1
|
Markandeywar TS, Narang RK. Collagen and chitosan-based biogenic sprayable gel of silver nanoparticle for advanced wound care. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5543-5567. [PMID: 39576302 DOI: 10.1007/s00210-024-03554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/19/2024] [Indexed: 04/11/2025]
Abstract
Silver nanoparticles have gained significant attention recently due to their unique antibacterial properties, making them promising candidates for wound care applications. This study proposes a novel approach for advanced wound care using a silver nanoparticle-impregnated biogenic spray hydrogel supplemented with collagen and chitosan. Silver nanoparticles were incorporated into the hydrogel (optimized by a QbD approach) to impart antimicrobial activity, crucial for combating wound infections and promoting faster healing. The study assessed the physical and chemical properties of the biogenic hydrogel, including its viscosity, pH, and nanoparticle dispersion characteristics. In vitro, antimicrobial efficacy against common wound pathogens and in vivo studies using chronic wound models in small animals portrayed the immense potential of the developed biogenic hydrogel in effectively reducing the bacterial load of broad-spectrum pathogens. The hydrogel exhibited excellent biocompatibility, supporting cell proliferation and tissue repair without toxic effects. It accelerated wound healing, improved collagen deposition, and enhanced tissue regeneration in the tested animals by reducing proinflammatory cytokines, ROS, and NF-kb levels. Overall, this innovative silver nanoparticle-impregnated biogenic spray hydrogel of collagen and chitosan presents a uniform spray pattern that proved efficient, showing a promising solution for advanced wound care. Its biocompatibility, safety, anti-inflammatory, antimicrobial efficacy, and wound healing properties hold great potential for improving the management of complex wounds, opening new avenues in wound care and regenerative medicine.
Collapse
Affiliation(s)
- Tanmay S Markandeywar
- I.K. Gujral Punjab Technical University (IKGPTU), Kapurthala Highway, Jalandhar, Punjab, 144603, India
- Department of Pharmaceutics, ISF College of Pharmacy (An Autonomous College), Ghal Kalan, G.T. Road, Moga, Punjab, 142001, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy (An Autonomous College), Ghal Kalan, G.T. Road, Moga, Punjab, 142001, India.
| |
Collapse
|
2
|
Redolfi-Bristol D, Yamamoto K, Marin E, Zhu W, Mazda O, Riello P, Pezzotti G. Exploring the cellular antioxidant mechanism against cytotoxic silver nanoparticles: a Raman spectroscopic analysis. NANOSCALE 2024; 16:9985-9997. [PMID: 38695726 DOI: 10.1039/d4nr00462k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Silver nanoparticles (AgNPs) hold great promise for several different applications, from colorimetric sensors to antimicrobial agents. Despite their widespread incorporation in consumer products, limited understanding of the detrimental effects and cellular antioxidant responses associated with AgNPs at sublethal concentrations persists, raising concerns for human and ecological well-being. To address this gap, we synthesized AgNPs of varying sizes and evaluated their cytotoxicity against human dermal fibroblasts (HDF). Our study revealed that toxicity of AgNPs is a time- and size-dependent process, even at low exposure levels. AgNPs exhibited low short-term cytotoxicity but high long-term impact, particularly for the smallest NPs tested. Raman microspectroscopy was employed for in-time investigations of intracellular molecular variations during the first 24 h of exposure to AgNPs of 35 nm. Subtle protein and lipid degradations were detected, but no discernible damage to the DNA was observed. Signals associated with antioxidant proteins, such as superoxide dismutase (SOD), catalase (CAT) and metallothioneins (MTs), increased over time, reflecting the heightened production of these defense agents. Fluorescence microscopy further confirmed the efficacy of overexpressed antioxidant proteins in mitigating ROS formation during short-term exposure to AgNPs. This work provides valuable insights into the molecular changes and remedial strategies within the cellular environment, utilizing Raman microspectroscopy as an advanced analytical technique. These findings offer a novel perspective on the cytotoxicity mechanism of AgNPs, contributing to the development of safer materials and advice on regulatory guidelines for their biomedical applications.
Collapse
Affiliation(s)
- Davide Redolfi-Bristol
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan.
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy
| | - Kenta Yamamoto
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan.
- Department Polytechnic of Engineering and Architecture, University of Udine, 33100, Udine, Italy
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan.
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Pietro Riello
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan.
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hiraka-ta, Osaka 573-1010, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, 160-0023 Tokyo, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy
| |
Collapse
|
3
|
Alp O, Engin AB, Ertas N. Size Dependent Dissolution of Silver Nanoparticles in Human Monocytic/Macrophage-Like U937 Cells and Speciation by Single Particle-Inductively Coupled Plasma-Mass Spectrometry (SP-ICP-MS). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2078344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Orkun Alp
- Faculty of Pharmacy, Analytical Chemistry Department, Gazi University, Ankara, Turkey
| | - Ayse Basak Engin
- Faculty of Pharmacy, Toxicology Department, Gazi University, Ankara, Turkey
| | - Nusret Ertas
- Faculty of Pharmacy, Analytical Chemistry Department, Gazi University, Ankara, Turkey
| |
Collapse
|
4
|
Kluska K, Veronesi G, Deniaud A, Hajdu B, Gyurcsik B, Bal W, Krężel A. Structures of Silver Fingers and a Pathway to Their Genotoxicity. Angew Chem Int Ed Engl 2022; 61:e202116621. [PMID: 35041243 PMCID: PMC9303758 DOI: 10.1002/anie.202116621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Recently, we demonstrated that AgI can directly replace ZnII in zinc fingers (ZFs). The cooperative binding of AgI to ZFs leads to a thermodynamically irreversible formation of silver clusters destroying the native ZF structure. Thus, a reported loss of biological function of ZF proteins is a likely consequence of such replacement. Here, we report an X-ray absorption spectroscopy (XAS) study of Agn Sn clusters formed in ZFs to probe their structural features. Selective probing of the local environment around AgI by XAS showed the predominance of digonal AgI coordination to two sulfur donors, coordinated with an average Ag-S distance at 2.41 Å. No Ag-N bonds were present. A mixed AgS2 /AgS3 geometry was found solely in the CCCH AgI -ZF. We also show that cooperative replacement of ZnII ions with the studied Ag2 S2 clusters occurred in a three-ZF transcription factor protein 1MEY#, leading to a dissociation of 1MEY# from the complex with its cognate DNA.
Collapse
Affiliation(s)
- Katarzyna Kluska
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Giulia Veronesi
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| | - Aurélien Deniaud
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| | - Bálint Hajdu
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Informatics, University of Szeged, Dóm tér 7, 6720, Szeged, Hungary
| | - Béla Gyurcsik
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Informatics, University of Szeged, Dóm tér 7, 6720, Szeged, Hungary
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383, Wrocław, Poland
| |
Collapse
|
5
|
Antitumor Activity against A549 Cancer Cells of Three Novel Complexes Supported by Coating with Silver Nanoparticles. Int J Mol Sci 2022; 23:ijms23062980. [PMID: 35328401 PMCID: PMC8950742 DOI: 10.3390/ijms23062980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/26/2022] Open
Abstract
A novel biologically active organic ligand L (N’-benzylidenepyrazine-2-carbohydrazonamide) and its three coordination compounds have been synthesized and structurally described. Their physicochemical and biological properties have been thoroughly studied. Cu(II), Zn(II), and Cd(II) complexes have been analyzed by F-AAS spectrometry and elemental analysis. The way of metal–ligand coordination was discussed based on FTIR spectroscopy and UV-VIS-NIR spectrophotometry. The thermal behavior of investigated compounds was studied in the temperature range 25–800 °C. All compounds are stable at room temperature. The complexes decompose in several stages. Magnetic studies revealed strong antiferromagnetic interaction. Their cytotoxic activity against A549 lung cancer cells have been studied with promising results. We have also investigated the biological effect of coating studied complexes with silver nanoparticles. The morphology of the surface was studied using SEM imaging.
Collapse
|
6
|
López-Hernández I, Truttmann V, Garcia C, Lopes C, Rameshan C, Stöger-Pollach M, Barrabés N, Rupprechter G, Rey F, Palomares A. AgAu nanoclusters supported on zeolites: Structural dynamics during CO oxidation. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Hajtuch J, Santos-Martinez MJ, Wojcik M, Tomczyk E, Jaskiewicz M, Kamysz W, Narajczyk M, Inkielewicz-Stepniak I. Lipoic Acid-Coated Silver Nanoparticles: Biosafety Potential on the Vascular Microenvironment and Antibacterial Properties. Front Pharmacol 2022; 12:733743. [PMID: 35153735 PMCID: PMC8831385 DOI: 10.3389/fphar.2021.733743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/26/2021] [Indexed: 12/04/2022] Open
Abstract
Purpose: To study and compare the antibacterial properties and the potential cytotoxic effects of commercially available uncoated silver nanoparticles (AgNPs) with lipoic acid coated silver nanoparticles (AgNPsLA) developed by our group. The antibacterial, cytotoxic, and hemolytic properties of those NPs were assessed with the main objective of investigating if AgNPsLA could maintain their antibacterial properties while improving their biosafety profile over uncoated AgNPs within the blood vessel's microenvironment. Methods: Comercially available uncoated 2.6 nm AgNPs and 2.5 nm AgNPsLA synthesized and characterized as previously described by our group, were used in this study. Antimicrobial activity was assessed on a wide range of pathogens and expressed by minimal inhibitory concentrations (MIC). Assessment of cytotoxicity was carried out on human umbilical vein endothelial cells (HUVEC) using an MTT test. Detection of reactive oxygen species, cell apoptosis/necrosis in HUVEC, and measurement of mitochondrial destabilization in HUVEC and platelets were performed by flow cytometry. The potential harmful effect of nanoparticles on red blood cells (RBCs) was investigated measuring hemoglobin and LDH released after exposure to NPs. Transmission electron microscopy was also used to determine if AgNPs and AgNPsLA could induce any ultrastructural changes on HUVEC cells and Staphylococcus aureus bacteria. Results: AgNPs and AgNPsLA had antimicrobial properties against pathogens associated with catheter-related bloodstream infections. AgNPs, in contrast to AgNPsLA, induced ROS production and apoptosis in HUVEC, ultrastructural changes in HUVEC and S. aureus, depolarization of mitochondrial membrane in HUVEC and platelets, and also hemolysis. Conclusion: AgNPsLA synthesized by our group have antimicrobial activity and a better biosafety profile than uncoated AgNPs of similar size. Those observations are of critical importance for the future in vivo investigations and the potential application of AgNPsLA in medical devices for human use.
Collapse
Affiliation(s)
- Justyna Hajtuch
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Maria Jose Santos-Martinez
- School of Pharmacy and Pharmaceutical Sciences and School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Michal Wojcik
- Department of Organic Chemistry and Chemical Technology, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Ewelina Tomczyk
- Department of Organic Chemistry and Chemical Technology, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Maciej Jaskiewicz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | |
Collapse
|
8
|
Kluska K, Veronesi G, Deniaud A, Hajdu B, Gyurcsik B, Bal W, Krezel A. Structures of Silver Fingers and a Pathway to Their Genotoxicity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katarzyna Kluska
- University of Wroclaw: Uniwersytet Wroclawski Faculty of Biotechnology, Department of Chemical Biology 50-383 Wrocław POLAND
| | - Giulia Veronesi
- Université Grenoble Alpes: Universite Grenoble Alpes Laboratoire de Chimie et Biologie des Metaux F-38000 Grenoble FRANCE
| | - Aurelien Deniaud
- Université de Grenoble I: Universite Grenoble Alpes Laboratoire de Chimie at Biologie des Metaux F-38000 Grenoble FRANCE
| | - Balint Hajdu
- University of Szeged: Szegedi Tudomanyegyetem Department of Inorganic Analytical Chemistry H-6720 Szeged HUNGARY
| | - Bela Gyurcsik
- University of Szeged: Szegedi Tudomanyegyetem Depertment of Inorganic Analytical Chemistry H-6720 Szeged HUNGARY
| | - Wojciech Bal
- Polish Academy of Sciences: Polska Akademia Nauk Institute of Biochemistry and Biophysics 02-106 Warsaw POLAND
| | - Artur Krezel
- University of Wroclaw Department of Chemical Biology, Faculty of Biotechnology F. Joliot-Curie 14A 50-383 Wrocław POLAND
| |
Collapse
|
9
|
Ralbovsky NM, Zou L, Chen B, Zhang NR, Hines CDG, Vavrek M, Zhong W, Smith JP, Bu X. Simultaneous multielement imaging of liver tissue using laser ablation inductively coupled plasma mass spectrometry. Talanta 2021; 235:122725. [PMID: 34517593 DOI: 10.1016/j.talanta.2021.122725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/26/2022]
Abstract
Analysis of the spatial distribution of metals, metalloids, and non-metals in biological tissues is of significant interest in the life sciences, helping to illuminate the function and roles these elements play within various biological pathways. Chemical imaging methods are commonly employed to address biological questions and reveal individual spatial distributions of analytes of interest. Elucidation of these spatial distributions can help determine key elemental and molecular information within the respective biological specimens. However, traditionally utilized imaging methods prove challenging for certain biological tissue analysis, especially with respect to applications that require high spatial resolution or depth profiling. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been shown to be effective for direct elemental analysis of solid materials with high levels of precision. In this work, chemical imaging using LA-ICP-MS has been applied as a powerful analytical methodology for the analysis of liver tissue samples. The proposed analytical methodology successfully produced both qualitative and quantitative information regarding specific elemental distributions within images of thin tissue sections with high levels of sensitivity and spatial resolution. The spatial resolution of the analytical methodology was innovatively enhanced, helping to broaden applicability of this technique to applications requiring significantly high spatial resolutions. This information can be used to further understand the role these elements play within biological systems and impacts dysregulation may have.
Collapse
Affiliation(s)
- Nicole M Ralbovsky
- Analytical Research & Development, MRL, Merck & Co., Inc., West Point, PA, 19486, USA
| | - Lanfang Zou
- Analytical Research & Development, MRL, Merck & Co., Inc., West Point, PA, 19486, USA
| | - Bingming Chen
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, MRL, Merck & Co., Inc., West Point, PA, 19486, USA
| | - Nanyan Rena Zhang
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, MRL, Merck & Co., Inc., West Point, PA, 19486, USA
| | - Catherine D G Hines
- Translational Imaging Biomarkers, MRL, Merck & Co., Inc., West Point, PA, 19486, USA
| | - Marissa Vavrek
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, MRL, Merck & Co., Inc., West Point, PA, 19486, USA
| | - Wendy Zhong
- Analytical Research & Development, MRL, Merck & Co., Inc., West Point, PA, 19486, USA
| | - Joseph P Smith
- Analytical Research & Development, MRL, Merck & Co., Inc., West Point, PA, 19486, USA.
| | - Xiaodong Bu
- Analytical Research & Development, MRL, Merck & Co., Inc., West Point, PA, 19486, USA.
| |
Collapse
|
10
|
Tardillo Suárez V, Gallet B, Chevallet M, Jouneau PH, Tucoulou R, Veronesi G, Deniaud A. Correlative transmission electron microscopy and high-resolution hard X-ray fluorescence microscopy of cell sections to measure trace element concentrations at the organelle level. J Struct Biol 2021; 213:107766. [PMID: 34216761 DOI: 10.1016/j.jsb.2021.107766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/18/2022]
Abstract
Metals are essential for life and their concentration and distribution in organisms are tightly regulated. Indeed, in their free form, most transition metal ions are toxic. Therefore, an excess of physiologic metal ions or the uptake of non-physiologic metal ions can be highly detrimental to the organism. It is thus fundamental to understand metal distribution under physiological, pathological or environmental conditions, for instance in metal-related pathologies or upon environmental exposure to metals. Elemental imaging techniques can serve this purpose, by allowing the visualization and the quantification of metal species in tissues down to the level of cell organelles. Synchrotron radiation-based X-ray fluorescence (SR-XRF) microscopy is one of the most sensitive techniques to date, and great progress was made to reach nanoscale spatial resolution. Here we propose a correlative method to couple SR-XRF to electron microscopy (EM), with the possibility to quantify selected elemental contents in a specific organelle of interest with 50 × 50 nm2 raster scan resolution. We performed EM and SR-XRF on the same section of hepatocytes exposed to silver nanoparticles, in order to identify mitochondria through EM and visualize Ag co-localized with these organelles through SR-XRF. We demonstrate the accumulation of silver in mitochondria, which can reach a 10-fold higher silver concentration compared to the surrounding cytosol. The sample preparation and experimental setup can be adapted to other scientific questions, making the correlative use of SR-XRF and EM suitable to address a large panel of biological questions related to metal homeostasis.
Collapse
Affiliation(s)
| | - Benoit Gallet
- Institut de Biologie Structurale, CEA, CNRS, Univ. Grenoble Alpes, 71 Avenue des Martyrs, F-38042 Grenoble, France
| | - Mireille Chevallet
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | | | - Rémi Tucoulou
- ESRF, The European Synchrotron. 71 avenue des Martyrs, 38000 Grenoble, France
| | - Giulia Veronesi
- ESRF, The European Synchrotron. 71 avenue des Martyrs, 38000 Grenoble, France; Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France.
| | - Aurélien Deniaud
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France.
| |
Collapse
|
11
|
Carnovale C, Guarnieri D, Di Cristo L, De Angelis I, Veronesi G, Scarpellini A, Malvindi MA, Barone F, Pompa PP, Sabella S. Biotransformation of Silver Nanoparticles into Oro-Gastrointestinal Tract by Integrated In Vitro Testing Assay: Generation of Exposure-Dependent Physical Descriptors for Nanomaterial Grouping. NANOMATERIALS 2021; 11:nano11061587. [PMID: 34204296 PMCID: PMC8233905 DOI: 10.3390/nano11061587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 12/28/2022]
Abstract
Grouping approaches of nanomaterials have the potential to facilitate high throughput and cost effective nanomaterial screening. However, an effective grouping of nanomaterials hinges on the application of suitable physicochemical descriptors to identify similarities. To address the problem, we developed an integrated testing approach coupling acellular and cellular phases, to study the full life cycle of ingested silver nanoparticles (NPs) and silver salts in the oro-gastrointestinal (OGI) tract including their impact on cellular uptake and integrity. This approach enables the derivation of exposure-dependent physical descriptors (EDPDs) upon biotransformation of undigested nanoparticles, digested nanoparticles and digested silver salts. These descriptors are identified in: size, crystallinity, chemistry of the core material, dissolution, high and low molecular weight Ag-biomolecule soluble complexes, and are compared in terms of similarities in a grouping hypothesis. Experimental results indicate that digested silver nanoparticles are neither similar to pristine nanoparticles nor completely similar to digested silver salts, due to the presence of different chemical nanoforms (silver and silver chloride nanocrystals), which were characterized in terms of their interactions with the digestive matrices. Interestingly, the cellular responses observed in the cellular phase of the integrated assay (uptake and inflammation) are also similar for the digested samples, clearly indicating a possible role of the soluble fraction of silver complexes. This study highlights the importance of quantifying exposure-related physical descriptors to advance grouping of NPs based on structural similarities.
Collapse
Affiliation(s)
- Catherine Carnovale
- Istituto Italiano Di Tecnologia, Nanoregulatory Platform, Drug Discovery and Development Department, 16163 Genova, Italy; (C.C.); (L.D.C.)
| | - Daniela Guarnieri
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy;
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy
| | - Luisana Di Cristo
- Istituto Italiano Di Tecnologia, Nanoregulatory Platform, Drug Discovery and Development Department, 16163 Genova, Italy; (C.C.); (L.D.C.)
| | | | - Giulia Veronesi
- Laboratory of Chemistry and Biology of Metals (CBM), University Grenoble Alpes/CNRS/CEA, 38000 Grenoble, France;
- ESRF, the European Synchrotron, 71 Av. des Martyrs, 38000 Grenoble, France
| | - Alice Scarpellini
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| | | | - Flavia Barone
- Istituto Superiore di Sanità (ISS), 00161 Rome, Italy; (I.D.A.); (F.B.)
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy;
| | - Stefania Sabella
- Istituto Italiano Di Tecnologia, Nanoregulatory Platform, Drug Discovery and Development Department, 16163 Genova, Italy; (C.C.); (L.D.C.)
- Correspondence:
| |
Collapse
|
12
|
Álvarez-Marimon E, Castillo-Michel H, Reyes-Herrera J, Seira J, Aso E, Carmona M, Ferrer I, Cladera J, Benseny-Cases N. Synchrotron X-ray Fluorescence and FTIR Signatures for Amyloid Fibrillary and Nonfibrillary Plaques. ACS Chem Neurosci 2021; 12:1961-1971. [PMID: 33990138 DOI: 10.1021/acschemneuro.1c00048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyloid plaques are one of the principal hallmarks of Alzheimer's disease and are mainly composed of Aβ amyloid peptides together with other components such as lipids, cations, or glycosaminoglycans. The structure of amyloid peptide's aggregates is related to the peptide toxicity and highly depends on the aggregation conditions and the presence of cofactors. While fibrillary aggregates are nowadays considered nontoxic, oligomeric/granular (nonfibrillary) aggregates have been found to be toxic. In this work we have characterized in situ two different types of amyloid deposits analyzing sections of the cortex of patients in advanced stages of Alzheimer disease. By combining SR-μFTIR for the study of the secondary structure of the peptide and ThS fluorescence as an indicator of fibrillary structures, we found two types of plaques: ThS positive plaques with a clear infrared band at 1630 cm-1 that would correspond to fibrillary plaques and ThS negative plaques showing a mixture of nonfibrillar β-sheet and unordered aggregated structures that would correspond to the nonfibrillary plaques (plaques with increased unordered structure). The analysis of the FTIR spectra has allowed correlation of lipid oxidation with the presence of nonfibrillary plaques. The metal composition of the two types of plaques has been analyzed using SR-nano-XRF and XANES. The results have shown higher accumulation of iron (mainly Fe2+) in fibrillary plaques than in nonfibrillary ones. However, in nonfibrillary plaques Fe3+ has been found to predominate over Fe2+. The identification of different types of aggregated forms and the different composition of metals found in the different types of plaques could be of paramount importance for the understanding of the development of Alzheimer disease.
Collapse
Affiliation(s)
- Elena Álvarez-Marimon
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autonoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Hiram Castillo-Michel
- ID21, European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Juan Reyes-Herrera
- ID21, European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Jofre Seira
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autonoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Ester Aso
- Institut de Neuropatologia, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, 08907 Hospitalet de Llobregat, Barcelona, Spain
| | - Margarita Carmona
- Institut de Neuropatologia, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, 08907 Hospitalet de Llobregat, Barcelona, Spain
| | - Isidre Ferrer
- Institut de Neuropatologia, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, 08907 Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Cladera
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autonoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Núria Benseny-Cases
- Consorcio para la Construccion Equipamiento y Explotacion del Laboratorio de Luz Sincrotron, ALBA Synchrotron Light Source, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
13
|
Monedeiro F, Railean-Plugaru V, Monedeiro-Milanowski M, Pomastowski P, Buszewski B. Metabolic Profiling of VOCs Emitted by Bacteria Isolated from Pressure Ulcers and Treated with Different Concentrations of Bio-AgNPs. Int J Mol Sci 2021; 22:4696. [PMID: 33946710 PMCID: PMC8124631 DOI: 10.3390/ijms22094696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Considering the advent of antibiotic resistance, the study of bacterial metabolic behavior stimulated by novel antimicrobial agents becomes a relevant tool to elucidate involved adaptive pathways. Profiling of volatile metabolites was performed to monitor alterations of bacterial metabolism induced by biosynthesized silver nanoparticles (bio-AgNPs). Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae and Proteus mirabilis were isolated from pressure ulcers, and their cultures were prepared in the presence/absence of bio-AgNPs at 12.5, 25 and 50 µg mL-1. Headspace solid phase microextraction associated to gas chromatography-mass spectrometry was the employed analytical platform. At the lower concentration level, the agent promoted positive modulation of products of fermentation routes and bioactive volatiles, indicating an attempt of bacteria to adapt to an ongoing suppression of cellular respiration. Augmented response of aldehydes and other possible products of lipid oxidative cleavage was noticed for increasing levels of bio-AgNPs. The greatest concentration of agent caused a reduction of 44 to 80% in the variety of compounds found in the control samples. Pathway analysis indicated overall inhibition of amino acids and fatty acids routes. The present assessment may provide a deeper understanding of molecular mechanisms of bio-AgNPs and how the metabolic response of bacteria is untangled.
Collapse
Affiliation(s)
- Fernanda Monedeiro
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Viorica Railean-Plugaru
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Maciej Monedeiro-Milanowski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Paweł Pomastowski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Bogusław Buszewski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina St., 87-100 Toruń, Poland
| |
Collapse
|
14
|
Keshavan S, Andón FT, Gallud A, Chen W, Reinert K, Tran L, Fadeel B. Profiling of Sub-Lethal in Vitro Effects of Multi-Walled Carbon Nanotubes Reveals Changes in Chemokines and Chemokine Receptors. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:883. [PMID: 33808372 PMCID: PMC8067081 DOI: 10.3390/nano11040883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/30/2022]
Abstract
Engineered nanomaterials are potentially very useful for a variety of applications, but studies are needed to ascertain whether these materials pose a risk to human health. Here, we studied three benchmark nanomaterials (Ag nanoparticles, TiO2 nanoparticles, and multi-walled carbon nanotubes, MWCNTs) procured from the nanomaterial repository at the Joint Research Centre of the European Commission. Having established a sub-lethal concentration of these materials using two human cell lines representative of the immune system and the lungs, respectively, we performed RNA sequencing of the macrophage-like cell line after exposure for 6, 12, and 24 h. Downstream analysis of the transcriptomics data revealed significant effects on chemokine signaling pathways. CCR2 was identified as the most significantly upregulated gene in MWCNT-exposed cells. Using multiplex assays to evaluate cytokine and chemokine secretion, we could show significant effects of MWCNTs on several chemokines, including CCL2, a ligand of CCR2. The results demonstrate the importance of evaluating sub-lethal concentrations of nanomaterials in relevant target cells.
Collapse
Affiliation(s)
- Sandeep Keshavan
- Institute of Environmental Medicine, Karolinska Institute, 171 77 Stockholm, Sweden; (S.K.); (F.T.A.); (A.G.)
| | - Fernando Torres Andón
- Institute of Environmental Medicine, Karolinska Institute, 171 77 Stockholm, Sweden; (S.K.); (F.T.A.); (A.G.)
- IRCCS Istituto Clinico Humanitas, 20089 Rozzano, Milan, Italy
- Center for Research in Molecular Medicine & Chronic Diseases, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Audrey Gallud
- Institute of Environmental Medicine, Karolinska Institute, 171 77 Stockholm, Sweden; (S.K.); (F.T.A.); (A.G.)
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Wei Chen
- Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany;
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Knut Reinert
- Department of Computer Science and Mathematics, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Lang Tran
- Statistics and Toxicology Section, Institute of Occupational Medicine, Edinburgh EH14 4AP, UK;
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institute, 171 77 Stockholm, Sweden; (S.K.); (F.T.A.); (A.G.)
| |
Collapse
|
15
|
Sanchez-Cano C, Alvarez-Puebla RA, Abendroth JM, Beck T, Blick R, Cao Y, Caruso F, Chakraborty I, Chapman HN, Chen C, Cohen BE, Conceição ALC, Cormode DP, Cui D, Dawson KA, Falkenberg G, Fan C, Feliu N, Gao M, Gargioni E, Glüer CC, Grüner F, Hassan M, Hu Y, Huang Y, Huber S, Huse N, Kang Y, Khademhosseini A, Keller TF, Körnig C, Kotov NA, Koziej D, Liang XJ, Liu B, Liu S, Liu Y, Liu Z, Liz-Marzán LM, Ma X, Machicote A, Maison W, Mancuso AP, Megahed S, Nickel B, Otto F, Palencia C, Pascarelli S, Pearson A, Peñate-Medina O, Qi B, Rädler J, Richardson JJ, Rosenhahn A, Rothkamm K, Rübhausen M, Sanyal MK, Schaak RE, Schlemmer HP, Schmidt M, Schmutzler O, Schotten T, Schulz F, Sood AK, Spiers KM, Staufer T, Stemer DM, Stierle A, Sun X, Tsakanova G, Weiss PS, Weller H, Westermeier F, Xu M, Yan H, Zeng Y, Zhao Y, Zhao Y, Zhu D, Zhu Y, Parak WJ. X-ray-Based Techniques to Study the Nano-Bio Interface. ACS NANO 2021; 15:3754-3807. [PMID: 33650433 PMCID: PMC7992135 DOI: 10.1021/acsnano.0c09563] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/25/2021] [Indexed: 05/03/2023]
Abstract
X-ray-based analytics are routinely applied in many fields, including physics, chemistry, materials science, and engineering. The full potential of such techniques in the life sciences and medicine, however, has not yet been fully exploited. We highlight current and upcoming advances in this direction. We describe different X-ray-based methodologies (including those performed at synchrotron light sources and X-ray free-electron lasers) and their potentials for application to investigate the nano-bio interface. The discussion is predominantly guided by asking how such methods could better help to understand and to improve nanoparticle-based drug delivery, though the concepts also apply to nano-bio interactions in general. We discuss current limitations and how they might be overcome, particularly for future use in vivo.
Collapse
Affiliation(s)
- Carlos Sanchez-Cano
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
| | - Ramon A. Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Passeig Lluís
Companys 23, 08010 Barcelona, Spain
| | - John M. Abendroth
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Tobias Beck
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Robert Blick
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Cao
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Frank Caruso
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Indranath Chakraborty
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Henry N. Chapman
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Centre
for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunying Chen
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Bruce E. Cohen
- The
Molecular Foundry and Division of Molecular Biophysics and Integrated
Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - David P. Cormode
- Radiology
Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daxiang Cui
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Gerald Falkenberg
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Neus Feliu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Mingyuan Gao
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elisabetta Gargioni
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claus-C. Glüer
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Florian Grüner
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Moustapha Hassan
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yalan Huang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Samuel Huber
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nils Huse
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yanan Kang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90049, United States
| | - Thomas F. Keller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Christian Körnig
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan
Institute for Translational Nanotechnology (MITRAN), Ypsilanti, Michigan 48198, United States
| | - Dorota Koziej
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Xing-Jie Liang
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Beibei Liu
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Yang Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ziyao Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Luis M. Liz-Marzán
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Centro de Investigación Biomédica
en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramon 182, 20014 Donostia-San Sebastián, Spain
| | - Xiaowei Ma
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Andres Machicote
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wolfgang Maison
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La
Trobe Institute for Molecular
Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Saad Megahed
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Bert Nickel
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Ferdinand Otto
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Cristina Palencia
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Arwen Pearson
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Oula Peñate-Medina
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Bing Qi
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Joachim Rädler
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Joseph J. Richardson
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Axel Rosenhahn
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kai Rothkamm
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Rübhausen
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Raymond E. Schaak
- Department of Chemistry, Department of Chemical Engineering,
and
Materials Research Institute, The Pennsylvania
State University, University Park, Pensylvania 16802, United States
| | - Heinz-Peter Schlemmer
- Department of Radiology, German Cancer
Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marius Schmidt
- Department of Physics, University
of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Oliver Schmutzler
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Florian Schulz
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - A. K. Sood
- Department of Physics, Indian Institute
of Science, Bangalore 560012, India
| | - Kathryn M. Spiers
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Theresa Staufer
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dominik M. Stemer
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Andreas Stierle
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Xing Sun
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Molecular Science and Biomedicine Laboratory (MBL) State
Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Gohar Tsakanova
- Institute of Molecular Biology of National
Academy of Sciences of
Republic of Armenia, 7 Hasratyan str., 0014 Yerevan, Armenia
- CANDLE Synchrotron Research Institute, 31 Acharyan str., 0040 Yerevan, Armenia
| | - Paul S. Weiss
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Horst Weller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Fabian Westermeier
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Huijie Yan
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Zeng
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhao
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yuliang Zhao
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Dingcheng Zhu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhu
- Bioimaging Center, Shanghai Synchrotron Radiation Facility,
Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Division of Physical Biology, CAS Key Laboratory
of Interfacial
Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Wolfgang J. Parak
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Deniaud A. Imaging inorganic nanomaterial fate down to the organelle level. Metallomics 2021; 13:6134098. [PMID: 33576806 DOI: 10.1093/mtomcs/mfab006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 11/14/2022]
Abstract
Nanotoxicology remains an important and emerging field since only recent years have seen the improvement of biological models and exposure setups toward real-life scenarios. The appropriate analysis of nanomaterial fate in these conditions also required methodological developments in imaging to become sensitive enough and element specific. In the last 2-4 years, impressive breakthroughs have been achieved using electron microscopy, nanoscale secondary ion mass spectrometry, X-ray fluorescence microscopy, or fluorescent sensors. In this review, basics of the approaches and application examples in the study of nanomaterial fate in biological systems will be described to highlight recent successes in the field.
Collapse
Affiliation(s)
- Aurélien Deniaud
- Univ. Grenoble Alpes, CNRS, CEA, IRIG - Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| |
Collapse
|
17
|
Cirrhotic Liver of Liver Transplant Recipients Accumulate Silver and Co-Accumulate Copper. Int J Mol Sci 2021; 22:ijms22041782. [PMID: 33670100 PMCID: PMC7916850 DOI: 10.3390/ijms22041782] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Silver-based materials are widely used in clinical medicine. Furthermore, the usage of silver containing materials and devices is widely recommended and clinically approved. The impact on human health of the increasing use of silver nanoparticles in medical devices remains understudied, even though Ag-containing dressings are known to release silver into the bloodstream. In this study, we detected a widespread and sometimes significant silver accumulation both in healthy and sick liver biopsies, levels being statistically higher in patients with various hepatic pathologies. 28 healthy and 44 cirrhotic liver samples were investigated. The median amount of 0.049 ppm Ag in livers was measured in cirrhotic livers while the median was 0.0016 ppm for healthy livers (a more than 30-fold difference). The mean tissue concentrations of essential metals, Fe and Zn in cirrhotic livers did not differ substantially from healthy livers, while Cu was positively correlated with Ag. The serum levels of gamma-glutamyl transpeptidase (GGTP) was also positively correlated with Ag in cirrhotic livers. The increased Ag accumulation in cirrhotic livers could be a side effect of wide application of silver in clinical settings. As recent studies indicated a significant toxicity of silver nanoparticles for human cells, the above observation could be of high importance for the public health.
Collapse
|
18
|
Shao Z, Guagliardo P, Jiang H, Wang WX. Intra- and Intercellular Silver Nanoparticle Translocation and Transformation in Oyster Gill Filaments: Coupling Nanoscale Secondary Ion Mass Spectrometry and Dual Stable Isotope Tracing Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:433-446. [PMID: 33325689 DOI: 10.1021/acs.est.0c04621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The extensive application of silver nanoparticles (AgNPs) requires a full examination of their biological impacts, especially in aquatic systems where AgNPs are likely to end up. Despite numerous toxicity studies from molecular to individual levels, it is still a daunting challenge to achieve in situ subcellular imaging of Ag and to determine the sites of AgNP interaction with organelles or macromolecules simultaneously. Here, by coupling high-resolution nanoscale secondary ion mass spectrometry elemental mapping with scanning electron microscopy ultrastructural characterization, we successfully visualized the subcellular localization and the potential toxicity effects of AgNPs in the oyster gill filaments. The stable isotope tracing method was also adopted to investigate the respective uptake and transport mechanisms of differently labeled 109AgNPs and 107Ag+ ions. 109Ag hotspots were colocalized with endosomes or lysosomes, proving an endocytosis-based entry of AgNPs which passed through the barrier of oyster gill epithelium. These 109Ag hotspots showed a strong colocalization with 32S-. For the first time, we provided visualized evidence of AgNP-induced autophagy in the oyster gill cells. We further identified two categories of hemocytes (blood cells) and illustrated their roles in AgNP transport and sequestration. The integration of morphological and functional aspects of Ag subcellular distribution in different target cells suggested that oysters were equipped with a specialized endolysosomal (epithelial cells) or phagolysosomal system (hemocytes) in regulating the cellular process of AgNPs, during which the lysosome was the most involved organelle and sulfur was the most relevant macronutrient element. This study highlighted not only the intracellular but also the intercellular AgNP translocation and transformation, providing important subcellular imaging of silver and reliable methodology regarding bio-nano interactions in natural environments.
Collapse
Affiliation(s)
- Zishuang Shao
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Haibo Jiang
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Wen-Xiong Wang
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- School of Energy and Environment, State Key Laboratory of Marine Pollution, and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), City University of Hong Kong, Kowloon, Hong Kong, China
| |
Collapse
|
19
|
Uca YO, Hallmann D, Hesse B, Seim C, Stolzenburg N, Pietsch H, Schnorr J, Taupitz M. Microdistribution of Magnetic Resonance Imaging Contrast Agents in Atherosclerotic Plaques Determined by LA-ICP-MS and SR-μXRF Imaging. Mol Imaging Biol 2020; 23:382-393. [PMID: 33289060 PMCID: PMC8099766 DOI: 10.1007/s11307-020-01563-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 01/12/2023]
Abstract
Purpose Contrast-enhanced magnetic resonance imaging (MRI) has the potential to replace angiographic evaluation of atherosclerosis. While studies have investigated contrast agent (CA) uptake in atherosclerotic plaques, exact CA spatial distribution on a microscale is elusive. The purpose of this study was to investigate the microdistribution of gadolinium (Gd)- and iron (Fe) oxide-based CA in atherosclerotic plaques of New Zealand White rabbits. Procedures The study was performed as a post hoc analysis of archived tissue specimens obtained in a previous in vivo MRI study conducted to investigate signal changes induced by very small superparamagnetic iron oxide nanoparticles (VSOP) and Gd-BOPTA. For analytical discrimination from endogenous Fe, VSOP were doped with europium (Eu) resulting in Eu-VSOP. Formalin-fixed arterial specimens were cut into 5-μm serial sections and analyzed by immunohistochemistry (IHC: Movat’s pentachrome, von Kossa, and Alcian blue (pH 1.0) staining, anti-smooth muscle cell actin (anti-SMA), and anti-rabbit macrophage (anti-RAM-11) immunostaining) and elemental microscopy with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and synchrotron radiation μX-ray fluorescence (SR-μXRF) spectroscopy. Elemental distribution maps of Fe, Eu, Gd, sulfur (S), phosphorus (P), and calcium (Ca) were investigated. Results IHC characterized atherosclerotic plaque pathomorphology. Elemental microscopy showed S distribution to match the anatomy of arterial vessel wall layers, while P distribution corresponded well with cellular areas. LA-ICP-MS revealed Gd and Fe with a limit of detection of ~ 0.1 nmol/g and ~ 100 nmol/g, respectively. Eu-positive signal identified VSOP presence in the vessel wall and allowed the comparison of Eu-VSOP and endogenous Fe distribution in tissue sections. Extracellular matrix material correlated with Eu signal intensity, Fe concentration, and maximum Gd concentration. Eu-VSOP were confined to endothelium in early lesions but accumulated in cellular areas in advanced plaques. Gd distribution was homogeneous in healthy arteries but inhomogeneous in early and advanced plaques. SR-μXRF scans at 0.5 μm resolution revealed Gd hotspots with increased P and Ca concentrations at the intimomedial interface, and a size distribution ranging from a few micrometers to submicrometers. Conclusions Eu-VSOP and Gd have distinct spatial distributions in atherosclerotic plaques. While Eu-VSOP distribution is more cell-associated and might be used to monitor atherosclerotic plaque progression, Gd distribution indicates arterial calcification and might help in characterizing plaque vulnerability. Supplementary Information The online version contains supplementary material available at 10.1007/s11307-020-01563-z.
Collapse
Affiliation(s)
- Yavuz Oguz Uca
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - David Hallmann
- MR and CT Contrast Media Research, Bayer AG, Berlin, Germany
| | - Bernhard Hesse
- Xploraytion GmbH, Berlin, Germany.,European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Christian Seim
- Xploraytion GmbH, Berlin, Germany.,Technische Universität Berlin, Berlin, Germany
| | - Nicola Stolzenburg
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | | | - Jörg Schnorr
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Matthias Taupitz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
20
|
Youssif KA, Elshamy AM, Rabeh MA, Gabr N, Afifi WM, Salem MA, Albohy A, Abdelmohsen UR, Haggag EG. Cytotoxic Potential of Green Synthesized Silver Nanoparticles of
Lampranthus coccineus
Extracts, Metabolic Profiling and Molecular Docking Study. ChemistrySelect 2020. [DOI: 10.1002/slct.202002947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Khayrya A. Youssif
- Department of Pharmacognosy Faculty of Pharmacy Modern University for Technology and Information Cairo Egypt
| | - Ali M. Elshamy
- Department of Pharmacognosy Faculty of Pharmacy Cairo University Cairo 11562 Egypt
| | - Mohamed A. Rabeh
- Department of Pharmacognosy Faculty of Pharmacy Modern University for Technology and Information Cairo Egypt
- Department of Pharmacognosy Faculty of Pharmacy Cairo University Cairo 11562 Egypt
| | - Nagwan Gabr
- Department of Pharmacognosy Faculty of Pharmacy Helwan University Cairo 11795 Egypt
| | - Wael M. Afifi
- Department of Pharmacognosy Faculty of Pharmacy Al-Azhar University Cairo 11884 Egypt
- Department of Pharmacognosy Faculty of Pharmacy Sinai University Ismailia Egypt
| | - Mohamed A. Salem
- Department of Pharmaceutical Chemistry October University for Modern Sciences and Arts (MSA) Cairo Egypt
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry Faculty of Pharmacy The British University in Egypt (BUE) El-Sherouk City Cairo 11837 Egypt
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Ain-Shams University Abbasia Cairo 11566 Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy Faculty of Pharmacy Minia University Minia 61519 Egypt
- Department of Pharmacognosy Faculty of Pharmacy Deraya University 7 Universities Zone 61111 New Minia City Egypt
| | - Eman G. Haggag
- Department of Pharmacognosy Faculty of Pharmacy Helwan University Cairo 11795 Egypt
| |
Collapse
|
21
|
Schoon J, Hesse B, Rakow A, Ort MJ, Lagrange A, Jacobi D, Winter A, Huesker K, Reinke S, Cotte M, Tucoulou R, Marx U, Perka C, Duda GN, Geissler S. Metal-Specific Biomaterial Accumulation in Human Peri-Implant Bone and Bone Marrow. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000412. [PMID: 33101844 PMCID: PMC7578891 DOI: 10.1002/advs.202000412] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/09/2020] [Indexed: 05/13/2023]
Abstract
Metallic implants are frequently used in medicine to support and replace degenerated tissues. Implant loosening due to particle exposure remains a major cause for revision arthroplasty. The exact role of metal debris in sterile peri-implant inflammation is controversial, as it remains unclear whether and how metals chemically alter and potentially accumulate behind an insulating peri-implant membrane, in the adjacent bone and bone marrow (BM). An intensively focused and bright synchrotron X-ray beam allows for spatially resolving the multi-elemental composition of peri-implant tissues from patients undergoing revision surgery. In peri-implant BM, particulate cobalt (Co) is exclusively co-localized with chromium (Cr), non-particulate Cr accumulates in the BM matrix. Particles consisting of Co and Cr contain less Co than bulk alloy, which indicates a pronounced dissolution capacity. Particulate titanium (Ti) is abundant in the BM and analyzed Ti nanoparticles predominantly consist of titanium dioxide in the anatase crystal phase. Co and Cr but not Ti integrate into peri-implant bone trabeculae. The characteristic of Cr to accumulate in the intertrabecular matrix and trabecular bone is reproducible in a human 3D in vitro model. This study illustrates the importance of updating the view on long-term consequences of biomaterial usage and reveals toxicokinetics within highly sensitive organs.
Collapse
Affiliation(s)
- Janosch Schoon
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Berlin‐Brandenburg School for Regenerative TherapiesCharité – Universitätsmedizin BerlinBerlin13353Germany
| | - Bernhard Hesse
- Xploraytion GmbHBerlin10625Germany
- European Synchrotron Radiation FacilityGrenoble38000France
| | - Anastasia Rakow
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Center for Musculoskeletal SurgeryCharité – Universitätsmedizin BerlinBerlin10117Germany
| | - Melanie J. Ort
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Berlin‐Brandenburg School for Regenerative TherapiesCharité – Universitätsmedizin BerlinBerlin13353Germany
| | - Adrien Lagrange
- Xploraytion GmbHBerlin10625Germany
- Department of Materials Science and EngineeringInstitute of Materials Science and TechnologiesTechnische Universität BerlinBerlin10623Germany
| | - Dorit Jacobi
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
| | | | - Katrin Huesker
- Endocrinology and Immunology DepartmentInstitute for Medical DiagnosticsBerlin12247Germany
| | - Simon Reinke
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
| | - Marine Cotte
- European Synchrotron Radiation FacilityGrenoble38000France
- CNRSLaboratoire d'archéologie moléculaire et structuraleLAMSSorbonne UniversitéParis75005France
| | - Remi Tucoulou
- European Synchrotron Radiation FacilityGrenoble38000France
| | | | - Carsten Perka
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Berlin‐Brandenburg School for Regenerative TherapiesCharité – Universitätsmedizin BerlinBerlin13353Germany
- Center for Musculoskeletal SurgeryCharité – Universitätsmedizin BerlinBerlin10117Germany
| | - Georg N. Duda
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Berlin‐Brandenburg School for Regenerative TherapiesCharité – Universitätsmedizin BerlinBerlin13353Germany
| | - Sven Geissler
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Berlin‐Brandenburg School for Regenerative TherapiesCharité – Universitätsmedizin BerlinBerlin13353Germany
| |
Collapse
|
22
|
Zhang L, Jiang H, Wang WX. Subcellular Imaging of Localization and Transformation of Silver Nanoparticles in the Oyster Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11434-11442. [PMID: 32786557 DOI: 10.1021/acs.est.0c03342] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To accurately assess the behavior and toxicity of silver nanoparticles (AgNPs), it is essential to understand their subcellular distribution and biotransformation. We combined both nanoscale secondary ion mass spectrometry (NanoSIMS) and electron microscopy to investigate the subcellular localization of Ag and in situ chemical distribution in the oyster larvae Crassostrea angulata after exposure to isotopically enriched 109AgNPs. Oyster larvae directly ingested particulate Ag, and in vivo dissolution of AgNPs occurred. The results collectively showed that AgNPs were much less bioavailable than Ag+, and the intracellular Ag was mainly originated from the soluble Ag, especially those dissolved from the ingested AgNPs. AgNPs absorbed on the cell membranes continued to release Ag ions, forming inorganic Ag-S complexes extracellularly, while Ag-organosulfur complexes were predominantly formed intracellularly. The internalized Ag could bind to the sulfur-rich molecules (S-donors) in the cytosol and/or be sequestered in the lysosomes of velum, esophagus, and stomach cells, as well as in the digestive vacuoles of digestive cells, which could act as a detoxification pathway for the oyster larvae. Ag was also occasionally incorporated into the phosphate granules, rough endoplasmic reticulum, and mitochondria. Our work provided definite evidence for the partial sulfidation of AgNPs after interaction with oyster larvae and shed new light on the bioavailability and fate of nanoparticles in marine environment.
Collapse
Affiliation(s)
- Luqing Zhang
- Marine Environmental Laboratory, Shenzhen Research Institute, HKUST, Shenzhen 518057, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Haibo Jiang
- School of Molecular Sciences, University of Western Australia, Perth, Washington 6009, Australia
| | - Wen-Xiong Wang
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hongkong, Kowloon, Hong Kong
| |
Collapse
|
23
|
Yan N, Tsim SMJ, He X, Tang BZ, Wang WX. Direct Visualization and Quantification of Maternal Transfer of Silver Nanoparticles in Zooplankton. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10763-10771. [PMID: 32786596 DOI: 10.1021/acs.est.0c03228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The immense application of silver nanoparticles (AgNPs) in biomedical fields is likely to increase the exposure of humans. However, little is known about whether these nanoparticles can be maternally transferred, especially regarding their biodistribution in the younger generation, maternal transfer efficiency, and toxic effects. In the present study, maternal transfer of AgNPs in model zooplankton (Daphnia magna) was for the first time visualized and quantified. We found that AgNPs were transferred from mother to offspring and mainly accumulated in the lipids due to the strong colocalization with lipid droplets, which were the major energy sources of Daphnia embryos. In contrast, Ag+ was irregularly distributed in different sites, probably due to the mobility and reactivity of Ag+. The maternal transfer efficiency quantified by the radiolabeling methodology was 2.37 ± 0.25 and 6.05 ± 0.89% for 110mAgNPs and 110mAg, respectively. Furthermore, AgNPs and Ag+ significantly inhibited the reproduction capability of F0 and F1 generations, but such maternal toxic effect inhibition was only found within the first two broods of F0 and F1 generations. Our bioimaging findings demonstrated that AgNPs could be maternally transferred to the next generation; thus, it is critical to produce AgNPs with lower toxic effects, higher delivery efficacy, and more precise targeting.
Collapse
Affiliation(s)
- Neng Yan
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Hong Kong, China
| | - Synn Man Jennifer Tsim
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Hong Kong, China
| | - Xuewen He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, HKUST, Clear Water Bay, Kowloon LG5313, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, HKUST, Clear Water Bay, Kowloon LG5313, Hong Kong, China
| | - Wen-Xiong Wang
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
24
|
Abram S, Fromm KM. Handling (Nano)Silver as Antimicrobial Agent: Therapeutic Window, Dissolution Dynamics, Detection Methods and Molecular Interactions. Chemistry 2020; 26:10948-10971. [DOI: 10.1002/chem.202002143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Sarah‐Luise Abram
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Katharina M. Fromm
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| |
Collapse
|
25
|
Synthesis and Apoptotic Efficacy of Biosynthesized Silver Nanoparticles Using Acacia luciana Flower Extract in MCF-7 Breast Cancer Cells: Activation of Bak1 and Bclx for Cancer Therapy. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00753-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Identification of intracellular cadmium transformation in HepG2 and MCF-7 cells. Talanta 2020; 218:121065. [PMID: 32797863 DOI: 10.1016/j.talanta.2020.121065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 01/14/2023]
Abstract
It is of significance to elucidate or understand the intracellular transformation & migration behaviors of heavy metals in specific cells. Herein, we report the fast and efficient separation of cadmium-metallothioneins (Cd-MTs) and Cd2+in cell lysate by a short column capillary electrophoresis (SC-CE), followed by coupling with inductively coupled plasma mass spectrometry (ICP-MS) to facilitate the speciation of intracellular cadmium species. The incorporation of sodium dodecyl sulfate (SDS) in running buffer significantly reduces the peak width of Cd2+from 170 s to 26 s in the electrophoretogram, causing a 5.3-fold improvement on the sensitivity. Linear ranges of 0.5-50 mg L-1,0.056-5.6 mg L-1 and 0.1-10 mg L-1 are achieved for MTs, Cd-MTs (Cd) and Cd2+, respectively, along with detection limits of 0.013 mg L-1 for Cd-MTs (Cd) and 0.020 mg L-1 for Cd2+. The transformation of cadmium in HepG2 and MCF-7 cells is evaluated after their incubation with Cd2+ reinforced culture medium. Intracellular free Cd2+ cation and Cd-MTs are identified, along with Cd2+ transformation to Cd-glutathione (GSH) adduct/complex, as further demonstrated by ESI-MS.
Collapse
|
27
|
López-Hernández I, García C, Truttmann V, Pollitt S, Barrabés N, Rupprechter G, Rey F, Palomares A. Evaluation of the silver species nature in Ag-ITQ2 zeolites by the CO oxidation reaction. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Subcellular Chemical Imaging: New Avenues in Cell Biology. Trends Cell Biol 2020; 30:173-188. [DOI: 10.1016/j.tcb.2019.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/31/2022]
|
29
|
Marchioni M, Veronesi G, Worms I, Ling WL, Gallon T, Leonard D, Gateau C, Chevallet M, Jouneau PH, Carlini L, Battocchio C, Delangle P, Michaud-Soret I, Deniaud A. Safer-by-design biocides made of tri-thiol bridged silver nanoparticle assemblies. NANOSCALE HORIZONS 2020; 5:507-513. [PMID: 32118225 DOI: 10.1039/c9nh00286c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are efficient biocides increasingly used in consumer products and medical devices. Their activity is due to their capacity to release bioavailable Ag(i) ions making them long-lasting biocides but AgNPs themselves are usually easily released from the product. Besides, AgNPs are highly sensitive to various chemical environments that triggers their transformation, decreasing their activity. Altogether, widespread use of AgNPs leads to bacterial resistance and safety concerns for humans and the environment. There is thus a crucial need for improvement. Herein, a proof of concept for a novel biocide based on AgNP assemblies bridged together by a tri-thiol bioinspired ligand is presented. The final nanomaterial is stable and less sensitive to chemical environments with AgNPs completely covered by organic molecules tightly bound via their thiol functions. Therefore, these AgNP assemblies can be considered as safer-by-design and innovative biocides, since they deliver a sufficient amount of Ag(i) for biocidal activity with no release of AgNPs, which are insensitive to transformations in the nanomaterial.
Collapse
Affiliation(s)
- Marianne Marchioni
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 38000 Grenoble, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang C, Zhao N, Yuan W. NIR/Thermoresponsive Injectable Self-Healing Hydrogels Containing Polydopamine Nanoparticles for Efficient Synergistic Cancer Thermochemotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9118-9131. [PMID: 32009384 DOI: 10.1021/acsami.9b23536] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Injectable and self-healing hydrogels with thermoresponsiveness as smart hydrogels displayed injectability, automatic healing, and phase and volume changes as well. Here, the thermoresponsive self-healing hydrogel was prepared via the formation of dynamic covalent enamine bonds between the amino groups in polyetherimide (PEI) and the acetoacetate groups in the four-armed star-shaped poly(2-(dimethylamino)ethyl methacrylate-co-2-hydroxyethyl methacrylate) modified with tert-butyl acetoacetate (t-BAA), SP(DMAEMA-co-HEMA-AA). After adding polydopamine nanoparticles (PDA NPs), the SP(DMAEMA-co-HEMA-AA)/PEI/PDA-NP nanocomposite hydrogel presented phase change and volume shrinkage under near-infrared (NIR) irradiation. The thermoresponsive nanocomposite hydrogel loaded with the anticancer drug doxorubicin (DOX) could be injected into the 4T1 tumor by intratumoral injection. After NIR laser irradiation, the temperature of the hydrogel increased because of the photothermal effect of PDA NPs inducing local hyperthermia. Because the hydrophilicity-hydrophobicity transition of the hydrogel occurred, DOX molecules were squeezed out from the hydrogel at temperatures higher than its lower critical solution temperature (LCST) and the tumor cells suffered from internal stress from the shrunk hydrogel. The injectable nanocomposite hydrogel not only demonstrated the synergism of highly efficient thermochemotherapy but also showed the function of improving drug utilization and precise treatment to reduce the side effects of drugs.
Collapse
Affiliation(s)
- Chunyao Wang
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Materials Science and Engineering , Tongji University , Shanghai 201804 , People's Republic of China
| | - Nuoya Zhao
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Materials Science and Engineering , Tongji University , Shanghai 201804 , People's Republic of China
| | - Weizhong Yuan
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Materials Science and Engineering , Tongji University , Shanghai 201804 , People's Republic of China
| |
Collapse
|
31
|
Kluska K, Peris-Díaz MD, Płonka D, Moysa A, Dadlez M, Deniaud A, Bal W, Krężel A. Formation of highly stable multinuclear Ag nS n clusters in zinc fingers disrupts their structure and function. Chem Commun (Camb) 2020; 56:1329-1332. [PMID: 31912071 DOI: 10.1039/c9cc09418k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Silver (Ag(i)) binding to consensus zinc fingers (ZFs) causes Zn(ii) release inducing a gradual disruption of the hydrophobic core, followed by an overall conformational change and formation of highly stable AgnSn clusters. A compact eight-membered Ag4S4 structure formed by a CCCC ZF is the first cluster example reported for a single biological molecule. Ag(i)-induced conformational changes of ZFs can, as a consequence, affect transcriptional regulation and other cellular processes.
Collapse
Affiliation(s)
- Katarzyna Kluska
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| | - Manuel D Peris-Díaz
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| | - Dawid Płonka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland.
| | - Alexander Moysa
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland.
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland.
| | - Aurélien Deniaud
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland.
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| |
Collapse
|
32
|
Umapathi A, Nagaraju NP, Madhyastha H, Jain D, Srinivas SP, Rotello VM, Daima HK. Highly efficient and selective antimicrobial isonicotinylhydrazide-coated polyoxometalate-functionalized silver nanoparticles. Colloids Surf B Biointerfaces 2019; 184:110522. [PMID: 31586898 DOI: 10.1016/j.colsurfb.2019.110522] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/10/2019] [Accepted: 09/21/2019] [Indexed: 12/21/2022]
Abstract
With the rapidly approaching post-antibiotic era, new and effective combinations of antibiotics are imperative to combat multiple drug resistance (MDR). We have synthesized multimodal antimicrobials that integrate the antibiotic isonicotinylhydrazide (INH), silver nanoparticles (AgNPsINH), and two different polyoxometalates (POMs) namely, phosphotungstic acid (PTA) and phosphomolybdic acid (PMA) to prepare AgNPsINH@PTA and AgNPsINH@PMA, respectively. AgNPsINH have peroxidase-like (nanozyme) activity and very high antibacterial potential toward S. aureus, which was further enhanced upon modification with POMs. The selectivity of these functional nanozymes was evaluated with m5S mouse fibroblasts using WST-8, LDH viability, in vitro reactive oxygen species (ROS) generation assays, and crystal violet morphological studies. These investigations showed very low cytotoxicity for the nanoparticles compared to free metal ions (Ag+), pristine POMs and INH, demonstrating the ability of multifunctional materials to provide efficient and selective antimicrobials.
Collapse
Affiliation(s)
- Akhela Umapathi
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, 303002, Rajasthan, India
| | - Navya P Nagaraju
- Nano-Bio Interfacial Research Laboratory (NBIRL), Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, 572103, Karnataka, India; Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode - 638401, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 8891692, Japan
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, Rajasthan, India
| | - Sangly P Srinivas
- School of Optometry, Indiana University, Bloomington, 47405, IN, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts (UMass) Amherst, 710 North Pleasant Street, Amherst, 01003 MA, USA
| | - Hemant Kumar Daima
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, 303002, Rajasthan, India; Nano-Bio Interfacial Research Laboratory (NBIRL), Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, 572103, Karnataka, India.
| |
Collapse
|
33
|
Veronesi G, Moros M, Castillo-Michel H, Mattera L, Onorato G, Wegner KD, Ling WL, Reiss P, Tortiglione C. In Vivo Biotransformations of Indium Phosphide Quantum Dots Revealed by X-Ray Microspectroscopy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35630-35640. [PMID: 31496235 DOI: 10.1021/acsami.9b15433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many attempts have been made to synthesize cadmium-free quantum dots (QDs), using nontoxic materials, while preserving their unique optical properties. Despite impressive advances, gaps in knowledge of their intracellular fate, persistence, and excretion from the targeted cell or organism still exist, precluding clinical applications. In this study, we used a simple model organism (Hydra vulgaris) presenting a tissue grade of organization to determine the biodistribution of indium phosphide (InP)-based QDs by X-ray fluorescence imaging. By complementing elemental imaging with In L-edge X-ray absorption near edge structure, unique information on in situ chemical speciation was obtained. Unexpectedly, spectral profiles indicated the appearance of In-O species within the first hour post-treatment, suggesting a fast degradation of the InP QD core in vivo, induced mainly by carboxylate groups. Moreover, no significant difference in the behavior of bare core QDs and QDs capped with an inorganic Zn(Se,S) gradient shell was observed. The results paralleled those achieved by treating animals with an equivalent dose of indium salts, confirming the preferred bonding type of In3+ ions in Hydra tissues. In conclusion, by focusing on the chemical identity of indium along a 48 h long journey of QDs in Hydra, we describe a fast degradation process, in the absence of evident toxicity. These data pave the way to new paradigms to be considered in the biocompatibility assessment of QD-based biomedical applications, with greater emphasis on the dynamics of in vivo biotransformations, and suggest strategies to drive the design of future applied materials for nanotechnology-based diagnosis and therapeutics.
Collapse
Affiliation(s)
- Giulia Veronesi
- Univ. Grenoble Alpes , CNRS, CEA, IRIG, Laboratory CBM , 17 rue des Martyrs , 38000 Grenoble , France
- ESRF, the European Synchrotron , 71 Avenue des Martyrs , 38000 Grenoble , France
| | - Maria Moros
- Istituto di Scienze Applicate e Sistemi Intelligenti " E. Caianiello" , Consiglio Nazionale delle Ricerche , Via Campi Flegrei 34 , 80078 Pozzuoli , Italy
- Aragon Materials Science Institute and Ciber-BBN , Campus Rio Ebro, C/Mariano Esquillor s/n 27, 50018 Zaragoza , Spain
| | | | - Lucia Mattera
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Laboratoire STEP , 17 rue des Martyrs , 38000 Grenoble , France
| | - Giada Onorato
- Istituto di Scienze Applicate e Sistemi Intelligenti " E. Caianiello" , Consiglio Nazionale delle Ricerche , Via Campi Flegrei 34 , 80078 Pozzuoli , Italy
| | - Karl David Wegner
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Laboratoire STEP , 17 rue des Martyrs , 38000 Grenoble , France
| | - Wai Li Ling
- Univ. Grenoble Alpes, CEA, CNRS, IBS , F-38000 Grenoble , France
| | - Peter Reiss
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Laboratoire STEP , 17 rue des Martyrs , 38000 Grenoble , France
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti " E. Caianiello" , Consiglio Nazionale delle Ricerche , Via Campi Flegrei 34 , 80078 Pozzuoli , Italy
| |
Collapse
|
34
|
Increased Retention of Gadolinium in the Inflamed Brain After Repeated Administration of Gadopentetate Dimeglumine. Invest Radiol 2019; 54:617-626. [DOI: 10.1097/rli.0000000000000571] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Yu SJ, Lai YJ, Dong LJ, Liu JF. Intracellular Dissolution of Silver Nanoparticles: Evidence from Double Stable Isotope Tracing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10218-10226. [PMID: 31380632 DOI: 10.1021/acs.est.9b03251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To track transformations of silver nanoparticles (AgNPs) in vivo, HepG2 and A549 cells were cocultured with two enriched stable Ag isotopes (107AgNPs and 109AgNO3) at nontoxic doses. After enzymatic digestion, 107AgNPs, ionic 107Ag+ and 109Ag+ in exposed cells could be separated and quantified by liquid chromatography combined with ICP-MS. We found that ratios of 107Ag+ to total 107Ag and proportions of 107Ag+/ 109Ag+ in cells increased gradually after exposure, proving that the Trojan-horse mechanism occurred, i.e., AgNPs released high contents of Ag+ after internalization. While the presence of 109Ag+ (5 and 100 μg/L) has little influence on the uptake of 107AgNPs (0.1 and 2 mg/L), the presence of 107AgNPs at a high dose (2 mg/L) dramatically increases the ingestion of 109Ag+, even though 107AgNPs at a low dose (100 μg/L) showed negligible effects on the internalization of 109Ag+. Cellular homeostasis may be perturbed under sublethal exposure of 107AgNPs, and thus enhanced uptake of 109Ag+. Our findings suggest that the widely adopted control experiments in toxicology studies, culturing organisms with AgNO3 at the same concentration of Ag+ in the AgNP exposure medium, may underestimate uptake of Ag+ and thus cannot exclude suspected toxic effects of Ag+ at high AgNP exposure doses.
Collapse
Affiliation(s)
- Su-Juan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871 , Beijing 100085 , China
| | - Yu-Jian Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871 , Beijing 100085 , China
| | - Li-Jie Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871 , Beijing 100085 , China
| | - Jing-Fu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871 , Beijing 100085 , China
| |
Collapse
|
36
|
Alies B, Ouelhazi MA, Noireau A, Gaudin K, Barthélémy P. Silver Ions Detection via Nucleolipids Self-Assembly. Anal Chem 2019; 91:1692-1695. [PMID: 30543097 DOI: 10.1021/acs.analchem.8b04066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A novel hybrid bioinspired amphiphile featuring a cytosine moiety, which self-assembles into liposomes can be used to detect silver ions in aqueous media. The coordination of Ag+ ions by the nucleotide moiety increases membrane rigidity, which enhances the fluorescence of a common reporter, Thioflavin T. Ag+ can be sensed even at trace concentrations (3 ppb) with great specificity over other metals ions. These nucleotide based supramolecular structures can be used to detect silver ions in drinking water, demonstrating the robustness of this approach.
Collapse
Affiliation(s)
- Bruno Alies
- University of Bordeaux , ARNA Laboratory , F-33000 Bordeaux , France
| | | | - Angéline Noireau
- University of Bordeaux , ARNA Laboratory , F-33000 Bordeaux , France
| | - Karen Gaudin
- University of Bordeaux , ARNA Laboratory , F-33000 Bordeaux , France
| | | |
Collapse
|
37
|
Nguyen TD, Vo TT, Huynh TTT, Nguyen CH, Doan VD, Nguyen DT, Nguyen TD, Dang CH. Effect of capping methods on the morphology of silver nanoparticles: study on the media-induced release of silver from the nanocomposite β-cyclodextrin/alginate. NEW J CHEM 2019. [DOI: 10.1039/c9nj04730a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel multi-functional nanocomposites were fabricated from polysaccharides, alginate (Alg) and β-cyclodextrin (β-CD) via the ionotropic gelation mechanism.
Collapse
Affiliation(s)
- Thanh-Danh Nguyen
- Institute of Research and Development
- Duy Tan University
- Da Nang City
- Vietnam
- Institute of Chemical Technology
| | - Thanh-Truc Vo
- Institute of Chemical Technology
- Vietnam Academy of Science and Technology
- Ho Chi Minh City
- Vietnam
- Graduate University of Science and Technology
| | - T. Thanh-Tam Huynh
- Institute of Chemical Technology
- Vietnam Academy of Science and Technology
- Ho Chi Minh City
- Vietnam
| | - Cao-Hien Nguyen
- Graduate University of Science and Technology
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
- Department of Chemical Technology
| | - Van-Dat Doan
- Faculty of Chemical Engineering
- Industrial University of Ho Chi Minh City
- Ho Chi Minh City
- Vietnam
| | | | - Trinh-Duy Nguyen
- Center of Excellence for Green Energy and Environmental Nanomaterials
- Nguyen Tat Thanh University
- Ho Chi Minh City 755414
- Vietnam
| | - Chi-Hien Dang
- Institute of Chemical Technology
- Vietnam Academy of Science and Technology
- Ho Chi Minh City
- Vietnam
- Graduate University of Science and Technology
| |
Collapse
|
38
|
Yan N, Tang BZ, Wang WX. In Vivo Bioimaging of Silver Nanoparticle Dissolution in the Gut Environment of Zooplankton. ACS NANO 2018; 12:12212-12223. [PMID: 30457838 DOI: 10.1021/acsnano.8b06003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Release of silver ions (Ag+) is often regarded as the major cause for silver nanoparticle (AgNP) toxicity toward aquatic organisms. Nevertheless, differentiating AgNPs and Ag+ in a complicated biological matrix and their dissolution remains a bottleneck in our understanding of AgNP behavior in living organisms. Here, we directly visualized and quantified the time-dependent release of Ag+ from different sized AgNPs in an in vivo model zooplankton ( Daphnia magna). A fluorogenic Ag+ sensor was used to selectively detect and localize the released Ag+ in daphnids. We demonstrated that the ingested AgNPs were dissoluted to Ag+, which was heterogeneously distributed in daphnids with much higher concentration in the anterior gut. At dissolution equilibrium, a total of 8.3-9.7% of ingested AgNPs was released as Ag+ for 20 and 60 nm AgNPs. By applying a pH sensor, we further showed that the dissolution of AgNPs was partially related to the heterogeneous distribution of pH in different gut sections of daphnids. Further, Ag+ was found to cross the gills and enter the daphnids, which may be a potential pathway leading to AgNP toxicity. Our findings provided fundamental knowledge about the transformation of AgNPs and distribution of Ag+ in daphnids.
Collapse
Affiliation(s)
- Neng Yan
- Department of Ocean Science, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, and Marine Environmental Laboratory , HKUST Shenzhen Research Institute , Shenzhen 518057 , China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , HKUST , Clear Water Bay , Kowloon , Hong Kong , China
| | - Wen-Xiong Wang
- Department of Ocean Science, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, and Marine Environmental Laboratory , HKUST Shenzhen Research Institute , Shenzhen 518057 , China
| |
Collapse
|
39
|
Ishida T. Antibacterial mechanism of Ag+ ions for bacteriolyses of bacterial cell walls via peptidoglycan autolysins, and DNA damages. ACTA ACUST UNITED AC 2018. [DOI: 10.15406/mojt.2018.04.00125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Turco A, Moglianetti M, Corvaglia S, Rella S, Catelani T, Marotta R, Malitesta C, Pompa PP. Sputtering-Enabled Intracellular X-ray Photoelectron Spectroscopy: A Versatile Method To Analyze the Biological Fate of Metal Nanoparticles. ACS NANO 2018; 12:7731-7740. [PMID: 30004662 DOI: 10.1021/acsnano.8b01612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The investigation of the toxicological profile and biomedical potential of nanoparticles (NPs) requires a deep understanding of their intracellular fate. Various techniques are usually employed to characterize NPs upon cellular internalization, including high-resolution optical and electron microscopies. Here, we show a versatile method, named sputtering-enabled intracellular X-ray photoelectron spectroscopy, proving that it is able to provide valuable information about the behavior of metallic NPs in culture media as well as within cells, directly measuring their internalization, stability/degradation, and oxidation state, without any preparative steps. The technique can also provide nanoscale vertical resolution along with semiquantitative information about the cellular internalization of the metallic species. The proposed approach is easy-to-use and can become a standard technique in nanotoxicology/nanomedicine and in the rational design of metallic NPs. Two model cases were investigated: silver nanoparticles (AgNPs) and platinum nanoparticles (PtNPs) with the same size and coating. We observed that, after 48 h incubation, intracellular AgNPs were almost completely dissolved, forming nanoclusters as well as AgO, AgS, and AgCl complexes. On the other hand, PtNPs were resistant to the harsh endolysosomal environment, and only some surface oxidation was detected after 48 h.
Collapse
Affiliation(s)
- Antonio Turco
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.) , Università del Salento , via Monteroni , 73100 Lecce , Italy
| | - Mauro Moglianetti
- Nanobiointeractions and Nanodiagnostics, Center for Biomolecular Nanotechnologies , Istituto Italiano di Tecnologia , via Barsanti , 73010 Arnesano, Lecce , Italy
| | - Stefania Corvaglia
- Nanobiointeractions and Nanodiagnostics, Center for Biomolecular Nanotechnologies , Istituto Italiano di Tecnologia , via Barsanti , 73010 Arnesano, Lecce , Italy
| | - Simona Rella
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.) , Università del Salento , via Monteroni , 73100 Lecce , Italy
| | | | | | - Cosimino Malitesta
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.) , Università del Salento , via Monteroni , 73100 Lecce , Italy
| | - Pier Paolo Pompa
- Nanobiointeractions and Nanodiagnostics, Center for Biomolecular Nanotechnologies , Istituto Italiano di Tecnologia , via Barsanti , 73010 Arnesano, Lecce , Italy
- Istituto Italiano di Tecnologia , Nanobiointeractions and Nanodiagnostics , via Morego 30 , 16163 Genova , Italy
| |
Collapse
|
41
|
Porcaro F, Roudeau S, Carmona A, Ortega R. Advances in element speciation analysis of biomedical samples using synchrotron-based techniques. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.09.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
Marchioni M, Jouneau PH, Chevallet M, Michaud-Soret I, Deniaud A. Silver nanoparticle fate in mammals: Bridging in vitro and in vivo studies. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Repar N, Li H, Aguilar JS, Li QQ, Damjana D, Hong Y. Silver nanoparticles induce neurotoxicity in a human embryonic stem cell-derived neuron and astrocyte network. Nanotoxicology 2018; 12:104-116. [PMID: 29334833 PMCID: PMC6172039 DOI: 10.1080/17435390.2018.1425497] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 10/18/2022]
Abstract
Silver nanoparticles (AgNPs) are among the most extensively used nanoparticles and are found in a variety of products. This ubiquity leads to inevitable exposure to these particles in everyday life. However, the effects of AgNPs on neuron and astrocyte networks are still largely unknown. In this study, we used neurons and astrocytes derived from human embryonic stem cells as a cellular model to study the neurotoxicity that is induced by citrate-coated AgNPs (AgSCs). Immunostaining with the astrocyte and neuron markers, glial fibrillary acidic protein and microtubule-associated protein-2 (MAP2), respectively, showed that exposure to AgSCs at the concentration of 0.1 µg/mL increased the astrocyte/neuron ratio. In contrast, a higher concentration of AgSCs (5.0 µg/ml) significantly changed the morphology of astrocytes. These results suggest that astrocytes are sensitive to AgSC exposure and that low concentrations of AgSCs promote astrogenesis. Furthermore, our results showed that AgSCs reduced neurite outgrowth, decreased the expression of postsynaptic density protein 95 and synaptophysin, and induced neurodegeneration in a concentration-dependent manner. Our findings additionally suggest that the expression and phosphorylation status of MAP2 isoforms, as modulated by the activation of the Akt/glycogen synthase kinase-3/caspase-3 signaling pathway, may play an important role in AgSC-mediated neurotoxicity. We also found that AgNO3 exposure only slightly reduced neurite outgrowth and had little effect on MAP2 expression, suggesting that AgSCs and AgNO3 have different neuronal toxicity mechanisms. In addition, most of these effects were reduced when the cell culture was co-treated with AgSCs and the antioxidant ascorbic acid, which implies that oxidative stress is the major cause of AgSC-mediated astrocytic/neuronal toxicity and that antioxidants may have a neuroprotective effect.
Collapse
Affiliation(s)
- Neza Repar
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia
| | - Hao Li
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361002, China
| | - Jose S. Aguilar
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Qingshun Q. Li
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361002, China
| | - Drobne Damjana
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia
| | - Yiling Hong
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| |
Collapse
|
44
|
Zhang B, Safonova OV, Pollitt S, Salassa G, Sels A, Kazan R, Wang Y, Rupprechter G, Barrabés N, Bürgi T. On the mechanism of rapid metal exchange between thiolate-protected gold and gold/silver clusters: a time-resolved in situ XAFS study. Phys Chem Chem Phys 2018; 20:5312-5318. [PMID: 29406541 DOI: 10.1039/c7cp08272j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The fast metal exchange reaction between Au38 and AgxAu38-x nanoclusters in solution at -20 °C has been studied by in situ X-ray absorption spectroscopy (time resolved quick XAFS) in transmission mode. A cell was designed for this purpose consisting of a cooling system, remote injection and mixing devices. The capability of the set-up is demonstrated for second and minute time scale measurements of the metal exchange reaction upon mixing Au38/toluene and AgxAu38-x/toluene solutions at both Ag K-edge and Au L3-edge. It has been proposed that the exchange of gold and silver atoms between the clusters occurs via the SR(-M-SR)n (n = 1, 2; M = Au, Ag) staple units in the surface of the reacting clusters during their collision. However, at no point during the reaction (before, during, after) evidence is found for cationic silver atoms within the staples. This means that either the exchange occurs directly between the cores of the involved clusters or the residence time of the silver atoms in the staples is very short in a mechanism involving the metal exchange within the staples.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Graf C, Nordmeyer D, Sengstock C, Ahlberg S, Diendorf J, Raabe J, Epple M, Köller M, Lademann J, Vogt A, Rancan F, Rühl E. Shape-Dependent Dissolution and Cellular Uptake of Silver Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1506-1519. [PMID: 29272915 DOI: 10.1021/acs.langmuir.7b03126] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The cellular uptake and dissolution of trigonal silver nanoprisms (edge length 42 ± 15 nm, thickness 8 ± 1 nm) and mostly spherical silver nanoparticles (diameter 70 ± 25 nm) in human mesenchymal stem cells (hMSC's) and human keratinocytes (HaCaT cells) were investigated. Both particles are stabilized by polyvinylpyrrolidone (PVP), with the prisms additionally stabilized by citrate. The nanoprisms dissolved slightly in pure water but strongly in isotonic saline or at pH 4, corresponding to the lowest limit for the pH during cellular uptake. The tips of the prisms became rounded within minutes due to their high surface energy. Afterward, the dissolution process slowed down due to the presence of both PVP stabilizing Ag{100} sites and citrate blocking Ag{111} sites. On the contrary, nanospheres, solely stabilized by PVP, dissolved within 24 h. These results correlate with the finding that particles in both cell types have lost >90% of their volume within 24 h. hMSC's took up significantly more Ag from nanoprisms than from nanospheres, whereas HaCaT cells showed no preference for one particle shape. This can be rationalized by the large cellular interaction area of the plateletlike nanoprisms and the bending stiffness of the cell membranes. hMSC's have a highly flexible cell membrane, resulting in an increased uptake of plateletlike particles. HaCaT cells have a membrane with a 3 orders of magnitude higher Young's modulus than for hMSC. Hence, the energy gain due to the larger interaction area of the nanoprisms is compensated for by the higher energy needed for cell membrane deformation compared to that for spheres, leading to no shape preference.
Collapse
Affiliation(s)
- Christina Graf
- Physikalische und Theoretische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin , 14195 Berlin, Germany
| | - Daniel Nordmeyer
- Physikalische und Theoretische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin , 14195 Berlin, Germany
| | - Christina Sengstock
- Bergmannsheil University Hospital/Surgical Research, Ruhr-University Bochum , 44789 Bochum, Germany
| | - Sebastian Ahlberg
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin , 10117 Berlin, Germany
| | - Jörg Diendorf
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen , 45117 Essen, Germany
| | - Jörg Raabe
- Swiss Light Source, Paul Scherrer Institut , 5232 Villigen, Switzerland
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen , 45117 Essen, Germany
| | - Manfred Köller
- Bergmannsheil University Hospital/Surgical Research, Ruhr-University Bochum , 44789 Bochum, Germany
| | - Jürgen Lademann
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin , 10117 Berlin, Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin , 10117 Berlin, Germany
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin , 10117 Berlin, Germany
| | - Eckart Rühl
- Physikalische und Theoretische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin , 14195 Berlin, Germany
| |
Collapse
|
46
|
Dong L, Zhou X, Hu L, Yin Y, Liu J. Simultaneous size characterization and mass quantification of the in vivo core-biocorona structure and dissolved species of silver nanoparticles. J Environ Sci (China) 2018; 63:227-235. [PMID: 29406105 DOI: 10.1016/j.jes.2017.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Size characterization of silver nanoparticles with biomolecule corona (AgNP@BCs) and mass quantification of various silver species in organisms are essential for understanding the in vivo transformation of AgNPs. Herein, we report a versatile method that allows simultaneous determination of the size of AgNP@BCs and mass concentration of various silver species in rat liver. Both particulate and ionic silver were extracted in their original forms from the organs by alkaline digestion, and analyzed by size exclusion chromatography combined with inductively coupled plasma mass spectrometry (SEC-ICP-MS). While the silver mass concentrations were quantified by ICP-MS with a detection limit of 0.1μg/g, the effective diameter of AgNP@BCs was determined based on the retention time in SEC separation with size discrimination of 0.6-3.3nm. More importantly, we found that the BC thickness of AgNP@BCs is core size independent, and a linear correlation was found between the effective diameter and core diameter of AgNP@BCs in extracted tissues, which was used to calibrate the core diameter with standard deviations in the range of 0.2-1.1nm. The utility of this strategy was demonstrated through application to rat livers in vivo. Our method is powerful for investigating the transformation mechanism of AgNPs in vivo.
Collapse
Affiliation(s)
- Lijie Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxia Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
47
|
Wang L, Yan L, Liu J, Chen C, Zhao Y. Quantification of Nanomaterial/Nanomedicine Trafficking in Vivo. Anal Chem 2017; 90:589-614. [DOI: 10.1021/acs.analchem.7b04765] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Liming Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yan
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liu
- The
College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuliang Zhao
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
48
|
Ivask A, Mitchell AJ, Malysheva A, Voelcker NH, Lombi E. Methodologies and approaches for the analysis of cell-nanoparticle interactions. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10:e1486. [DOI: 10.1002/wnan.1486] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/12/2017] [Accepted: 06/20/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Angela Ivask
- Laboratory of Environmental Toxicology; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
- Future Industries Institute; University of South Australia; Mawson Lakes Australia
| | - Andrew J. Mitchell
- Materials Characterisation and Fabrication Platform; University of Melbourne; Melbourne Australia
| | - Anzhela Malysheva
- Future Industries Institute; University of South Australia; Mawson Lakes Australia
| | - Nicolas H. Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Australia
| | - Enzo Lombi
- Future Industries Institute; University of South Australia; Mawson Lakes Australia
| |
Collapse
|
49
|
Chevallet M, Veronesi G, Fuchs A, Mintz E, Michaud-Soret I, Deniaud A. Impact of labile metal nanoparticles on cellular homeostasis. Current developments in imaging, synthesis and applications. Biochim Biophys Acta Gen Subj 2017; 1861:1566-1577. [DOI: 10.1016/j.bbagen.2016.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/11/2016] [Accepted: 12/15/2016] [Indexed: 12/26/2022]
|
50
|
Wu Z, Guan R, Tao M, Lyu F, Cao G, Liu M, Gao J. Assessment of the toxicity and inflammatory effects of different-sized zinc oxide nanoparticles in 2D and 3D cell cultures. RSC Adv 2017. [DOI: 10.1039/c6ra27334c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Two-dimensional (2D) monolayer cell cultures are the most common in vitro models for mechanistic studies on the toxicity of engineered nanoparticles (NPs).
Collapse
Affiliation(s)
- Zhipan Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine
- College of Life Sciences
- China Jiliang University
- Hangzhou 310018
- China
| | - Rongfa Guan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine
- College of Life Sciences
- China Jiliang University
- Hangzhou 310018
- China
| | - Miao Tao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine
- College of Life Sciences
- China Jiliang University
- Hangzhou 310018
- China
| | - Fei Lyu
- Ocean College
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Guozhou Cao
- Ningbo Entry–Exit Inspection and Quarantine Technology Center
- Ningbo 315000
- China
| | - Mingqi Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine
- College of Life Sciences
- China Jiliang University
- Hangzhou 310018
- China
| | - Jianguo Gao
- Inspection and Quarantine Center of Shandong Exit & Entry Inspection and Quarantine Bureau
- Qingdao 266002
- China
| |
Collapse
|