1
|
Chandra J, Nasir N, Wahab S, Sahebkar A, Kesharwani P. Harnessing the power of targeted metal nanocarriers mediated photodynamic and photothermal therapy. Nanomedicine (Lond) 2024:1-19. [PMID: 39545609 DOI: 10.1080/17435889.2024.2419820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024] Open
Abstract
The treatment of cancer has become a profoundly intricate procedure. Traditional treatment methods, including chemotherapy, surgery and radiotherapy, have been utilized, while notable progress has been achieved in recent years. Among targeted therapies for cancer, folic acid (FA) conjugated metal-based nanoparticles (NP) have emerged as an innovative strategy, namely for photodynamic therapy (PDT) and photothermal therapy (PTT). These NP exploit the strong attraction between FA and folate receptors, which are excessively produced in several cancer cells, in order to enable precise administration and improved effectiveness of treatment. During PDT, metal-based NP functionalized with FA are used as photosensitizers which are activated by light, and produce reactive oxygen species that cause cancer cells to undergo apoptosis. Within the framework of PTT, these NP effectively transform light energy into concentrated heat, specifically targeting and destroying tumor cells. This review examines the fundamental mechanisms by which these NP improve the effectiveness of PDT and PTT while simultaneously presenting important findings that demonstrate the effectiveness of FA-functionalized MNP in laboratory and animal models. In addition, the paper also discusses the problems and potential directions for their clinical translation.
Collapse
Affiliation(s)
- Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazim Nasir
- Department of Basic Medical Sciences, College of Applied Medical Sciences, Khamis Mushait, King Khalid University, Abha, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
2
|
Ayyandurai N, Venkatesan S, Raman S. A Sensitive Enzymatic Electrochemical Biosensor for Cholesterol Based on Cobalt Ferrite@Molybdenum Disulfide/Gold Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:4080-4092. [PMID: 38771954 DOI: 10.1021/acsabm.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Cholesterol is essential in biological systems, and the level of cholesterol in the body of a person acts as a diagnostic marker for a variety of diseases. So, in this work, we fabricated an enzymatic electrochemical biosensor for cholesterol using cobalt ferrite@molybdenum disulfide/gold nanoparticles (CoFe2O4@MoS2/Au). The synthesized composite was used for the determination of cholesterol by voltametric methods. The electroactive material CoFe2O4@MoS2/Au was successfully verified from the physiochemical studies such as XRD, Raman, FT-IR, and XPS spectroscopy along with morphological FESEM and HRTEM characterization. CoFe2O4@MoS2/Au showed outstanding dispersion in the aqueous phase, a large effective area, good biological compatibility, and superior electronic conductivity. The microflower-like CoFe2O4@MoS2/Au was confirmed by scanning electron microscopy. The image of transmission electron microscopy showed decoration of gold nanoparticles on CoFe2O4@MoS2 surfaces. Furthermore, a one-step dip-coating technique was used to build the biosensor used for cholesterol detection. In addition to acting as an enabling matrix to immobilize cholesterol oxidase (ChOx), CoFe2O4@MoS2/Au contributes to an increase in electrical conductivity. The differential pulse voltammetry method was used for the quantitative measurement of cholesterol. The calibration curve for cholesterol was linear in the concentration range of 5 to 100 μM, with a low limit of detection of 0.09 μM and sensitivity of 0.194 μA μM-1 cm-2. Furthermore, the biosensor demonstrates good practicability, as it was also employed for identifying cholesterol in real samples with acceptable selectivity and stability.
Collapse
Affiliation(s)
- Nagarajan Ayyandurai
- Department of Physical Chemistry, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Sethuraman Venkatesan
- Research and Development, New Energy Technology Centre, Lithium-Ion Division, Amara Raja Battery Ltd., Karakambadi 517520, Tirupati, Andhra Pradesh, India
| | - Sasikumar Raman
- Department of Physical Chemistry, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| |
Collapse
|
3
|
Wang Y, Wang Y, Zhong H, Xiong L, Song J, Zhang X, He T, Zhou X, Li L, Zhen D. Recent progress of UCNPs-MoS 2 nanocomposites as a platform for biological applications. J Mater Chem B 2024; 12:5024-5038. [PMID: 38712810 DOI: 10.1039/d3tb02958a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Composite materials can take advantages of the functional benefits of multiple pure nanomaterials to a greater degree than single nanomaterials alone. The UCNPs-MoS2 composite is a nano-application platform that combines upconversion luminescence and photothermal properties. Upconversion nanoparticles (UCNPs) are inorganic nanomaterials with long-wavelength excitation and short-wavelength tunable emission capabilities, and are able to effectively convert near-infrared (NIR) light into visible light for increased photostability. However, UCNPs have a low capacity for absorbing visible light, whereas MoS2 shows better absorption in the ultraviolet and visible regions. By integrating the benefits of UCNPs and MoS2, UCNPs-MoS2 nanocomposites can convert NIR light with a higher depth of detection into visible light for application with MoS2 through fluorescence resonance energy transfer (FRET), which compensates for the issues of MoS2's low tissue penetration light-absorbing wavelengths and expands its potential biological applications. Therefore, starting from the construction of UCNPs-MoS2 nanoplatforms, herein, we review the research progress in biological applications, including biosensing, phototherapy, bioimaging, and targeted drug delivery. Additionally, the current challenges and future development trends of UCNPs-MoS2 nanocomposites for biological applications are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Yiru Wang
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Huimei Zhong
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Lihao Xiong
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Jiayi Song
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Xinyu Zhang
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Ting He
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Xiayu Zhou
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Le Li
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Deshuai Zhen
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
4
|
Abstract
Light-mediated therapeutics, including photodynamic therapy, photothermal therapy and light-triggered drug delivery, have been widely studied due to their high specificity and effective therapy. However, conventional light-mediated therapies usually depend on the activation of light-sensitive molecules with UV or visible light, which have poor penetration in biological tissues. Over the past decade, efforts have been made to engineer nanosystems that can generate luminescence through excitation with near-infrared (NIR) light, ultrasound or X-ray. Certain nanosystems can even carry out light-mediated therapy through chemiluminescence, eliminating the need for external activation. Compared to UV or visible light, these 4 excitation modes penetrate more deeply into biological tissues, triggering light-mediated therapy in deeper tissues. In this review, we systematically report the design and mechanisms of different luminescent nanosystems excited by the 4 excitation sources, methods to enhance the generated luminescence, and recent applications of such nanosystems in deep tissue light-mediated therapeutics.
Collapse
Affiliation(s)
- Chung Yin Tsang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore.
| | - Yong Zhang
- Department of Biomedical Engineering, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
5
|
Mia AK, Bora A, Hossain MT, Sinha S, Giri PK. Fast detection of Staphylococcus aureus using thiol-functionalized WS 2 quantum dots and Bi 2O 2Se nanosheets hybrid through a fluorescence recovery mechanism. J Mater Chem B 2023; 11:10206-10217. [PMID: 37853818 DOI: 10.1039/d3tb01465g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Ultrafast and sensitive detection of Staphylococcus aureus (S. aureus), a harmful Gram-positive human pathogenic bacterium, by two-dimensional layered materials continues to be a challenge. Herein, we have studied the sensing of S. aureus using a tungsten disulfide (WS2) quantum dot (QD) and bismuth oxyselenide (Bi2O2Se) nanosheet (NS) hybrid through their unique optical functionalities. The WS2 QDs of a mean diameter of 2.5 nm were synthesized by liquid exfoliation. Due to the quantum confinement and functional groups, the WS2 QDs exhibit high fluorescence (FL) yield under UV excitation. The addition of Bi2O2Se NSs resulted in the adsorption of WS2 QDs on their surface, resulting in quenching of the FL emission due to nonfluorescent complex formation between the WS2 QDs and Bi2O2Se NSs. A specific sequencing single-standard DNA (ssDNA) aptamer, which identifies and explicitly binds with S. aureus, was attached to the defect sites of the WS2 QDs for selective detection. The thiol-modified ssDNA aptamers attach covalently to the WS2 QD defect sites, which was confirmed by Raman and X-ray photoelectron spectroscopy (XPS). The interaction of S. aureus with the aptamer functionalized WS2 QDs weakens the van der Waals interaction between the WS2 QDs and Bi2O2Se NSs, which results in the detachment of the WS2 QDs from the Bi2O2Se NS surface and restores the FL intensity of the WS2 QDs, thus allowing the efficient detection of S. aureus. Similar measurements with non-targeted bacteria show that the system is quite selective towards S. aureus. Our FL-based biosensor has a linear response in the range of 103-107 CFU mL-1 (colony formation unit mL-1) with a detection limit of 580 CFU mL-1. We have observed a fast response time of 15 minutes for sensing, which is superior to the previous reports. The proposed system was tested in human urine and can detect S. aureus in human urine samples selectively, proving its potential in real-life applications. The reported approach is versatile enough for sensing other biomolecules and metal ions by choosing suitable receptors.
Collapse
Affiliation(s)
- Abdul Kaium Mia
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, 781039, India.
| | - Abhilasha Bora
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, 781039, India.
| | - Md Tarik Hossain
- Department of Physics, Indian Institute of Technology Guwahati, 781039, India
| | - Swapnil Sinha
- IITG TIDF BioNEST, Indian Institute of Technology Guwahati, 781039, India
| | - P K Giri
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, 781039, India.
- Department of Physics, Indian Institute of Technology Guwahati, 781039, India
| |
Collapse
|
6
|
Pronina EV, Vorotnikov YA, Pozmogova TN, Tsygankova AR, Kirakci K, Lang K, Shestopalov MA. Multifunctional Oxidized Dextran as a Matrix for Stabilization of Octahedral Molybdenum and Tungsten Iodide Clusters in Aqueous Media. Int J Mol Sci 2023; 24:10010. [PMID: 37373156 DOI: 10.3390/ijms241210010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Due to their high abundance, polymeric character, and chemical tunability, polysaccharides are perfect candidates for the stabilization of photoactive nanoscale objects, which are of great interest in modern science but can be unstable in aqueous media. In this work, we have demonstrated the relevance of oxidized dextran polysaccharide, obtained via a simple reaction with H2O2, towards the stabilization of photoactive octahedral molybdenum and tungsten iodide cluster complexes [M6I8}(DMSO)6](NO3)4 in aqueous and culture media. The cluster-containing materials were obtained by co-precipitation of the starting reagents in DMSO solution. According to the data obtained, the amount and ratio of functional carbonyl and carboxylic groups as well as the molecular weight of oxidized dextran strongly affect the extent of stabilization, i.e., high loading of aldehyde groups and high molecular weight increase the stability, while acidic groups have some negative impact on the stability. The most stable material based on the tungsten cluster complex exhibited low dark and moderate photoinduced cytotoxicity, which together with high cellular uptake makes these polymers promising for the fields of bioimaging and PDT.
Collapse
Affiliation(s)
- Ekaterina V Pronina
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Yuri A Vorotnikov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Tatiana N Pozmogova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Alphiya R Tsygankova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež 1001, 250 68 Husinec-Řež, Czech Republic
| | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež 1001, 250 68 Husinec-Řež, Czech Republic
| | - Michael A Shestopalov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Li Y, Dang G, Rizwan Younis M, Cao Y, Wang K, Sun X, Zhang W, Zou X, Shen H, An R, Dong L, Dong J. Peptide functionalized actively targeted MoS 2 nanospheres for fluorescence imaging-guided controllable pH-responsive drug delivery and collaborative chemo/photodynamic therapy. J Colloid Interface Sci 2023; 639:302-313. [PMID: 36805755 DOI: 10.1016/j.jcis.2023.02.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
The combination of imaging and different therapeutic strategies into one single nanoplatform often demonstrates improved efficacy over monotherapy in cancer treatments. Herein, a multifunctional nanoplatform (labelled as MPRD) based on molybdenum disulfide quantum dots (MoS2 QDs) is developed to achieve enhanced antitumor efficiency by integrating fluorescence imaging, tumor-targeting and synergistic chemo/photodynamic therapy (PDT) into one system. First, polyethylene glycol (PEG)ylated MoS2 QDs (MP) with desirable stability are synthesized via a hydrothermal process using MoS2 QDs and carboxyamino-terminated oligomeric PEG as raw materials. Then, MP were conjugated with arginine-glycine-aspartic acid (RGD) peptide via amidation to form a novel nanocarrier (MPR), which possesses strong blue fluorescence, good biocompatibility and ανβ3 receptor-mediated targeting ability. More importantly, MPR generated reactive oxygen species under 808 nm laser activation to realize targeted antitumor PDT. Further doxorubicin (DOX) was loaded onto MPR, which endows MPRD with localized chemotherapy and pH-responsive drug release. The MPRD exhibits improved chemotherapy performance on HepG2 cells (overexpressing integrin ανβ3) owing to enhanced cellular uptake mediated by ανβ3 receptor and effective drug release triggered by intracellular pH. Notably, MPRD with efficient tumor targeting ability and high chemo/PDT efficacy under NIR laser irradiation is capable of inhibiting HepG2 tumor cell growth both in vitro and in vivo, which is significantly superior to each individual therapy. These findings demonstrate that MPRD holds great potential in effective cancer therapy.
Collapse
Affiliation(s)
- Yanyan Li
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Guangyao Dang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University, Shenzhen 518060, PR China
| | - Yutao Cao
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Kaiqi Wang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Xiao Sun
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Wenxian Zhang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Xianwen Zou
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Hui Shen
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Ruibing An
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China.
| | - Lifeng Dong
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China.
| | - Jian Dong
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China.
| |
Collapse
|
8
|
Wu X, Yang J, Xing J, Lyu Y, Zou R, Wang X, Yao J, Zhang D, Qi D, Shao G, Wu A, Li J. Using host-guest interactions at the interface of quantum dots to load drug molecules for biocompatible, safe, and effective chemo-photodynamic therapy against cancer. J Mater Chem B 2023. [PMID: 37161740 DOI: 10.1039/d3tb00592e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Combining photodynamic therapy (PDT) and chemotherapy (CHT) by loading an anti-cancer drug and a photosensitizer (PS) into the same delivery nanosystem has been proposed as an effective approach to achieve synergistic effects for a safe cancer treatment. However, exploring an ideal delivery nanosystem has been challenging, because the noncovalent interactions must be maintained between the multiple components to produce a stable yet responsive nanostructure that takes into account the encapsulation of drug molecules. We addressed this issue by engineering the interfacial interaction between Ag2S quantum dots (QDs) using a pillararene derivative to direct the co-self-assembly of the entire system. The high surface area-to-volume ratio of the Ag2S QDs provided ample hydrophobic space to accommodate the anti-drug molecule doxrubicine. Moreover, Ag2S QDs served as PSs triggered by 808 nm near-infrared (NIR) light and also as carriers for high-efficiency delivery of drug molecules to the tumor site. Drug release experiments showed smart drug release under the acidic microenvironments (pH 5.5) in tumor cells. Additionally, the Ag2S QDs demonstrated outstanding PDT ability under NIR light, as confirmed by extracellular and intracellular reactive oxygen species generation. Significant treatment efficacy of the chemo-photodynamic synergistic therapy for cancer using the co-delivery system was demonstrated via in vitro and in vivo studies. These findings suggest that our system offers intelligent control of CHT and PDT, which will provide a promising strategy for constructing hybrid systems with synergistic effects for advanced applications in biomedicine, catalysis, and optoelectronics.
Collapse
Affiliation(s)
- Xiaoxia Wu
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, FI-20520 Turku, Finland.
- Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences (CAS), Hangzhou 310022, China
| | - Jinghui Yang
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, FI-20520 Turku, Finland.
- Department of Chemistry, University of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| | - Jie Xing
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China.
| | - Yonglei Lyu
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, FI-20520 Turku, Finland.
- Department of Chemistry, University of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| | - Ruifen Zou
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China.
| | - Xin Wang
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, FI-20520 Turku, Finland.
- Department of Chemistry, University of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| | - Junlie Yao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China.
| | - Dinghu Zhang
- Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences (CAS), Hangzhou 310022, China
| | - Dawei Qi
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, FI-20520 Turku, Finland.
| | - Guoliang Shao
- Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences (CAS), Hangzhou 310022, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China.
| | - Jianwei Li
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, FI-20520 Turku, Finland.
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
9
|
Dual excitable upconversion nanoparticle@polydopamine nanocomposite with intense red emission and efficient photothermal generation. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Nanoarchitectured assembly and surface of two-dimensional (2D) transition metal dichalcogenides (TMDCs) for cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Development of upconversion-NMOFs nanocomposite conjugated with Gold nanoparticles for NIR light-triggered combinational chemo-photothermal therapy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Bartusik-Aebisher D, Mielnik M, Cieślar G, Chodurek E, Kawczyk-Krupka A, Aebisher D. Photon Upconversion in Small Molecules. Molecules 2022; 27:molecules27185874. [PMID: 36144609 PMCID: PMC9502815 DOI: 10.3390/molecules27185874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Upconversion (UC) is a process that describes the emission of shorter-wavelength light compared to that of the excitation source. Thus, UC is also referred to as anti-Stokes emission because the excitation wavelength is longer than the emission wavelength. UC materials are used in many fields, from electronics to medicine. The objective of using UC in medical research is to synthesize upconversion nanoparticles (UCNPs) composed of a lanthanide core with a coating of adsorbed dye that will generate fluorescence after excitation with near-infrared light to illuminate deep tissue. Emission occurs in the visible and UV range, and excitation mainly in the near-infrared spectrum. UC is observed for lanthanide ions due to the arrangement of their energy levels resulting from f-f electronic transitions. Organic compounds and transition metal ions are also able to form the UC process. Biocompatible UCNPs are designed to absorb infrared light and emit visible light in the UC process. Fluorescent dyes are adsorbed to UCNPs and employed in PDT to achieve deeper tissue effects upon irradiation with infrared light. Fluorescent UCNPs afford selectivity as they may be activated only by illumination of an area of diseased tissue, such as a tumor, with infrared light and are by themselves atoxic in the absence of infrared light. UCNP constructs can be monitored as to their location in the body and uptake by cancer cells, aiding in evaluation of exact doses required to treat the targeted cancer. In this paper, we review current research in UC studies and UCNP development.
Collapse
Affiliation(s)
- Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The University of Rzeszów, University of Rzeszów, 35-959 Rzeszów, Poland
| | - Mateusz Mielnik
- English Division Science Club, Medical College of The University of Rzeszów, University of Rzeszów, 35-959 Rzeszów, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - Ewa Chodurek
- Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
- Correspondence: (A.K.-K.); (D.A.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The University of Rzeszów, University of Rzeszów, 35-959 Rzeszów, Poland
- Correspondence: (A.K.-K.); (D.A.)
| |
Collapse
|
13
|
Gaihre B, Potes MA, Serdiuk V, Tilton M, Liu X, Lu L. Two-dimensional nanomaterials-added dynamism in 3D printing and bioprinting of biomedical platforms: Unique opportunities and challenges. Biomaterials 2022; 284:121507. [PMID: 35421800 PMCID: PMC9933950 DOI: 10.1016/j.biomaterials.2022.121507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
The nanomaterials research spectrum has seen the continuous emergence of two-dimensional (2D) materials over the years. These highly anisotropic and ultrathin materials have found special attention in developing biomedical platforms for therapeutic applications, biosensing, drug delivery, and regenerative medicine. Three-dimensional (3D) printing and bioprinting technologies have emerged as promising tools in medical applications. The convergence of 2D nanomaterials with 3D printing has extended the application dynamics of available biomaterials to 3D printable inks and bioinks. Furthermore, the unique properties of 2D nanomaterials have imparted multifunctionalities to 3D printed constructs applicable to several biomedical applications. 2D nanomaterials such as graphene and its derivatives have long been the interest of researchers working in this area. Beyond graphene, a range of emerging 2D nanomaterials, such as layered silicates, black phosphorus, transition metal dichalcogenides, transition metal oxides, hexagonal boron nitride, and MXenes, are being explored for the multitude of biomedical applications. Better understandings on both the local and systemic toxicity of these materials have also emerged over the years. This review focuses on state-of-art 3D fabrication and biofabrication of biomedical platforms facilitated by 2D nanomaterials, with the comprehensive summary of studies focusing on the toxicity of these materials. We highlight the dynamism added by 2D nanomaterials in the printing process and the functionality of printed constructs.
Collapse
Affiliation(s)
- Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Maria Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Vitalii Serdiuk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States.
| |
Collapse
|
14
|
Cao Y, Wang K, Zhu P, Zou X, Ma G, Zhang W, Wang D, Wan J, Ma Y, Sun X, Dong J. A near-infrared triggered upconversion/MoS 2 nanoplatform for tumour-targeted chemo-photodynamic combination therapy. Colloids Surf B Biointerfaces 2022; 213:112393. [PMID: 35144084 DOI: 10.1016/j.colsurfb.2022.112393] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 10/19/2022]
Abstract
The combination of photodynamic therapy and chemotherapy has shown a great potential in cancer treatment. As a promising photosensitizer, MoS2 quantum dots (QDs) have limited application due to the low tissue penetration of its light absorbing wavelength in the ultraviolet and visible regions. For the purpose of utilizing MoS2QDs in higher NIR absorption region, herein, we constructed a core/shell nano-photosensitizer upconversion@MoS2 with doxorubicin loading. This nanoplatform can convert 980 nm NIR into visible light, activating MoS2QDs to produce reactive oxygen species through fluorescence resonance energy transfer. In addition, this nanoplatform presented good biocompatibility and tumor targeting after polyethylene glycol and folic acid modification. Interestingly, with pH-responsive drug release performance, this nanoplatform presented efficient chemotherapy effects. Thus, the tumour-targeted nanoplatform can achieve up-converted luminescence imaging guided chemo-photodynamic synergistic therapy effectively.
Collapse
Affiliation(s)
- Yutao Cao
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Kaiqi Wang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Pengyu Zhu
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Xianwen Zou
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Guiqi Ma
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Wenxian Zhang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Diqing Wang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Jipeng Wan
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Yanling Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Xiao Sun
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China.
| | - Jian Dong
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China.
| |
Collapse
|
15
|
Liu Q, Song P, Zhang W, Wang Z, Yang K, Luo J, Zhu L, Gui L, Tao Y, Ge F. Acid-Sensitive Nanoparticles Based on Molybdenum Disulfide for Photothermal-Chemo Therapy. ACS Biomater Sci Eng 2022; 8:1706-1716. [PMID: 35291764 DOI: 10.1021/acsbiomaterials.1c01390] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The combination of multiple treatments has recently been investigated for tumor treatment. In this study, molybdenum disulfide (MoS2) with excellent photothermal conversion performance was used as the core, and manganese dioxide (MnO2), which responds to the tumor microenvironment, was loaded on its surface by liquid deposition to form a mesoporous core-shell structure. Then, the chemotherapeutic drug Adriamycin (DOX) was loaded into the hole. To further enhance its water solubility and stability, the surface of MnO2 was modified with mPEG-NH2 to prepare the combined antitumor nanocomposite MoS2@DOX/MnO2-PEG (MDMP). The results showed that MDMP had a diameter of about 236 nm, its photothermal conversion efficiency was 33.7%, and the loading and release rates of DOX were 13 and 65%, respectively. During in vivo and in vitro studies, MDMP showed excellent antitumor activity. Under the combined treatment, the tumor cell viability rate was only 11.8%. This nanocomposite exhibits considerable potential for chemo-photothermal combined antitumor therapy.
Collapse
Affiliation(s)
- Qin Liu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Ping Song
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Zhenyu Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jianquan Luo
- Institute of Process Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Longbao Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Lin Gui
- Department of Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui 241002, Peoples Republic of China
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| |
Collapse
|
16
|
Wang J, Sui L, Huang J, Miao L, Nie Y, Wang K, Yang Z, Huang Q, Gong X, Nan Y, Ai K. MoS 2-based nanocomposites for cancer diagnosis and therapy. Bioact Mater 2021; 6:4209-4242. [PMID: 33997503 PMCID: PMC8102209 DOI: 10.1016/j.bioactmat.2021.04.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 12/24/2022] Open
Abstract
Molybdenum is a trace dietary element necessary for the survival of humans. Some molybdenum-bearing enzymes are involved in key metabolic activities in the human body (such as xanthine oxidase, aldehyde oxidase and sulfite oxidase). Many molybdenum-based compounds have been widely used in biomedical research. Especially, MoS2-nanomaterials have attracted more attention in cancer diagnosis and treatment recently because of their unique physical and chemical properties. MoS2 can adsorb various biomolecules and drug molecules via covalent or non-covalent interactions because it is easy to modify and possess a high specific surface area, improving its tumor targeting and colloidal stability, as well as accuracy and sensitivity for detecting specific biomarkers. At the same time, in the near-infrared (NIR) window, MoS2 has excellent optical absorption and prominent photothermal conversion efficiency, which can achieve NIR-based phototherapy and NIR-responsive controlled drug-release. Significantly, the modified MoS2-nanocomposite can specifically respond to the tumor microenvironment, leading to drug accumulation in the tumor site increased, reducing its side effects on non-cancerous tissues, and improved therapeutic effect. In this review, we introduced the latest developments of MoS2-nanocomposites in cancer diagnosis and therapy, mainly focusing on biosensors, bioimaging, chemotherapy, phototherapy, microwave hyperthermia, and combination therapy. Furthermore, we also discuss the current challenges and prospects of MoS2-nanocomposites in cancer treatment.
Collapse
Affiliation(s)
- Jianling Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Lihua Sui
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jia Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Lu Miao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yubing Nie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Zhichun Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Qiong Huang
- Department of Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xue Gong
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yayun Nan
- Geriatric Medical Center, Ningxia People's Hospital, Yinchuan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
17
|
Hu XL, Shang Y, Yan KC, Sedgwick AC, Gan HQ, Chen GR, He XP, James TD, Chen D. Low-dimensional nanomaterials for antibacterial applications. J Mater Chem B 2021; 9:3640-3661. [PMID: 33870985 DOI: 10.1039/d1tb00033k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The excessive use of antibiotics has led to a rise in drug-resistant bacteria. These "superbugs" are continuously emerging and becoming increasingly harder to treat. As a result, new and effective treatment protocols that have minimal risks of generating drug-resistant bacteria are urgently required. Advanced nanomaterials are particularly promising due to their drug loading/releasing capabilities combined with their potential photodynamic/photothermal therapeutic properties. In this review, 0-dimensional, 1-dimensional, 2-dimensional, and 3-dimensional nanomaterial-based systems are comprehensively discussed for bacterial-based diagnostic and treatment applications. Since the use of these platforms as antibacterials is relatively new, this review will provide appropriate insight into their construction and applications. As such, we hope this review will inspire researchers to explore antibacterial-based nanomaterials with the aim of developing systems for clinical applications.
Collapse
Affiliation(s)
- Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Ying Shang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Kai-Cheng Yan
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA
| | - Hui-Qi Gan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK. and School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China.
| |
Collapse
|
18
|
Lu J, Chen M, Dong L, Cai L, Zhao M, Wang Q, Li J. Molybdenum disulfide nanosheets: From exfoliation preparation to biosensing and cancer therapy applications. Colloids Surf B Biointerfaces 2020; 194:111162. [PMID: 32512311 DOI: 10.1016/j.colsurfb.2020.111162] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/21/2020] [Accepted: 05/30/2020] [Indexed: 01/11/2023]
Abstract
Over the past few decades, nanotechnology has developed rapidly. Various nanomaterials have been gradually applied in different fields. As a kind of two-dimensional (2D) layered nanomaterial with a graphene-like structure, molybdenum disulfide (MoS2) nanosheets have broad research prospects in the fields of tumor photothermal therapy, biosensors and other biomedical fields because of their unique band gap structure and physical, chemical and optical properties. In this paper, the latest research progress on MoS2 is briefly summarized. Several commonly used exfoliation methods for the preparation of MoS2 nanosheets are reviewed based on the studies in the past five years. Additionally, the current research status of MoS2 nanosheets in the field of biomedicine is introduced. At the end of this review, a brief overview of the limitations of MoS2 research and its future prospects in the field of biomedicine is also provided.
Collapse
Affiliation(s)
- Jiaying Lu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu China; School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Mingyue Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lina Dong
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu China
| | - Lulu Cai
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu China
| | - Mingming Zhao
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu China
| | - Qi Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jingjing Li
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu China; School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
19
|
Fan Q, Cui X, Guo H, Xu Y, Zhang G, Peng B. Application of rare earth-doped nanoparticles in biological imaging and tumor treatment. J Biomater Appl 2020; 35:237-263. [DOI: 10.1177/0885328220924540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Rare earth-doped nanoparticles have been widely used in disease diagnosis, drug delivery, tumor therapy, and bioimaging. Among various bioimaging methods, the fluorescence imaging technology based on the rare earth-doped nanoparticles can visually display the cell activity and lesion evolution in living animals, which is a powerful tool in biological technology and has being widely applied in medical and biological fields. Especially in the band of near infrared (700–1700 nm), the emissions show the characteristics of deep penetration due to low absorption, low photon scattering, and low autofluorescence interference. Furthermore, the rare earth-doped nanoparticles can be endowed with the water solubility, biocompatibility, drug-loading ability, and the targeting ability for different tumors by surface functionalization. This confirms its potential in the cancer diagnosis and treatment. In this review, we summarized the recent progress in the application of rare earth-doped nanoparticles in the field of bioimaging and tumor treatment. The luminescent mechanism, properties, and structure design were also discussed.
Collapse
Affiliation(s)
- Qi Fan
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing, PR China
| | - Xiaoxia Cui
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Haitao Guo
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yantao Xu
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Guangwei Zhang
- Zhejiang Fountain Aptitude Technology Inc., Hangzhou, Zhejiang, PR China
| | - Bo Peng
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
20
|
Deng L, Pan X, Zhang Y, Sun S, Lv L, Gao L, Ma P, Ai H, Zhou Q, Wang X, Zhan L. Immunostimulatory Potential of MoS 2 Nanosheets: Enhancing Dendritic Cell Maturation, Migration and T Cell Elicitation. Int J Nanomedicine 2020; 15:2971-2986. [PMID: 32431496 PMCID: PMC7197944 DOI: 10.2147/ijn.s243537] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Due to their extraordinary physical and chemical properties, MoS2 nanosheets (MSNs) are becoming more widely used in nanomedicine. However, their influence on immune systems remains unclear. MATERIALS AND METHODS Two few-layered MSNs at sizes of 100-250 nm (S-MSNs) and 400-500 nm (L-MSNs) were used in this study. Bone marrow-derived dendritic cells (DCs) were exposed to both MSNs at different doses (0, 8, 16, 32, 64, 128 µg/mL) for 48 h and subjected to analyses of surface marker expression, cytokine secretion, lymphoid homing and in vivo T cell priming. RESULTS Different-sized MSNs of all doses did not affect the viability of DCs. The expression of CD40, CD80, CD86 and CCR7 was significantly higher on both S-MSN- and L-MSN-treated DCs at a dose of 128 μg/mL. As the dose of MSN increased, the secretion of IL-12p70 remained unchanged, the secretion of IL-1β decreased, and the production of TNF-α increased. A significant increase in IL-6 was observed in the 128 µg/mL L-MSN-treated DCs. In particular, MSN treatment dramatically improved the ex vivo movement and in vivo homing ability of both the local resident and blood circulating DCs. Furthermore, the cytoskeleton rearrangement regulated by ROS elevation was responsible for the enhanced homing ability of the MSNs. More robust CD4+ and CD8+ T cell proliferation and activation (characterized by high expression of CD107a, CD69 and ICOS) was observed in mice vaccinated with MSN-treated DCs. Importantly, exposure to MSNs did not interrupt LPS-induced DC activation, homing and T cell priming. CONCLUSION Few-layered MSNs ranging from 100 to 500 nm in size could play an immunostimulatory role in enhancing DC maturation, migration and T cell elicitation, making them a good candidate for vaccine adjuvants. Investigation of this study will not only expand the applications of MSNs and other new transition metal dichalcogenides (TMDCs) but also shed light on the in vivo immune-risk evaluation of MSN-based nanomaterials.
Collapse
Affiliation(s)
- Lei Deng
- Department of Emerging Transfusion Technology, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, People’s Republic of China
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Xiaoli Pan
- Department of Emerging Transfusion Technology, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Yulong Zhang
- Department of Emerging Transfusion Technology, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Sujing Sun
- Department of Emerging Transfusion Technology, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Liping Lv
- Department of Emerging Transfusion Technology, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Lei Gao
- Department of Emerging Transfusion Technology, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Ping Ma
- Department of Emerging Transfusion Technology, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Huisheng Ai
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Qianqian Zhou
- Department of Emerging Transfusion Technology, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Xiaohui Wang
- Department of Emerging Transfusion Technology, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Linsheng Zhan
- Department of Emerging Transfusion Technology, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
21
|
Zhou X, Sun H, Bai X. Two-Dimensional Transition Metal Dichalcogenides: Synthesis, Biomedical Applications and Biosafety Evaluation. Front Bioeng Biotechnol 2020; 8:236. [PMID: 32318550 PMCID: PMC7154136 DOI: 10.3389/fbioe.2020.00236] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/06/2020] [Indexed: 11/29/2022] Open
Abstract
Recently, two-dimensional transition metal dichalcogenides (2D TMDCs) have drawn certain attentions in many fields. The unique and diversified electronic structure and ultrathin sheet structure of 2D TMDCs offer opportunities for moving ahead of other 2D nanomaterials such as graphene and expanding the wide application of inorganic 2D nanomaterials in many fields. For a better understanding of 2D TMDCs, one needs to know methods for their synthesis and modification, as well as their potential applications and possible biological toxicity. Herein, we summarized the recent research progress of 2D TMDCs with particular focus on their biomedical applications and potential health risks. Firstly, two kinds of synthesis methods of 2D TMDCs, top-down and bottom-up, and methods for their surface functionalization are reviewed. Secondly, the applications of 2D TMDCs in the field of biomedicine, including drug loading, photothermal therapy, biological imaging and biosensor were summarized. After that, we presented the existing researches on biosafety evaluation of 2D TMDCs. At last, we discussed major research gap in current researches and challenges and coping strategies in future studies.
Collapse
Affiliation(s)
- Xiaofei Zhou
- Faculty of Science and Technology, Bohai Campus, Hebei Agricultural University, Cangzhou, China
| | - Hainan Sun
- Shandong Vocational College of Light Industry, Zibo, China
| | - Xue Bai
- School of Public Health, Shandong University, Jinan, China
| |
Collapse
|
22
|
Xie M, Yang N, Cheng J, Yang M, Deng T, Li Y, Feng C. Layered MoS2 nanosheets modified by biomimetic phospholipids: Enhanced stability and its synergistic treatment of cancer with chemo-photothermal therapy. Colloids Surf B Biointerfaces 2020; 187:110631. [DOI: 10.1016/j.colsurfb.2019.110631] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
|
23
|
Upconversion luminescence nanomaterials: A versatile platform for imaging, sensing, and therapy. Talanta 2020; 208:120157. [DOI: 10.1016/j.talanta.2019.120157] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/27/2019] [Accepted: 07/14/2019] [Indexed: 11/21/2022]
|
24
|
Zhao S, Tian R, Shao B, Feng Y, Yuan S, Dong L, Zhang L, Wang Z, You H. UCNP–Bi
2
Se
3
Upconverting Nanohybrid for Upconversion Luminescence and CT Imaging and Photothermal Therapy. Chemistry 2020; 26:1127-1135. [DOI: 10.1002/chem.201904586] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/10/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Shuang Zhao
- State Key Laboratory of Rare Earth Resource Utilization, and State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P.R. China
- University of Science and Technology of China Hefei 230026 P.R. China
| | - Rongrong Tian
- State Key Laboratory of Rare Earth Resource Utilization, and State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P.R. China
- University of Science and Technology of China Hefei 230026 P.R. China
| | - Baiqi Shao
- State Key Laboratory of Rare Earth Resource Utilization, and State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P.R. China
| | - Yang Feng
- State Key Laboratory of Rare Earth Resource Utilization, and State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P.R. China
- University of Science and Technology of China Hefei 230026 P.R. China
| | - Senwen Yuan
- State Key Laboratory of Rare Earth Resource Utilization, and State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P.R. China
| | - Langping Dong
- State Key Laboratory of Rare Earth Resource Utilization, and State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P.R. China
- University of Science and Technology of China Hefei 230026 P.R. China
| | - Liang Zhang
- State Key Laboratory of Rare Earth Resource Utilization, and State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P.R. China
- University of Science and Technology of China Hefei 230026 P.R. China
| | - Zhenxin Wang
- State Key Laboratory of Rare Earth Resource Utilization, and State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P.R. China
- University of Science and Technology of China Hefei 230026 P.R. China
| | - Hongpeng You
- State Key Laboratory of Rare Earth Resource Utilization, and State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P.R. China
- University of Science and Technology of China Hefei 230026 P.R. China
| |
Collapse
|
25
|
Khaledian S, Abdoli M, Shahlaei M, Behbood L, Kahrizi D, Arkan E, Moradi S. Two-dimensional nanostructure colloids in novel nano drug delivery systems. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Qiao Y, Zhou X, Geng H, Sun L, Zhen D, Cai Q. β-NaYF 4:Yb,Er,Gd nanorods@1T/2H-MoS 2 for 980 nm NIR-triggered photocatalytic bactericidal properties. NEW J CHEM 2020. [DOI: 10.1039/d0nj00908c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fabrication of β-NaYF4:Yb,Er,Gd@1T/2H-MoS2 nanocomposites for NIR-driven photocatalytic sterilization of Escherichia coli.
Collapse
Affiliation(s)
- Yan Qiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Xionglin Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Hongchao Geng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Leilei Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Deshuai Zhen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
27
|
Wang Y, Zhang F, Lin H, Qu F. Biodegradable Hollow MoSe 2/Fe 3O 4 Nanospheres as the Photodynamic Therapy-Enhanced Agent for Multimode CT/MR/IR Imaging and Synergistic Antitumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43964-43975. [PMID: 31664811 DOI: 10.1021/acsami.9b17237] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photodynamic therapy (PDT) is considered as one of the most effective cancer treatment strategies because of its minimally invasive and high efficiency. On account of the correlation between PDT and photocatalytic oxidation, the hollow MoSe2/Fe3O4 (MF-2) nanoheterostructure was constructed to enhance PDT as shown in this paper. The size and the hollow structure can be well controlled by the addition of F-127. MoSe2/Fe3O4 reveals the twofold reactive oxygen species (ROS) generation in contrast to the pure MoSe2, which is ascribed to the effective separation of photogenic charges. The novel hollow structure also supplies a lot of cavities for perfluorocarbon (PFC) and O2 loading, and O2@PFC@MF-2 can effectively overcome the hypoxic microenvironment to further cause more than 3 times ROS production. Moreover, the narrow band gap and hollow structure also make sure that the strong near-infrared (NIR) light absorption and high photothermal conversion efficiency is as high as 66.2%. Furthermore, the combination of Fe3O4 can further accelerate the effective biodegradation capacity of MF-2 because of the repeated endogenous redox reaction to form water-soluble MoVI-oxide species. Meanwhile, doxorubicin (Dox, anticancer drug) was assembled onto the MF-2@PEG nanomaterials through π-π staking and electrostatic interaction for chemotherapy. O2@PFC@MF-2@PEG/Dox possesses the potential application in triple-model computed tomography, magnetic resonance, and infrared (CT/MR/IR) imaging-guided photothermal/photodynamic/chemotherapy (PTT/PDT/chemotherapy) nanodiagnosis platforms.
Collapse
|
28
|
Askari N, Askari MB. Antiproliferative effect of MoS
2
in human prostate cancer cell lines. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab51d0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Chen Y, Khan AR, Yu D, Zhai Y, Ji J, Shi Y, Zhai G. Pluronic F127-functionalized molybdenum oxide nanosheets with pH-dependent degradability for chemo-photothermal cancer therapy. J Colloid Interface Sci 2019; 553:567-580. [DOI: 10.1016/j.jcis.2019.06.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/09/2023]
|
30
|
Zhou J, Wang Q, Geng S, Lou R, Yin Q, Ye W. Construction and evaluation of tumor nucleus-targeting nanocomposite for cancer dual-mode imaging - Guiding photodynamic therapy/photothermal therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:541-551. [PMID: 31147026 DOI: 10.1016/j.msec.2019.04.088] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/15/2019] [Accepted: 04/28/2019] [Indexed: 01/08/2023]
Abstract
To tackle the barrier of the insufficient intra-cellular delivery of reactive oxygen species (ROS) and heat, we designed a multifunctional nanoplatform to release ROS and heat directly in the cell nucleus for enhancing combined photodynamic therapy (PDT) and photothermal therapy (PTT) of tumors. As a photothermal agent, WS2 nanoparticles were adsorbed photosensitive Au25(Captopril)18- (Au25) nanoclusters via electrostatic interaction. And Dexamethasone (Dex), a glucocorticoid with nucleus targeting capability, played a key role in the intra-nuclear process of heat and ROS. PTT can increase intra-tumoral blood flow to promote Au25 produce more ROS for PDT. Under near infrared (NIR) laser irradiation at a single 808 nm, these nucleus targeting WS2 nanoplatforms showed a significant decreased cell viability of 18.2 ± 1.7% and a high DNA damage degree of 59.6 ± 8.3%. Furthermore, the WS2 nanoplatform could be further used for X-ray computed tomography (CT) images. Taken together, our study provided a new prospect for effectively diagnostic and enhancing PTT/PDT efficacy.
Collapse
Affiliation(s)
- Jie Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, China.
| | - Qiaolei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shizhen Geng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Lou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qianwen Yin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Weiran Ye
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
31
|
Cao Y, Hassan M, Cheng Y, Chen Z, Wang M, Zhang X, Haider Z, Zhao G. Multifunctional Photo- and Magnetoresponsive Graphene Oxide-Fe 3O 4 Nanocomposite-Alginate Hydrogel Platform for Ice Recrystallization Inhibition. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12379-12388. [PMID: 30865418 DOI: 10.1021/acsami.9b02887] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Tuning ice recrystallization (IR) has attracted tremendous interest in fundamental research and a variety of practical applications, including food and pharmaceutical engineering, fabrication of anti-icing coating and porous materials, and cryopreservation of biological cells and tissues. Although great efforts have been devoted to modulation of IR for better microstructure control of various materials, it still remains a challenge, especially in cryopreservation, where insufficient suppression of IR during warming is fatal to the cells. Herein, we report an all-in-one platform, combining the external physical fields and the functional materials for both active and passive suppression of IR, where the photo- and magnetothermal dual-modal heating of GO-Fe3O4 nanocomposites (NCs) can be used to suppress IR with both enhanced global warming and microscale thermal disturbance. Moreover, the materials alginate hydrogels and GO-Fe3O4 NCs can act as IR inhibitors for further suppression of the IR effect. As a typical application, we show that this GO-Fe3O4 nanocomposite-alginate hydrogel platform can successfully enable low-cryoprotectant, high-quality vitrification of stem cell-laden hydrogels. We believe that the versatile ice recrystallization inhibition platform will have a profound influence on cryopreservation and tremendously facilitate stem cell-based medicine to meet its ever-increasing demand in clinical settings.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Electronic Science and Technology , University of Science and Technology of China , Hefei 230027 , Anhui , China
| | - Muhammad Hassan
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Yue Cheng
- Department of Electronic Science and Technology , University of Science and Technology of China , Hefei 230027 , Anhui , China
| | - Zhongrong Chen
- Department of Electronic Science and Technology , University of Science and Technology of China , Hefei 230027 , Anhui , China
| | - Meng Wang
- Department of Electronic Science and Technology , University of Science and Technology of China , Hefei 230027 , Anhui , China
| | - Xiaozhang Zhang
- Department of Electronic Science and Technology , University of Science and Technology of China , Hefei 230027 , Anhui , China
| | - Zeeshan Haider
- Department of Electronic Science and Technology , University of Science and Technology of China , Hefei 230027 , Anhui , China
| | - Gang Zhao
- Department of Electronic Science and Technology , University of Science and Technology of China , Hefei 230027 , Anhui , China
| |
Collapse
|
32
|
Dalila R N, Md Arshad MK, Gopinath SCB, Norhaimi WMW, Fathil MFM. Current and future envision on developing biosensors aided by 2D molybdenum disulfide (MoS 2) productions. Biosens Bioelectron 2019; 132:248-264. [PMID: 30878725 DOI: 10.1016/j.bios.2019.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 02/04/2023]
Abstract
Two-dimensional (2D) layered nanomaterials have triggered an intensive interest due to the fascinating physiochemical properties with the exceptional physical, optical and electrical characteristics that transpired from the quantum size effect of their ultra-thin structure. Among the family of 2D nanomaterials, molybdenum disulfide (MoS2) features distinct characteristics related to the existence of direct energy bandgap, which significantly lowers the leakage current and surpasses other 2D materials. In this overview, we expatiate the novel strategies to synthesize MoS2 that cover techniques such as liquid exfoliation, chemical vapour deposition, mechanical exfoliation, hydrothermal reaction, and Van Der Waal epitaxial growth on the substrate. We extend the discussion on the recent progress in biosensing applications of the produced MoS2, highlighting the important surface-to-volume of ultrathin MoS2 structure, which enhances the overall performance of the devices. Further, envisioned the missing piece with the current MoS2-based biosensors towards developing the future strategies.
Collapse
Affiliation(s)
- N Dalila R
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| | - M K Md Arshad
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia; School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis, Malaysia.
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia; School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - W M W Norhaimi
- School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis, Malaysia
| | - M F M Fathil
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| |
Collapse
|
33
|
Zhou X, Jia J, Luo Z, Su G, Yue T, Yan B. Remote Induction of Cell Autophagy by 2D MoS 2 Nanosheets via Perturbing Cell Surface Receptors and mTOR Pathway from Outside of Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6829-6839. [PMID: 30694645 DOI: 10.1021/acsami.8b21886] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ability of nanoparticles to induce adverse consequences in human cells relies on their physical shapes. In this aspect, how two-dimensional nanoparticles differ from three-dimensional nanoparticles is not well-known. To elucidate this difference, combined experimental and theoretical approaches are employed to compare MoS2 nanosheets with 5-layer and 40-layer thicknesses for their cellular effects and the associated molecular events. At a concentration as defined by the nanosheet surface areas (10 cm2/mL), 40-layer nanosheets are internalized by cells, whereas 5-layer nanosheets mostly bind to the cell surface without internalization. Although they alter different autophagy-related genes, a common mechanism is that they both perturb cell surface protein amyloid precursor proteins and activate the mTOR signaling pathway. Our findings prove that the perturbation of cellular function without nanoparticle internalization has significant nanomedicinal and nanotoxicological significances.
Collapse
Affiliation(s)
| | - Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay , Guangzhou University , Guangzhou 510006 , China
| | - Zhen Luo
- Center for Bioengineering and Biotechnology, State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Gaoxing Su
- School of Pharmacy, Key Laboratory of Inflammation and Molecular Drug Targets of Jiangsu Province , Nantong University , Nantong 226001 , China
| | - Tongtao Yue
- Center for Bioengineering and Biotechnology, State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay , Guangzhou University , Guangzhou 510006 , China
| |
Collapse
|
34
|
Zhao Y, Zhou J, Jia Z, Huo D, Liu Q, Zhong D, Hu Y, Yang M, Bian M, Hou C. In-situ growth of gold nanoparticles on a 3D-network consisting of a MoS2/rGO nanocomposite for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Mikrochim Acta 2019; 186:92. [DOI: 10.1007/s00604-018-3222-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022]
|
35
|
Yadav V, Roy S, Singh P, Khan Z, Jaiswal A. 2D MoS 2 -Based Nanomaterials for Therapeutic, Bioimaging, and Biosensing Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803706. [PMID: 30565842 DOI: 10.1002/smll.201803706] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/18/2018] [Indexed: 05/26/2023]
Abstract
Molybdenum disulfide (MoS2 ), a typical layered 2D transition metal dichalcogenide, has received colossal interest in the past few years due to its unique structural, physicochemical, optical, and biological properties. While MoS2 is mostly applied in traditional industries such as dry lubricants, intercalation agents, and negative electrode material in lithium-ion batteries, its 2D and 0D forms have led to diverse applications in sensing, catalysis, therapy, and imaging. Herein, a systematic overview of the progress that is made in the field of MoS2 research with an emphasis on its different biomedical applications is presented. This article provides a general discussion on the basic structure and property of MoS2 and gives a detailed description of its different morphologies that are synthesized so far, namely, nanosheets, nanotubes, and quantum dots along with synthesis strategies. The biomedical applications of MoS2 -based nanocomposites are also described in detail and categorically, such as in varied therapeutic and diagnostic modalities like drug delivery, gene delivery, phototherapy, combined therapy, bioimaging, theranostics, and biosensing. Finally, a brief commentary on the current challenges and limitations being faced is provided, along with a discussion of some future perspectives for the overall improvement of MoS2 -based nanocomposites as a potential nanomedicine.
Collapse
Affiliation(s)
- Varnika Yadav
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India
| | - Shounak Roy
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India
| | - Prem Singh
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India
| | - Ziyauddin Khan
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Amit Jaiswal
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India
| |
Collapse
|
36
|
Zhao H, Zhao L, Wang Z, Xi W, Dibaba ST, Wang S, Shi L, Sun L. Heterogeneous growth of palladium nanocrystals on upconversion nanoparticles for multimodal imaging and photothermal therapy. J Mater Chem B 2019. [DOI: 10.1039/c9tb00317g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Based on the heterogeneous growth of nano-palladium on UCNPs, a new kind of nanocomposite was developed that can be used for dual-imaging guided photothermal therapy. This smart strategy provides new insights for future development of materials based on the multicomponent nanocomposites.
Collapse
Affiliation(s)
- Huijun Zhao
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University
- Shanghai 200444
- China
| | - Lei Zhao
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University
- Shanghai 200444
- China
| | - Zhuo Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea & Special Glass Key Lab of Hainan Province, Hainan University
- Haikou 570228
- China
| | - Wensong Xi
- Institute of Nanochemistry and Nanobiology, Shanghai University
- Shanghai 200444
- China
| | - Solomon Tiruneh Dibaba
- Physics Department, International Centre for Quantum and Molecular Structures, Shanghai University
- Shanghai 200444
- China
| | - Shuhan Wang
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University
- Shanghai 200444
- China
| | - Liyi Shi
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University
- Shanghai 200444
- China
| | - Lining Sun
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
37
|
Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu JF, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Precise nanomedicine for intelligent therapy of cancer. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9397-5] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Wu X, Liu J, Yang L, Wang F. Photothermally controlled drug release system with high dose loading for synergistic chemo-photothermal therapy of multidrug resistance cancer. Colloids Surf B Biointerfaces 2018; 175:239-247. [PMID: 30540971 DOI: 10.1016/j.colsurfb.2018.11.088] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/21/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022]
Abstract
Chemotherapy is an important first-line strategy for tumor therapy in cancer treatment, but multidrug resistance (MDR) is a major problem that reduces the efficacy of chemotherapeutics. Herein, we report a novel photothermally controlled intelligent drug release system (AuNP@mSiO2-DOX-FA) with a large amount of drugs loading for synergistic chemo-photothermal therapy of MDR in breast cancer. The nanoplatform utilized gold nanoparticles as a hyperthermia core, and large-mesoporous silica as a shell for doxorubicin (DOX) loading. Benefiting from the thick layer and large pore size, the encapsulation and loading efficiency were as high as 97.7% and 8.84%, respectively. Furthermore, under the trigger of 808 nm near infrared (NIR) light, the released DOX increased significantly at pH 5.0 and reached to 39.0% in 20 min, achieving a facile intelligent control of chemotherapy additional to the photothermal therapy. The viability of MCF-7/ADR cells could be efficiently reduced to 16.9%, demonstrating the proposed photothermally controlled system with synergistic chemo-photothermal therapy has great potential capability to overcome MDR in breast cancer.
Collapse
Affiliation(s)
- Xiaoxia Wu
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Jing Liu
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Lingyan Yang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Fu Wang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
39
|
Feng M, Lv R, Xiao L, Hu B, Zhu S, He F, Yang P, Tian J. Highly Erbium-Doped Nanoplatform with Enhanced Red Emission for Dual-Modal Optical-Imaging-Guided Photodynamic Therapy. Inorg Chem 2018; 57:14594-14602. [DOI: 10.1021/acs.inorgchem.8b02257] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Miao Feng
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Liyang Xiao
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Bo Hu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Shouping Zhu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
40
|
Chambre L, Saw WS, Ekineker G, Kiew LV, Chong WY, Lee HB, Chung LY, Bretonnière Y, Dumoulin F, Sanyal A. Surfactant-Free Direct Access to Porphyrin-Cross-Linked Nanogels for Photodynamic and Photothermal Therapy. Bioconjug Chem 2018; 29:4149-4159. [DOI: 10.1021/acs.bioconjchem.8b00787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Laura Chambre
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | | | - Gülçin Ekineker
- Department of Chemistry, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | | | | | | | | | - Yann Bretonnière
- Univ Lyon, ENS de Lyon,
CNRS UMR 5182, Université Lyon I, Laboratoire de Chimie, F-69342 Lyon, France
| | - Fabienne Dumoulin
- Department of Chemistry, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey
| |
Collapse
|
41
|
Zhang J, Chen J, Ren J, Guo W, Li X, Chen R, Chelora J, Cui X, Wan Y, Liang XJ, Hao Y, Lee CS. Biocompatible semiconducting polymer nanoparticles as robust photoacoustic and photothermal agents revealing the effects of chemical structure on high photothermal conversion efficiency. Biomaterials 2018; 181:92-102. [DOI: 10.1016/j.biomaterials.2018.07.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/12/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
|
42
|
Agarwal V, Chatterjee K. Recent advances in the field of transition metal dichalcogenides for biomedical applications. NANOSCALE 2018; 10:16365-16397. [PMID: 30151537 DOI: 10.1039/c8nr04284e] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanosheets of transition metal dichalcogenide (TMDs), the graphene-like two-dimensional (2D) materials, exhibit a unique combination of properties and have attracted enormous research interest for a wide range of applications including catalysis, functional electronics, solid lubrication, photovoltaics, energy materials and most recently in biomedical applications. Their potential for use in biosensors, drug delivery, multimodal imaging, antimicrobial agents and tissue engineering is being actively studied. However, the commercial translation of exfoliated TMDs has been limited due to the low aqueous solubility, non-uniformity, lack of control over the layer thickness, and the long-term colloidal stability of the exfoliated material. There is wide interest in the synthesis and exfoliation of TMDs resulting in the reporting of increasing numbers of new methods and their biomedical applications. The unique physicochemical characteristics of the TMD nanosheets have been exploited to tether them with biological payload to achieve selective localized delivery in vivo. The large surface-to-volume ratio, good cytocompatibility, ease of surface modification, tunable bandgap, strong spin-orbit coupling, and high optical and thermal conversion efficiency of TMD nanosheets make them favorable over traditional nanomaterials for biomedical research. Moreover, the presence of abundant active edge sites on the 2D TMDs makes them suitable for catalytic activities, while the large surface area and the interspace between layers are particularly conducive to ion or small molecule intercalation, making them useful for energy storage applications with rapid redox reaction capabilities. One of the major limitations of the exfoliated TMDs has been their limited colloidal stability in aqueous media. In this review, we summarize the recent advances in the exfoliation and synthesis of single-layered TMDs, their biomedical efficacy in terms of cytotoxicity, combinatorial therapy and diagnostic imaging, as well as antimicrobial activity. We highlight the current challenges in the field and propose strategies for the future.
Collapse
Affiliation(s)
- Vipul Agarwal
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | | |
Collapse
|
43
|
Tu Z, Guday G, Adeli M, Haag R. Multivalent Interactions between 2D Nanomaterials and Biointerfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706709. [PMID: 29900600 DOI: 10.1002/adma.201706709] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/15/2018] [Indexed: 05/20/2023]
Abstract
2D nanomaterials, particularly graphene, offer many fascinating physicochemical properties that have generated exciting visions of future biological applications. In order to capitalize on the potential of 2D nanomaterials in this field, a full understanding of their interactions with biointerfaces is crucial. The uptake pathways, toxicity, long-term fate of 2D nanomaterials in biological systems, and their interactions with the living systems are fundamental questions that must be understood. Here, the latest progress is summarized, with a focus on pathogen, mammalian cell, and tissue interactions. The cellular uptake pathways of graphene derivatives will be discussed, along with health risks, and interactions with membranes-including bacteria and viruses-and the role of chemical structure and modifications. Other novel 2D nanomaterials with potential biomedical applications, such as transition-metal dichalcogenides, transition-metal oxide, and black phosphorus will be discussed at the end of this review.
Collapse
Affiliation(s)
- Zhaoxu Tu
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Guy Guday
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Mohsen Adeli
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- Department of Chemistry, Faculty of Science, Lorestan University, 68151-44316, Khoramabad, Iran
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
44
|
Sun L, Wei R, Feng J, Zhang H. Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Samadi M, Sarikhani N, Zirak M, Zhang H, Zhang HL, Moshfegh AZ. Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. NANOSCALE HORIZONS 2018; 3:90-204. [PMID: 32254071 DOI: 10.1039/c7nh00137a] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Group 6 transition metal dichalcogenides (G6-TMDs), most notably MoS2, MoSe2, MoTe2, WS2 and WSe2, constitute an important class of materials with a layered crystal structure. Various types of G6-TMD nanomaterials, such as nanosheets, nanotubes and quantum dot nano-objects and flower-like nanostructures, have been synthesized. High thermodynamic stability under ambient conditions, even in atomically thin form, made nanosheets of these inorganic semiconductors a valuable asset in the existing library of two-dimensional (2D) materials, along with the well-known semimetallic graphene and insulating hexagonal boron nitride. G6-TMDs generally possess an appropriate bandgap (1-2 eV) which is tunable by size and dimensionality and changes from indirect to direct in monolayer nanosheets, intriguing for (opto)electronic, sensing, and solar energy harvesting applications. Moreover, rich intercalation chemistry and abundance of catalytically active edge sites make them promising for fabrication of novel energy storage devices and advanced catalysts. In this review, we provide an overview on all aspects of the basic science, physicochemical properties and characterization techniques as well as all existing production methods and applications of G6-TMD nanomaterials in a comprehensive yet concise treatment. Particular emphasis is placed on establishing a linkage between the features of production methods and the specific needs of rapidly growing applications of G6-TMDs to develop a production-application selection guide. Based on this selection guide, a framework is suggested for future research on how to bridge existing knowledge gaps and improve current production methods towards technological application of G6-TMD nanomaterials.
Collapse
Affiliation(s)
- Morasae Samadi
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran.
| | | | | | | | | | | |
Collapse
|
46
|
Park W, Cho S, Han J, Shin H, Na K, Lee B, Kim DH. Advanced smart-photosensitizers for more effective cancer treatment. Biomater Sci 2017; 6:79-90. [PMID: 29142997 PMCID: PMC5736440 DOI: 10.1039/c7bm00872d] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Photodynamic therapy (PDT) based upon the use of light and photosensitizers (PSs) has been used as a novel treatment approach for a variety of tumors. It, however, has several major limitations in the clinic: poor water solubility, long-term phototoxicity, low tumor targeting efficacy, and limited light penetration. With advances in nanotechnology, materials science, and clinical interventional imaging procedures, various smart-PSs have been developed for improving their cancer-therapeutic efficacy while reducing the adverse effects. Here, we briefly review state-of-the-art smart-PSs and discuss the future directions of PDT technology.
Collapse
Affiliation(s)
- Wooram Park
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Soojeong Cho
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Jieun Han
- Center for Photomedicine, Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Heejun Shin
- Center for Photomedicine, Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kun Na
- Center for Photomedicine, Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
47
|
Zhang Y, Xiu W, Sun Y, Zhu D, Zhang Q, Yuwen L, Weng L, Teng Z, Wang L. RGD-QD-MoS 2 nanosheets for targeted fluorescent imaging and photothermal therapy of cancer. NANOSCALE 2017; 9:15835-15845. [PMID: 28994430 DOI: 10.1039/c7nr05278b] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The fast-developing field of nanotechnology provides unprecedented opportunities for the increasing demands of biomedicine, especially for cancer diagnostics and treatment. Here, novel multifunctional zero-dimensional-two-dimensional (0D-2D) RGD-QD-MoS2 nanosheets (NSs) with excellent fluorescence, photothermal conversion, and cancer-targeting properties were successfully prepared by functionalizing single-layer MoS2 NSs with fluorescent quantum dots (QDs) and arginine-glycine-aspartic (RGD) containing peptides. By using RGD-QD-MoS2 NSs as a multifunctional theranostic agent, targeted fluorescent imaging and photothermal therapy (PTT) of human cervical carcinoma (HeLa) cells were achieved. Moreover, HeLa tumors in mouse models can be fluorescently imaged and completely eradicated by photothermal irradiation using a low power NIR laser, due to the effective accumulation of RGD-QD-MoS2 NSs at the tumor sites through the RGD-integrin targeting and the enhanced penetration and retention (EPR) effect. Without exhibiting any appreciable toxicity to treated cells or animals, RGD-QD-MoS2 NSs have been demonstrated as promising multifunctional theranostic agents for cancer imaging and therapy.
Collapse
Affiliation(s)
- Yuqian Zhang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ma X, Sun X, Chen J, Lei Y. Natural or Natural-Synthetic Hybrid Polymer-Based Fluorescent Polymeric Materials for Bio-imaging-Related Applications. Appl Biochem Biotechnol 2017; 183:461-487. [DOI: 10.1007/s12010-017-2570-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
|
49
|
Liu B, Li C, Chen G, Liu B, Deng X, Wei Y, Xia J, Xing B, Ma P, Lin J. Synthesis and Optimization of MoS 2@Fe 3O 4-ICG/Pt(IV) Nanoflowers for MR/IR/PA Bioimaging and Combined PTT/PDT/Chemotherapy Triggered by 808 nm Laser. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600540. [PMID: 28852616 PMCID: PMC5566229 DOI: 10.1002/advs.201600540] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/13/2017] [Indexed: 05/18/2023]
Abstract
Elaborately designed biocompatible nanoplatforms simultaneously achieving multimodal bioimaging and therapeutic functions are highly desirable for modern biomedical applications. Herein, uniform MoS2 nanoflowers with a broad size range of 80-180 nm have been synthesized through a facile, controllable, and scalable hydrothermal method. The strong absorbance of MoS2 nanoflowers at 808 nm imparts them with high efficiency and stability of photothermal conversion. Then a novel multifunctional composite of MoS2@Fe3O4-ICG/Pt(IV) (labeled as Mo@Fe-ICG/Pt) is designed by covalently grafting Fe3O4 nanoparticles with polyethylenimine (PEI) functionalized MoS2, and then loading indocyanine green molecules (ICG, photosensitizers) and platinum (IV) prodrugs (labeled as Pt(IV) prodrugs) on the surface of MoS2@Fe3O4. The resulting Mo@Fe-ICG/Pt nanocomposites can achieve excellent magnetic resonance/infrared thermal/photoacoustic trimodal biomaging as well as remarkably enhanced antitumor efficacy of combined photothermal therapy, photodynamic therapy, and chemotherapy triggered by a single 808 nm NIR laser, thus leading to an ideal nanoplatform for cancer diagnosis and treatment in future.
Collapse
Affiliation(s)
- Bei Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Chunxia Li
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhua321004China
| | - Guanying Chen
- Institute for LasersPhotonics and BiophotonicsUniversity at BuffaloThe State University of New YorkNY14260United States
| | - Bin Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Xiaoran Deng
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Yi Wei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Jun Xia
- Institute for LasersPhotonics and BiophotonicsUniversity at BuffaloThe State University of New YorkNY14260United States
| | - Bengang Xing
- School of Physical and Mathematical SciencesNanyang Technological University637371SingaporeSingapore
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| |
Collapse
|
50
|
Chen L, Zhou X, Nie W, Feng W, Zhang Q, Wang W, Zhang Y, Chen Z, Huang P, He C. Marriage of Albumin-Gadolinium Complexes and MoS 2 Nanoflakes as Cancer Theranostics for Dual-Modality Magnetic Resonance/Photoacoustic Imaging and Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:17786-17798. [PMID: 28485579 DOI: 10.1021/acsami.7b04488] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The construction of safe and stable theranostics is beneficial to realize simultaneous cancer diagnosis and treatment. In this study, bovine serum albumin-gadolinium (BSA-Gd) complexes and MoS2 nanoflakes (MoS2-Gd-BSA) were successfully married as cancer theranostics for dual-modality magnetic resonance (MR)/photoacoustic (PA) imaging and photothermal therapy (PTT). BSA-Gd complexes were prepared by the biomineralization method and then conjugated with MoS2 nanoflakes via an amide bond. The as-prepared MoS2-Gd-BSA possessed a good photostability and photothermal effect. The cytotoxicity assessment and hemolysis assay suggested the excellent biocompatibility of MoS2-Gd-BSA. Meanwhile, MoS2-Gd-BSA could not only achieve in vivo MR/PA dual-modality imaging of xenograft tumors, but also effectively kill cancer cells in vitro and ablate the xenograft tumors in vivo upon 808 nm laser illumination. The biodistribution and histological evaluations indicated the negligible toxicity of MoS2-Gd-BSA both in vitro and in vivo. Thus, our results substantiated the potential of MoS2-Gd-BSA for cancer theranostics.
Collapse
Affiliation(s)
- Liang Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University , Shanghai 201620, China
| | - Wei Nie
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, China
| | - Wei Feng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, China
| | - Qianqian Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, China
| | - Weizhong Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, China
| | - Yanzhong Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, China
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University , Shanghai 201620, China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University , Shenzhen 518060, China
| | - Chuanglong He
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University , Shanghai 201620, China
| |
Collapse
|