1
|
Rodriguez SR, Álvaro G, Guillén M, Romero O. Multienzymatic Platform for Coupling a CCU Strategy to Waste Valorization: CO 2 from the Iron and Steel Industry and Crude Glycerol from Biodiesel Production. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2025; 13:1440-1449. [PMID: 39917286 PMCID: PMC11795641 DOI: 10.1021/acssuschemeng.4c04908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 02/09/2025]
Abstract
Ongoing climate crisis demands the development of carbon capture and utilization (CCU) technologies that emphasize simplicity, eco-sustainability, and cost-effectiveness. Enzymatic CO2 reduction emerges as an alternative to biotransforming this cheap raw material into high-value products under milder conditions. This work proposes a multienzymatic platform to reduce CO2 to formate by formate dehydrogenase (FDH) and oxidize glycerol to dihydroxyacetone (DHA) by glycerol dehydrogenase (GlyDH), allowing for efficient cofactor regeneration. Through studies such as pH operating range, enzyme stability, FDH/GlyDH ratio, and reaction medium engineering to achieve optimal soluble CO2 concentrations, the reaction with a gas mixture of 24% CO2 yielded 5.7 mM formate and 6 mM DHA after 30 h, achieving a 92.3% CO2 conversion. To evaluate the feasibility under industrially relevant conditions, a synthetic gas mixture mimicking the composition of the iron and steel industry off-gases (24.5% CO2) and crude glycerol (64% v/v) from biodiesel production was tested as substrates. The simultaneous production was successful, yielding 3.1 mM formate and 4.4 mM DHA. Formic acid was subsequently purified using liquid-liquid extraction, employing the green solvent 2-methyltetrahydrofuran (2-MTHF). For the first time to our knowledge, a CCU strategy has been successfully coupled with industrial waste valorization, obtaining two high-value molecules by means of a robust, profitable, and easily manageable multienzymatic system.
Collapse
Affiliation(s)
- Sady Roberto Rodriguez
- Bioprocess Engineering and
Applied Biocatalysis Group, Department of Chemical, Biological and
Environmental Engineering, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| | - Gregorio Álvaro
- Bioprocess Engineering and
Applied Biocatalysis Group, Department of Chemical, Biological and
Environmental Engineering, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| | - Marina Guillén
- Bioprocess Engineering and
Applied Biocatalysis Group, Department of Chemical, Biological and
Environmental Engineering, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| | - Oscar Romero
- Bioprocess Engineering and
Applied Biocatalysis Group, Department of Chemical, Biological and
Environmental Engineering, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
2
|
Bährle R, Böhnke S, Englhard J, Bachmann J, Perner M. Current status of carbon monoxide dehydrogenases (CODH) and their potential for electrochemical applications. BIORESOUR BIOPROCESS 2023; 10:84. [PMID: 38647803 PMCID: PMC10992861 DOI: 10.1186/s40643-023-00705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/16/2023] [Indexed: 04/25/2024] Open
Abstract
Anthropogenic carbon dioxide (CO2) levels are rising to alarming concentrations in earth's atmosphere, causing adverse effects and global climate changes. In the last century, innovative research on CO2 reduction using chemical, photochemical, electrochemical and enzymatic approaches has been addressed. In particular, natural CO2 conversion serves as a model for many processes and extensive studies on microbes and enzymes regarding redox reactions involving CO2 have already been conducted. In this review we focus on the enzymatic conversion of CO2 to carbon monoxide (CO) as the chemical conversion downstream of CO production render CO particularly attractive as a key intermediate. We briefly discuss the different currently known natural autotrophic CO2 fixation pathways, focusing on the reversible reaction of CO2, two electrons and protons to CO and water, catalyzed by carbon monoxide dehydrogenases (CODHs). We then move on to classify the different type of CODHs, involved catalyzed chemical reactions and coupled metabolisms. Finally, we discuss applications of CODH enzymes in photochemical and electrochemical cells to harness CO2 from the environment transforming it into commodity chemicals.
Collapse
Affiliation(s)
- Rebecca Bährle
- Department of Marine Geomicrobiology, Faculty of Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany
| | - Stefanie Böhnke
- Department of Marine Geomicrobiology, Faculty of Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany
| | - Jonas Englhard
- Chemistry of Thin Film Materials, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Julien Bachmann
- Chemistry of Thin Film Materials, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Mirjam Perner
- Department of Marine Geomicrobiology, Faculty of Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany.
| |
Collapse
|
3
|
Shi HL, Yuan SW, Xi XQ, Xie YL, Yue C, Zhang YJ, Yao LG, Xue C, Tang CD. Engineering of formate dehydrogenase for improving conversion potential of carbon dioxide to formate. World J Microbiol Biotechnol 2023; 39:352. [PMID: 37864750 DOI: 10.1007/s11274-023-03739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/24/2023] [Indexed: 10/23/2023]
Abstract
Formate dehydrogenase (FDH) is a D-2-hydroxy acid dehydrogenase, which can reversibly reduce CO2 to formate and thus act as non-photosynthetic CO2 reductase. In order to increase catalytic efficiency of formate dehydrogenase for CO2 reduction, two mutants V328I/F285W and V354G/F285W were obtained of which reduction activity was about two times more than the parent CbFDHM2, and the formate production from CO2 catalyzed by mutants were 2.9 and 2.7-fold higher than that of the parent CbFDHM2. The mutants had greater potential in CO2 reduction. The optimal temperature for V328I/F285W and V354G/F285W was 55 °C, and they showed increasement of relative activity under 45 °C to 55 °C compared with parent. The optimal pH for the mutants was 9.0, and they showed excellent stability in pH 4.0-11.5. The kcat/Km values of mutants were 1.75 times higher than that of the parent. Then the molecular basis for its improvement of biochemical characteristics were preliminarily elucidated by computer-aided methods. All of these results further established a solid foundation for molecular modification of formate dehydrogenase and CO2 reduction.
Collapse
Affiliation(s)
- Hong-Ling Shi
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, Liaoning, People's Republic of China
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China
| | - Shu-Wei Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University, 46 Jianshe East Road, Xinxiang, 453007, Henan, People's Republic of China
| | - Xiao-Qi Xi
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China
| | - Yu-Li Xie
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China
| | - Chao Yue
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China
| | - Ying-Jun Zhang
- Henan Engineering Technology Research Center for Mushroom-based Foods, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China
| | - Lun-Guang Yao
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China.
| | - Chuang Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, Liaoning, People's Republic of China.
| | - Cun-Duo Tang
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China.
| |
Collapse
|
4
|
Kobayashi A, Taketa M, Sowa K, Kano K, Higuchi Y, Ogata H. Structure and function relationship of formate dehydrogenases: an overview of recent progress. IUCRJ 2023; 10:544-554. [PMID: 37668215 PMCID: PMC10478512 DOI: 10.1107/s2052252523006437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/24/2023] [Indexed: 09/06/2023]
Abstract
Formate dehydrogenases (FDHs) catalyze the two-electron oxidation of formate to carbon dioxide. FDHs can be divided into several groups depending on their subunit composition and active-site metal ions. Metal-dependent (Mo- or W-containing) FDHs from prokaryotic organisms belong to the superfamily of molybdenum enzymes and are members of the dimethylsulfoxide reductase family. In this short review, recent progress in the structural analysis of FDHs together with their potential biotechnological applications are summarized.
Collapse
Affiliation(s)
- Ami Kobayashi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Midori Taketa
- Graduate School of Science, University of Hyogo, Koto 3-2-1 Kamigori, Ako, Hyogo 678-1297, Japan
| | - Keisei Sowa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kenji Kano
- Office of Society Academia Collaboration for Innovation, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Yoshiki Higuchi
- Graduate School of Science, University of Hyogo, Koto 3-2-1 Kamigori, Ako, Hyogo 678-1297, Japan
| | - Hideaki Ogata
- Graduate School of Science, University of Hyogo, Koto 3-2-1 Kamigori, Ako, Hyogo 678-1297, Japan
| |
Collapse
|
5
|
Serafini M, Mariani F, Basile F, Scavetta E, Tonelli D. From Traditional to New Benchmark Catalysts for CO 2 Electroreduction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111723. [PMID: 37299627 DOI: 10.3390/nano13111723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
In the last century, conventional strategies pursued to reduce or convert CO2 have shown limitations and, consequently, have been pushing the development of innovative routes. Among them, great efforts have been made in the field of heterogeneous electrochemical CO2 conversion, which boasts the use of mild operative conditions, compatibility with renewable energy sources, and high versatility from an industrial point of view. Indeed, since the pioneering studies of Hori and co-workers, a wide range of electrocatalysts have been designed. Starting from the performances achieved using traditional bulk metal electrodes, advanced nanostructured and multi-phase materials are currently being studied with the main goal of overcoming the high overpotentials usually required for the obtainment of reduction products in substantial amounts. This review reports the most relevant examples of metal-based, nanostructured electrocatalysts proposed in the literature during the last 40 years. Moreover, the benchmark materials are identified and the most promising strategies towards the selective conversion to high-added-value chemicals with superior productivities are highlighted.
Collapse
Affiliation(s)
- Martina Serafini
- Department of Industrial Chemistry "Toso Montanari", Viale del Risorgimento 4, 40136 Bologna, Italy
- Center for Chemical Catalysis-C3, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Federica Mariani
- Department of Industrial Chemistry "Toso Montanari", Viale del Risorgimento 4, 40136 Bologna, Italy
- Center for Chemical Catalysis-C3, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Francesco Basile
- Department of Industrial Chemistry "Toso Montanari", Viale del Risorgimento 4, 40136 Bologna, Italy
- Center for Chemical Catalysis-C3, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Erika Scavetta
- Department of Industrial Chemistry "Toso Montanari", Viale del Risorgimento 4, 40136 Bologna, Italy
- Center for Chemical Catalysis-C3, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Domenica Tonelli
- Department of Industrial Chemistry "Toso Montanari", Viale del Risorgimento 4, 40136 Bologna, Italy
- Center for Chemical Catalysis-C3, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
6
|
Abstract
The Fischer-Tropsch (FT) process converts a mixture of CO and H2 into liquid hydrocarbons as a major component of the gas-to-liquid technology for the production of synthetic fuels. Contrary to the energy-demanding chemical FT process, the enzymatic FT-type reactions catalyzed by nitrogenase enzymes, their metalloclusters, and synthetic mimics utilize H+ and e- as the reducing equivalents to reduce CO, CO2, and CN- into hydrocarbons under ambient conditions. The C1 chemistry exemplified by these FT-type reactions is underscored by the structural and electronic properties of the nitrogenase-associated metallocenters, and recent studies have pointed to the potential relevance of this reactivity to nitrogenase mechanism, prebiotic chemistry, and biotechnological applications. This review will provide an overview of the features of nitrogenase enzymes and associated metalloclusters, followed by a detailed discussion of the activities of various nitrogenase-derived FT systems and plausible mechanisms of the enzymatic FT reactions, highlighting the versatility of this unique reactivity while providing perspectives onto its mechanistic, evolutionary, and biotechnological implications.
Collapse
Affiliation(s)
- Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
| | - Mario Grosch
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
| | - Joseph B. Solomon
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Wolfgang Weigand
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| |
Collapse
|
7
|
Sun Y, Younis SA, Kim KH, Kumar V. Potential utility of BiOX photocatalysts and their design/modification strategies for the optimum reduction of CO 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160923. [PMID: 36543271 DOI: 10.1016/j.scitotenv.2022.160923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/10/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
As an effective means to efficiently control the emissions of carbon dioxide (CO2), photo-conversion of CO2 into solar fuels (or their precursors) is meaningful both as an option to generate cleaner energy and to alleviate global warming. In this regard, bismuth oxyhalide (BiOX, where X = Cl, Br, and I) semiconductors have sparked considerable interest due to their multiple merits (e.g., visible light-harvesting, efficient charge carriers separation, and excellent chemical stability). In this review, the fundamental aspects of BiOX-based photocatalysts are discussed in relation to their modification strategies and associated reduction mechanisms of CO2 to help expand their applicabilities. In this context, their performance is also evaluated in terms of the key performance metrics (e.g., quantum efficiency (QE), space-time yield (STY), and figure of merit (FoM)). Accordingly, the morphology design of BiOX materials is turned out as one of the most efficient strategies for the maximum yield of CO while the introduction of heterojunctions into BiOX materials was more suitable for CH4 formation. As such, the adoption of the proper modification approach is recommended for efficient conversion of CO2.
Collapse
Affiliation(s)
- Yang Sun
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04673, Republic of Korea
| | - Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04673, Republic of Korea; Analysis and Evaluation Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04673, Republic of Korea.
| | - Vanish Kumar
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India.
| |
Collapse
|
8
|
Preparation and performance of Cd-MgAl-LDHs@RGO in high efficiency electrocatalytic reduction of CO2 to CO. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Kumar S, Yadav RK, Gupta S, Yeon Choi S, Wu Kim T. A Spherical Photocatalyst To Emulate Natural Photosynthesis For The Production of Formic Acid From CO2. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Khan J, Sun Y, Han L. A Comprehensive Review on Graphitic Carbon Nitride for Carbon Dioxide Photoreduction. SMALL METHODS 2022; 6:e2201013. [PMID: 36336653 DOI: 10.1002/smtd.202201013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Inspired by natural photosynthesis, harnessing the wide range of natural solar energy and utilizing appropriate semiconductor-based catalysts to convert carbon dioxide into beneficial energy species, for example, CO, CH4 , HCOOH, and CH3 COH have been shown to be a sustainable and more environmentally friendly approach. Graphitic carbon nitride (g-C3 N4 ) has been regarded as a highly effective photocatalyst for the CO2 reduction reaction, owing to its cost-effectiveness, high thermal and chemical stability, visible light absorption capability, and low toxicity. However, weaker electrical conductivity, fast recombination rate, smaller visible light absorption window, and reduced surface area make this catalytic material unsuitable for commercial photocatalytic applications. Therefore, certain procedures, including elemental doping, structural modulation, functional group adjustment of g-C3 N4 , the addition of metal complex motif, and others, may be used to improve its photocatalytic activity towards effective CO2 reduction. This review has investigated the scientific community's perspectives on synthetic pathways and material optimization approaches used to increase the selectivity and efficiency of the g-C3 N4 -based hybrid structures, as well as their benefits and drawbacks on photocatalytic CO2 reduction. Finally, the review concludes a comparative discussion and presents a promising picture of the future scope of the improvements.
Collapse
Affiliation(s)
- Javid Khan
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Adv. Mater. and Technology for Clean Energy, Hunan University, Changsha, 410082, China
| | - Yanyan Sun
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Lei Han
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Adv. Mater. and Technology for Clean Energy, Hunan University, Changsha, 410082, China
| |
Collapse
|
11
|
Sharma VK, Hutchison JM, Allgeier AM. Redox Biocatalysis: Quantitative Comparisons of Nicotinamide Cofactor Regeneration Methods. CHEMSUSCHEM 2022; 15:e202200888. [PMID: 36129761 PMCID: PMC10029092 DOI: 10.1002/cssc.202200888] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Enzymatic processes, particularly those capable of performing redox reactions, have recently been of growing research interest. Substrate specificity, optimal activity at mild temperatures, high selectivity, and yield are among the desirable characteristics of these oxidoreductase catalyzed reactions. Nicotinamide adenine dinucleotide (phosphate) or NAD(P)H-dependent oxidoreductases have been extensively studied for their potential applications like biosynthesis of chiral organic compounds, construction of biosensors, and pollutant degradation. One of the main challenges associated with making these processes commercially viable is the regeneration of the expensive cofactors required by the enzymes. Numerous efforts have pursued enzymatic regeneration of NAD(P)H by coupling a substrate reduction with a complementary enzyme catalyzed oxidation of a co-substrate. While offering excellent selectivity and high total turnover numbers, such processes involve complicated downstream product separation of a primary product from the coproducts and impurities. Alternative methods comprising chemical, electrochemical, and photochemical regeneration have been developed with the goal of enhanced efficiency and operational simplicity compared to enzymatic regeneration. Despite the goal, however, the literature rarely offers a meaningful comparison of the total turnover numbers for various regeneration methodologies. This comprehensive Review systematically discusses various methods of NAD(P)H cofactor regeneration and quantitatively compares performance across the numerous methods. Further, fundamental barriers to enhanced cofactor regeneration in the various methods are identified, and future opportunities are highlighted for improving the efficiency and sustainability of commercially viable oxidoreductase processes for practical implementation.
Collapse
Affiliation(s)
- Victor K Sharma
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Justin M Hutchison
- Civil, Environmental and Architectural Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Alan M Allgeier
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| |
Collapse
|
12
|
Laun K, Duffus BR, Wahlefeld S, Katz S, Belger D, Hildebrandt P, Mroginski MA, Leimkühler S, Zebger I. Infrared Spectroscopy Elucidates the Inhibitor Binding Sites in a Metal-Dependent Formate Dehydrogenase. Chemistry 2022; 28:e202201091. [PMID: 35662280 PMCID: PMC9804402 DOI: 10.1002/chem.202201091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Indexed: 01/05/2023]
Abstract
Biological carbon dioxide (CO2 ) reduction is an important step by which organisms form valuable energy-richer molecules required for further metabolic processes. The Mo-dependent formate dehydrogenase (FDH) from Rhodobacter capsulatus catalyzes reversible formate oxidation to CO2 at a bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor. To elucidate potential substrate binding sites relevant for the mechanism, we studied herein the interaction with the inhibitory molecules azide and cyanate, which are isoelectronic to CO2 and charged as formate. We employed infrared (IR) spectroscopy in combination with density functional theory (DFT) and inhibition kinetics. One distinct inhibitory molecule was found to bind to either a non-competitive or a competitive binding site in the secondary coordination sphere of the active site. Site-directed mutagenesis of key amino acid residues in the vicinity of the bis-MGD cofactor revealed changes in both non-competitive and competitive binding, whereby the inhibitor is in case of the latter interaction presumably bound between the cofactor and the adjacent Arg587.
Collapse
Affiliation(s)
- Konstantin Laun
- Institut für ChemieMax-Volmer-Laboratorium für Biophysikalische ChemiePC14Technische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Benjamin R. Duffus
- Institut für Biochemie und BiologieMolekulare EnzymologieUniversität PotsdamKarl-Liebknecht-Strasse 24–2514476PotsdamGermany
| | - Stefan Wahlefeld
- Institut für ChemieMax-Volmer-Laboratorium für Biophysikalische ChemiePC14Technische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
- Institut für Technische BiokatalyseTechnische Universität HamburgDenickestr. 1521073HamburgGermany
| | - Sagie Katz
- Institut für ChemieMax-Volmer-Laboratorium für Biophysikalische ChemiePC14Technische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Dennis Belger
- Institut für ChemieMax-Volmer-Laboratorium für Biophysikalische ChemiePC14Technische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Peter Hildebrandt
- Institut für ChemieMax-Volmer-Laboratorium für Biophysikalische ChemiePC14Technische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Maria Andrea Mroginski
- Institut für ChemieMax-Volmer-Laboratorium für Biophysikalische ChemiePC14Technische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Silke Leimkühler
- Institut für Biochemie und BiologieMolekulare EnzymologieUniversität PotsdamKarl-Liebknecht-Strasse 24–2514476PotsdamGermany
| | - Ingo Zebger
- Institut für ChemieMax-Volmer-Laboratorium für Biophysikalische ChemiePC14Technische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| |
Collapse
|
13
|
Improving the Enzymatic Cascade of Reactions for the Reduction of CO2 to CH3OH in Water: From Enzymes Immobilization Strategies to Cofactor Regeneration and Cofactor Suppression. Molecules 2022; 27:molecules27154913. [PMID: 35956865 PMCID: PMC9370104 DOI: 10.3390/molecules27154913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
The need to decrease the concentration of CO2 in the atmosphere has led to the search for strategies to reuse such molecule as a building block for chemicals and materials or a source of carbon for fuels. The enzymatic cascade of reactions that produce the reduction of CO2 to methanol seems to be a very attractive way of reusing CO2; however, it is still far away from a potential industrial application. In this review, a summary was made of all the advances that have been made in research on such a process, particularly on two salient points: enzyme immobilization and cofactor regeneration. A brief overview of the process is initially given, with a focus on the enzymes and the cofactor, followed by a discussion of all the advances that have been made in research, on the two salient points reported above. In particular, the enzymatic regeneration of NADH is compared to the chemical, electrochemical, and photochemical conversion of NAD+ into NADH. The enzymatic regeneration, while being the most used, has several drawbacks in the cost and life of enzymes that suggest attempting alternative solutions. The reduction in the amount of NADH used (by converting CO2 electrochemically into formate) or even the substitution of NADH with less expensive mimetic molecules is discussed in the text. Such an approach is part of the attempt made to take stock of the situation and identify the points on which work still needs to be conducted to reach an exploitation level of the entire process.
Collapse
|
14
|
Liao Q, Liu W, Meng Z. Strategies for overcoming the limitations of enzymatic carbon dioxide reduction. Biotechnol Adv 2022; 60:108024. [PMID: 35907470 DOI: 10.1016/j.biotechadv.2022.108024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022]
Abstract
The overexploitation of fossil fuels has led to a significant increase in atmospheric carbon dioxide (CO2) concentrations, thereby causing problems, such as the greenhouse effect. Rapid global climate change has caused researchers to focus on utilizing CO2 in a green and efficient manner. One of the ways to achieve this is by converting CO2 into valuable chemicals via chemical, photochemical, electrochemical, or enzymatic methods. Among these, the enzymatic method is advantageous because of its high specificity and selectivity as well as the mild reaction conditions required. The reduction of CO2 to formate, formaldehyde, and methanol using formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH), and alcohol dehydrogenase (ADH) are attractive routes, respectively. In this review, strategies for overcoming the common limitations of enzymatic CO2 reduction are discussed. First, we present a brief background on the importance of minimizing of CO2 emissions and introduce the three bottlenecks limiting enzymatic CO2 reduction. Thereafter, we explore the different strategies for enzyme immobilization on various support materials. To solve the problem of cofactor consumption, different state-of-the-art cofactor regeneration strategies as well as research on the development of cofactor substitutes and cofactor-free systems are extensively discussed. Moreover, aiming at improving CO2 solubility, biological, physical, and engineering measures are reviewed. Finally, conclusions and future perspectives are presented.
Collapse
Affiliation(s)
- Qiyong Liao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Higher Education Park, Fangshan District, Beijing 102488, PR China
| | - Wenfang Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Higher Education Park, Fangshan District, Beijing 102488, PR China.
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Higher Education Park, Fangshan District, Beijing 102488, PR China
| |
Collapse
|
15
|
Onyeaka H, Ekwebelem OC. A review of recent advances in engineering bacteria for enhanced CO 2 capture and utilization. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2022; 20:4635-4648. [PMID: 35755182 PMCID: PMC9207427 DOI: 10.1007/s13762-022-04303-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 04/12/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Carbon dioxide (CO2) is emitted into the atmosphere due to some anthropogenic activities, such as the combustion of fossil fuels and industrial output. As a result, fears about catastrophic global warming and climate change have intensified. In the face of these challenges, conventional CO2 capture technologies are typically ineffective, dangerous, and contribute to secondary pollution in the environment. Biological systems for CO2 conversion, on the other hand, provide a potential path forward owing to its high application selectivity and adaptability. Moreover, many bacteria can use CO2 as their only source of carbon and turn it into value-added products. The purpose of this review is to discuss recent significant breakthroughs in engineering bacteria to utilize CO2 and other one-carbon compounds as substrate. In the same token, the paper also summarizes and presents aspects such as microbial CO2 fixation pathways, engineered bacteria involved in CO2 fixation, up-to-date genetic and metabolic engineering approaches for CO2 fixation, and promising research directions for the production of value-added products from CO2. This review's findings imply that using biological systems like modified bacteria to manage CO2 has the added benefit of generating useful industrial byproducts like biofuels, pharmaceutical compounds, and bioplastics. The major downside, from an economic standpoint, thus far has been related to methods of cultivation. However, thanks to genetic engineering approaches, this can be addressed by large production yields. As a result, this review aids in the knowledge of various biological systems that can be used to construct a long-term CO2 mitigation technology at an industrial scale, in this instance bacteria-based CO2capture/utilization technology.
Collapse
Affiliation(s)
- H. Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - O. C. Ekwebelem
- Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Nigeria
| |
Collapse
|
16
|
Nazemi A, Steeves AH, Kastner DW, Kulik HJ. Influence of the Greater Protein Environment on the Electrostatic Potential in Metalloenzyme Active Sites: The Case of Formate Dehydrogenase. J Phys Chem B 2022; 126:4069-4079. [PMID: 35609244 DOI: 10.1021/acs.jpcb.2c02260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Mo/W-containing metalloenzyme formate dehydrogenase (FDH) is an efficient and selective natural catalyst that reversibly converts CO2 to formate under ambient conditions. In this study, we investigate the impact of the greater protein environment on the electrostatic potential (ESP) of the active site. To model the enzyme environment, we used a combination of classical molecular dynamics and multiscale quantum-mechanical (QM)/molecular-mechanical (MM) simulations. We leverage charge shift analysis to systematically construct QM regions and analyze the electronic environment of the active site by evaluating the degree of charge transfer between the core active site and the protein environment. The contribution of the terminal chalcogen ligand to the ESP of the metal center is substantial and dependent on the chalcogen identity, with similar, less negative ESPs for Se and S terminal chalcogens in comparison to O regardless of whether the metal is Mo or W. The orientation of the side chains and conformations of the cofactor also affect the ESP, highlighting the importance of sampling dynamic fluctuations in the protein. Overall, our observations suggest that the terminal chalcogen ligand identity plays an important role in the enzymatic activity of FDH, suggesting opportunities for a rational bioinspired catalyst design.
Collapse
Affiliation(s)
- Azadeh Nazemi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Adam H Steeves
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David W Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Yau MCM, Hayes M, Kalathil S. Biocatalytic conversion of sunlight and carbon dioxide to solar fuels and chemicals. RSC Adv 2022; 12:16396-16411. [PMID: 35754911 PMCID: PMC9169074 DOI: 10.1039/d2ra00673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
This review discusses the progress in the assembly of photosynthetic biohybrid systems using enzymes and microbes as the biocatalysts which are capable of utilising light to reduce carbon dioxide to solar fuels. We begin by outlining natural photosynthesis, an inspired biomachinery to develop artificial photosystems, and the rationale and motivation to advance and introduce biological substrates to create more novel, and efficient, photosystems. The case studies of various approaches to the development of CO2-reducing microbial semi-artificial photosystems are also summarised, showcasing a variety of methods for hybrid microbial photosystems and their potential. Finally, approaches to investigate the relatively ambiguous electron transfer mechanisms in such photosystems are discussed through the presentation of spectroscopic techniques, eventually leading to what this will mean for the future of microbial hybrid photosystems.
Collapse
Affiliation(s)
- Mandy Ching Man Yau
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University Newcastle NE1 8ST UK
| | - Martin Hayes
- Johnson Matthey Technology Centre Cambridge Science Park, Milton Road Cambridge CB4 0FP UK
| | - Shafeer Kalathil
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University Newcastle NE1 8ST UK
| |
Collapse
|
18
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 281] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Abstract
Carbon dioxide (CO2) has been increasingly regarded not only as a greenhouse gas but also as a valuable feedstock for carbon-based chemicals. In particular, biological approaches have drawn attention as models for the production of value-added products, as CO2 conversion serves many natural processes. Enzymatic CO2 reduction in vitro is a very promising route to produce fossil free and bio-based fuel alternatives, such as methanol. In this chapter, the advances in constructing competitive multi-enzymatic systems for the reduction of CO2 to methanol are discussed. Different integrated methods are presented, aiming to address technological challenges, such as the cost effectiveness, need for material regeneration and reuse and improving product yields of the process.
Collapse
Affiliation(s)
- Io Antonopoulou
- Biochemical Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden.
| | - Ulrika Rova
- Biochemical Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
20
|
Promotion of the redox reaction at horseradish peroxidase modified electrode combined with ionic liquids under irreversible electrochemical conditions. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Singh P, Srivastava R. Utilization of bio-inspired catalyst for CO2 reduction into green fuels: Recent advancement and future perspectives. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Alpdağtaş S, Turunen O, Valjakka J, Binay B. The challenges of using NAD +-dependent formate dehydrogenases for CO 2 conversion. Crit Rev Biotechnol 2021; 42:953-972. [PMID: 34632901 DOI: 10.1080/07388551.2021.1981820] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In recent years, CO2 reduction and utilization have been proposed as an innovative solution for global warming and the ever-growing energy and raw material demands. In contrast to various classical methods, including chemical, electrochemical, and photochemical methods, enzymatic methods offer a green and sustainable option for CO2 conversion. In addition, enzymatic hydrogenation of CO2 into platform chemicals could be used to produce economically useful hydrogen storage materials, making it a win-win strategy. The thermodynamic and kinetic stability of the CO2 molecule makes its utilization a challenging task. However, Nicotine adenine dinucleotide (NAD+)-dependent formate dehydrogenases (FDHs), which have high selectivity and specificity, are attractive catalysts to overcome this issue and convert CO2 into fuels and renewable chemicals. It is necessary to improve the stability, cofactor necessity, and CO2 conversion efficiency of these enzymes, such as by combining them with appropriate hybrid systems. However, metal-independent, NAD+-dependent FDHs, and their CO2 reduction activity have received limited attention to date. This review outlines the CO2 reduction ability of these enzymes as well as their properties, reaction mechanisms, immobilization strategies, and integration with electrochemical and photochemical systems for the production of formic acid or formate. The biotechnological applications of FDH, future perspectives, barriers to CO2 reduction with FDH, and aspects that must be further developed are briefly summarized. We propose that constructing hybrid systems that include NAD+-dependent FDHs is a promising approach to convert CO2 and strengthen the sustainable carbon bio-economy.
Collapse
Affiliation(s)
- Saadet Alpdağtaş
- Department of Biology, Van Yuzuncu Yil University, Tusba, Turkey
| | - Ossi Turunen
- School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| | - Jarkko Valjakka
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, Gebze, Turkey
| |
Collapse
|
23
|
Jin S, Hao Z, Zhang K, Yan Z, Chen J. Advances and Challenges for the Electrochemical Reduction of CO 2 to CO: From Fundamentals to Industrialization. Angew Chem Int Ed Engl 2021; 60:20627-20648. [PMID: 33861487 DOI: 10.1002/anie.202101818] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 11/10/2022]
Abstract
The electrochemical carbon dioxide reduction reaction (CO2 RR) provides an attractive approach to convert renewable electricity into fuels and feedstocks in the form of chemical bonds. Among the different CO2 RR pathways, the conversion of CO2 into CO is considered one of the most promising candidate reactions because of its high technological and economic feasibility. Integrating catalyst and electrolyte design with an understanding of the catalytic mechanism will yield scientific insights and promote this technology towards industrial implementation. Herein, we give an overview of recent advances and challenges for the selective conversion of CO2 into CO. Multidimensional catalyst and electrolyte engineering for the CO2 RR are also summarized. Furthermore, recent studies on the large-scale production of CO are highlighted to facilitate industrialization of the electrochemical reduction of CO2 . To conclude, the remaining technological challenges and future directions for the industrial application of the CO2 RR to generate CO are highlighted.
Collapse
Affiliation(s)
- Song Jin
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhimeng Hao
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kai Zhang
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
24
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
25
|
Sahoo PC, Singh A, Kumar M, Gupta R, Puri S, Ramakumar S. Light augmented CO2 conversion by metal organic framework sensitized electroactive microbes. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Abstract
The accumulation of carbon dioxide in the atmosphere as a result of human activities has caused a number of adverse circumstances in the world. For this reason, the proposed solutions lie within the aim of reducing carbon dioxide emissions have been quite valuable. However, as the human activity continues to increase on this planet, the possibility of reducing carbon dioxide emissions decreases with the use of conventional methods. The emergence of compounds than can be used in different fields by converting the released carbon dioxide into different chemicals will construct a fundamental solution to the problem. Although electro-catalysis or photolithography methods have emerged for this purpose, they have not been able to achieve successful results. Alternatively, another proposed solution are enzyme based systems. Among the enzyme-based systems, pyruvate decarboxylase, carbonic anhydrase and dehydrogenases have been the most studied enzymes. Pyruvate dehydrogenase and carbonic anhydrase have either been an expensive method or were incapable of producing the desired result due to the reaction cascade they catalyze. However, the studies reporting the production of industrial chemicals from carbon dioxide using dehydrogenases and in particular, the formate dehydrogenase enzyme, have been remarkable. Moreover, reported studies have shown the existence of more active and stable enzymes, especially the dehydrogenase family that can be identified from the biome. In addition to this, their redesign through protein engineering can have an immense contribution to the increased use of enzyme-based methods in CO2 reduction, resulting in an enormous expansion of the industrial capacity.
Collapse
|
27
|
Jin S, Hao Z, Zhang K, Yan Z, Chen J. Advances and Challenges for the Electrochemical Reduction of CO
2
to CO: From Fundamentals to Industrialization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101818] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Song Jin
- Key Laboratory of Advanced Energy Materials Chemistry Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Zhimeng Hao
- Key Laboratory of Advanced Energy Materials Chemistry Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Kai Zhang
- Key Laboratory of Advanced Energy Materials Chemistry Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
28
|
Pietricola G, Tommasi T, Dosa M, Camelin E, Berruto E, Ottone C, Fino D, Cauda V, Piumetti M. Synthesis and characterization of ordered mesoporous silicas for the immobilization of formate dehydrogenase (FDH). Int J Biol Macromol 2021; 177:261-270. [PMID: 33621575 DOI: 10.1016/j.ijbiomac.2021.02.114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 12/14/2022]
Abstract
This work studied the influence of the pore size and morphology of the mesoporous silica as support for formate dehydrogenase (FDH), the first enzyme of a multi-enzymatic cascade system to produce methanol, which catalyzes the reduction of carbon dioxide to formic acid. Specifically, a set of mesoporous silicas was modified with glyoxyl groups to immobilize covalently the FDH obtained from Candida boidinii. Three types of mesoporous silicas with different textural properties were synthesized and used as supports: i) SBA-15 (DP = 4 nm); ii) MCF with 0.5 wt% mesitylene/pluronic ratio (DP = 20 nm) and iii) MCF with 0.75 wt% mesitylene/pluronic ratio (DP = 25 nm). As a whole, the immobilized FDH on MCF0.75 exhibited higher thermal stability than the free enzyme, with 75% of residual activity after 24 h at 50 °C. FDH/MCF0.5 exhibited the best immobilization yields: 69.4% of the enzyme supplied was covalently bound to the support. Interestingly, the specific activity increased as a function of the pore size of support and then the FDH/MCF0.75 exhibited the highest specific activity (namely, 1.05 IU/gMCF0.75) with an immobilization yield of 52.1%. Furthermore, it was noted that the immobilization yield and the specific activity of the FDH/MCF0.75 varied as a function of the supported enzyme: as the enzyme loading increased the immobilization yield decreased while the specific activity increased. Finally, the reuse test has been carried out, and a residual activity greater than 70% was found after 5 cycles of reaction.
Collapse
Affiliation(s)
- Giuseppe Pietricola
- Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, Politecnico di Torino, I-10129 Turin, Italy
| | - Tonia Tommasi
- Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, Politecnico di Torino, I-10129 Turin, Italy
| | - Melodj Dosa
- Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, Politecnico di Torino, I-10129 Turin, Italy
| | - Enrico Camelin
- Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, Politecnico di Torino, I-10129 Turin, Italy
| | - Emanuele Berruto
- Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, Politecnico di Torino, I-10129 Turin, Italy
| | - Carminna Ottone
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile.
| | - Debora Fino
- Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, Politecnico di Torino, I-10129 Turin, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, Politecnico di Torino, I-10129 Turin, Italy
| | - Marco Piumetti
- Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, Politecnico di Torino, I-10129 Turin, Italy.
| |
Collapse
|
29
|
Aguirre ME, Isla Naveira R, Botta PM, Altieri TA, Wolosiuk A, Churio MS. Early instability of MIL-125-NH 2 in aqueous solution and mediation of the visible photogeneration of an NADH cofactor. NEW J CHEM 2021. [DOI: 10.1039/d1nj01199e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MIL-125-NH2 hydrolysis can be minimized by regulating the pH of the medium, thus defining a stability window where it is possible to use it as a photocatalyst for visible light-driven production of NADH.
Collapse
Affiliation(s)
- Matías E. Aguirre
- Departamento de Química y Bioquímica
- Facultad de Ciencias Exactas y Naturales
- Universidad Nacional de Mar del Plata-CONICET
- Mar del Plata
- Argentina
| | - Rocío Isla Naveira
- Departamento de Química y Bioquímica
- Facultad de Ciencias Exactas y Naturales
- Universidad Nacional de Mar del Plata-CONICET
- Mar del Plata
- Argentina
| | - Pablo M. Botta
- Instituto de Investigaciones en Ciencia y Tecnología de los Materiales
- INTEMA (CONICET-UNMDP)
- Mar del Plata
- Argentina
| | | | - Alejandro Wolosiuk
- Gerencia Química
- GASNyA
- Instituto de Nanociencia y Nanotecnología
- CAC-CNEA-CONICET
- Buenos Aires
| | - María Sandra Churio
- Departamento de Química y Bioquímica
- Facultad de Ciencias Exactas y Naturales
- Universidad Nacional de Mar del Plata-CONICET
- Mar del Plata
- Argentina
| |
Collapse
|
30
|
Méndez-Galván M, Alcántar-Vázquez B, Diaz G, Ibarra IA, Lara-García HA. Metal halide perovskites as an emergent catalyst for CO 2 photoreduction: a minireview. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00039j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present minireview summarizes recent advances in the application of metal halide perovskite for CO2 photoreduction.
Collapse
Affiliation(s)
| | - Brenda Alcántar-Vázquez
- Instituto de Ingeniería
- Coordinación de Ingeniería Ambiental
- Universidad Nacional Autónoma de México
- Ciudad de México
- Mexico
| | - Gabriela Diaz
- Instituto de Física
- Universidad Nacional Autónoma de México
- Ciudad de México
- Mexico
| | - Ilich A. Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS)
- Instituto de Investigaciones en Materiales
- Universidad Nacional Autónoma de México
- Ciudad de México
- Mexico
| | - Hugo A. Lara-García
- Instituto de Física
- Universidad Nacional Autónoma de México
- Ciudad de México
- Mexico
| |
Collapse
|
31
|
Immobilization of formate dehydrogenase on polyethyleneimine modified carriers for the enhancement of catalytic performance. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2020.106259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
32
|
Shit SC, Shown I, Paul R, Chen KH, Mondal J, Chen LC. Integrated nano-architectured photocatalysts for photochemical CO 2 reduction. NANOSCALE 2020; 12:23301-23332. [PMID: 33107552 DOI: 10.1039/d0nr05884j] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent advances in nanotechnology, especially the development of integrated nanostructured materials, have offered unprecedented opportunities for photocatalytic CO2 reduction. Compared to bulk semiconductor photocatalysts, most of these nanostructured photocatalysts offer at least one advantage in areas such as photogenerated carrier kinetics, light absorption, and active surface area, supporting improved photochemical reaction efficiencies. In this review, we briefly cover the cutting-edge research activities in the area of integrated nanostructured catalysts for photochemical CO2 reduction, including aqueous and gas-phase reactions. Primarily explored are the basic principles of tailor-made nanostructured composite photocatalysts and how nanostructuring influences photochemical performance. Specifically, we summarize the recent developments related to integrated nanostructured materials for photocatalytic CO2 reduction, mainly in the following five categories: carbon-based nano-architectures, metal-organic frameworks, covalent-organic frameworks, conjugated porous polymers, and layered double hydroxide-based inorganic hybrids. Besides the technical aspects of nanostructure-enhanced catalytic performance in photochemical CO2 reduction, some future research trends and promising strategies are addressed.
Collapse
Affiliation(s)
- Subhash Chandra Shit
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India.
| | | | | | | | | | | |
Collapse
|
33
|
Sahoo PC, Pant D, Kumar M, Puri S, Ramakumar S. Material–Microbe Interfaces for Solar-Driven CO2 Bioelectrosynthesis. Trends Biotechnol 2020; 38:1245-1261. [DOI: 10.1016/j.tibtech.2020.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/05/2023]
|
34
|
Research Progress in Conversion of CO 2 to Valuable Fuels. Molecules 2020; 25:molecules25163653. [PMID: 32796612 PMCID: PMC7465062 DOI: 10.3390/molecules25163653] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022] Open
Abstract
Rapid growth in the world's economy depends on a significant increase in energy consumption. As is known, most of the present energy supply comes from coal, oil, and natural gas. The overreliance on fossil energy brings serious environmental problems in addition to the scarcity of energy. One of the most concerning environmental problems is the large contribution to global warming because of the massive discharge of CO2 in the burning of fossil fuels. Therefore, many efforts have been made to resolve such issues. Among them, the preparation of valuable fuels or chemicals from greenhouse gas (CO2) has attracted great attention because it has made a promising step toward simultaneously resolving the environment and energy problems. This article reviews the current progress in CO2 conversion via different strategies, including thermal catalysis, electrocatalysis, photocatalysis, and photoelectrocatalysis. Inspired by natural photosynthesis, light-capturing agents including macrocycles with conjugated structures similar to chlorophyll have attracted increasing attention. Using such macrocycles as photosensitizers, photocatalysis, photoelectrocatalysis, or coupling with enzymatic reactions were conducted to fulfill the conversion of CO2 with high efficiency and specificity. Recent progress in enzyme coupled to photocatalysis and enzyme coupled to photoelectrocatalysis were specially reviewed in this review. Additionally, the characteristics, advantages, and disadvantages of different conversion methods were also presented. We wish to provide certain constructive ideas for new investigators and deep insights into the research of CO2 conversion.
Collapse
|
35
|
Edwards EH, Bren KL. Light-driven catalysis with engineered enzymes and biomimetic systems. Biotechnol Appl Biochem 2020; 67:463-483. [PMID: 32588914 PMCID: PMC9598052 DOI: 10.1002/bab.1976] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/21/2020] [Indexed: 01/01/2023]
Abstract
Efforts to drive catalytic reactions with light, inspired by natural processes like photosynthesis, have a long history and have seen significant recent growth. Successfully engineering systems using biomolecular and bioinspired catalysts to carry out light-driven chemical reactions capitalizes on advantages offered from the fields of biocatalysis and photocatalysis. In particular, driving reactions under mild conditions and in water, in which enzymes are operative, using sunlight as a renewable energy source yield environmentally friendly systems. Furthermore, using enzymes and bioinspired systems can take advantage of the high efficiency and specificity of biocatalysts. There are many challenges to overcome to fully capitalize on the potential of light-driven biocatalysis. In this mini-review, we discuss examples of enzymes and engineered biomolecular catalysts that are activated via electron transfer from a photosensitizer in a photocatalytic system. We place an emphasis on selected forefront chemical reactions of high interest, including CH oxidation, proton reduction, water oxidation, CO2 reduction, and N2 reduction.
Collapse
Affiliation(s)
- Emily H. Edwards
- Department of Chemistry, University of Rochester, Rochester, NY 1462-0216
| | - Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester, NY 1462-0216
| |
Collapse
|
36
|
Noritomi Y, Kuboki T, Noritomi H. Estimation of immobilized horseradish peroxidase in a low salt concentration for an irreversible electrochemical system. RESULTS IN CHEMISTRY 2020. [DOI: 10.1016/j.rechem.2020.100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
37
|
Light-driven carbon-carbon bond formation via CO 2 reduction catalyzed by complexes of CdS nanorods and a 2-oxoacid oxidoreductase. Proc Natl Acad Sci U S A 2019; 117:135-140. [PMID: 31852819 DOI: 10.1073/pnas.1903948116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Redox enzymes are capable of catalyzing a vast array of useful reactions, but they require redox partners that donate or accept electrons. Semiconductor nanocrystals provide a mechanism to convert absorbed photon energy into redox equivalents for enzyme catalysis. Here, we describe a system for photochemical carbon-carbon bond formation to make 2-oxoglutarate by coupling CO2 with a succinyl group. Photoexcited electrons from cadmium sulfide nanorods (CdS NRs) transfer to 2-oxoglutarate:ferredoxin oxidoreductase from Magnetococcus marinus MC-1 (MmOGOR), which catalyzes a carbon-carbon bond formation reaction. We thereby decouple MmOGOR from its native role in the reductive tricarboxylic acid cycle and drive it directly with light. We examine the dependence of 2-oxoglutarate formation on a variety of factors and, using ultrafast transient absorption spectroscopy, elucidate the critical role of electron transfer (ET) from CdS NRs to MmOGOR. We find that the efficiency of this ET depends strongly on whether the succinyl CoA (SCoA) cosubstrate is bound at the MmOGOR active site. We hypothesize that the conformational changes due to SCoA binding impact the CdS NR-MmOGOR interaction in a manner that decreases ET efficiency compared to the enzyme with no cosubstrate bound. Our work reveals structural considerations for the nano-bio interfaces involved in light-driven enzyme catalysis and points to the competing factors of enzyme catalysis and ET efficiency that may arise when complex enzyme reactions are driven by artificial light absorbers.
Collapse
|
38
|
Classification and enzyme kinetics of formate dehydrogenases for biomanufacturing via CO2 utilization. Biotechnol Adv 2019; 37:107408. [DOI: 10.1016/j.biotechadv.2019.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/26/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
|
39
|
Kuk SK, Gopinath K, Singh RK, Kim TD, Lee Y, Choi WS, Lee JK, Park CB. NADH-Free Electroenzymatic Reduction of CO2 by Conductive Hydrogel-Conjugated Formate Dehydrogenase. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00127] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Su Keun Kuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Krishnasamy Gopinath
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea
| | - Raushan K. Singh
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea
| | - Tae-Doo Kim
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea
| | - Youngjun Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea
| | - Woo Seok Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon 305-701, Republic of Korea
| |
Collapse
|
40
|
Yuan M, Kummer MJ, Milton RD, Quah T, Minteer SD. Efficient NADH Regeneration by a Redox Polymer-Immobilized Enzymatic System. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00513] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mengwei Yuan
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Matthew J. Kummer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Ross D. Milton
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Timothy Quah
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
41
|
Affiliation(s)
- Jiafang Xie
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of Sciences YangQiao West Road 155# Fuzhou, Fujian 350002 China
| | - Yiyin Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of Sciences YangQiao West Road 155# Fuzhou, Fujian 350002 China
| | - Maoxiang Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of Sciences YangQiao West Road 155# Fuzhou, Fujian 350002 China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of Sciences YangQiao West Road 155# Fuzhou, Fujian 350002 China
| |
Collapse
|
42
|
Gómez JE, Kleij AW. Catalytic nonreductive valorization of carbon dioxide into fine chemicals. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2019. [DOI: 10.1016/bs.adomc.2019.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Al-Mhyawi SR, Abdel Salam M. Enhancement of photocatalytic activity of Gd(OH)3 nanoparticles by Pd deposition for reduction of CO2 to methanol. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
|
45
|
Utilization of CO2 as a carbon source for production of CO and syngas using a ruthenium(II) electrocatalyst. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Nabavi Zadeh PS, Zezzi do Valle Gomes M, Åkerman B, Palmqvist AEC. Förster Resonance Energy Transfer Study of the Improved Biocatalytic Conversion of CO2 to Formaldehyde by Coimmobilization of Enzymes in Siliceous Mesostructured Cellular Foams. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01806] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Xu S, Ashley DC, Kwon HY, Ware GR, Chen CH, Losovyj Y, Gao X, Jakubikova E, Smith JM. A flexible, redox-active macrocycle enables the electrocatalytic reduction of nitrate to ammonia by a cobalt complex. Chem Sci 2018; 9:4950-4958. [PMID: 29938022 PMCID: PMC5994878 DOI: 10.1039/c8sc00721g] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/14/2018] [Indexed: 11/21/2022] Open
Abstract
Mechanistic investigations into electrocatalytic nitrate reduction by a cobalt complex reveal the critical role played by the flexible, redox-active ligand.
The cobalt macrocycle complex [Co(DIM)Br2]+ (DIM = 2,3-dimethyl-1,4,8,11-tetraazacyclotetradeca-1,3-diene) is an electrocatalyst for the selective reduction of nitrate to ammonia in aqueous solution. The catalyst operates over a wide pH range and with very high faradaic efficiency, albeit with large overpotential. Experimental investigations, supported by electronic structure calculations, reveal that catalysis commences when nitrate binds to the two-electron reduced species CoII(DIM–), where cobalt and the macrocycle are each reduced by a single electron. Several mechanisms for the initial reduction of nitrate to nitrite were explored computationally and found to be feasible at room temperature. The reduced DIM ligand plays an important role in these mechanisms by directly transferring a single electron to the bound nitrate substrate, activating it for further reactions. These studies further reveal that the DIM macrocycle is critical to nitrate reduction, specifically its combination of redox non-innocence, hydrogen-bonding functionality and flexibility in coordination mode.
Collapse
Affiliation(s)
- Song Xu
- Department of Chemistry , Indiana University , 800 E. Kirkwood Ave. , Bloomington , Indiana 47401 , USA .
| | - Daniel C Ashley
- Department of Chemistry , North Carolina State University , 2620 Yarbrough Dr. , Raleigh , NC 27695 , USA .
| | - Hyuk-Yong Kwon
- Department of Chemistry , North Carolina State University , 2620 Yarbrough Dr. , Raleigh , NC 27695 , USA .
| | - Gabrielle R Ware
- Department of Chemistry , St. Edward's University , 3001, South Congress , Austin , Texas 78704 , USA
| | - Chun-Hsing Chen
- Department of Chemistry , Indiana University , 800 E. Kirkwood Ave. , Bloomington , Indiana 47401 , USA .
| | - Yaroslav Losovyj
- Department of Chemistry , Indiana University , 800 E. Kirkwood Ave. , Bloomington , Indiana 47401 , USA .
| | - Xinfeng Gao
- Department of Chemistry , Indiana University , 800 E. Kirkwood Ave. , Bloomington , Indiana 47401 , USA .
| | - Elena Jakubikova
- Department of Chemistry , North Carolina State University , 2620 Yarbrough Dr. , Raleigh , NC 27695 , USA .
| | - Jeremy M Smith
- Department of Chemistry , Indiana University , 800 E. Kirkwood Ave. , Bloomington , Indiana 47401 , USA .
| |
Collapse
|
48
|
Iron catalyzed hydrogenation and electrochemical reduction of CO 2 : The role of functional ligands. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.02.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
49
|
Sahoo PC, Kumar M, Puri S, Ramakumar S. Enzyme inspired complexes for industrial CO2 capture: Opportunities and challenges. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Enzymatic conversion of CO 2 to CH 3 OH via reverse dehydrogenase cascade biocatalysis: Quantitative comparison of efficiencies of immobilized enzyme systems. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.08.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|