1
|
Pittaway P, Chingono KE, Knox ST, Martin E, Bourne RA, Cayre OJ, Kapur N, Booth J, Capomaccio R, Pedge N, Warren NJ. Exploiting Online Spatially Resolved Dynamic Light Scattering and Flow-NMR for Automated Size Targeting of PISA-Synthesized Block Copolymer Nanoparticles. ACS POLYMERS AU 2025; 5:1-9. [PMID: 39958527 PMCID: PMC11826489 DOI: 10.1021/acspolymersau.4c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 02/18/2025]
Abstract
Programmable synthesis of polymer nanoparticles prepared by polymerization-induced self-assembly (PISA) mediated by reversible addition-fragmentation chain-transfer (RAFT) dispersion polymerization with specified diameter is achieved in an automated flow-reactor platform. Real-time particle size and monomer conversion is obtained via inline spatially resolved dynamic light scattering (SRDLS) and benchtop nuclear magnetic resonance (NMR) instrumentation. An initial training experiment generated a relationship between copolymer block length and particle size for the synthesis of poly(N,N-dimethylacrylamide)-b-poly(diacetone acrylamide) (PDMAm-b-PDAAm) nanoparticles. The training data was used to target the product compositions required for synthesis of nanoparticles with defined diameters of 50, 60, 70, and 80 nm, while inline NMR spectroscopy enabled rapid acquisition of kinetic data to support their scale-up. NMR and SRDLS were used during the continuous manufacture of the targeted products to monitor product consistency while an automated sampling system collected practically useful quantities of the targeted products, thus outlining the potential of the platform as a tool for discovery, development, and manufacture of polymeric nanoparticles.
Collapse
Affiliation(s)
- Peter
M. Pittaway
- School of
Chemical and Process Engineering, University
of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Kudakwashe E. Chingono
- School of
Chemical and Process Engineering, University
of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Stephen T. Knox
- School of
Chemical and Process Engineering, University
of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Elaine Martin
- School of
Chemical and Process Engineering, University
of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Richard A. Bourne
- School of
Chemical and Process Engineering, University
of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Olivier J. Cayre
- School of
Chemical and Process Engineering, University
of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Nikil Kapur
- School of
Mechanical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Jonathan Booth
- Pharmaceutical
Technology & Development, Operations, AstraZeneca, Silk Road
Business Park, Macclesfield SK10 2NA, U.K.
| | - Robin Capomaccio
- Pharmaceutical
Technology & Development, Operations, AstraZeneca, Silk Road
Business Park, Macclesfield SK10 2NA, U.K.
| | - Nicholas Pedge
- Pharmaceutical
Technology & Development, Operations, AstraZeneca, Silk Road
Business Park, Macclesfield SK10 2NA, U.K.
| | - Nicholas J. Warren
- School of
Chemical and Process Engineering, University
of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| |
Collapse
|
2
|
Miller HA, Priester A, Curtis ET, Hilmas K, Abbott A, Kievit FM, Convertine AJ. Optimized gadolinium-DO3A loading in RAFT-polymerized copolymers for superior MR imaging of aging blood-brain barrier. SENSORS & DIAGNOSTICS 2024; 3:1513-1521. [PMID: 39149521 PMCID: PMC11320174 DOI: 10.1039/d4sd00063c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
The development of gadolinium-based contrast agents (GBCAs) has been pivotal in advancing magnetic resonance imaging (MRI), offering enhanced soft tissue contrast without ionizing radiation exposure. Despite their widespread clinical use, the need for improved GBCAs has led to innovations in ligand chemistry and polymer science. We report a novel approach using methacrylate-functionalized DO3A ligands to synthesize a series of copolymers through direct reversible addition-fragmentation chain transfer (RAFT) polymerization. This technique enables precise control over the gadolinium content within the polymers, circumventing the need for subsequent conjugation and purification steps, and facilitates the addition of other components such as targeting ligands. The resulting copolymers were analysed for their relaxivity properties, indicating that specific gadolinium-DO3A loading contents between 12-30 mole percent yield optimal MRI contrast enhancement. Inductively coupled plasma (ICP) measurements corroborated these findings, revealing a non-linear relationship between gadolinium content and relaxivity. Optimized copolymers were synthesized with the claudin-1 targeting peptide, C1C2, to image BBB targeting in aged mice to show imaging utility. This study presents a promising pathway for the development of more efficient GBCA addition to copolymers for targeted drug delivery and bioimaging application.
Collapse
Affiliation(s)
- Hunter A Miller
- Department of Biological Systems Engineering, University of Nebraska-Lincoln 262 Morrison Center Lincoln NE 68583 USA
| | - Aaron Priester
- Department of Materials Science and Engineering, Missouri University of Science and Technology 1400 North Bishop Avenue Rolla MO 65409 USA
| | - Evan T Curtis
- Department of Biological Systems Engineering, University of Nebraska-Lincoln 262 Morrison Center Lincoln NE 68583 USA
| | - Krista Hilmas
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill Raleigh NC 27695 USA
| | - Ashleigh Abbott
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida- Gainesville 1275 Center Drive Gainesville FL 32611 USA
| | - Forrest M Kievit
- Department of Biological Systems Engineering, University of Nebraska-Lincoln 262 Morrison Center Lincoln NE 68583 USA
| | - Anthony J Convertine
- Department of Materials Science and Engineering, Missouri University of Science and Technology 1400 North Bishop Avenue Rolla MO 65409 USA
| |
Collapse
|
3
|
Avugadda S, Soni N, Rodrigues EM, Persano S, Pellegrino T. Protease-Mediated T1 Contrast Enhancement of Multilayered Magneto-Gadolinium Nanostructures for Imaging and Magnetic Hyperthermia. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6743-6755. [PMID: 38295315 PMCID: PMC10875642 DOI: 10.1021/acsami.3c13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024]
Abstract
In this work, we constructed a multifunctional composite nanostructure for combined magnetic hyperthermia therapy and magnetic resonance imaging based on T1 and T2 signals. First, iron oxide nanocubes with a benchmark heating efficiency for magnetic hyperthermia were assembled within an amphiphilic polymer to form magnetic nanobeads. Next, poly(acrylic acid)-coated inorganic sodium gadolinium fluoride nanoparticles were electrostatically loaded onto the magnetic nanobead surface via a layer-by-layer approach by employing a positively charged enzymatic-cleavable biopolymer. The positive-negative multilayering process was validated through the changes occurring in surface ζ-potential values and structural characterization by transmission electron microscopy (TEM) imaging. These nanostructures exhibit an efficient heating profile, in terms of the specific absorption rates under clinically accepted magnetic field conditions. The addition of protease enzyme mediates the degradation of the surface layers of the nanostructures with the detachment of gadolinium nanoparticles from the magnetic beads and exposure to the aqueous environment. Such a process is associated with changes in the T1 relaxation time and contrast and a parallel decrease in the T2 signal. These structures are also nontoxic when tested on glioblastoma tumor cells up to a maximum gadolinium dose of 125 μg mL-1, which also corresponds to a iron dose of 52 μg mL-1. Nontoxic nanostructures with such enzyme-triggered release mechanisms and T1 signal enhancement are desirable for tracking tumor microenvironment release with remote T1-guidance and magnetic hyperthermia therapy actuation to be done at the diseased site upon verification of magnetic resonance imaging (MRI)-guided release.
Collapse
Affiliation(s)
| | | | - Emille M. Rodrigues
- Nanomaterials for Biomedical
Applications, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Stefano Persano
- Nanomaterials for Biomedical
Applications, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Teresa Pellegrino
- Nanomaterials for Biomedical
Applications, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
4
|
Bowman JI, Eades CB, Vratsanos MA, Gianneschi NC, Sumerlin BS. Ultrafast Xanthate-Mediated Photoiniferter Polymerization-Induced Self-Assembly (PISA). Angew Chem Int Ed Engl 2023; 62:e202309951. [PMID: 37793989 DOI: 10.1002/anie.202309951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/12/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
Polymerization-induced self-assembly (PISA) is a powerful technique for preparing block copolymer nanostructures. Recently, efforts have been focused on applying photochemistry to promote PISA due to the mild reaction conditions, low cost, and spatiotemporal control that light confers. Despite these advantages, chain-end degradation and long reaction times can mar the efficacy of this process. Herein, we demonstrate the use of ultrafast photoiniferter PISA to produce polymeric nanostructures. By exploiting the rapid photolysis of xanthates, near-quantitative monomer conversion can be achieved within five minutes to prepare micelles, worms, and vesicles at various core-chain lengths, concentrations, or molar compositions.
Collapse
Affiliation(s)
- Jared I Bowman
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Cabell B Eades
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Maria A Vratsanos
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Nathan C Gianneschi
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, IL 60208, USA
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Zhang W, Chang Z, Bai W, Hong C. Greatly Enhanced Accessibility and Reproducibility of Worm‐like Micelles by In Situ Crosslinking Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2022; 61:e202211792. [DOI: 10.1002/anie.202211792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Wen‐Jian Zhang
- Institute of Physical Science and Information Technology Anhui University Hefei 230601, Anhui P. R. China
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026, Anhui P. R. China
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province Anhui University Hefei 230601, Anhui P. R. China
| | - Zi‐Xuan Chang
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026, Anhui P. R. China
| | - Wei Bai
- Institute of Physical Science and Information Technology Anhui University Hefei 230601, Anhui P. R. China
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province Anhui University Hefei 230601, Anhui P. R. China
| | - Chun‐Yan Hong
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026, Anhui P. R. China
| |
Collapse
|
6
|
Kampmann A, Hiller W, Weberskirch R. Efficient Synthesis of Macromolecular DO3A@Gn Derivatives for Potential Application in MRI Diagnostics: From Polymer Conjugates to Polymer Nanoparticles. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anne‐Larissa Kampmann
- Fakultät für Chemie und Chemische Biologie Otto‐Hahn Str. 6, TU Dortmund, Otto‐Hahn Str. 6 TU, D‐44227 Dortmund Germany
| | - Wolf Hiller
- Fakultät für Chemie und Chemische Biologie Otto‐Hahn Str. 6, TU Dortmund, Otto‐Hahn Str. 6 TU, D‐44227 Dortmund Germany
| | - Ralf Weberskirch
- Fakultät für Chemie und Chemische Biologie Otto‐Hahn Str. 6, TU Dortmund, Otto‐Hahn Str. 6 TU, D‐44227 Dortmund Germany
| |
Collapse
|
7
|
Zhang WJ, Chang ZX, Bai W, Hong CY. Greatly Enhanced Accessibility and Reproducibility of Worm‐like Micelles by in situ Crosslinking Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wen-Jian Zhang
- Anhui University Institute of Physical Science and Information Technology 合肥 CHINA
| | - Zi-Xuan Chang
- University of Science and Technology of China Department of Polymer Science and Engineering CHINA
| | - Wei Bai
- Anhui University Institute of Physical Science and Information Technology CHINA
| | - Chun-Yan Hong
- University of Science and Technology of China Department of Polymer Science and Engineering Jinzhai Road 96 230026 Hefei CHINA
| |
Collapse
|
8
|
Parkatzidis K, Truong NP, Rolland M, Lutz‐Bueno V, Pilkington EH, Mezzenga R, Anastasaki A. Transformer-Induced Metamorphosis of Polymeric Nanoparticle Shape at Room Temperature. Angew Chem Int Ed Engl 2022; 61:e202113424. [PMID: 35014134 PMCID: PMC9303452 DOI: 10.1002/anie.202113424] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 11/30/2022]
Abstract
Controlled polymerizations have enabled the production of nanostructured materials with different shapes, each exhibiting distinct properties. Despite the importance of shape, current morphological transformation strategies are limited in polymer scope, alter the chemical structure, require high temperatures, and are fairly tedious. Herein we present a rapid and versatile morphological transformation strategy that operates at room temperature and does not impair the chemical structure of the constituent polymers. By simply adding a molecular transformer to an aqueous dispersion of polymeric nanoparticles, a rapid evolution to the next higher-order morphology was observed, yielding a range of morphologies from a single starting material. Significantly, this approach can be applied to nanoparticles produced by disparate block copolymers obtained by various synthetic techniques including emulsion polymerization, polymerization-induced self-assembly and traditional solution self-assembly.
Collapse
Affiliation(s)
- Kostas Parkatzidis
- Laboratory of Polymeric MaterialsDepartment of MaterialsETH ZurichVladimir-Prelog-Weg 5Zurich8093Switzerland
| | - Nghia P. Truong
- Laboratory of Polymeric MaterialsDepartment of MaterialsETH ZurichVladimir-Prelog-Weg 5Zurich8093Switzerland
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoria 3052Australia
| | - Manon Rolland
- Laboratory of Polymeric MaterialsDepartment of MaterialsETH ZurichVladimir-Prelog-Weg 5Zurich8093Switzerland
| | - Viviane Lutz‐Bueno
- Department of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
| | - Emily H. Pilkington
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoria 3052Australia
| | - Raffaele Mezzenga
- Laboratory of Polymeric MaterialsDepartment of MaterialsETH ZurichVladimir-Prelog-Weg 5Zurich8093Switzerland
- Department of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric MaterialsDepartment of MaterialsETH ZurichVladimir-Prelog-Weg 5Zurich8093Switzerland
| |
Collapse
|
9
|
Parkatzidis K, Truong NP, Rolland M, Lutz‐Bueno V, Pilkington EH, Mezzenga R, Anastasaki A. Transformer‐Induced Metamorphosis of Polymeric Nanoparticle Shape at Room Temperature. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kostas Parkatzidis
- Laboratory of Polymeric Materials Department of Materials ETH Zurich Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland
| | - Nghia P. Truong
- Laboratory of Polymeric Materials Department of Materials ETH Zurich Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
| | - Manon Rolland
- Laboratory of Polymeric Materials Department of Materials ETH Zurich Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland
| | - Viviane Lutz‐Bueno
- Department of Health Sciences and Technology ETH Zurich Zurich 8092 Switzerland
| | - Emily H. Pilkington
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
| | - Raffaele Mezzenga
- Laboratory of Polymeric Materials Department of Materials ETH Zurich Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland
- Department of Health Sciences and Technology ETH Zurich Zurich 8092 Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials Department of Materials ETH Zurich Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland
| |
Collapse
|
10
|
Li S, Bobbala S, Vincent MP, Modak M, Liu Y, Scott EA. Pi-stacking Enhances Stability, Scalability of Formation, Control over Flexibility and Circulation Time of Polymeric Filaments. ADVANCED NANOBIOMED RESEARCH 2021; 1:2100063. [PMID: 34870281 PMCID: PMC8635300 DOI: 10.1002/anbr.202100063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Self-assembling filomicelles (FM) are of great interest to nanomedicine due to their structural flexibility, extensive systemic circulation time, and amenability to unique "cylinder-to-sphere" morphological transitions. However, current fabrication techniques for FM self-assembly are highly variable and difficult to scale. Here, we demonstrate that tetrablock copolymers composed of poly(ethylene glycol)-b-poly(propylene sulfide) (PEG-b-PPS) diblocks linked by a pi-stacking perylene bisimide (PBI) moiety permit rapid, scalable, and facile assembly of FM via the flash nanoprecipitation (FNP) method. Co-assembling the tetrablocks and PEG-b-PPS diblocks at different molar ratios resulted in mixed PBI-containing FM (mPBI-FM) with tunable length and flexibility. The flexibility of mPBI-FM can be optimized to decrease uptake by macrophages in vivo, leading to increased circulation time versus (-)PBI-FM without PBI tetrablocks after intravenous administration in mice. While PEG-b-PPS diblocks form FM within a narrow range of hydrophilic weight fractions, incorporation of pi-stacking PBI groups expanded this range to increase favorability of FM assembly. Furthermore, the aggregation-dependent fluorescence of PBI shifted during oxidation-induced "cylinder-to-sphere" transitions of mPBI-FM into micelles, resulting in a distinct emission wavelength for filamentous versus spherical nanostructures. Thus, incorporation of pi-stacking allows for rapid, scalable assembly of FM with tunable flexibility and stability for theranostic and nanomedicine applications.
Collapse
Affiliation(s)
- Sophia Li
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Sharan Bobbala
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael P Vincent
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Mallika Modak
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Yugang Liu
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
11
|
Mougin J, Bourgaux C, Couvreur P. Elongated self-assembled nanocarriers: From molecular organization to therapeutic applications. Adv Drug Deliv Rev 2021; 172:127-147. [PMID: 33705872 DOI: 10.1016/j.addr.2021.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/18/2020] [Accepted: 02/26/2021] [Indexed: 12/31/2022]
Abstract
Self-assembled cylindrical aggregates made of amphiphilic molecules emerged almost 40 years ago. Due to their length up to micrometers, those particles display original physico-chemical properties such as important flexibility and, for concentrated samples, a high viscoelasticity making them suitable for a wide range of industrial applications. However, a quarter of century was needed to successfully take advantage of those improvements towards therapeutic purposes. Since then, a wide diversity of biocompatible materials such as polymers, lipids or peptides, have been developed to design self-assembling elongated drug nanocarriers, suitable for therapeutic or diagnostic applications. More recently, the investigation of the main forces driving the unidirectional growth of these nanodevices allowed a translation toward the formation of pure nanodrugs to avoid the use of unnecessary side materials and the possible toxicity concerns associated.
Collapse
Affiliation(s)
- Julie Mougin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Claudie Bourgaux
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Patrick Couvreur
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
12
|
He Y, Cao Y, Mao Z, Zhou Y, Zhang Y, Pei R. Redox-triggered aggregation of ESIONPs with switchable T1 to T2 contrast effect for T2-weighted magnetic resonance imaging. J Mater Chem B 2021; 9:1821-1832. [PMID: 33508067 DOI: 10.1039/d0tb02411b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Magnetic resonance imaging (MRI) contrast agents (CAs) have drawn increasing attention in cancer diagnosis. However, since the signals they generate are always "on" and may bring interfering background signals to the region of interest, their selectivity and sensitivity need further improvement. Herein, extremely small iron oxide nanoparticles (ESIONPs) conjugated through a disulfide bond with polyethylene glycol (PEG) that is terminally modified with folic acid (FA), namely ESIONPs-s-s-PEG-FA, were designed and synthesized to target tumor tissues and selectively activate the T2 MRI contrast effect in the reducing environment of tumor cells. Due to the breakage of disulfide bonds by the high glutathione (GSH) concentration in tumor cells, the hydrophilic PEG chains detached from the surface of ESIONPs, which led to the aggregation of ESIONPs and the activation of the T2 contrast effect. In vitro results showed that ESIONPs-s-s-PEG-FA could effectively target tumors to assemble in the reductive environment and switch from a T1 contrast agent (CA) to a T2 one. Furthermore, MRI in tumor-bearing mice also indicated the obvious targeting capacity and the "turn on" of the T2 contrast effect. In addition, the results of the biosafety assay suggest that the tumor-targeted T1/T2 switchable CA is equipped with favorable biocompatibility for cancer diagnosis.
Collapse
Affiliation(s)
- Yilin He
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China. and Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Zheng Mao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Youxin Zhou
- The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ye Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
13
|
Araste F, Aliabadi A, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Self-assembled polymeric vesicles: Focus on polymersomes in cancer treatment. J Control Release 2021; 330:502-528. [DOI: 10.1016/j.jconrel.2020.12.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022]
|
14
|
Keller CB, Walley SE, Jarand CW, He J, Ejaz M, Savin DA, Grayson SM. Synthesis of poly(caprolactone)- block-poly[oligo(ethylene glycol)methyl methacrylate] amphiphilic grafted nanoparticles (AGNs) as improved oil dispersants. Polym Chem 2021. [DOI: 10.1039/d1py00418b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Amphiphilic polymers have been covalently grafted from a SiO2 core with room temperature polymerizations. These amphiphilic grafted nanoparticles have been found to uptake up to 30 times their mass in crude oil within a 24 hour window.
Collapse
Affiliation(s)
- Christopher B. Keller
- Department of Chemistry, Percival Stern Hall, Tulane University, New Orleans, Louisiana, 70118, USA
| | - Susan E. Walley
- Department of Chemistry, Leigh Hall, University of Florida, Gainesville, Florida 32611, USA
| | - Curtis W. Jarand
- Department of Physics and Engineering Physics, Percival Stern Hall, Tulane University, New Orleans, Louisiana, 70118, USA
| | - Jibao He
- Coordinated Instrument Facility, Percival Stern Hall, Tulane University, New Orleans, Louisiana, 70118, USA
| | - Muhammad Ejaz
- Department of Chemistry, Percival Stern Hall, Tulane University, New Orleans, Louisiana, 70118, USA
| | - Daniel A. Savin
- Department of Chemistry, Leigh Hall, University of Florida, Gainesville, Florida 32611, USA
| | - Scott M. Grayson
- Department of Chemistry, Percival Stern Hall, Tulane University, New Orleans, Louisiana, 70118, USA
| |
Collapse
|
15
|
Vu MN, Kelly HG, Wheatley AK, Peng S, Pilkington EH, Veldhuis NA, Davis TP, Kent SJ, Truong NP. Cellular Interactions of Liposomes and PISA Nanoparticles during Human Blood Flow in a Microvascular Network. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002861. [PMID: 32583981 PMCID: PMC7361276 DOI: 10.1002/smll.202002861] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/04/2020] [Indexed: 05/21/2023]
Abstract
A key concept in nanomedicine is encapsulating therapeutic or diagnostic agents inside nanoparticles to prolong blood circulation time and to enhance interactions with targeted cells. During circulation and depending on the selected application (e.g., cancer drug delivery or immune modulators), nanoparticles are required to possess low or high interactions with cells in human blood and blood vessels to minimize side effects or maximize delivery efficiency. However, analysis of cellular interactions in blood vessels is challenging and is not yet realized due to the diverse components of human blood and hemodynamic flow in blood vessels. Here, the first comprehensive method to analyze cellular interactions of both synthetic and commercially available nanoparticles under human blood flow conditions in a microvascular network is developed. Importantly, this method allows to unravel the complex interplay of size, charge, and type of nanoparticles on their cellular associations under the dynamic flow of human blood. This method offers a unique platform to study complex interactions of any type of nanoparticles in human blood flow conditions and serves as a useful guideline for the rational design of liposomes and polymer nanoparticles for diverse applications in nanomedicine.
Collapse
Affiliation(s)
- Mai N. Vu
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyUniversity of MelbourneMelbourneVIC3000Australia
- Department of PharmaceuticsHanoi University of PharmacyHanoi10000Vietnam
| | - Hannah G. Kelly
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyUniversity of MelbourneMelbourneVIC3000Australia
| | - Adam K. Wheatley
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyUniversity of MelbourneMelbourneVIC3000Australia
| | - Scott Peng
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
| | - Emily H. Pilkington
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyUniversity of MelbourneMelbourneVIC3000Australia
| | - Nicholas A. Veldhuis
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
| | - Thomas P. Davis
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- Australia Institute of Bioengineering & NanotechnologyUniversity of QueenslandBrisbaneQLD4072Australia
| | - Stephen J. Kent
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyUniversity of MelbourneMelbourneVIC3000Australia
- Melbourne Sexual Health Centre and Department of Infectious DiseasesAlfred Hospital and Central Clinical SchoolMonash UniversityMelbourneVIC3004Australia
| | - Nghia P. Truong
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
| |
Collapse
|
16
|
Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. NANOMATERIALS 2020; 10:nano10071403. [PMID: 32707641 PMCID: PMC7408012 DOI: 10.3390/nano10071403] [Citation(s) in RCA: 437] [Impact Index Per Article: 87.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
The complexity of some diseases—as well as the inherent toxicity of certain drugs—has led to an increasing interest in the development and optimization of drug-delivery systems. Polymeric nanoparticles stand out as a key tool to improve drug bioavailability or specific delivery at the site of action. The versatility of polymers makes them potentially ideal for fulfilling the requirements of each particular drug-delivery system. In this review, a summary of the state-of-the-art panorama of polymeric nanoparticles as drug-delivery systems has been conducted, focusing mainly on those applications in which the corresponding disease involves an important morbidity, a considerable reduction in the life quality of patients—or even a high mortality. A revision of the use of polymeric nanoparticles for ocular drug delivery, for cancer diagnosis and treatment, as well as nutraceutical delivery, was carried out, and a short discussion about future prospects of these systems is included.
Collapse
|
17
|
Goos JACM, Davydova M, Dilling TR, Cho A, Cornejo MA, Gupta A, Price WS, Puttick S, Whittaker MR, Quinn JF, Davis TP, Lewis JS. Design and preclinical evaluation of nanostars for the passive pretargeting of tumor tissue. Nucl Med Biol 2020; 84-85:63-72. [PMID: 32135473 PMCID: PMC7253331 DOI: 10.1016/j.nucmedbio.2020.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Pretargeting strategies that do not rely on the expression of molecular targets have expanded imaging and therapy options for cancer patients. Nanostars with designed multivalency and which highly accumulate in tumor tissue via the enhanced permeability and retention (EPR) effect may therefore be the ideal vectors for the development of a passive pretargeting approach. METHODS Nanostars were synthesized, consisting of 7-8 center-cross-linked arms that were modified with trans-cyclooctene (TCO) using poly(ethylene glycol) (PEG) linkers of 12 or 106 monomer units or without linker. The bioorthogonal click reaction with radiofluorinated 2,2'-(7-(2-(tetrazine-poly(ethyleneglycol)11-amino)-2-oxoethyl)-1,4,7-triazonane-1,4-diyl)diacetic acid ([18F]F-Tz-PEG11-NODA) or 2,2'-(7-(2-(tetrazine-amino)-2-oxoethyl)-1,4,7-triazonane-1,4-diyl)diacetic acid ([18F]F-Tz-NODA) was measured by ex vivo biodistribution studies and positron emission tomography (PET) in mice bearing tumors with high EPR characteristics. Bioorthogonal masking was performed using a tetrazine-functionalized dextran polymer (Tz-DP). RESULTS Highest tumor accumulation of [18F]F-Tz-PEG11-NODA was observed for nanostars functionalized with TCO without linker, with a tumor uptake of 3.2 ± 0.4%ID/g and a tumor-to-muscle ratio of 12.8 ± 4.2, tumor-to-large intestine ratio of 0.5 ± 0.3 and tumor-to-kidney ratio of 2.0 ± 0.3, being significantly higher than for nanostars functionalized with TCO-PEG12 (P < 0.05) or TCO-PEG106 (P < 0.05). Tumor uptake and tumor-to-tissue ratios did not improve upon bioorthogonal masking with Tz-DP or when using a smaller, more lipophilic tetrazine([18F]F-Tz-NODA). CONCLUSIONS A pretargeting strategy was developed based on the passive delivery of TCO-functionalized nanostars. Such a strategy would allow for the imaging and treatment of tumors with apparent EPR characteristics, with high radioactive tumor doses and minimal doses to off-target tissues.
Collapse
Affiliation(s)
- Jeroen A C M Goos
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA; ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden; MedTechLabs, Stockholm, Sweden.
| | - Maria Davydova
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Thomas R Dilling
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Andrew Cho
- Department of Biochemistry & Structural Biology, Weill Cornell Graduate School, New York, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, USA
| | - Mike A Cornejo
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Abhishek Gupta
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Penrith, Australia
| | - William S Price
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Penrith, Australia
| | - Simon Puttick
- Probing Biosystems Future Science Platform, Commonwealth Scientific and Industrial Research Organisation, Herston, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Australia
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA; Department of Radiology, the Molecular Pharmacology Program and the Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Radiology, Weill Cornell Medical College, New York, USA; Department Pharmacology, Weill Cornell Medical College, New York, USA
| |
Collapse
|
18
|
Lauterbach F, Abetz V. An eco-friendly pathway to thermosensitive micellar nanoobjects via photoRAFT PISA: the full guide to poly(N-acryloylpyrrolidin)-block-polystyrene diblock copolymers. SOFT MATTER 2020; 16:2321-2331. [PMID: 32052824 DOI: 10.1039/c9sm02483b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spherical macromolecular assemblies, so-called latexes, consisting of polystyrene (PS) resemble a relevant class of synthetic polymers used for a plethora of applications ranging from coatings or lubricants to biomedical applications. Their synthesis is usually tailored to the respective application where emulsifiers, radical initiators, or other additives still play a major role in achieving the desired properties. Herein, we demonstrate an alternative based on the photoiniferter reversible addition-fragmentation chain transfer (RAFT) polymerization-induced self-assembly (PISA) of Poly(N-acryloylpyrrolidin)-block-polystyrene (PAPy-b-PS). This approach yields monodisperse nanospheres with tunable sizes based on an aqueous formulation with only two ingredients. These nanospheres are additionally thermosensitive, meaning that they change their hydrodynamic diameter linearly with the temperature in a broad range between 10 °C and 70 °C. Combined with the eco-friendly synthesis in pure water at 40 °C, the herein presented route constitutes an unprecedented pathway to thermosensitive diblock copolymer aggregates in short reaction times without any additives.
Collapse
Affiliation(s)
- Felix Lauterbach
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
| | - Volker Abetz
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
| |
Collapse
|
19
|
Gurnani P, Perrier S. Controlled radical polymerization in dispersed systems for biological applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101209] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Bao C, Chen J, Li D, Zhang A, Zhang Q. Synthesis of lipase–polymer conjugates by Cu(0)-mediated reversible deactivation radical polymerization: polymerization vs. degradation. Polym Chem 2020. [DOI: 10.1039/c9py01462d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cu(0)-RDRP was first used for the polymerization-induced self-assembly of lipase–polymer conjugates, inducing the formation of nanospheres with preserved activity and degradability.
Collapse
Affiliation(s)
- Chunyang Bao
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Jing Chen
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Die Li
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Aotian Zhang
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Qiang Zhang
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| |
Collapse
|
21
|
Xu XF, Pan CY, Zhang WJ, Hong CY. Polymerization-Induced Self-Assembly Generating Vesicles with Adjustable pH-Responsive Release Performance. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00144] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiao-Fei Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
22
|
Chen M, Li JW, Zhang WJ, Hong CY, Pan CY. pH- and Reductant-Responsive Polymeric Vesicles with Robust Membrane-Cross-Linked Structures: In Situ Cross-Linking in Polymerization-Induced Self-Assembly. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02081] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Miao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jia-Wei Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen-Jian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chun-Yan Hong
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cai-Yuan Pan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
23
|
Gurnani P, Cook AB, Richardson RAE, Perrier S. A study on the preparation of alkyne functional nanoparticlesviaRAFT emulsion polymerisation. Polym Chem 2019. [DOI: 10.1039/c8py01579a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We evaluate the parameters surrounding the preparation of colloidally stable alkyne functional latex nanoparticlesviaRAFT emulsion polymerisation.
Collapse
Affiliation(s)
| | | | | | - Sébastien Perrier
- Department of Chemistry
- University of Warwick
- Coventry
- UK
- Warwick Medical School
| |
Collapse
|
24
|
One step synthesis of monodisperse thiol-ene clickable polymer microspheres and application on biological functionalization. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Guo S, Xiao X, Wang X, Luo Q, Zhu H, Zhang H, Li H, Gong Q, Luo K. Reductive microenvironment responsive gadolinium-based polymers as potential safe MRI contrast agents. Biomater Sci 2019; 7:1919-1932. [PMID: 30773580 DOI: 10.1039/c8bm01103f] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A ROX and enzyme-responsive biodegradable gadolinium-based mCA was prepared, demonstrating a short gadolinium retention time and sufficient MRI contrast efficacy in tumors.
Collapse
Affiliation(s)
- Shiwei Guo
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- and National Engineering Research Center for Biomaterials
- Sichuan University
| | - Xueyang Xiao
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- and National Engineering Research Center for Biomaterials
- Sichuan University
| | - Xiaoming Wang
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- and National Engineering Research Center for Biomaterials
- Sichuan University
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- and National Engineering Research Center for Biomaterials
- Sichuan University
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- and National Engineering Research Center for Biomaterials
- Sichuan University
| | - Hu Zhang
- Amgen Bioprocess Centre
- Keck Graduate Institute
- USA
| | - Haonan Li
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- and National Engineering Research Center for Biomaterials
- Sichuan University
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- and National Engineering Research Center for Biomaterials
- Sichuan University
| | - Kui Luo
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- and National Engineering Research Center for Biomaterials
- Sichuan University
| |
Collapse
|
26
|
Zu G, Cao Y, Dong J, Zhou Q, van Rijn P, Liu M, Pei R. Development of an Aptamer-Conjugated Polyrotaxane-Based Biodegradable Magnetic Resonance Contrast Agent for Tumor-Targeted Imaging. ACS APPLIED BIO MATERIALS 2018; 2:406-416. [DOI: 10.1021/acsabm.8b00639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Guangyue Zu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Department of Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jingjin Dong
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Qihui Zhou
- Department of Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Patrick van Rijn
- Department of Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Min Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
27
|
Jelonek K, Kasperczyk J, Li S, Nguyen THN, Orchel A, Chodurek E, Paduszyński P, Jaworska-Kik M, Chrobak E, Bębenek E, Boryczka S, Jarosz-Biej M, Smolarczyk R, Foryś A. Bioresorbable filomicelles for targeted delivery of betulin derivative - In vitro study. Int J Pharm 2018; 557:43-52. [PMID: 30576789 DOI: 10.1016/j.ijpharm.2018.12.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/23/2018] [Accepted: 12/08/2018] [Indexed: 01/02/2023]
Abstract
Filomicelles (worm-like micelles) possess high drug loading capacity and long circulation time in the bloodstream. A novel approach can be filomicelles with folic acid (FA) as a targeting moiety. Folate-drug delivery systems can target FA receptors (FAR) that are overexpressed in several human carcinomas, which can potentially maximize therapeutic efficacy while minimizing side effects. The aim of this study was to develop filomicelles from combination of poly(L-lactide)-Jeffamine-folic acid and poly(L-lactide)-poly(ethylene glycol) for delivery of betulin derivative. Phosphate derivative of betulin reveals high cytotoxicity against cancer cells, however its application is restricted due to poor solubility in water. Incorporation into hydrophobic core of micelles can effectively solubilize the drug. Three kinds of micelles were obtained with high drug loading capacity. Based on TEM analysis, the copolymers formed exclusively filomicelles or mixture of filomicelles and spherical micelles. All kinds of micelles provided release of betulin derivative for over 9 days and apart the very initial phase displayed similar release profile. The influence of PLA block on initial burst effect was revealed. The in vitro cytotoxicity of betulin derivative loaded micelles against FAR-positive HeLa cells was confirmed, which proves their usefulness for targeted delivery of cytostatic drug.
Collapse
Affiliation(s)
- Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Sklodowska 34 St., 41-819 Zabrze, Poland.
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Sklodowska 34 St., 41-819 Zabrze, Poland; School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland, Department of Biopharmacy, Jedności 8, Sosnowiec, Poland.
| | - Suming Li
- European Institute of Membranes, UMR CNRS 5635, University of Montpellier, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France.
| | - Thi Hong Nhung Nguyen
- European Institute of Membranes, UMR CNRS 5635, University of Montpellier, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France
| | - Arkadiusz Orchel
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland, Department of Biopharmacy, Jedności 8, Sosnowiec, Poland
| | - Ewa Chodurek
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland, Department of Biopharmacy, Jedności 8, Sosnowiec, Poland
| | - Piotr Paduszyński
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland, Department of Biopharmacy, Jedności 8, Sosnowiec, Poland
| | - Marzena Jaworska-Kik
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland, Department of Biopharmacy, Jedności 8, Sosnowiec, Poland
| | - Elwira Chrobak
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland, Department of Organic Chemistry, Jagiellońska 4, Sosnowiec, Poland
| | - Ewa Bębenek
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland, Department of Organic Chemistry, Jagiellońska 4, Sosnowiec, Poland
| | - Stanisław Boryczka
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland, Department of Organic Chemistry, Jagiellońska 4, Sosnowiec, Poland
| | - Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-101, Gliwice, Poland
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-101, Gliwice, Poland
| | - Aleksander Foryś
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Sklodowska 34 St., 41-819 Zabrze, Poland
| |
Collapse
|
28
|
Riaz U, Jadoun S, Kumar P, Kumar R, Yadav N. Microwave-assisted facile synthesis of poly(luminol- co-phenylenediamine) copolymers and their potential application in biomedical imaging. RSC Adv 2018; 8:37165-37175. [PMID: 35557797 PMCID: PMC9089407 DOI: 10.1039/c8ra08373h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/29/2018] [Indexed: 11/21/2022] Open
Abstract
Conjugated copolymers have attracted much attention because of their outstanding photo-physical properties. The present work reports for the first time, microwave-assisted copolymerization of o-phenylenediamine with luminol using different weight ratios of the two monomers. The composition of the copolymers was confirmed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (1H-NMR) while monomer reactivity ratios were determined using the Fineman–Ross method. Ultraviolet-visible spectroscopy revealed the variation in polaronic states upon copolymerization while X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses showed the morphology of the copolymers to be intermediate between that of the homopolymers. Confocal analysis and fluorescence studies revealed that the copolymers showed composition based blue as well as red emission which could be utilized for in vivo imaging of cancer cells. Development of bioimaging agents based on poly(o-phenylendiamine and luminol).![]()
Collapse
Affiliation(s)
- Ufana Riaz
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia New Delhi-110025 India
| | - Sapana Jadoun
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia New Delhi-110025 India
| | - Prabhat Kumar
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University New Delhi-110067 India
| | - Raj Kumar
- Cancer and Radiation Therapeutics Laboratory, School of Life Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Nitin Yadav
- Department of Chemistry, Indian Institute of Technology Delhi-110016 India
| |
Collapse
|
29
|
Evangelopoulos M, Parodi A, Martinez JO, Tasciotti E. Trends towards Biomimicry in Theranostics. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E637. [PMID: 30134564 PMCID: PMC6164646 DOI: 10.3390/nano8090637] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/27/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022]
Abstract
Over the years, imaging and therapeutic modalities have seen considerable progress as a result of advances in nanotechnology. Theranostics, or the marrying of diagnostics and therapy, has increasingly been employing nano-based approaches to treat cancer. While first-generation nanoparticles offered considerable promise in the imaging and treatment of cancer, toxicity and non-specific distribution hindered their true potential. More recently, multistage nanovectors have been strategically designed to shield and carry a payload to its intended site. However, detection by the immune system and sequestration by filtration organs (i.e., liver and spleen) remains a major obstacle. In an effort to circumvent these biological barriers, recent trends have taken inspiration from biology. These bioinspired approaches often involve the use of biologically-derived cellular components in the design and fabrication of biomimetic nanoparticles. In this review, we provide insight into early nanoparticles and how they have steadily evolved to include bioinspired approaches to increase their theranostic potential.
Collapse
Affiliation(s)
- Michael Evangelopoulos
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Alessandro Parodi
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Jonathan O Martinez
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
- Department of Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Cao Y, Zu G, Kuang Y, He Y, Mao Z, Liu M, Xiong D, Pei R. Biodegradable Nanoglobular Magnetic Resonance Imaging Contrast Agent Constructed with Host-Guest Self-Assembly for Tumor-Targeted Imaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26906-26916. [PMID: 30028584 DOI: 10.1021/acsami.8b08021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Gadolinium-based macromolecular magnetic resonance imaging (MRI) contrast agents (CAs) have attracted increasing interest in tumor diagnosis. However, their practical application is potentially limited because the long-term retention of gadolinium ion in vivo will induce toxicity. Here, a nanoglobular MRI contrast agent (CA) PAMAM-PG- g-s-s-DOTA(Gd) + FA was designed and synthesized on the basis of the facile host-guest interaction between β-cyclodextrin and adamantane, which initiated the self-assembly of poly(glycerol) (PG) separately conjugated with gadolinium chelates by disulfide bonds and folic acid (FA) molecule onto the surface of poly(amidoamine) (PAMAM) dendrimer, finally realizing the biodegradability and targeting specificity. The nanoglobular CA has a higher longitudinal relaxivity ( r1) than commercial gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA), showing a value of 8.39 mM-1 s-1 at 0.5 T, and presents favorable biocompatibility on the observations of cytotoxicity and tissue toxicity. Furthermore, MRI on cells and tumor-bearing mice both demonstrate the obvious targeting specificity, on the basis of which the effective contrast enhancement at tumor location was obtained. In addition, this CA exhibits the ability of cleavage to form free small-molecule gadolinium chelates and can realize minimal gadolinium retention in main organs and tissues after tumor detection. These results suggest that the biodegradable nanoglobular PAMAM-PG- g-s-s-DOTA(Gd) + FA can be a safe and efficient MRI CA for tumor diagnosis.
Collapse
Affiliation(s)
- Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Guangyue Zu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Ye Kuang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Yilin He
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Zheng Mao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Min Liu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Dangsheng Xiong
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| |
Collapse
|
31
|
Khor SY, Quinn JF, Whittaker MR, Truong NP, Davis TP. Controlling Nanomaterial Size and Shape for Biomedical Applications via Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2018; 40:e1800438. [PMID: 30091816 DOI: 10.1002/marc.201800438] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/13/2018] [Indexed: 11/06/2022]
Abstract
Rapid developments in the polymerization-induced self-assembly (PISA) technique have paved the way for the environmentally friendly production of nanoparticles with tunable size and shape for a diverse range of applications. In this feature article, the biomedical applications of PISA nanoparticles and the substantial progress made in controlling their size and shape are highlighted. In addition to early investigations into drug delivery, applications such as medical imaging, tissue culture, and blood cryopreservation are also described. Various parameters for controlling the morphology of PISA nanoparticles are discussed, including the degree of polymerization of the macro-CTA and core-forming polymers, the concentration of macro-CTA and core-forming monomers, the solid content of the final products, the solution pH, the thermoresponsitivity of the macro-CTA, the macro-CTA end group, and the initiator concentration. Finally, several limitations and challenges for the PISA technique that have been recently addressed, along with those that will require further efforts into the future, will be highlighted.
Collapse
Affiliation(s)
- Song Yang Khor
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Nghia P Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV47AL, UK
| |
Collapse
|
32
|
|
33
|
Khor SY, Vu MN, Pilkington EH, Johnston APR, Whittaker MR, Quinn JF, Truong NP, Davis TP. Elucidating the Influences of Size, Surface Chemistry, and Dynamic Flow on Cellular Association of Nanoparticles Made by Polymerization-Induced Self-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801702. [PMID: 30043521 DOI: 10.1002/smll.201801702] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/10/2018] [Indexed: 06/08/2023]
Abstract
The size and surface chemistry of nanoparticles dictate their interactions with biological systems. However, it remains unclear how these key physicochemical properties affect the cellular association of nanoparticles under dynamic flow conditions encountered in human vascular networks. Here, the facile synthesis of novel fluorescent nanoparticles with tunable sizes and surface chemistries and their association with primary human umbilical vein endothelial cells (HUVECs) is reported. First, a one-pot polymerization-induced self-assembly (PISA) methodology is developed to covalently incorporate a commercially available fluorescent dye into the nanoparticle core and tune nanoparticle size and surface chemistry. To characterize cellular association under flow, HUVECs are cultured onto the surface of a synthetic microvascular network embedded in a microfluidic device (SynVivo, INC). Interestingly, increasing the size of carboxylic acid-functionalized nanoparticles leads to higher cellular association under static conditions but lower cellular association under flow conditions, whereas increasing the size of tertiary amine-decorated nanoparticles results in a higher level of cellular association, under both static and flow conditions. These findings provide new insights into the interactions between polymeric nanomaterials and endothelial cells. Altogether, this work establishes innovative methods for the facile synthesis and biological characterization of polymeric nanomaterials for various potential applications.
Collapse
Affiliation(s)
- Song Yang Khor
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Mai N Vu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Emily H Pilkington
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV47AL, UK
| | - Angus P R Johnston
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Nghia P Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV47AL, UK
| |
Collapse
|
34
|
Zhang WJ, Hong CY, Pan CY. Polymerization-Induced Self-Assembly of Functionalized Block Copolymer Nanoparticles and Their Application in Drug Delivery. Macromol Rapid Commun 2018; 40:e1800279. [DOI: 10.1002/marc.201800279] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/21/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| |
Collapse
|
35
|
Ly J, Li Y, Vu MN, Moffat BA, Jack KS, Quinn JF, Whittaker MR, Davis TP. Nano-assemblies of cationic mPEG brush block copolymers with gadolinium polyoxotungstate [Gd(W 5O 18) 2] 9- form stable, high relaxivity MRI contrast agents. NANOSCALE 2018; 10:7270-7280. [PMID: 29632934 DOI: 10.1039/c8nr01544a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polyoxometalates (POMs) incorporating paramagnetic ions, such as gadolinium, show promise as contrast agents for application in magnetic resonance imaging (MRI). Specifically, [Gd(W5O18)2]9- (denoted as GdWO) has been reported to have a higher relaxivity than commercially available contrast agents, but it's clinical utility has been limited by the intrinsic instability of POMs at physiological pH (7.4). In the current report we present a stability study on neat GdWO and nano-assemblies of block copolymers with GdWO in the pH range 5.0-7.4 to assess their suitability as MRI contrast agents. Neat GdWO only maintained structural stability between pH 5.4 and 6.4, and demonstrated poor MRI contrast at pH 7.4. To address this pH instability, GdWO was self-assembled with cationic mPEG brush block copolymers containing 20 or 40 units derived from the cationic monomer, 2-dimethylaminoethyl methacrylate (DMAEMA). Nano-assemblies with different charge ratios were synthesised and characterised according to their size, stability, contrasting properties and toxicity. The longitudinal relaxivity (r1) of the nano-assemblies was found to be dependent on the charge ratio, but not on the length of the cationic polymer block. Further investigation of PDMAEMA20 nano-assemblies demonstrated that they were stable over the pH range 5.0-7.4, exhibiting a higher r1 than either neat GdWO (2.77 s-1 mM-1) or clinical MRI contrast agent Gd-DTPA (4.1 s-1 mM-1) at pH 7.4. Importantly, the nano-assembly with the lowest charge ratio (0.2), showed the highest r1 (12.1 s-1 mM-1) whilst, stabilising GdWO over the pH range studied, eliciting low toxicity with MDA-MB231 cells.
Collapse
Affiliation(s)
- Joanne Ly
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Truong NP, Zhang C, Nguyen TAH, Anastasaki A, Schulze MW, Quinn JF, Whittaker AK, Hawker CJ, Whittaker MR, Davis TP. Overcoming Surfactant-Induced Morphology Instability of Noncrosslinked Diblock Copolymer Nano-Objects Obtained by RAFT Emulsion Polymerization. ACS Macro Lett 2018; 7:159-165. [PMID: 35610912 DOI: 10.1021/acsmacrolett.7b00978] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RAFT emulsion polymerization techniques including polymerization-induced self-assembly (PISA) and temperature-induced morphological transformation (TIMT) are widely used to produce noncrosslinked nano-objects with various morphologies. However, the worm, vesicle and lamellar morphologies produced by these techniques typically cannot tolerate the presence of added surfactants, thus limiting their potential applications. Herein we report the surfactant tolerance of noncrosslinked worms, vesicles, and lamellae prepared by RAFT emulsion polymerizations using poly(di(ethylene glycol) ethyl ether methacrylate-co-N-(2-hydroxypropyl) methacrylamide) (P(DEGMA-co-HPMA)) as a macromolecular chain transfer agent (macro-CTA). Significantly, these P(DEGMA-co-HPMA) nanoparticles are highly stable in concentrated solutions of surfactants (e.g., sodium dodecyl sulfate (SDS)). We also demonstrate that the surfactant tolerance is related to the limited binding of SDS to the main-chain of the P(DEGMA-co-HPMA) macro-CTA constituting the particle shell. This work provides new insight into the interactions between surfactants and thermoresponsive copolymers and expands the scope of RAFT emulsion polymerization techniques for the preparation of noncrosslinked and surfactant-tolerant nanomaterials.
Collapse
Affiliation(s)
- Nghia P Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | | | | | - Athina Anastasaki
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Morgan W Schulze
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | | | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
37
|
Esser L, Lengkeek NA, Moffat BA, Vu MN, Greguric I, Quinn JF, Davis TP, Whittaker MR. A tunable one-pot three-component synthesis of an125I and Gd-labelled star polymer nanoparticle for hybrid imaging with MRI and nuclear medicine. Polym Chem 2018. [DOI: 10.1039/c8py00621k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bimodal radioiodine/Gd labelled polymeric nanoparticles prepared using a versatile one-step three-component click reaction.
Collapse
Affiliation(s)
- Lars Esser
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Nigel A. Lengkeek
- Australian Nuclear Science and Technology Organisation (ANSTO)
- Kirrawee DC
- Australia
| | | | - Mai N. Vu
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Ivan Greguric
- Australian Nuclear Science and Technology Organisation (ANSTO)
- Kirrawee DC
- Australia
| | - John F. Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| |
Collapse
|
38
|
Nguyen XD, Jeon HJ, Nguyen VT, Park DH, Lee TH, Paik HJ, Huh J, Go JS. Continuous Preparation of Hollow Polymeric Nanocapsules Using Self-Assembly and a Photo-Crosslinking Process of an Amphiphilic Block Copolymer. Molecules 2017; 22:E1892. [PMID: 29099801 PMCID: PMC6150280 DOI: 10.3390/molecules22111892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 11/16/2022] Open
Abstract
This paper presents a fabrication method of hollow polymeric nanocapsules (HPNCs). The HPNCs were examined to reduce light trapping in an organic light emitting diodes (OLED) device by increasing the refractive index contrast. They were continuously fabricated by the sequential process of self-assembly and photo-crosslinking of an amphiphilic block copolymer of SBR-b-PEGMA, poly(styrene-r-butadiene)-b-poly(poly(ethylene glycol) methyl ether methacrylate) in a flow-focusing microfluidic device. After the photo-crosslinking process, the produced HPNCs have a higher resistance to water and organic solvents, which is applicable to the fabrication process of optical devices. The morphology and hollow structure of the produced nanocapsules were determined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Also, their size control was examined by varying the ratio of inlet flow rates and the morphological difference was studied by changing the polymer concentration. The size was measured by dynamic light scattering (DLS). The refractive index of the layer with and without the HPNCs was measured, and a lower refractive index was obtained in the HPNCs-dispersed layer. In future work, the light extraction efficiency of the HPNCs-dispersed OLED will be examined.
Collapse
Affiliation(s)
- Xuan Don Nguyen
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea.
| | - Hyeong Jin Jeon
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea.
| | - Van Tien Nguyen
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea.
| | - Dong Hyeok Park
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea.
| | - Tae Heon Lee
- Department of Polymer Science & Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea.
| | - Hyun-Jong Paik
- Department of Polymer Science & Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea.
| | - June Huh
- Department of Chemical & Biological Engineering, College of Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 02841, Korea.
| | - Jeung Sang Go
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea.
| |
Collapse
|
39
|
Kaga S, Truong NP, Esser L, Senyschyn D, Sanyal A, Sanyal R, Quinn JF, Davis TP, Kaminskas LM, Whittaker MR. Influence of Size and Shape on the Biodistribution of Nanoparticles Prepared by Polymerization-Induced Self-Assembly. Biomacromolecules 2017; 18:3963-3970. [DOI: 10.1021/acs.biomac.7b00995] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sadik Kaga
- Drug
Delivery Disposition Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Department
of Chemistry, Bogazici University, Istanbul 34342, Turkey
| | - Nghia P. Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Lars Esser
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Danielle Senyschyn
- Drug
Delivery Disposition Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Amitav Sanyal
- Department
of Chemistry, Bogazici University, Istanbul 34342, Turkey
| | - Rana Sanyal
- Department
of Chemistry, Bogazici University, Istanbul 34342, Turkey
| | - John F. Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Lisa M. Kaminskas
- Drug
Delivery Disposition Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
- School
of Biomedical Sciences, University of Queensland, St. Lucia, Queensland 7052, Australia
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
40
|
Ding Z, Ding M, Gao C, Boyer C, Zhang W. In Situ Synthesis of Coil–Coil Diblock Copolymer Nanotubes and Tubular Ag/Polymer Nanocomposites by RAFT Dispersion Polymerization in Poly(ethylene glycol). Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01363] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | - Cyrille Boyer
- Centre
for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | |
Collapse
|
41
|
Khor SY, Truong NP, Quinn JF, Whittaker MR, Davis TP. Polymerization-Induced Self-Assembly: The Effect of End Group and Initiator Concentration on Morphology of Nanoparticles Prepared via RAFT Aqueous Emulsion Polymerization. ACS Macro Lett 2017; 6:1013-1019. [PMID: 35650881 DOI: 10.1021/acsmacrolett.7b00583] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polymerization-induced self-assembly (PISA) is a widely used technique for the synthesis of nanoparticles with various morphologies including spheres, worms, and vesicles. The development of a PISA formulation based on reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerization offers considerable advantages such as enhanced rate of polymerization, high conversion and environmentally friendly conditions. However, this formulation has typically produced spheres as opposed to worms and vesicles. Herein, we report the formation of vesicle morphology by increasing the RAFT end-group hydrophobicity of the macromolecular chain transfer agent or manipulating the radical initiator concentration used in the aqueous emulsion polymerization PISA formulation. Additionally, decreasing the molecular weight of the hydrophobic polystyrene domain in these vesicles leads to the formation of worms. This work demonstrates that RAFT end-group hydrophobicity and radical initiator concentration are key parameters which can be exploited to enable access to sphere, worm, and vesicle morphologies via the RAFT aqueous emulsion polymerization.
Collapse
Affiliation(s)
- Song Yang Khor
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Nghia P. Truong
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - John F. Quinn
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Michael R. Whittaker
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Thomas P. Davis
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
42
|
Multimodal Imaging Nanoparticles Derived from Hyaluronic Acid for Integrated Preoperative and Intraoperative Cancer Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:9616791. [PMID: 29097944 PMCID: PMC5612698 DOI: 10.1155/2017/9616791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/30/2017] [Indexed: 12/31/2022]
Abstract
Surgical resection remains the most promising treatment strategy for many types of cancer. Residual malignant tissue after surgery, a consequence in part due to positive margins, contributes to high mortality and disease recurrence. In this study, multimodal contrast agents for integrated preoperative magnetic resonance imaging (MRI) and intraoperative fluorescence image-guided surgery (FIGS) are developed. Self-assembled multimodal imaging nanoparticles (SAMINs) were developed as a mixed micelle formulation using amphiphilic HA polymers functionalized with either GdDTPA for T1 contrast-enhanced MRI or Cy7.5, a near infrared fluorophore. To evaluate the relationship between MR and fluorescence signal from SAMINs, we employed simulated surgical phantoms that are routinely used to evaluate the depth at which near infrared (NIR) imaging agents can be detected by FIGS. Finally, imaging agent efficacy was evaluated in a human breast tumor xenograft model in nude mice, which demonstrated contrast in both fluorescence and magnetic resonance imaging.
Collapse
|
43
|
Craciun I, Gunkel-Grabole G, Belluati A, Palivan CG, Meier W. Expanding the potential of MRI contrast agents through multifunctional polymeric nanocarriers. Nanomedicine (Lond) 2017; 12:811-817. [PMID: 28322116 DOI: 10.2217/nnm-2016-0413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MRI is a sought-after, noninvasive tool in medical diagnostics, yet the direct application of contrast agents to tissue suffers from several drawbacks. Hosting the contrast agents in polymeric nanocarriers can solve many of these issues while creating additional benefit through exploitation of the intrinsic characteristics of the polymeric carriers. In this report, the versatility is highlighted with recent examples of dendritic and hyperbranched polymers, polymer nanoparticles and micelles, and polymersomes as multifunctional bioresponsive nanocarriers for MRI contrast agents.
Collapse
Affiliation(s)
- Ioana Craciun
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Gesine Gunkel-Grabole
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Andrea Belluati
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
44
|
Liu H, Ding M, Ding Z, Gao C, Zhang W. In situ synthesis of the Ag/poly(4-vinylpyridine)-block-polystyrene composite nanoparticles by dispersion RAFT polymerization. Polym Chem 2017. [DOI: 10.1039/c7py00473g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new method for the synthesis of metal/block-copolymer nanocomposites of poly(4-vinylpyridine)-b-polystyrene (P4VP-b-PS) and Ag nanoparticles by dispersion RAFT polymerization is proposed.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Mingdu Ding
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Zhonglin Ding
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Chengqiang Gao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
45
|
Yuan B, He X, Qu Y, Gao C, Eiser E, Zhang W. In situ synthesis of a self-assembled AB/B blend of poly(ethylene glycol)-b-polystyrene/polystyrene by dispersion RAFT polymerization. Polym Chem 2017. [DOI: 10.1039/c7py00339k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A diblock-copolymer/homopolymer self-assembled blend was synthesized through dispersion RAFT polymerization, and its morphology changed with a decreasing ratio of diblock-copolymer/homopolymer.
Collapse
Affiliation(s)
- Bing Yuan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xin He
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yaqing Qu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Chengqiang Gao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Erika Eiser
- Cavendish Laboratory
- University of Cambridge
- Cambridge CB3 0HE
- UK
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
46
|
Hatton FL, Lovett JR, Armes SP. Synthesis of well-defined epoxy-functional spherical nanoparticles by RAFT aqueous emulsion polymerization. Polym Chem 2017. [DOI: 10.1039/c7py01107e] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The environmentally-friendly synthesis of epoxy-functional spherical nanoparticles is achieved via RAFT aqueous emulsion polymerization of glycidyl methacrylate under mild conditions; derivatization of such nanoparticles with sodium azide or diamines is demonstrated.
Collapse
Affiliation(s)
- Fiona L. Hatton
- Dainton Building
- Department of Chemistry
- University of Sheffield
- South Yorkshire S3 7HF
- UK
| | - Joseph R. Lovett
- Dainton Building
- Department of Chemistry
- University of Sheffield
- South Yorkshire S3 7HF
- UK
| | - Steven P. Armes
- Dainton Building
- Department of Chemistry
- University of Sheffield
- South Yorkshire S3 7HF
- UK
| |
Collapse
|
47
|
Sadrearhami Z, Yeow J, Nguyen TK, Ho KKK, Kumar N, Boyer C. Biofilm dispersal using nitric oxide loaded nanoparticles fabricated by photo-PISA: influence of morphology. Chem Commun (Camb) 2017; 53:12894-12897. [DOI: 10.1039/c7cc07293g] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The morphology of nitric oxide loaded polymeric nanoparticles is a significant parameter that influence the nitric oxide release and dispersal of bacterial biofilms.
Collapse
Affiliation(s)
- Zahra Sadrearhami
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Australia
- Sydney
- Australia
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Australia
- Sydney
- Australia
| | - Thuy-Khanh Nguyen
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Australia
- Sydney
- Australia
| | | | - Naresh Kumar
- School of Chemistry
- UNSW Australia
- Sydney
- Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Australia
- Sydney
- Australia
| |
Collapse
|