechanical and chemical stimulation of cells to show their dynamics in in vivo microenvironments. The purpose of this study is to summarize the blood flow (flow inducing) for the functions connecting to endothelial cells and blood vessels, and to find directions for future chamber and device developments for further understanding and application of vascular functions. The relationship between chamber design flow, cell layers, and microfluidics was studied.
Collapse
|
14
|
A whole-thermoplastic microfluidic chip with integrated on-chip micropump, bioreactor and oxygenator for cell culture applications. Anal Chim Acta 2022; 1221:340093. [DOI: 10.1016/j.aca.2022.340093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022]
|
15
|
Shinha K, Nihei W, Nakamura H, Goto T, Kawanishi T, Ishida N, Yamazaki N, Imakura Y, Mima S, Inamura K, Arakawa H, Nishikawa M, Kato Y, Sakai Y, Kimura H. A Kinetic Pump Integrated Microfluidic Plate (KIM-Plate) with High Usability for Cell Culture-Based Multiorgan Microphysiological Systems. MICROMACHINES 2021; 12:1007. [PMID: 34577652 PMCID: PMC8471412 DOI: 10.3390/mi12091007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022]
Abstract
Microphysiological systems (MPSs), including organ-on-a-chip (OoC), have attracted attention as a novel method for estimating the effects and side effects of drugs in drug discovery. To reproduce the dynamic in vivo environment, previous MPSs were connected to pump systems to perfuse culture medium. Therefore, most MPSs are not user-friendly and have poor throughput. We aimed to develop a kinetic pump integrated microfluidic plate (KIM-Plate) by applying the stirrer-based micropump to an open access culture plate to improve the usability of MPSs. The KIM-Plate integrates six multiorgan MPS (MO-MPS) units and meets the ANSI/SBS microplate standards. We evaluated the perfusion function of the kinetic pump and found that the KIM-Plate had sufficient agitation effect. Coculture experiments with PXB cells and hiPS intestinal cells showed that the TEER of hiPS intestinal cells and gene expression levels related to the metabolism of PXB cells were increased. Hence, the KIM-Plate is an innovative tool for the easy coculture of highly conditioned cells that is expected to facilitate cell-based assays in the fields of drug discovery and biology because of its usability and high throughput nature.
Collapse
Affiliation(s)
- Kenta Shinha
- Department of Mechanical Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka 259-1292, Japan; (K.S.); (W.N.); (H.N.); (T.G.)
| | - Wataru Nihei
- Department of Mechanical Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka 259-1292, Japan; (K.S.); (W.N.); (H.N.); (T.G.)
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka 259-1292, Japan
| | - Hiroko Nakamura
- Department of Mechanical Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka 259-1292, Japan; (K.S.); (W.N.); (H.N.); (T.G.)
| | - Tomomi Goto
- Department of Mechanical Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka 259-1292, Japan; (K.S.); (W.N.); (H.N.); (T.G.)
| | - Takumi Kawanishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan; (T.K.); (N.I.); (H.A.); (Y.K.)
| | - Naoki Ishida
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan; (T.K.); (N.I.); (H.A.); (Y.K.)
| | - Nao Yamazaki
- Bio Science & Engineering Laboratory, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi 258-8577, Japan; (N.Y.); (Y.I.); (S.M.)
| | - Yuki Imakura
- Bio Science & Engineering Laboratory, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi 258-8577, Japan; (N.Y.); (Y.I.); (S.M.)
| | - Shinji Mima
- Bio Science & Engineering Laboratory, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi 258-8577, Japan; (N.Y.); (Y.I.); (S.M.)
| | - Kosuke Inamura
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8654, Japan; (K.I.); (M.N.); (Y.S.)
| | - Hiroshi Arakawa
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan; (T.K.); (N.I.); (H.A.); (Y.K.)
| | - Masaki Nishikawa
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8654, Japan; (K.I.); (M.N.); (Y.S.)
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan; (T.K.); (N.I.); (H.A.); (Y.K.)
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8654, Japan; (K.I.); (M.N.); (Y.S.)
| | - Hiroshi Kimura
- Department of Mechanical Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka 259-1292, Japan; (K.S.); (W.N.); (H.N.); (T.G.)
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka 259-1292, Japan
| |
Collapse
|
16
|
Fabrication of Hollow Structures in Photodegradable Hydrogels Using a Multi-Photon Excitation Process for Blood Vessel Tissue Engineering. MICROMACHINES 2020; 11:mi11070679. [PMID: 32668567 PMCID: PMC7408076 DOI: 10.3390/mi11070679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 01/06/2023]
Abstract
Engineered blood vessels generally recapitulate vascular function in vitro and can be utilized in drug discovery as a novel microphysiological system. Recently, various methods to fabricate vascular models in hydrogels have been reported to study the blood vessel functions in vitro; however, in general, it is difficult to fabricate hollow structures with a designed size and structure with a tens of micrometers scale for blood vessel tissue engineering. This study reports a method to fabricate the hollow structures in photodegradable hydrogels prepared in a microfluidic device. An infrared femtosecond pulsed laser, employed to induce photodegradation via multi-photon excitation, was scanned in the hydrogel in a program-controlled manner for fabricating the designed hollow structures. The photodegradable hydrogel was prepared by a crosslinking reaction between an azide-modified gelatin solution and a dibenzocyclooctyl-terminated photocleavable tetra-arm polyethylene glycol crosslinker solution. After assessing the composition of the photodegradable hydrogel in terms of swelling and cell adhesion, the hydrogel prepared in the microfluidic device was processed by laser scanning to fabricate linear and branched hollow structures present in it. We introduced a microsphere suspension into the fabricated structure in photodegradable hydrogels, and confirmed the fabrication of perfusable hollow structures of designed patterns via the multi-photon excitation process.
Collapse
|
17
|
Yamahira S, Satoh T, Yanagawa F, Tamura M, Takagi T, Nakatani E, Kusama Y, Sumaru K, Sugiura S, Kanamori T. Stepwise construction of dynamic microscale concentration gradients around hydrogel-encapsulated cells in a microfluidic perfusion culture device. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200027. [PMID: 32874617 PMCID: PMC7428233 DOI: 10.1098/rsos.200027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Inside living organisms, concentration gradients dynamically change over time as biological processes progress. Therefore, methods to construct dynamic microscale concentration gradients in a spatially controlled manner are needed to provide more realistic research environments. Here, we report a novel method for the construction of dynamic microscale concentration gradients in a stepwise manner around cells in micropatterned hydrogel. In our method, cells are encapsulated in a photodegradable hydrogel formed inside a microfluidic perfusion culture device, and perfusion microchannels are then fabricated in the hydrogel by micropatterned photodegradation. The cells in the micropatterned hydrogel can then be cultured by perfusing culture medium through the fabricated microchannels. By using this method, we demonstrate the simultaneous construction of two dynamic concentration gradients, which allowed us to expose the cells encapsulated in the hydrogel to a dynamic microenvironment.
Collapse
Affiliation(s)
- Shinya Yamahira
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Taku Satoh
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Fumiki Yanagawa
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Masato Tamura
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Toshiyuki Takagi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Eri Nakatani
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Yuta Kusama
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Kimio Sumaru
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Shinji Sugiura
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Toshiyuki Kanamori
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| |
Collapse
|
18
|
Narayanamurthy V, Jeroish ZE, Bhuvaneshwari KS, Bayat P, Premkumar R, Samsuri F, Yusoff MM. Advances in passively driven microfluidics and lab-on-chip devices: a comprehensive literature review and patent analysis. RSC Adv 2020; 10:11652-11680. [PMID: 35496619 PMCID: PMC9050787 DOI: 10.1039/d0ra00263a] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
The development of passively driven microfluidic labs on chips has been increasing over the years. In the passive approach, the microfluids are usually driven and operated without any external actuators, fields, or power sources. Passive microfluidic techniques adopt osmosis, capillary action, surface tension, pressure, gravity-driven flow, hydrostatic flow, and vacuums to achieve fluid flow. There is a great need to explore labs on chips that are rapid, compact, portable, and easy to use. The evolution of these techniques is essential to meet current needs. Researchers have highlighted the vast potential in the field that needs to be explored to develop rapid passive labs on chips to suit market/researcher demands. A comprehensive review, along with patent analysis, is presented here, listing the latest advances in passive microfluidic techniques, along with the related mechanisms and applications.
Collapse
Affiliation(s)
- Vigneswaran Narayanamurthy
- Department of Electronics and Computer Engineering Technology, Faculty of Electrical and Electronic Engineering Technology, Universiti Teknikal Malaysia Melaka Hang Tuah Jaya 76100 Durian Tunggal Melaka Malaysia
- InnoFuTech No: 42/12, 7th Street, Vallalar Nagar Chennai Tamil Nadu 600072 India
- Centre of Excellence for Advanced Research in Fluid Flow, University Malaysia Pahang Kuantan 26300 Malaysia
| | - Z E Jeroish
- Department of Biomedical Engineering, Rajalakshmi Engineering College Chennai 602105 India
- Faculty of Electrical and Electronics Engineering, University Malaysia Pahang Pekan 26600 Malaysia
| | - K S Bhuvaneshwari
- Department of Biomedical Engineering, Rajalakshmi Engineering College Chennai 602105 India
- Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka Hang Tuah Jaya 76100 Durian Tunggal Melaka Malaysia
| | - Pouriya Bayat
- Department of Bioengineering, McGill University Montreal QC Canada H3A 0E9
| | - R Premkumar
- Department of Biomedical Engineering, Rajalakshmi Engineering College Chennai 602105 India
| | - Fahmi Samsuri
- Faculty of Electrical and Electronics Engineering, University Malaysia Pahang Pekan 26600 Malaysia
| | - Mashitah M Yusoff
- Faculty of Industrial Sciences and Technology, University Malaysia Pahang Kuantan 26300 Malaysia
| |
Collapse
|
19
|
Tetsuka K, Ohbuchi M, Kawabe T, Goto T, Kiyonaga F, Takama K, Yamazaki S, Fujimori A. Reconstituted Human Organ Models as a Translational Tool for Human Organ Response: Definition, Expectations, Cases, and Strategies for Implementation in Drug Discovery and Development. Biol Pharm Bull 2020; 43:375-383. [PMID: 32115499 DOI: 10.1248/bpb.b19-01070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent progress in the fields of tissue engineering, micro-electro mechanical systems, and materials science have greatly improved cell culture systems, which were traditionally performed in a static two-dimensional manner. This progress has led to a number of new cell culture concepts represented by organ-on-a-chip, three dimensional (3D)-tissues, and microphysiological systems, among others. In this review, these culture models are categorized as reconstituted human organ models, which recapitulate human organ-like structure, function, and responses with physiological relevance. In addition, we also describe the expectations of reconstituted organ models from the viewpoint of a pharmaceutical company based on recent concerns expressed in drug discovery and development. These models can be used to assess the pharmacokinetics, safety and efficacy of new molecular entities (NMEs) prior to clinical trials. They can also be used to conduct mechanistic investigations of events that arise due to administration of NMEs in humans. In addition, monitoring biomarkers of organ function in these models will aid in the translation of their changes in humans. As the majority of reconstituted human organ models show improved functional characteristics and long-term maintenance in culture, they are valuable for modeling human events. An example is described using the three-dimensional bioprinted human liver tissue model in this article. Implementation of reconstituted human organ models in drug discovery and development can be accelerated by encouraging collaboration between developers and users. Such efforts will provide significant benefits for delivering new and improved medicines to patients.
Collapse
|
20
|
Marx U, Akabane T, Andersson TB, Baker E, Beilmann M, Beken S, Brendler-Schwaab S, Cirit M, David R, Dehne EM, Durieux I, Ewart L, Fitzpatrick SC, Frey O, Fuchs F, Griffith LG, Hamilton GA, Hartung T, Hoeng J, Hogberg H, Hughes DJ, Ingber DE, Iskandar A, Kanamori T, Kojima H, Kuehnl J, Leist M, Li B, Loskill P, Mendrick DL, Neumann T, Pallocca G, Rusyn I, Smirnova L, Steger-Hartmann T, Tagle DA, Tonevitsky A, Tsyb S, Trapecar M, Van de Water B, Van den Eijnden-van Raaij J, Vulto P, Watanabe K, Wolf A, Zhou X, Roth A. Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2020; 37:365-394. [PMID: 32113184 PMCID: PMC7863570 DOI: 10.14573/altex.2001241] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
The first microfluidic microphysiological systems (MPS) entered the academic scene more than 15 years ago and were considered an enabling technology to human (patho)biology in vitro and, therefore, provide alternative approaches to laboratory animals in pharmaceutical drug development and academic research. Nowadays, the field generates more than a thousand scientific publications per year. Despite the MPS hype in academia and by platform providers, which says this technology is about to reshape the entire in vitro culture landscape in basic and applied research, MPS approaches have neither been widely adopted by the pharmaceutical industry yet nor reached regulated drug authorization processes at all. Here, 46 leading experts from all stakeholders - academia, MPS supplier industry, pharmaceutical and consumer products industries, and leading regulatory agencies - worldwide have analyzed existing challenges and hurdles along the MPS-based assay life cycle in a second workshop of this kind in June 2019. They identified that the level of qualification of MPS-based assays for a given context of use and a communication gap between stakeholders are the major challenges for industrial adoption by end-users. Finally, a regulatory acceptance dilemma exists against that background. This t4 report elaborates on these findings in detail and summarizes solutions how to overcome the roadblocks. It provides recommendations and a roadmap towards regulatory accepted MPS-based models and assays for patients' benefit and further laboratory animal reduction in drug development. Finally, experts highlighted the potential of MPS-based human disease models to feedback into laboratory animal replacement in basic life science research.
Collapse
Affiliation(s)
- Uwe Marx
- TissUse GmbH, Berlin, Germany.,Technische Universitaet Berlin, Germany
| | - Takafumi Akabane
- Stem Cell Evaluation Technology Research Association, Tokyo, Japan
| | - Tommy B Andersson
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elizabeth Baker
- Physicians Committee for Responsible Medicine, Washington DC, USA
| | - Mario Beilmann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Non-clinical Drug Safety, Biberach, Germany
| | - Sonja Beken
- Federal Agency for Medicines and Health Products, Brussels, Belgium
| | | | | | - Rhiannon David
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | | | - Lorna Ewart
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Suzanne C Fitzpatrick
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | | | - Florian Fuchs
- Novartis Institutes for BioMedical Research Chemical Biology & Therapeutics, Basel, Switzerland
| | | | | | - Thomas Hartung
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Center for Alternatives to Animal Testing-Europe, University of Konstanz, Konstanz, Germany.,AxoSim, Inc., New Orleans, LA, USA
| | - Julia Hoeng
- Philip Morris International R&D, Neuchâtel, Switzerland
| | - Helena Hogberg
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Donald E Ingber
- Wyss Institute for Biology Inspired Engineering, Harvard University, Boston, USA
| | | | - Toshiyuki Kanamori
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Hajime Kojima
- Japanese Center for Validation of Animal Methods, Tokyo, Japan
| | | | - Marcel Leist
- Center for Alternatives to Animal Testing-Europe, University of Konstanz, Konstanz, Germany
| | - Bo Li
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, P.R. China
| | - Peter Loskill
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.,Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Donna L Mendrick
- National Center for Toxicological Research, FDA, Silver Spring, MD, USA
| | | | - Giorgia Pallocca
- Center for Alternatives to Animal Testing-Europe, University of Konstanz, Konstanz, Germany
| | - Ivan Rusyn
- Texas A&M University, College Station, TX, USA
| | - Lena Smirnova
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Danilo A Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Tonevitsky
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Russia.,National Research University Higher School of Economics, Russia
| | - Sergej Tsyb
- Russian Ministry of Production and Trade, Moscow, Russia
| | | | | | | | | | | | | | - Xiaobing Zhou
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, P.R. China
| | - Adrian Roth
- F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Switzerland
| |
Collapse
|
21
|
Arakawa H, Sugiura S, Kawanishi T, Shin K, Toyoda H, Satoh T, Sakai Y, Kanamori T, Kato Y. Kinetic analysis of sequential metabolism of triazolam and its extrapolation to humans using an entero-hepatic two-organ microphysiological system. LAB ON A CHIP 2020; 20:537-547. [PMID: 31930237 DOI: 10.1039/c9lc00884e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The microphysiological system (MPS) is a promising tool for predicting drug disposition in humans, although limited information is available on the quantitative assessment of sequential drug metabolism in MPS and its extrapolation to humans. In the present study, we first constructed a mechanism-based pharmacokinetic model for triazolam (TRZ) and its metabolites in the entero-hepatic two-organ MPS, composed of intestinal Caco-2 and hepatic HepaRG cells, and attempted to extrapolate the kinetic information obtained with the MPS to the plasma concentration profiles in humans. In the two-organ MPS and HepaRG single culture systems, TRZ was found to be metabolized into α- and 4-hydroxytriazolam and their respective glucuronides. All these metabolites were almost completely reduced in the presence of a CYP3A inhibitor, itraconazole, confirming sequential phase I and II metabolism. Both pharmacokinetic model-dependent and -independent analyses were performed, providing consistent results regarding the metabolic activity of TRZ: clearance of glucuronidation metabolites in the two-organ MPS was higher than that in the single culture system. The plasma concentration profile of TRZ and its two hydroxy metabolites in humans was quantitatively simulated based on the pharmacokinetic model, by incorporating several scaling factors representing quantitative gaps between the MPS and humans. Thus, the present study provided the first quantitative extrapolation of sequential drug metabolism in humans by combining MPS and pharmacokinetic modeling.
Collapse
Affiliation(s)
- Hiroshi Arakawa
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| | - Shinji Sugiura
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takumi Kawanishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| | - Kazumi Shin
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hiroko Toyoda
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan and Stem Cell Evaluation Technology Research Association, Tsukuba, Japan
| | - Taku Satoh
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan and Stem Cell Evaluation Technology Research Association, Tsukuba, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Japan
| | - Toshiyuki Kanamori
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
22
|
Dai J, Xing Y, Xiao L, Li J, Cao R, He Y, Fang H, Periasamy A, Oberhozler J, Jin L, Landers JP, Wang Y, Li X. Microfluidic Disc-on-a-Chip Device for Mouse Intervertebral Disc-Pitching a Next-Generation Research Platform To Study Disc Degeneration. ACS Biomater Sci Eng 2019; 5:2041-2051. [PMID: 31763444 DOI: 10.1021/acsbiomaterials.8b01522] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Low back pain is the most common cause of disability worldwide, and intervertebral disc degeneration is a major cause of low back pain. Unfortunately, discogenic low back pain is often treated with symptomatic relief interventions, as no disease-modifying medications are yet available. Both to-be-deciphered disc biology/pathology and inadequate in vitro research platform are major hurdles limiting drug discovery progress for disc degeneration. Here, we developed a microfluidic disc-on-a-chip device tailored for mouse disc organ as an in vitro research platform. We hypothesize that continuous nutrients empowered by a microfluidic device would improve biological performance of cultured mouse discs compared to those in static condition. This device permitted continuous media flow to mimic in vivo disc microenvironment. Intriguingly, mouse discs cultured on the microfluidic device exhibited much higher cell viability, better preserved structure integrity and anabolic-catabolic metabolism in both nucleus pulposus and annulus fibrosus, for up to 21 days compared to those in static culture. This first "disc-on-a-chip" device lays groundwork for future preclinical studies in a relative long-term organ culture given the chronic nature of intervertebral disc degeneration. In addition, this platform is readily transformable into a streamlined in vitro research platform to recapitulate physiological and pathophysiological microenvironment to accelerate disc research.
Collapse
Affiliation(s)
- Jun Dai
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Charlottesville, Virginia 22908, United States.,Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue Qiaokou District, Wuhan 430030, P.R. China
| | - Yuan Xing
- Department of Surgery, University of Virginia, 345 Cripell Drive, Charlottesville, Virginia 22908, United States
| | - Li Xiao
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Charlottesville, Virginia 22908, United States
| | - Jingyi Li
- ∥ Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| | - Ruofan Cao
- W.M. Keck Center for Cellular Imaging, University of Virginia, 90 Geldard Drive, Charlottesville, Virginia 22904, United States
| | - Yi He
- Department of Surgery, University of Virginia, 345 Cripell Drive, Charlottesville, Virginia 22908, United States
| | - Huang Fang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue Qiaokou District, Wuhan 430030, P.R. China
| | - Ammasi Periasamy
- W.M. Keck Center for Cellular Imaging, University of Virginia, 90 Geldard Drive, Charlottesville, Virginia 22904, United States
| | - Jose Oberhozler
- Department of Surgery, University of Virginia, 345 Cripell Drive, Charlottesville, Virginia 22908, United States
| | - Li Jin
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Charlottesville, Virginia 22908, United States
| | - James P Landers
- ∥ Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States.,Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer's Way, Charlottesville, Virginia 22904, United States.,Department of Pathology, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22908, United States
| | - Yong Wang
- Department of Surgery, University of Virginia, 345 Cripell Drive, Charlottesville, Virginia 22908, United States
| | - Xudong Li
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Charlottesville, Virginia 22908, United States.,Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22908, United States
| |
Collapse
|
23
|
Hu C, Chen Y, Tan MJA, Ren K, Wu H. Microfluidic technologies for vasculature biomimicry. Analyst 2019; 144:4461-4471. [DOI: 10.1039/c9an00421a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An overview of microfluidic technologies for vascular studies and fabrication of vascular structures.
Collapse
Affiliation(s)
- Chong Hu
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon
- China
| | - Yangfan Chen
- Department of Chemistry
- The Hong Kong University of Science and Technology
- Kowloon
- China
| | - Ming Jun Andrew Tan
- Division of Biomedical Engineering
- The Hong Kong University of Science and Technology
- China
| | - Kangning Ren
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon
- China
- HKBU Institute of Research and Continuing Education
| | - Hongkai Wu
- Department of Chemistry
- The Hong Kong University of Science and Technology
- Kowloon
- China
- Division of Biomedical Engineering
| |
Collapse
|
24
|
Hirama H, Satoh T, Sugiura S, Shin K, Onuki-Nagasaki R, Kanamori T, Inoue T. Glass-based organ-on-a-chip device for restricting small molecular absorption. J Biosci Bioeng 2018; 127:641-646. [PMID: 30473393 DOI: 10.1016/j.jbiosc.2018.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/04/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022]
Abstract
The use of organ-on-a-chip (OOC) devices is a promising alternative to existing cell-based assays and animal testing in drug discovery. A rapid prototyping method with polydimethylsiloxane (PDMS) is widely used for developing OOC devices. However, because PDMS tends to absorb small hydrophobic molecules, the loss of test compounds in cell-based assays and increases in background fluorescence during observation often lead to biased results in cell-based assays. To address this issue, we have fabricated a glass-based OOC device and characterized the medium flow and molecular absorption properties in comparison with PDMS-based devices. Consequently, we revealed that the glass device generated a stable medium flow, restricted the absorption of small hydrophobic molecules, and showed enhanced cell adhesiveness. This glass device is expected to be applicable to precise cell-based assays to evaluate small hydrophobic molecules, for which PDMS devices cannot be applied because of their absorption of small hydrophobic molecules.
Collapse
Affiliation(s)
- Hirotada Hirama
- Research Center for Ubiquitous MEMS and Micro Engineering, National Institute of Advanced Industrial Science and Technology, 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan.
| | - Taku Satoh
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Shinji Sugiura
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazumi Shin
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Reiko Onuki-Nagasaki
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Toshiyuki Kanamori
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Tomoya Inoue
- Research Center for Ubiquitous MEMS and Micro Engineering, National Institute of Advanced Industrial Science and Technology, 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
| |
Collapse
|
25
|
McLean IC, Schwerdtfeger LA, Tobet SA, Henry CS. Powering ex vivo tissue models in microfluidic systems. LAB ON A CHIP 2018; 18:1399-1410. [PMID: 29697131 DOI: 10.1039/c8lc00241j] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This Frontiers review analyzes the rapidly growing microfluidic strategies that have been employed in attempts to create physio relevant 'organ-on-chip' models using primary tissue removed from a body (human or animal). Tissue harvested immediately from an organism, and cultured under artificial conditions is referred to as ex vivo tissue. The use of primary (organotypic) tissue offers unique benefits over traditional cell culture experiments, and microfluidic technology can be used to further exploit these advantages. Defining the utility of particular models, determining necessary constituents for acceptable modeling of in vivo physiology, and describing the role of microfluidic systems in tissue modeling processes is paramount to the future of organotypic models ex vivo. Virtually all tissues within the body are characterized by a large diversity of cellular composition, morphology, and blood supply (e.g., nutrient needs including oxygen). Microfluidic technology can provide a means to help maintain tissue in more physiologically relevant environments, for tissue relevant time-frames (e.g., matching the natural rates of cell turnover), and at in vivo oxygen tensions that can be controlled within modern microfluidic culture systems. Models for ex vivo tissues continue to emerge and grow in efficacy as mimics of in vivo physiology. This review addresses developments in microfluidic devices for the study of tissues ex vivo that can serve as an important bridge to translational value.
Collapse
Affiliation(s)
- Ian C McLean
- Department of Biomedical Sciences, School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | |
Collapse
|
26
|
Tashiro S, Le MNT, Kusama Y, Nakatani E, Suga M, Furue MK, Satoh T, Sugiura S, Kanamori T, Ohnuma K. High cell density suppresses BMP4-induced differentiation of human pluripotent stem cells to produce macroscopic spatial patterning in a unidirectional perfusion culture chamber. J Biosci Bioeng 2018; 126:379-388. [PMID: 29681444 DOI: 10.1016/j.jbiosc.2018.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 11/25/2022]
Abstract
Spatial pattern formation is a critical step in embryogenesis. Bone morphogenetic protein 4 (BMP4) and its inhibitors are major factors for the formation of spatial patterns during embryogenesis. However, spatial patterning of the human embryo is unclear because of ethical issues and isotropic culture environments resulting from conventional culture dishes. Here, we utilized human pluripotent stem cells (hiPSCs) and a simple anisotropic (unidirectional perfusion) culture chamber, which creates unidirectional conditions, to measure the cell community effect. The influence of cell density on BMP4-induced differentiation was explored during static culture using a conventional culture dish. Immunostaining of the early differentiation marker SSEA-1 and the mesendoderm marker BRACHYURY revealed that high cell density suppressed differentiation, with small clusters of differentiated and undifferentiated cells formed. Addition of five-fold higher concentration of BMP4 showed similar results, suggesting that suppression was not caused by depletion of BMP4 but rather by high cell density. Quantitative RT-PCR array analysis showed that BMP4 induced multi-lineage differentiation, which was also suppressed under high-density conditions. We fabricated an elongated perfusion culture chamber, in which proteins were transported unidirectionally, and hiPSCs were cultured with BMP4. At low density, the expression was the same throughout the chamber. However, at high density, SSEA-1 and BRACHYURY were expressed only in upstream cells, suggesting that some autocrine/paracrine factors inhibited the action of BMP4 in downstream cells to form the spatial pattern. Human iPSCs cultured in a perfusion culture chamber might be useful for studying in vitro macroscopic pattern formation in human embryogenesis.
Collapse
Affiliation(s)
- Shota Tashiro
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| | - Minh Nguyen Tuyet Le
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| | - Yuta Kusama
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| | - Eri Nakatani
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| | - Mika Suga
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.
| | - Miho K Furue
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.
| | - Taku Satoh
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Shinji Sugiura
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Toshiyuki Kanamori
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Kiyoshi Ohnuma
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan; Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| |
Collapse
|
27
|
Soenksen LR, Kassis T, Noh M, Griffith LG, Trumper DL. Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensing. LAB ON A CHIP 2018; 18:902-914. [PMID: 29437172 PMCID: PMC9011357 DOI: 10.1039/c7lc01223c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (<1 mL) has proven to be an elusive goal, especially if direct fluid-sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications.
Collapse
Affiliation(s)
- L R Soenksen
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA. and Research Laboratory of Electronics, MIT, Cambridge, MA, USA
| | - T Kassis
- Research Laboratory of Electronics, MIT, Cambridge, MA, USA and Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - M Noh
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA. and Research Laboratory of Electronics, MIT, Cambridge, MA, USA
| | - L G Griffith
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA. and Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - D L Trumper
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA. and Research Laboratory of Electronics, MIT, Cambridge, MA, USA
| |
Collapse
|
28
|
Technical aspects of microphysiological systems (MPS) as a promising wet human-in-vivo simulator. Drug Metab Pharmacokinet 2018; 33:40-42. [DOI: 10.1016/j.dmpk.2017.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/24/2017] [Accepted: 11/17/2017] [Indexed: 11/23/2022]
|
29
|
Satoh T, Sugiura S, Shin K, Onuki-Nagasaki R, Ishida S, Kikuchi K, Kakiki M, Kanamori T. A multi-throughput multi-organ-on-a-chip system on a plate formatted pneumatic pressure-driven medium circulation platform. LAB ON A CHIP 2017; 18:115-125. [PMID: 29184959 DOI: 10.1039/c7lc00952f] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This paper reports a multi-throughput multi-organ-on-a-chip system formed on a pneumatic pressure-driven medium circulation platform with a microplate-sized format as a novel type of microphysiological system. The pneumatic pressure-driven platform enabled parallelized multi-organ experiments (i.e. simultaneous operation of multiple multi-organ culture units) and pipette-friendly liquid handling for various conventional cell culture experiments, including cell seeding, medium change, live/dead staining, cell growth analysis, gene expression analysis of collected cells, and liquid chromatography-mass spectrometry analysis of chemical compounds in the culture medium. An eight-throughput two-organ system and a four-throughput four-organ system were constructed on a common platform, with different microfluidic plates. The two-organ system, composed of liver and cancer models, was used to demonstrate the effect of an anticancer prodrug, capecitabine (CAP), whose metabolite 5-fluorouracil (5-FU) after metabolism by HepaRG hepatic cells inhibited the proliferation of HCT-116 cancer cells. The four-organ system, composed of intestine, liver, cancer, and connective tissue models, was used to demonstrate evaluation of the effects of 5-FU and two prodrugs of 5-FU (CAP and tegafur) on multiple organ models, including cancer and connective tissue.
Collapse
Affiliation(s)
- T Satoh
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metab Pharmacokinet 2017; 33:43-48. [PMID: 29175062 DOI: 10.1016/j.dmpk.2017.11.003] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 12/23/2022]
Abstract
Although animal experiments are indispensable for preclinical screening in the drug discovery process, various issues such as ethical considerations and species differences remain. To solve these issues, cell-based assays using human-derived cells have been actively pursued. However, it remains difficult to accurately predict drug efficacy, toxicity, and organs interactions, because cultivated cells often do not retain their original organ functions and morphologies in conventional in vitro cell culture systems. In the μTAS research field, which is a part of biochemical engineering, the technologies of organ-on-a-chip, based on microfluidic devices built using microfabrication, have been widely studied recently as a novel in vitro organ model. Since it is possible to physically and chemically mimic the in vitro environment by using microfluidic device technology, maintenance of cellular function and morphology, and replication of organ interactions can be realized using organ-on-a-chip devices. So far, functions of various organs and tissues, such as the lung, liver, kidney, and gut have been reproduced as in vitro models. Furthermore, a body-on-a-chip, integrating multi organ functions on a microfluidic device, has also been proposed for prediction of organ interactions. We herein provide a background of microfluidic systems, organ-on-a-chip, Body-on-a-chip technologies, and their challenges in the future.
Collapse
|
31
|
Adding dimension to cellular mechanotransduction: Advances in biomedical engineering of multiaxial cell-stretch systems and their application to cardiovascular biomechanics and mechano-signaling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017. [DOI: 10.1016/j.pbiomolbio.2017.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Kondo Y, Hattori K, Tashiro S, Nakatani E, Yoshimitsu R, Satoh T, Sugiura S, Kanamori T, Ohnuma K. Compartmentalized microfluidic perfusion system to culture human induced pluripotent stem cell aggregates. J Biosci Bioeng 2017; 124:234-241. [PMID: 28434976 DOI: 10.1016/j.jbiosc.2017.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/24/2017] [Indexed: 01/31/2023]
Abstract
Microfluidic perfusion systems enable small-volume cell cultures under precisely controlled microenvironments, and are typically developed for cell-based high-throughput screening. However, most such systems are designed to manipulate dissociated single cells, not cell aggregates, and are thus unsuitable to induce differentiation in human induced pluripotent stem cells (hiPSCs), which is conventionally achieved by using cell aggregates to increase cell-cell interactions. We have now developed a compartmentalized microfluidic perfusion system with large flow channels to load, culture, and observe cell aggregates. Homogeneously sized cell aggregates to be loaded into the device were prepared by shredding flat hiPSC colonies into squares. These aggregates were then seeded into microchambers coated with fibronectin and bovine serum albumin (BSA) to establish adherent and floating cultures, respectively, both of which are frequently used to differentiate hiPSCs. However, the number of aggregates loaded in fibronectin-coated microchambers was much lower than in BSA-coated microchambers, suggesting that fibronectin traps cell aggregates before they reach the chambers. Accordingly, hiPSCs that reached the microchambers subsequently adhered. In contrast, BSA-coated microchambers did not allow cell aggregates to adhere, but were sufficiently deep to prevent cell aggregates from flowing out during perfusion of media. Immunostaining for markers of undifferentiated cells showed that cultures on both fibronectin- and BSA-coated microchambers were successfully established. Notably, we found that floating aggregates eventually adhered to surfaces coated with BSA upon differentiation, and that differentiation depends on the initial size of aggregates. Collectively, these results suggest that the microfluidic system is suitable for manipulating hiPSC aggregates in compartmentalized microchambers.
Collapse
Affiliation(s)
- Yuki Kondo
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Koji Hattori
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Shota Tashiro
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Eri Nakatani
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Ryosuke Yoshimitsu
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Taku Satoh
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Shinji Sugiura
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Toshiyuki Kanamori
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kiyoshi Ohnuma
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan; Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka, Niigata 940-2188, Japan.
| |
Collapse
|
33
|
Chen Y, Chan HN, Michael SA, Shen Y, Chen Y, Tian Q, Huang L, Wu H. A microfluidic circulatory system integrated with capillary-assisted pressure sensors. LAB ON A CHIP 2017; 17:653-662. [PMID: 28112765 DOI: 10.1039/c6lc01427e] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The human circulatory system comprises a complex network of blood vessels interconnecting biologically relevant organs and a heart driving blood recirculation throughout this system. Recreating this system in vitro would act as a bridge between organ-on-a-chip and "body-on-a-chip" and advance the development of in vitro models. Here, we present a microfluidic circulatory system integrated with an on-chip pressure sensor to closely mimic human systemic circulation in vitro. A cardiac-like on-chip pumping system is incorporated in the device. It consists of four pumping units and passive check valves, which mimic the four heart chambers and heart valves, respectively. Each pumping unit is independently controlled with adjustable pressure and pump rate, enabling users to control the mimicked blood pressure and heartbeat rate within the device. A check valve is located downstream of each pumping unit to prevent backward leakage. Pulsatile and unidirectional flow can be generated to recirculate within the device by programming the four pumping units. We also report an on-chip capillary-assisted pressure sensor to monitor the pressure inside the device. One end of the capillary was placed in the measurement region, while the other end was sealed. Time-dependent pressure changes were measured by recording the movement of the liquid-gas interface in the capillary and calculating the pressure using the ideal gas law. The sensor covered the physiologically relevant blood pressure range found in humans (0-142.5 mmHg) and could respond to 0.2 s actuation time. With the aid of the sensor, the pressure inside the device could be adjusted to the desired range. As a proof of concept, human normal left ventricular and arterial pressure profiles were mimicked inside this device. Human umbilical vein endothelial cells (HUVECs) were cultured on chip and cells can respond to mechanical forces generated by arterial-like flow patterns.
Collapse
Affiliation(s)
- Yangfan Chen
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Ho Nam Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Sean A Michael
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Yusheng Shen
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yin Chen
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qian Tian
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Lu Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Hongkai Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China. and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China and HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
34
|
Kamei KI, Kato Y, Hirai Y, Ito S, Satoh J, Oka A, Tsuchiya T, Chen Y, Tabata O. Integrated heart/cancer on a chip to reproduce the side effects of anti-cancer drugs in vitro. RSC Adv 2017. [DOI: 10.1039/c7ra07716e] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Integrated Heart/Cancer on a Chip (iHCC) is a promising microfluidic platform that allows the culture of different cell types separately and application of closed-medium circulation to reproduce the side effects of doxorubicin on heart in vitro.
Collapse
Affiliation(s)
- Ken-ichiro Kamei
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University
- Sakyo-ku
- Japan
| | - Yoshiki Kato
- Department of Micro Engineering
- Kyoto University
- Nishikyo-ku
- Japan
| | - Yoshikazu Hirai
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University
- Sakyo-ku
- Japan
- Department of Micro Engineering
| | - Shinji Ito
- Medical Research Support Center
- Graduate School of Medicine
- Kyoto University
- Sakyo-ku
- Japan
| | - Junko Satoh
- Medical Research Support Center
- Graduate School of Medicine
- Kyoto University
- Sakyo-ku
- Japan
| | - Atsuko Oka
- Medical Research Support Center
- Graduate School of Medicine
- Kyoto University
- Sakyo-ku
- Japan
| | | | - Yong Chen
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University
- Sakyo-ku
- Japan
- École Normale Supérieure-PSL Research University
| | - Osamu Tabata
- Department of Micro Engineering
- Kyoto University
- Nishikyo-ku
- Japan
| |
Collapse
|