1
|
Ji J, Yin H, Zhou X, Song B, Feng X, Cai P, Qin L, Huang Y, Liu J, Chen D. The carrier dynamics for self-assembled black phosphorus and perovskite nanocrystals enable photocatalytic conversion. Phys Chem Chem Phys 2025; 27:9732-9740. [PMID: 40261066 DOI: 10.1039/d4cp04748f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Few-layer black phosphorus (BP) becomes an ideal self-assembled material with perovskite nanocrystals (NCs) for photoluminescence (PL) and photocatalysis, due to the feasible control of photogenerated charge carriers. Until now, it is still a challenge to figure out the intrinsic carrier dynamics for multifunctional photodegradation in water. In this work, a series of few-layer BP components were successfully incorporated into CsPbBr3 NCs to achieve apparent PL quenching and ˙O2--dominated photocatalytic degradation of rhodamine B in aqueous solution. The strategy of BP modification can extend photoabsorption ensuring optimized photocatalytic activity by facilitating electron transfer from CsPbBr3 to BP with strong van der Waals interactions. In particular, CsPbBr3:5%BP NC eliminates the effect of sub-bandgap luminescence centers, resulting in a low charge transfer resistance, good carrier mobility, and high photocurrent densities under light irradiation.
Collapse
Affiliation(s)
- Jing Ji
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China.
| | - Hang Yin
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China.
| | - Xin Zhou
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China.
| | - Bingxi Song
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China.
| | - Xuhui Feng
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Peiqing Cai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Laishun Qin
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China.
| | - Yuexiang Huang
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China.
| | - Jianyong Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Da Chen
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Li Z, Gao Z, Liu L, Zhang K, Ma R, Wang Y, Yang G, Shi K. 3D Patterning of Perovskite Quantum Dots via Direct In Situ Femtosecond Laser Writing. NANO LETTERS 2025; 25:7410-7418. [PMID: 40268341 DOI: 10.1021/acs.nanolett.5c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Perovskite quantum dots (PQDs) exhibit remarkable optical properties, making them highly promising for next-generation display technologies. However, achieving precise PQDs patterning is hindered by significant challenges, including the inability to achieve true three-dimensional (3D) structuring and the risk of damaging the delicate perovskite crystal lattice. Existing methods struggle to achieve true 3D structuring while preserving the optical integrity. This study introduces an in situ patterning technique using direct laser writing (DLW). By leveraging the nonlinear absorption properties of femtosecond lasers, thiol-Ene photopolymerization is triggered, transforming perovskite precursors into complex fluorescent structures. Unlike conventional methods, this precursor-based approach minimizes laser power requirements and prevents quantum dot degradation caused by high-energy exposure. It enables precise, scalable fabrication while maintaining the structural and optical stabilities of PQDs. This innovation provides a robust platform for developing advanced display technologies, optoelectronic devices, and miniaturized on-chip systems, paving the way for future high-performance applications.
Collapse
Affiliation(s)
- Ziyu Li
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Zhiyuan Gao
- MIIT Key Laboratory for Low Dimensional Quantum Structure and Devices, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Lige Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Kai Zhang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Rui Ma
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Yue Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, P. R. China
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing 100871, China
| | - Gaoling Yang
- MIIT Key Laboratory for Low Dimensional Quantum Structure and Devices, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Kebin Shi
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, P. R. China
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| |
Collapse
|
3
|
Park SH, Kim J, Kim MJ, Kim MW, Taylor RA, Kyhm K. Complex Refractive Index Spectrum of CsPbBr 3 Nanocrystals via the Effective Medium Approximation. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:181. [PMID: 39940157 PMCID: PMC11820716 DOI: 10.3390/nano15030181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/14/2025]
Abstract
We have estimated the intrinsic complex refractive index spectrum of a CsPbBr3 nanocrystal. With various dilute solutions of CsPbBr3 nanocrystals dissolved in toluene, effective refractive indices were measured at two different wavelengths using Michelson interferometry. Given the effective absorption spectrum of the solution, a full spectrum of the effective refractive index was also obtained through the Kramers-Krönig relations. Based on the Maxwell-Garnett model in the effective medium approximation, the real and imaginary spectrum of the complex refractive index was estimated for the CsPbBr3 nanocrystal, and the dominant inaccuracy was attributed to the size inhomogeneity.
Collapse
Affiliation(s)
- Sang-Hyuk Park
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK; (S.-H.P.); (R.A.T.)
- Department of Opto & Cogno Mechatronics Engineering, Research Center for Dielectric Advanced Matter Physic (RCDAMP), Pusan National University, Busan 46241, Republic of Korea
| | - Jungwon Kim
- Department of Opto & Cogno Mechatronics Engineering, Research Center for Dielectric Advanced Matter Physic (RCDAMP), Pusan National University, Busan 46241, Republic of Korea
| | - Min Ju Kim
- Department of Opto & Cogno Mechatronics Engineering, Research Center for Dielectric Advanced Matter Physic (RCDAMP), Pusan National University, Busan 46241, Republic of Korea
| | - Min Woo Kim
- Department of Opto & Cogno Mechatronics Engineering, Research Center for Dielectric Advanced Matter Physic (RCDAMP), Pusan National University, Busan 46241, Republic of Korea
| | - Robert A. Taylor
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK; (S.-H.P.); (R.A.T.)
| | - Kwangseuk Kyhm
- Department of Opto & Cogno Mechatronics Engineering, Research Center for Dielectric Advanced Matter Physic (RCDAMP), Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Bhandari S, Pramanik S, Manna M, Singha S, Akhtar F. Surface modification unleashes light emitting applications of APbX 3 perovskite nanocrystals. Chem Commun (Camb) 2025; 61:817-840. [PMID: 39659258 DOI: 10.1039/d4cc05491a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Engineering the surface of metal halide perovskite nanocrystals (MHPNCs) is crucial for optimizing their optical properties, repairing surface defects, enhancing quantum yield, and ensuring long-term stability. These enhancements make surface-engineered MHPNCs ideal for applications in light-emitting devices (LEDs), displays, lasers, and photodetectors, contributing to energy efficiency. This article delves into an introduction to MHPNCs, their structure and types, particularly the ABX3 type (where A represents monovalent organic/inorganic cations, B represents divalent metal ions mainly Pb metal, and X represents halide ions), synthesis methods, unique optical properties, surface modification techniques using various agents (particularly inorganic molecules/materials, organic molecules, polymers, and biomolecules) to tune optical properties and applications in the aforementioned light-emitting technologies, challenges and opportunities, including advantages and disadvantages of surface-modified APbX3 MHPNCs, and a summary and future outlook. This article explores surface modification strategies to improve the optical performance of MHPNCs and aims to inspire advancements in light emitting applications. Importantly, the challenges and opportunities section of this article will illuminate the path to overcoming obstacles, providing invaluable insights for researchers in this field. This in-depth review explores the surface engineering of MHPNCs for light-emitting applications, highlighting their notable advantages and addressing ongoing challenges. By delving deep into various surface modification strategies, this article aims to revolutionize MHPNC-based light-emitting applications, setting a new benchmark in the field. This paves the way for revolutionary advancements, maximizing the capabilities of surface-engineered MHPNCs and heralding a transformative era in precise light-emitting research.
Collapse
Affiliation(s)
- Satyapriya Bhandari
- Department of Chemistry, Kandi Raj College, Affiliated to University of Kalyani, Kandi, Murshidabad, West Bengal 742137, India.
| | - Sabyasachi Pramanik
- Assam Energy Institute, Sivasagar, a Centre of Rajiv Gandhi Institute of Petroleum Technology, Assam 785697, India.
| | - Mihir Manna
- Chemical Sciences Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF, Salt Lake, Sector-I, Bidhannagar, Kolkata 700064, India
| | - Sumit Singha
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling 734013, India
| | - Farhin Akhtar
- Assam Energy Institute, Sivasagar, a Centre of Rajiv Gandhi Institute of Petroleum Technology, Assam 785697, India.
| |
Collapse
|
5
|
Schrenker NJ, Braeckevelt T, De Backer A, Livakas N, Yu CP, Friedrich T, Roeffaers MBJ, Hofkens J, Verbeeck J, Manna L, Van Speybroeck V, Van Aert S, Bals S. Investigation of the Octahedral Network Structure in Formamidinium Lead Bromide Nanocrystals by Low-Dose Scanning Transmission Electron Microscopy. NANO LETTERS 2024; 24:10936-10942. [PMID: 39162302 DOI: 10.1021/acs.nanolett.4c02811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Metal halide perovskites (MHP) are highly promising semiconductors. In this study, we focus on FAPbBr3 nanocrystals, which are of great interest for green light-emitting diodes. Structural parameters significantly impact the properties of MHPs and are linked to phase instability, which hampers long-term applications. Clearly, there is a need for local and precise characterization techniques at the atomic scale, such as transmission electron microscopy. Because of the high electron beam sensitivity of MHPs, these investigations are extremely challenging. Here, we applied a low-dose method based on four-dimensional scanning transmission electron microscopy. We quantified the observed elongation of the projections of the Br atomic columns, suggesting an alternation in the position of the Br atoms perpendicular to the Pb-Br-Pb bonds. Together with molecular dynamics simulations, these results remarkably reveal local distortions in an on-average cubic structure. Additionally, this study provides an approach to prospectively investigating the fundamental degradation mechanisms of MHPs.
Collapse
Affiliation(s)
- Nadine J Schrenker
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Tom Braeckevelt
- Center for Molecular Modeling, Ghent University, 9052 Zwijnaarde, Belgium
- Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Annick De Backer
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Nikolaos Livakas
- Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
- Dipartimento di Chimica e Chimica Industriale, Università di Genova, 16146 Genova, Italy
| | - Chu-Ping Yu
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Thomas Friedrich
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Maarten B J Roeffaers
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Johan Verbeeck
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Liberato Manna
- Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
| | | | - Sandra Van Aert
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| |
Collapse
|
6
|
Lim HS, Jeong SG, Park GB, Kim JY, Heo NH, Lim WT. Luminescent Cs 8PbBr 64+ Quantum Dots Centered on the Octahedral PbBr 64- Cluster within Zeolite LTA: Exploring the Edge of Three-Dimensional Crystal Structure and Its Stability. Inorg Chem 2024; 63:13991-14003. [PMID: 39018070 DOI: 10.1021/acs.inorgchem.4c01473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The perovskite quantum dots (QDs) of CsPbX3 (X = Cl, Br, I) exhibit exceptional photoluminescent properties, but their sensitivity to moisture and heat poses a challenge. This study presents a solvent-free synthesis approach for incorporating CsPbBr3 perovskite QDs into zeolite A. The introduction of [Cs8PbBr6]4+ perovskite QDs into the zeolite framework resulted in a highly stable configuration, maintaining its initial luminescence properties even after being underwater or exposed to heat. The structure is determined by 3-dimensional single-crystal crystallography. Each octahedral PbBr64- ion is surrounded by Cs+ ions and [Cs8PbBr6]4+ perovskite QDs being formed at the 32% of the center of a large cavity. Further, [Na12CsBr8]5+ QDs are formed at the very center of another 46% large cavities by combining Cs+, Na+, and Br- ions. The peak in the emission spectrum of Pb,Br,Cs,Na-A is similar to those of the CsPbBr3 nanocrystal, Cs4PbBr6 0-dimensional perovskite QDs, and Pb,Br,H,Cs,Na-FAU(X and Y). This work demonstrates that Pb,Br,Cs,Na-A can be produced using a simplified solvent-free synthesis procedure, which exhibits excellent stability against moisture and heat. Moreover, through a straightforward process, various quantum dots (QDs) can be incorporated into zeolite cavities to develop materials with variety photoluminescent properties.
Collapse
Affiliation(s)
| | - Sang Gil Jeong
- Department of Applied Chemistry, College of Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Gi Beom Park
- Department of Applied Chemistry, College of Engineering, Kyungpook National University, Daegu 41566, Korea
- Department of Fire Safety Management, College of Engineering, Kyungbuk College, Yeongju 36133, Korea
| | - Joon Young Kim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology, Naju 58330, Korea
| | - Nam Ho Heo
- Department of Applied Chemistry, College of Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Woo Taik Lim
- Department of Chemical and Biological Engineering, College of Engineering, Andong National University, Andong 36729, Korea
| |
Collapse
|
7
|
Polimeno L, Coriolano A, Mastria R, Todisco F, De Giorgi M, Fieramosca A, Pugliese M, Prontera CT, Rizzo A, De Marco L, Ballarini D, Gigli G, Sanvitto D. Room Temperature Polariton Condensation from Whispering Gallery Modes in CsPbBr 3 Microplatelets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312131. [PMID: 38632702 DOI: 10.1002/adma.202312131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Room temperature (RT) polariton condensate holds exceptional promise for revolutionizing various fields of science and technology, encompassing optoelectronics devices to quantum information processing. Using perovskite materials, like all-inorganic cesium lead bromide (CsPbBr3) single crystal, provides additional advantages, such as ease of synthesis, cost-effectiveness, and compatibility with existing semiconductor technologies. In this work, the formation of whispering gallery modes (WGM) in CsPbBr3 single crystals with controlled geometry is shown, synthesized using a low-cost and efficient capillary bridge method. Through the implementation of microplatelets geometry, enhanced optical properties and performance are achieved due to the presence of sharp edges and a uniform surface, effectively avoiding non-radiative scattering losses caused by defects. This allows not only to observe strong light matter coupling and formation of whispering gallery polaritons, but also to demonstrate the onset of polariton condensation at RT. This investigation not only contributes to the advancement of the knowledge concerning the exceptional optical properties of perovskite-based polariton systems, but also unveils prospects for the exploration of WGM polariton condensation within the framework of a 3D perovskite-based platform, working at RT. The unique characteristics of polariton condensate, including low excitation thresholds and ultrafast dynamics, open up unique opportunities for advancements in photonics and optoelectronics devices.
Collapse
Affiliation(s)
- Laura Polimeno
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Annalisa Coriolano
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Rosanna Mastria
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Francesco Todisco
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Milena De Giorgi
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Antonio Fieramosca
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Marco Pugliese
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Carmela T Prontera
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Aurora Rizzo
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Luisa De Marco
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Dario Ballarini
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Giuseppe Gigli
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
- Dipartimento di Matematica e Fisica "Ennio de Giorgi", Universitá del Salento, Lecce, 73100, Italy
| | - Daniele Sanvitto
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| |
Collapse
|
8
|
Othman DM, Weinstein J, Huang N, Ming W, Lyu Q, Hou B. Solution-processed colloidal quantum dots for internet of things. NANOSCALE 2024; 16:10947-10974. [PMID: 38804109 DOI: 10.1039/d4nr00203b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Colloidal quantum dots (CQDs) have been a hot research topic ever since they were successfully fabricated in 1993 via the hot injection method. The Nobel Prize in Chemistry 2023 was awarded to Moungi G. Bawendi, Louis E. Brus and Alexei I. Ekimov for the discovery and synthesis of quantum dots. The Internet of Things (IoT) has also attracted a lot of attention due to the technological advancements and digitalisation of the world. This review first aims to give the basics behind QD physics. After that, the history behind CQD synthesis and the different methods used to synthesize most widely researched CQD materials (CdSe, PbS and InP) are revisited. A brief introduction to what IoT is and how it works is also mentioned. Then, the most widely researched CQD devices that can be used for the main IoT components are reviewed, where the history, physics, the figures of merit (FoMs) and the state-of-the-art are discussed. Finally, the challenges and different methods for integrating CQDs into IoT devices are discussed, mentioning the future possibilities that await CQDs.
Collapse
Affiliation(s)
- Diyar Mousa Othman
- School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, UK.
| | - Julia Weinstein
- Department of Chemistry, The University of Sheffield, Sheffield, S3 7HF, UK
| | | | - Wenlong Ming
- School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK
| | - Quan Lyu
- Cambridge Research Centre, Huawei Technologies Research & Development (UK) Ltd, Cambridge, CB4 0FY, UK.
| | - Bo Hou
- School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, UK.
| |
Collapse
|
9
|
Chen Q, Cao J, Yang Z, Wang Z, Wang J, Yu S, Hao C, Wang N, Li H, Huang X. Heterointerface engineering of layered double hydroxide/MAPbBr 3 heterostructures enabling tunable synapse behaviors in a two-terminal optoelectronic device. NANOSCALE HORIZONS 2024; 9:1023-1029. [PMID: 38602167 DOI: 10.1039/d4nh00066h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Solution-processable semiconductor heterostructures enable scalable fabrication of high performance electronic and optoelectronic devices with tunable functions via heterointerface control. In particular, artificial optical synapses require interface manipulation for nonlinear signal processing. However, the limited combinations of materials for heterostructure construction have restricted the tunability of synaptic behaviors with simple device configurations. Herein, MAPbBr3 nanocrystals were hybridized with MgAl layered double hydroxide (LDH) nanoplates through a room temperature self-assembly process. The formation of such heterostructures, which exhibited an epitaxial relationship, enabled effective hole transfer from MAPbBr3 to LDH, and greatly reduced the defect states in MAPbBr3. Importantly, the ion-conductive nature of LDH and its ability to form a charged surface layer even under low humidity conditions allowed it to attract and trap holes from MAPbBr3. This imparted tunable synaptic behaviors and short-term plasticity (STP) to long-term plasticity (LTP) transition to a two-terminal device based on the LDH-MAPbBr3 heterostructures. The further neuromorphic computing simulation under varying humidity conditions showcased their potential in learning and recognition tasks under ambient conditions. Our work presents a new type of epitaxial heterostructure comprising metal halide perovskites and layered ion-conductive materials, and provides a new way of realizing charge-trapping induced synaptic behaviors.
Collapse
Affiliation(s)
- Qian Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Jiacheng Cao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Zhiwei Yang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, China
| | - Zeyi Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, China
| | - Jian Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, China
| | - Shilong Yu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, China
| | - Chenjie Hao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, China
| | - Nana Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, China
| | - Hai Li
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, China
| | - Xiao Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, China
| |
Collapse
|
10
|
Shen X, Wu Y, Dang C, Li P, Guo P. Direct chemical-vapor-deposition growth of alloyed perovskite microcrystals for tunable emissions. NANOTECHNOLOGY 2024; 35:185704. [PMID: 38271736 DOI: 10.1088/1361-6528/ad22af] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024]
Abstract
Tunable composition of perovskite micro/nanostructures are perfect candidate for the designing of multifunctional optoelectronic circuits. Especially, integrated polychromatic luminescence based on the perovskite materials along a single substrate or chip is essential to the integrated photonic devices and multicolor displays. Here, we reported a synthesis of composition tunable CsPbI3(1-x)Br3x(X = 0.65-0.9) perovskite microstructures on a single substrate via a magnetic-pulling CVD method. The PL emissions can be changed gradually from green (558 nm, 2.23 eV) to red (610 nm, 2.03 eV) under a focused 375 nm laser illumination. Furthermore, these composition-graded alloyed perovskite microcrystals show stable emissions after six months in air, which may find applications in multicolor display and broad band light sources in the future.
Collapse
Affiliation(s)
- Xia Shen
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Yu Wu
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Chanjuan Dang
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
- School of Physics and Electronic Science, Shanxi Datong University, Datong 037009, People's Republic of China
| | - Pu Li
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Pengfei Guo
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, People's Republic of China
| |
Collapse
|
11
|
Lee HC, Bootharaju MS, Lee K, Chang H, Kim SY, Ahn E, Li S, Kim BH, Ahn H, Hyeon T, Yang J. Revealing Two Distinct Formation Pathways of 2D Wurtzite-CdSe Nanocrystals Using In Situ X-Ray Scattering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307600. [PMID: 38072639 PMCID: PMC10853705 DOI: 10.1002/advs.202307600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/21/2023] [Indexed: 02/10/2024]
Abstract
Understanding the mechanism underlying the formation of quantum-sized semiconductor nanocrystals is crucial for controlling their synthesis for a wide array of applications. However, most studies of 2D CdSe nanocrystals have relied predominantly on ex situ analyses, obscuring key intermediate stages and raising fundamental questions regarding their lateral shapes. Herein, the formation pathways of two distinct quantum-sized 2D wurtzite-CdSe nanocrystals - nanoribbons and nanosheets - by employing a comprehensive approach, combining in situ small-angle X-ray scattering techniques with various ex situ characterization methods is studied. Although both nanostructures share the same thickness of ≈1.4 nm, they display contrasting lateral dimensions. The findings reveal the pivotal role of Se precursor reactivity in determining two distinct synthesis pathways. Specifically, highly reactive precursors promote the formation of the nanocluster-lamellar assemblies, leading to the synthesis of 2D nanoribbons with elongated shapes. In contrast, mild precursors produce nanosheets from a tiny seed of 2D nuclei, and the lateral growth is regulated by chloride ions, rather than relying on nanocluster-lamellar assemblies or Cd(halide)2 -alkylamine templates, resulting in 2D nanocrystals with relatively shorter lengths. These findings significantly advance the understanding of the growth mechanism governing quantum-sized 2D semiconductor nanocrystals and offer valuable guidelines for their rational synthesis.
Collapse
Affiliation(s)
- Hyo Cheol Lee
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Megalamane S. Bootharaju
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Kyunghoon Lee
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Hogeun Chang
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
- Samsung Advanced Institute of TechnologySamsung ElectronicsSuwon16678Republic of Korea
| | - Seo Young Kim
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Eonhyoung Ahn
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Shi Li
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Byung Hyo Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- Department of Material Science and EngineeringSoongsil UniversitySeoul06978Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator LaboratoryPohang37673Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
- Energy Science and Engineering Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| |
Collapse
|
12
|
Cui Q, Liu X, Li N, Zeng H, Chu D, Li H, Song X, Xu Z, Liu Y, Zhu H, Zhao K, Liu SF. A New Metal-Free Molecular Perovskite-Related Single Crystal with Quantum Wire Structure for High-Performance X-Ray Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308945. [PMID: 37948432 DOI: 10.1002/smll.202308945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Indexed: 11/12/2023]
Abstract
The family of metal-free molecular perovskites, an emerging novel class of eco-friendly semiconductor, welcomes a new member with a unique 1D hexagonal perovskite structure. Lowering dimensionality at molecular level is a facile strategy for crystal structure conversion, optoelectronic property regulation, and device performance optimization. Herein, the study reports the design, synthesis, packing structure, and photophysical properties of the 1D metal-free molecular perovskite-related single crystal, rac-3APD-NH4 I3 (rac-3APD= racemic-3-Aminopiperidinium), that features a quantum wire structure formed by infinite chains of face-sharing NH4 I6 octahedra, enabling strong quantum confinement with strongly self-trapped excited (STE) states to give efficient warm orange emission with a photoluminescence quantum yield (PLQY) as high as ≈41.6%. The study accordingly unveils its photoexcited carrier dynamics: rac-3APD-NH4 I3 relaxes to STE state with a short lifetime of 10 ps but decays to ground state by emitting photons with a relatively longer lifetime of 560 ps. Additionally, strong quantum confinement effect is conducive to charge transport along the octahedral channels that enables the co-planar single-crystal X-ray detectors to achieve a sensitivity as high as 1556 µC Gyair -1 cm-2 . This work demonstrates the first case of photoluminescence mechanism and photophysical dynamics of 1D metal-free perovskite-related semiconductor, as well as the promise for high-performance X-ray detector.
Collapse
Affiliation(s)
- Qingyue Cui
- Department of Chemical Physics, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China (USTC), Hefei, 230026, P. R. China
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xinmei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Nan Li
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Hanqing Zeng
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Depeng Chu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Haojin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Xin Song
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zhuo Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yanping Liu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Haiming Zhu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
13
|
Shi J, Cohen-Kleinstein B, Zhang X, Zhao C, Zhang Y, Ling X, Guo J, Ko DH, Xu B, Yuan J, Ma W. In Situ Iodide Passivation Toward Efficient CsPbI 3 Perovskite Quantum Dot Solar Cells. NANO-MICRO LETTERS 2023; 15:163. [PMID: 37386322 PMCID: PMC10310659 DOI: 10.1007/s40820-023-01134-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023]
Abstract
Highlights The introduction of hydroiodic acid (HI) manipulates the dynamic conversion of PbI2 into highly coordinated species to optimize the nucleation and growth kinetics. The addition of HI enables the fabrication of CsPbI3 perovskite quantum dots with reduced defect density, enhanced crystallinity, higher phase purity, and near-unity photoluminescence quantum yield. The efficiency of CsPbI3 perovskite quantum dot solar cells was enhanced from 14.07% to 15.72% together with enhanced storage stability. Abstract All-inorganic CsPbI3 quantum dots (QDs) have demonstrated promising potential in photovoltaic (PV) applications. However, these colloidal perovskites are vulnerable to the deterioration of surface trap states, leading to a degradation in efficiency and stability. To address these issues, a facile yet effective strategy of introducing hydroiodic acid (HI) into the synthesis procedure is established to achieve high-quality QDs and devices. Through an in-depth experimental analysis, the introduction of HI was found to convert PbI2 into highly coordinated [PbIm]2−m, enabling control of the nucleation numbers and growth kinetics. Combined optical and structural investigations illustrate that such a synthesis technique is beneficial for achieving enhanced crystallinity and a reduced density of crystallographic defects. Finally, the effect of HI is further reflected on the PV performance. The optimal device demonstrated a significantly improved power conversion efficiency of 15.72% along with enhanced storage stability. This technique illuminates a novel and simple methodology to regulate the formed species during synthesis, shedding light on further understanding solar cell performance, and aiding the design of future novel synthesis protocols for high-performance optoelectronic devices. Supplementary Information The online version contains supplementary material available at 10.1007/s40820-023-01134-1.
Collapse
Affiliation(s)
- Junwei Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China
| | - Ben Cohen-Kleinstein
- Department of Electrical and Computer Engineering, University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Xuliang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China
| | - Chenyu Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China
| | - Yong Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Xufeng Ling
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China
| | - Junjun Guo
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China
| | - Doo-Hyun Ko
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Baomin Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China.
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China.
| | - Wanli Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China.
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
14
|
Li X, Nie W, Ma X. Intersubband Transitions in Lead Halide Perovskite-Based Quantum Wells for Mid-Infrared Detectors. J Phys Chem Lett 2023; 14:4766-4774. [PMID: 37184992 DOI: 10.1021/acs.jpclett.3c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Due to their excellent optical and electrical properties as well as versatile growth and fabrication processes, lead halide perovskites have been widely considered as promising candidates for green energy and applications related to optoelectronics. Here, we investigate their potential applications at infrared wavelengths by modeling the intersubband transitions in perovskite-based quantum well systems. Both single-well and double-well structures are studied, and their energy levels as well as the corresponding wave functions and intersubband transition energies are calculated by solving the one-dimensional Schrödinger equations. Via adjustment of the quantum well and barrier thicknesses, the intersubband transition energies can be tuned to cover a broad infrared wavelength range. We also find that the lead halide perovskite-based quantum wells possess high absorption coefficients. The widely tunable transition energies and high absorption coefficients of the perovskite-based quantum well systems, combined with their unique material and electrical properties, may enable an alternative material system for infrared photodetector applications.
Collapse
Affiliation(s)
- Xinxin Li
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Consortium for Advanced Science and Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wanyi Nie
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Xuedan Ma
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Consortium for Advanced Science and Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
15
|
Vukovic O, Folpini G, Wong EL, Leoncino L, Terraneo G, Albaqami MD, Petrozza A, Cortecchia D. Structural effects on the luminescence properties of CsPbI 3 nanocrystals. NANOSCALE 2023; 15:5712-5719. [PMID: 36880499 PMCID: PMC10035506 DOI: 10.1039/d2nr06345j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Metal halide perovskite nanocrystals (NCs) are promising for photovoltaic and light-emitting applications. Due to the softness of their crystal lattice, structural modifications have a critical impact on their optoelectronic properties. Here we investigate the size-dependent optoelectronic properties of CsPbI3 NCs ranging from 7 to 17 nm, employing temperature and pressure as thermodynamic variables to modulate the energetics of the system and selectively tune the interatomic distances. By temperature-dependent photoluminescence spectroscopy, we have found that luminescence quenching channels exhibit increased non-radiative losses and weaker exciton-phonon coupling in bigger particles, in turn affecting the luminescence efficiency. Through pressure-dependent measurements up to 2.5 GPa, supported by XRD characterization, we revealed a NC-size dependent solid-solid phase transition from the γ-phase to the δ-phase. Importantly, the optical response to these structural changes strongly depends on the size of the NC. Our findings provide an interesting guideline to correlate the size and structural and optoelectronic properties of CsPbI3 NCs, important for engineering the functionalities of this class of soft semiconductors.
Collapse
Affiliation(s)
- Olivera Vukovic
- Centre for Nano Science and Technology (CNST@PoliMi), Istituto Italiano di Tecnologia, Via Pascoli 70, Milan 20133, Italy.
- Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Université de Pau & Pays Adour, CNRS, IPREM UMR 5254, 2 Avenue du Président Angot, Pau F-64053, France
| | - Giulia Folpini
- Centre for Nano Science and Technology (CNST@PoliMi), Istituto Italiano di Tecnologia, Via Pascoli 70, Milan 20133, Italy.
| | - E Laine Wong
- Centre for Nano Science and Technology (CNST@PoliMi), Istituto Italiano di Tecnologia, Via Pascoli 70, Milan 20133, Italy.
| | - Luca Leoncino
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Giancarlo Terraneo
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, via L. Mancinelli 7, 20131 Milano, Italy
| | - Munirah D Albaqami
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Annamaria Petrozza
- Centre for Nano Science and Technology (CNST@PoliMi), Istituto Italiano di Tecnologia, Via Pascoli 70, Milan 20133, Italy.
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Daniele Cortecchia
- Centre for Nano Science and Technology (CNST@PoliMi), Istituto Italiano di Tecnologia, Via Pascoli 70, Milan 20133, Italy.
| |
Collapse
|
16
|
Wu Z, Tüysüz H, Besenbacher F, Dai Y, Xiong Y. Recent developments in lead-free bismuth-based halide perovskite nanomaterials for heterogeneous photocatalysis under visible light. NANOSCALE 2023; 15:5598-5622. [PMID: 36891830 DOI: 10.1039/d3nr00124e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Halide perovskite materials, especially lead-based perovskites, have been widely used for optoelectronic and catalytic applications. However, the high toxicity of the lead element is a major concern that directs the research work toward lead-free halide perovskites, which could utilize bismuth as a promising candidate. Until now, the replacement of lead by bismuth in perovskites has been well studied by designing bismuth-based halide perovskite (BHP) nanomaterials with versatile physical-chemical properties, which are emerging in various application fields, especially heterogeneous photocatalysis. In this mini-review, we present a brief overview of recent progress in BHP nanomaterials for photocatalysis under visible light. The synthesis and physical-chemical properties of BHP nanomaterials have been comprehensively summarized, including zero-dimensional, two-dimensional nanostructures and hetero-architectures. Later, we introduce the photocatalytic applications of these novel BHP nanomaterials with visible-light response, improved charge separation/transport and unique catalytic sites. Due to advanced nano-morphologies, a well-designed electronic structure and an engineered surface chemical micro-environment, BHP nanomaterials demonstrate enhanced photocatalytic performance for hydrogen generation, CO2 reduction, organic synthesis and pollutant removal. Finally, the challenges and future research directions of BHP nanomaterials for photocatalysis are discussed.
Collapse
Affiliation(s)
- Zehong Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr 45470, Germany
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Yitao Dai
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
17
|
Scalon L, Freitas FS, Marques FDC, Nogueira AF. Tiny spots to light the future: advances in synthesis, properties, and application of perovskite nanocrystals in solar cells. NANOSCALE 2023; 15:907-941. [PMID: 36629010 DOI: 10.1039/d2nr05043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Perovskites are in the hotspot of material science and technology. Outstanding properties have been discovered, fundamental mechanisms of defect formation and degradation elucidated, and applications in a wide variety of optoelectronic devices demonstrated. Advances through adjusting the bulk-perovskite composition, as well as the integration of layered and nanostructured perovskites in the devices, allowed improvement in performance and stability. Recently, efforts have been devoted to investigating the effects of quantum confinement in perovskite nanocrystals (PNCs) aiming to fabricate optoelectronic devices based solely on these nanoparticles. In general, the applications are focused on light-emitting diodes, especially because of the high color purity and high fluorescence quantum yield obtained in PNCs. Likewise, they present important characteristics featured for photovoltaic applications, highlighting the possibility of stabilizing photoactive phases that are unstable in their bulk analog, the fine control of the bandgap through size change, low defect density, and compatibility with large-scale deposition techniques. Despite the progress made in the last years towards the improvement in the performance and stability of PNCs-based solar cells, their efficiency is still much lower than that obtained with bulk perovskite, and discussions about upscaling of this technology are scarce. In light of this, we address in this review recent routes towards efficiency improvement and the up-scaling of PNC solar cells, emphasizing synthesis management and strategies for solar cell fabrication.
Collapse
Affiliation(s)
- Lucas Scalon
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil.
| | - Flavio Santos Freitas
- Centro Federal de Educação Tecnológica de Minas Gerais, Minas Gerais 30421-169, Brazil
| | | | - Ana Flávia Nogueira
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil.
| |
Collapse
|
18
|
Liu D, Shi C, Nie Y, Peng W, Ming YA. Nano-CuOx for ciprofloxacin effective removal via wet peroxide oxidation catalysis and its practical application in wastewater. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-220104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Using Cu(NO3)2·3H2O as active material and citric acid (CA) as complexing agent, heterogeneous catalyst nano-CuOx was prepared by sol-gel method. The catalytic wet peroxide oxidation (CWPO) reaction system was established accordingly. The system was used to treat ciprofloxacin (CIP) in simulated wastewater and real wastewater. The effects of the molar ratio of metal salt to CA, calcination temperature, H2O2 dosage, reaction temperature, and catalyst dosage on the physicochemical structure and the properties of CWPO were investigated. The results showed that when the molar ratio of CA to metal salt (Cu(NO3)2·3H2O) was 1.8, the calcination temperature was 500 °C, the concentration of H2O2 was 10 mmol · L–1, the reaction temperature was 95 °C, and the dosage of catalyst was 1 g · L–1, CWPO system has the best degradation effect on CIP. At thses optical conditions, the removal rate reached 86.8%, chemical oxygen demand (COD) removal rate reached 54.9%, and the recycling rate of the catalyst was very good. The refractory organics in actual pharmaceutical wastewater could be oxidized by this system as well, and the COD removal rate reaches 47%. The degradation mechanism of CIP showed that the main functions of the CWPO system were ·O2– and ·OH radicals. The possible degradation pathways were determined by ion chromatography to be intermediate products generated from piperazine ring cleavage, defluorination, decarboxylation, and quinoline hydroxylation of CIP. The catalyzing mechanism was investigated in detail; some useful information was obtained in this work.
Collapse
Affiliation(s)
- Dan Liu
- School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei, China
| | - Changping Shi
- Wuhan Taichangyuan Environmental Protection Technology Co., Ltd., Wuhan, Hubei, China
| | - Yang Nie
- School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei, China
| | - Wenjun Peng
- School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei, China
| | - Yin-an Ming
- School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei, China
| |
Collapse
|
19
|
Mu Y, He Z, Wang K, Pi X, Zhou S. Recent progress and future prospects on halide perovskite nanocrystals for optoelectronics and beyond. iScience 2022; 25:105371. [PMID: 36345343 PMCID: PMC9636552 DOI: 10.1016/j.isci.2022.105371] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As an emerging new class of semiconductor nanomaterials, halide perovskite (ABX3, X = Cl, Br, or I) nanocrystals (NCs) are attracting increasing attention owing to their great potential in optoelectronics and beyond. This field has experienced rapid breakthroughs over the past few years. In this comprehensive review, halide perovskite NCs that are either freestanding or embedded in a matrix (e.g., perovskites, metal-organic frameworks, glass) will be discussed. We will summarize recent progress on the synthesis and post-synthesis methods of halide perovskite NCs. Characterizations of halide perovskite NCs by using a variety of techniques will be present. Tremendous efforts to tailor the optical and electronic properties of halide perovskite NCs in terms of manipulating their size, surface, and component will be highlighted. Physical insights gained on the unique optical and charge-carrier transport properties will be provided. Importantly, the growing potential of halide perovskite NCs for advancing optoelectronic applications and beyond including light-emitting devices (LEDs), solar cells, scintillators and X-ray imaging, lasers, thin-film transistors (TFTs), artificial synapses, and light communication will be extensively discussed, along with prospecting their development in the future.
Collapse
Affiliation(s)
- Yuncheng Mu
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Ziyu He
- Department of Material Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
| | - Kun Wang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xiaodong Pi
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Advanced Semiconductors and Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, Hangzhou Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Shu Zhou
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
20
|
Kwon HG, Ryu J, Park JG, Park SW, Kwon OP, Hong KH, Kim SW. Fabrication of Colloidal Cesium Metal Halide (CsMX: M = Fe, Co, and Ni) Nanoparticles and Assessment of Their Thermodynamic Stability by DFT Calculations. Inorg Chem 2022; 61:14361-14367. [PMID: 36047720 DOI: 10.1021/acs.inorgchem.2c02155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We synthesized colloidal cesium metal halide CsMX (M = Fe, Co, Ni; X = Cl, Br) nanoparticles (NPs) and assessed their crystal stability by density functional theory (DFT) calculations. We successfully synthesized Cs3FeCl5, Cs3FeBr5, Cs3CoCl5, Cs3CoBr5, CsNiCl3, and CsNiBr3 NPs. CsMX NPs with Fe and Co exhibited Cs3M1X5 and Cs2M1X4 structures depending on the reaction conditions; however, CsNiX NPs exhibited only the CsNiX3 structure. The differences in structural stability by central metal ions were explained using spin-polarized DFT calculations. The analysis revealed tetragonal Cs3M1X5 and orthorhombic Cs2M1X4 structures to have similar thermodynamic stabilities in the case of Fe and Co, whereas the hexagonal CsMX3 structure in the case of Ni was the most stable. Moreover, the calculation results were the same as the experimental results. In particular, cobalt-related Cs3CoBr5 NPs easily developed into Cs2CoCl4 nanorods with an increase in temperature.
Collapse
Affiliation(s)
- Hyo-Geun Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jehyeon Ryu
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jong-Goo Park
- Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Sang Woo Park
- Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - O-Pil Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Ki-Ha Hong
- Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Sang-Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
21
|
Guo P, Yang Q, Shen X, Lv Q, Hao Y, Xiao L, Ho JC, Yu KM. Room-Temperature Broad-Wavelength-Tunable Single-Mode Lasing from Alloyed CdS 1-xSe x Nanotripods. ACS NANO 2022; 16:12767-12776. [PMID: 35916454 DOI: 10.1021/acsnano.2c04632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wavelength-tunable semiconductor nanolasers have attracted tremendous attention for their tunable emissions and robust stability, bringing possibilities for various applications, including nanophotonic circuits, solid-state white-light sources, wavelength-converted devices, and on-chip optical communications. Here, we report on the demonstration of broadband-tunable, single-mode nanolasers based on high-quality alloyed single crystalline CdS1-xSex (x = 0-1) nanotripods with well-formed facets fabricated using a conventional CVD approach. Microstructural characterization and optical investigations reveal that these structures are crystalline with composition-tunable CdS1-xSex alloys. Microphotoluminescence spectra and mapping of these nanotripods exhibit emissions with continuous wavelengths from 509 to 712 nm, further demonstrating that the CdS1-xSex alloys have tunable bandgaps due to the composition gradient. Additionally, under a pulse laser illumination, room-temperature single-mode lasing is clearly observed from these nanotripods cavities, which shows almost identical emission lines with a high-quality factor of ∼1231. More importantly, wavelength continuously tunable nanolasers from 520 to 738 nm are successfully constructed using these bandgap gradient nanotripods. The capability to fabricate high-quality tunable nanolasers represents a significant step toward high-integration optical circuits and photonics communications.
Collapse
Affiliation(s)
- Pengfei Guo
- College of Physics and Optoelectronics, Key Laboratory of Advanced Transducers and Intelligent Control System Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qian Yang
- College of Physics and Optoelectronics, Key Laboratory of Advanced Transducers and Intelligent Control System Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xia Shen
- College of Physics and Optoelectronics, Key Laboratory of Advanced Transducers and Intelligent Control System Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qihang Lv
- College of Physics and Optoelectronics, Key Laboratory of Advanced Transducers and Intelligent Control System Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yuying Hao
- College of Physics and Optoelectronics, Key Laboratory of Advanced Transducers and Intelligent Control System Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Liantuan Xiao
- College of Physics and Optoelectronics, Key Laboratory of Advanced Transducers and Intelligent Control System Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Johnny C Ho
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 816-8580, Japan
| | | |
Collapse
|
22
|
Liu J, Chen Y, Ran C, Hu J, Lin Y, Xia Y, Chen Y. Unraveling the Role of Chloride in Vertical Growth of Low-Dimensional Ruddlesden-Popper Perovskites for Efficient Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34189-34197. [PMID: 34793120 DOI: 10.1021/acsami.1c16124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, low-dimensional Ruddlesden-Popper (LDRP) perovskite-based solar cells (PSCs) have been extensively studied because of their robust stability. However, because of the poor conductivity of the organic spacer, the charge transport across the spacers in the LDRP perovskite is considerably poor, and thus regulation of the growth orientation of LDRP cells is of primary importance. So far, the key role of organic cations in controlling the growth orientation of LDRP films has been widely studied, but the impact of halogens has not been sufficiently investigated. Herein, we demonstrate the important role of halogens in determining the characteristics of benzylamine (BZA)-based LDRP perovskite films, where different BZAX salts (X = Cl, Br, I) are adopted. Compared to Br and I, Cl is shown to prominently enlarge the grain size, promote the vertical orientation, reduce the trap state density, and prolong the carrier lifetime of LDRP film, and all these merits effectively accelerate the carrier transport within the film. As a result, a PSC device based on BZACl delivers a champion PCE of 17.25% with much improved device stability. This work unravels the vital role of Cl in regulating the crystallization process of LDRP films, which provides a facile approach for boosting the performance of LDRP-based PSCs.
Collapse
Affiliation(s)
- Jin Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Yue Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Chenxin Ran
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jianfei Hu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Yuexin Lin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Yingdong Xia
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Yonghua Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
23
|
Shen X, Li P, Guo P, Yu KM. On-wire bandgap engineering via a magnetic-pulled CVD approach and optoelectronic applications of one-dimensional nanostructures. NANOTECHNOLOGY 2022; 33:432002. [PMID: 35816940 DOI: 10.1088/1361-6528/ac800b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Since the emergence of one-dimensional nanostructures, in particular the bandgap-graded semiconductor nanowires/ribbons or heterostructures, lots of attentions have been devoted to unraveling their intriguing properties and finding applications for future developments in optical communications and integrated optoelectronic devices. In particular, the ability to modulate the bandgap along a single nanostructure greatly enhances their functionalities in optoelectronics, and hence these studies are essential to pave the way for future high-integrated devices and circuits. Herein, we focus on a brief review on recent advances about the synthesis through a magnetic-pulled chemical vapor deposition approach, crystal structure and the unique optical and electronic properties of on-nanostructures semiconductors, including axial nanowire heterostructures, asymmetrical/symmetric bandgap gradient nanowires, lateral heterostructure nanoribbons, lateral bandgap graded ribbons. Moreover, recent developments in applications using low-dimensional bandgap modulated structures, especially in bandgap-graded nanowires and heterostructures, are summarized, including multicolor lasers, waveguides, white-light sources, photodetectors, and spectrometers, where the main strategies and unique features are addressed. Finally, future outlook and perspectives for the current challenges and the future opportunities of one-dimensional nanostructures with bandgap engineering are discussed to provide a roadmap future development in the field.
Collapse
Affiliation(s)
- Xia Shen
- College of Physics and Optoelectronics, Key Laboratory of Advanced Transducers and Intelligent Control System Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Pu Li
- College of Physics and Optoelectronics, Key Laboratory of Advanced Transducers and Intelligent Control System Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Pengfei Guo
- College of Physics and Optoelectronics, Key Laboratory of Advanced Transducers and Intelligent Control System Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Kin Man Yu
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong 999077, People's Republic of China
| |
Collapse
|
24
|
Dai G, Ma Z, Qiu Y, Li Z, Fu X, Jiang H, Ma Z. A Red-Emitting Hybrid Manganese Halide Perovskite C 5H 5NOMnCl 2·H 2O Featuring One-Dimensional Octahedron Chains. Inorg Chem 2022; 61:12635-12642. [PMID: 35912500 DOI: 10.1021/acs.inorgchem.2c01584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we successfully synthesized a new organic-inorganic hybrid manganese halide perovskite C5H5NOMnCl2·H2O, in which organic molecules, water molecules (through O atoms), and Cl atoms coordinate with Mn atoms to form deformed [MnO3Cl3] octahedrons. Then, octahedrons form a chain through edge sharing, resulting in a 1D-chain single crystal structure. The high-quality C5H5NOMnCl2·H2O single crystal prepared by a simple solvent evaporation method produced bright red emission at 656 nm attributed to the d-d transition of Mn2+. Also, it has a photoluminescence quantum yield (PLQY) of 24.2%. Photoluminescence excitation and absorption spectra were both featured with multiple bands and were in good agreement with the Mn2+ 3d energy levels. The photoluminescence decay spectrum showed an average lifetime of 0.466 ms, which further proves the d-d transition mechanism. The C5H5NOMnCl2·H2O single crystal had a direct band gap of 1.43 eV. Moreover, a red light LED with a CCT of 1857 K was obtained based on the C5H5NOMnCl2·H2O powder, indicating its promising application in red-emitting LED.
Collapse
Affiliation(s)
- Guangkuo Dai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhimin Ma
- Beijing National Laboratory for Molecular Sciences, College of Engineering, Peking University, Beijing 100871, China
| | - Yixin Qiu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zewei Li
- Beijing National Laboratory for Molecular Sciences, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaohua Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Jiang
- Beijing National Laboratory for Molecular Sciences, College of Engineering, Peking University, Beijing 100871, China
| | - Zhiyong Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
25
|
Mannar S, Mandal P, Roy A, Viswanatha R. Experimental Determination of the Molar Absorption Coefficient of Cesium Lead Halide Perovskite Quantum Dots. J Phys Chem Lett 2022; 13:6290-6297. [PMID: 35786971 DOI: 10.1021/acs.jpclett.2c01198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lead halide perovskite (CsPbX3, where X = Cl, Br, or I) quantum dots (QDs), with tunable optical and electronic properties, have attracted attention because of their promising applications in solar cells and next-generation optoelectronic devices. Hence, it is crucial to investigate in detail the fundamental size-dependent properties of these perovskite QDs to obtain high-quality nanocrystals for practical use. We propose a direct method for determining the concentration of solution-processed CsPbX3 QDs by means of spectrophotometry, in which the molar absorption coefficient (ε) is obtained using absorption and the Beer-Lambert law. By tuning the size of CsPbX3 QDs, we obtain their corresponding ε leading to a calibration curve for calculating the nanocrystal concentrations. The ε at the band edge for CsPbX3 (X = Cl, Br, or I) nanocrystals was found to be strongly dependent on the bandgap of the nanocrystals. We also obtained a reliable size dependence of the bandgap calibration curves to estimate the size of QDs from the absorption spectra.
Collapse
Affiliation(s)
- Subhashri Mannar
- International Centre for Material Science (ICMS), JNCASR, Bangalore 560064, India
| | | | - Angira Roy
- International Centre for Material Science (ICMS), JNCASR, Bangalore 560064, India
| | - Ranjani Viswanatha
- International Centre for Material Science (ICMS), JNCASR, Bangalore 560064, India
- New Chemistry Unit (NCU), JNCASR, Bangalore 560064, India
| |
Collapse
|
26
|
Guan Y, Liang J, Zhao Y, Liu Z, Zhou Z, Ji S, Jia Y, Hu F, Zhao YS. Defect engineering in two-dimensional perovskite nanowire arrays by europium(III) doping towards high-performance photodetection. Chem Commun (Camb) 2022; 58:7829-7832. [PMID: 35748473 DOI: 10.1039/d2cc02758e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate high-performance photodetectors based on Eu-doped 2D perovskite nanowire arrays. The pure crystallographic orientation enables efficient carrier transport and the doped Eu ions effectively suppress the trap density in the nanowire arrays. As a result, the optimized Eu-doped photodetectors show an excellent responsivity of 6.24 A W-1, an outstanding specific detectivity of 5.83 × 1013 Jones and stable photo-switching behavior with a current on/off ratio of 103.
Collapse
Affiliation(s)
- Yuwei Guan
- China College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Jie Liang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yiman Zhao
- China College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Zhen Liu
- China College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Zhonghao Zhou
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shiyang Ji
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yajun Jia
- China College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Fengqin Hu
- China College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
27
|
Qiu Y, Ma Z, Li Z, Sun H, Dai G, Fu X, Jiang H, Ma Z. Solely 3-Coordinated Organic-Inorganic Hybrid Copper(I) Halide: Hexagonal Channel Structure, Turn-On Response to Mechanical Force, Moisture, and Amine. Inorg Chem 2022; 61:8320-8327. [PMID: 35588184 DOI: 10.1021/acs.inorgchem.2c00781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein, we report a novel organic-inorganic hybrid CuI halide PyCs3Cu2Br6 (Py: pyridinium), where pyridinium and cesium ions coexist. We successfully develop a novel strategy for fabricating turn-on responsive materials. PyCs3Cu2Br6 has a higher single-crystal symmetry (no. 191) than its all-inorganic counterpart Cs3Cu2Br5 (no. 62), and the incorporation of organic pyridinium varied the coordination environment of CuI. PyCs3Cu2Br6 formed a triangle planar structure with solely 3-coordinated CuI ions, which quenched its luminescence. However, PyCs3Cu2Br6 presented a hexagonal channel structure, which enabled it with turn-on response upon mechanical force, heat, moisture, and amine vapor. Such structure offered channels for active molecules to diffuse and interact with pyridiniums, leading to the stimuli-triggered phase change to highly emissive Cs3Cu2Br5. To our best knowledge, for the first time, we discover a novel 3-coordinated organic-inorganic hybrid CuI halide with turn-on response to external stimuli. We believe that our study will contribute to expanding the landscape of smart stimulus-responsive materials and lay the foundation for their wide applications.
Collapse
Affiliation(s)
- Yixin Qiu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zewei Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huaiyang Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guangkuo Dai
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaohua Fu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhiyong Ma
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
28
|
Lemmerer A. Thermochromic Phase Transitions of Long Odd-Chained Inorganic-Organic Layered Perovskite-Type Hybrids [(C nH 2n+1NH 3) 2PbI 4], n = 11, 13, and 15. Inorg Chem 2022; 61:6353-6366. [PMID: 35446022 DOI: 10.1021/acs.inorgchem.1c03132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We investigate the last members of a series of inorganic-organic hybrid materials of the general formula [(CnH2n+1NH3)2PbI4] (abbreviated CnPbI). The self-assembly of the inorganic and organic components has a perovskite-like structure as the two-dimensional (2D) inorganic layers have four corners of the lead(II) iodide octahedra being shared out. The inorganic layers are separated by bilayers of alkylammonium chains, in this case with n = 11, 13, and 15. These materials exhibit complex phase behavior in the temperature range from -20 to + 81 °C. Differential scanning calorimetry and single-crystal X-ray diffraction enabled the phase transition temperatures and enthalpies to be determined and the structural changes that occur at the phase transition temperature. The number of phases is dependent on the chain length: for n = 11 and 15, there are three phases, and for n = 13, there are four phases. Regardless of the number of phases, all three compounds have identical lowest-temperature phases (all stable below room temperature), which have inorganic layers that are staggered, alkylammonium chains that are planar and nonplanar, and yellow crystals. The room-temperature phases for the three compounds differ, but all are orange. C11PbI has staggered layers, and C13PbI and C15PbI have identical room-temperature phases with eclipsed layers. C13PbI and C15PbI also show an additional phase between the lowest-temperature and room-temperature phases.
Collapse
Affiliation(s)
- Andreas Lemmerer
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg PO WITS 2050, South Africa
| |
Collapse
|
29
|
Jha A, Shankar H, Kumar S, Sankar M, Kar P. Efficient charge transfer from organometal lead halide perovskite nanocrystals to free base meso-tetraphenylporphyrins. NANOSCALE ADVANCES 2022; 4:1779-1785. [PMID: 36132160 PMCID: PMC9419024 DOI: 10.1039/d1na00835h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/18/2022] [Indexed: 06/15/2023]
Abstract
The efficient charge transfer from methylammonium lead halide, MAPbX3 (X = Br, I), perovskite nanocrystals (PNCs) to 5,10,15,20-tetraphenylporphyrin (TPP) molecules has been investigated in detail. The hydrophobically-capped MAPbX3 PNCs exhibited bright fluorescence in the solution state. However, in the presence of TPP, the fluorescence intensity was quenched, which is ascribed to the electron transfer from the PNCs to TPP. Photoluminescence (PL) spectroscopy and absolute quantum yield measurements were used to evaluate the fluorescence quenching. This efficient fluorescence quenching leads to an increase in the quenching efficiency value. The quenching of fluorescence intensity is not attributed to the change in lifetime, as evidenced by time-correlated single-photon counting (TCSPC) measurements, suggesting a static electron transfer from the PNCs to TPP molecules. Such a static fluorescence quenching corresponds to the adsorption of TPP onto the surface of hydrophobic PNCs, and has been examined via transmission electron microscopy (TEM). Cyclic voltammetry (CV) studies were used to compare the PNCs and PNCs@TPP nanocomposites, revealing that the electron transfer process takes place from the PNCs to the organic acceptor TPP molecules.
Collapse
Affiliation(s)
- Abha Jha
- Department of Chemistry, Indian Institute of Technology Roorkee Haridwar Uttarakhand- 247667 India
| | - Hari Shankar
- Department of Chemistry, Indian Institute of Technology Roorkee Haridwar Uttarakhand- 247667 India
| | - Sandeep Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee Haridwar Uttarakhand- 247667 India
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee Haridwar Uttarakhand- 247667 India
| | - Prasenjit Kar
- Department of Chemistry, Indian Institute of Technology Roorkee Haridwar Uttarakhand- 247667 India
| |
Collapse
|
30
|
Ko UH, Ri JH, Jang JH, Ri CH, Jong UG, Yu CJ. First-principles study on the elastic, electronic and optical properties of all-inorganic halide perovskite solid solutions of CsPb(Br 1-x Cl x ) 3 within the virtual crystal approximation. RSC Adv 2022; 12:9755-9762. [PMID: 35424921 PMCID: PMC8961602 DOI: 10.1039/d2ra01084d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
All-inorganic halide perovskites have drawn significant attention for optoelectronic applications such as solar cells and light-emitting diodes due to their excellent optoelectronic properties and high stabilities. In this work, we report a systematic study on the material properties of all-inorganic bromide and chloride perovskite solid solutions, CsPb(Br1−xClx)3, varying the Cl content x from 0 to 1 with an interval of 0.1 by applying the first-principles method within the virtual crystal approximation. The lattice constants of the cubic phase are shown to follow the linear function of mixing ratio x, verifying that Vegard’s law is satisfied and the pseudopotentials of the virtual atoms are reliable. We calculate the band structures with the HSE06 hybrid functional with and without spin–orbit coupling, yielding band gaps in good agreement with experimental results, and find that the band gap increases along the quadratic function of the Cl content x. With increasing Cl content x, the elastic constants and moduli increase linearly, the effective mass of the electron and hole increase, while mobilities decrease linearly, the static dielectric constant decreases linearly, and exciton binding energy increases quadratically. We calculate the photo-absorption coefficients and reflectivity, predicting the absorption peaks shift to the ultraviolet region from bromide to chloride. We investigate the variation of structural, elastic, electronic, and optical properties of all-inorganic bromide and chloride perovskite solid solutions of CsPb(Br1−xClx)3 using first-principles calculations within the virtual crystal approximation.![]()
Collapse
Affiliation(s)
- Un-Hyok Ko
- Chair of Computational Materials Design (CMD), Faculty of Materials Science, Kim Il Sung University PO Box 76 Pyongyang Democratic People's Republic of Korea
| | - Jun-Hyok Ri
- Chair of Computational Materials Design (CMD), Faculty of Materials Science, Kim Il Sung University PO Box 76 Pyongyang Democratic People's Republic of Korea
| | - Jong-Hyok Jang
- Chair of Computational Materials Design (CMD), Faculty of Materials Science, Kim Il Sung University PO Box 76 Pyongyang Democratic People's Republic of Korea
| | - Chol-Hyok Ri
- Chair of Computational Materials Design (CMD), Faculty of Materials Science, Kim Il Sung University PO Box 76 Pyongyang Democratic People's Republic of Korea
| | - Un-Gi Jong
- Chair of Computational Materials Design (CMD), Faculty of Materials Science, Kim Il Sung University PO Box 76 Pyongyang Democratic People's Republic of Korea
| | - Chol-Jun Yu
- Chair of Computational Materials Design (CMD), Faculty of Materials Science, Kim Il Sung University PO Box 76 Pyongyang Democratic People's Republic of Korea
| |
Collapse
|
31
|
Liu K, Zhao J, Pan G, Zhu Y, You W, Zhang H, Gao H, Mao Y. Highly efficient and stable red perovskite quantum dots through encapsulation and sensitization of porous CaF 2:Ce,Tb nanoarchitectures. NANOSCALE 2022; 14:4263-4270. [PMID: 35244135 DOI: 10.1039/d2nr00544a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lead halide perovskite quantum dots (PQDs) are extremely unstable when exposed to oxygen, water and heat, especially red CsPbBrxI3-x (x = 0, 0.5, 1.2) PQDs. This seriously hinders their practical application. Here, red CsPbBrxI3-x (x = 0, 0.5, 1.2) PQDs have been successfully encapsulated in porous CaF2:Ce,Tb hierarchical nanospheres (HNSs), which not only greatly improved the stability of PQDs, benefitting from the protection of the CaF2 shell, but also maintained the high photoluminescence quantum yield (PLQY) of PQDs, benefitting from the sensitization of Tb3+ ions. More importantly, porous CaF2:Ce,Tb nanoarchitectures can prevent aggregation quenching and anion exchange of PQDs. Therefore, the CaF2:Ce,Tb&CsPbBrxI3-x (x = 0, 0.5, 1.2) composite powder can have high PLQY comparable to that of the PQD powder. In view of this, CaF2:Ce,Tb&CsPbBr1.2I1.8 composite based red light-emitting diodes (LEDs) are prepared, and they are very suitable as a supplementary light source for plant lighting. Furthermore, white LEDs are also prepared by coating the CaF2:Ce,Tb&CsPbBr3 and CaF2:Ce,Tb&CsPbBr1.2I1.8 composite on a 450 nm chip. The optimum luminous efficiency is 61.2 lm W-1, and the color rendering index is 91, which are comparable to the current highest values. This shows that the composite composed of PQDs has great potential in LED lighting.
Collapse
Affiliation(s)
- Kunlun Liu
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.
| | - Jun Zhao
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.
| | - Gencai Pan
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.
- Institute of Micro/Nano Photonic Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Yaxian Zhu
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.
| | - Wenwu You
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.
| | - Huafang Zhang
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.
| | - Huiping Gao
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.
| | - Yanli Mao
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.
- Institute of Micro/Nano Photonic Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
32
|
Jiang X, Zeng H, Duan C, Hu Q, Wu Q, Yu Y, Yang X. One-pot synthesis of stable and functional hydrophilic CsPbBr 3 perovskite quantum dots for "turn-on" fluorescence detection of Mycobacterium tuberculosis. Dalton Trans 2022; 51:3581-3589. [PMID: 35147147 DOI: 10.1039/d1dt03624f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
All-inorganic CsPbBr3 perovskite quantum dots (QDs) are widely studied owing to their excellent optoelectronic properties; however, they are usually hydrophobic and unstable in water and thus their biomedical applications are seriously limited. In this study, stable and hydrophilic CsPbBr3 QDs functionalized with carboxyl groups (CsPbBr3-COOH QDs) were prepared in one-pot with the aid of new ligands amino-poly(ethylene glycol)-carboxyl and perfluorooctyltriethoxylsilane. The aqueous solution of CsPbBr3-COOH QDs maintained the initial fluorescence intensity after 8 days of storage; the free carboxyl groups on the surface of CsPbBr3-COOH QDs were covalently conjugated with amino-terminal DNA to construct CsPbBr3 QDs-DNA probes for subsequent application. Then, a biosensing platform utilizing fluorescence resonance energy transfer between hydrophilic CsPbBr3 QDs-DNA and MoS2 nanosheets was developed for the sensitive and selective detection of the Mycobacterium tuberculosis DNA with a low limit of detection of 51.9 pM and the identification of drug-resistant clinical strains. This study advances the preparation of hydrophilic carboxyl-functionalized CsPbBr3 QDs with enhanced stability and extends their application in biomolecule detection.
Collapse
Affiliation(s)
- Xue Jiang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Hongwei Zeng
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Changyuan Duan
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Qianfang Hu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400042, China
| | - Qiaomin Wu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Yang Yu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Xiaolan Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
33
|
Szklarz P, Jakubas R, Medycki W, Gągor A, Cichos J, Karbowiak M, Bator G. (C 3N 2H 5) 3Sb 2I 9 and (C 3N 2H 5) 3Bi 2I 9: ferroelastic lead-free hybrid perovskite-like materials as potential semiconducting absorbers. Dalton Trans 2022; 51:1850-1860. [PMID: 35018903 DOI: 10.1039/d1dt03455c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have synthesised and characterised novel organic-inorganic hybrid crystals: (C3N2H5)3Sb2I9 and (C3N2H5)3Bi2I9 (PSI and PBI). The thermal DSC and TG analyses indicate four structural phase transitions (PTs) at 366.2/366.8, 274.6/275.4, 233.3/233.3 and 142.8/143.1 K (on cooling/heating) for PSI and two reversible PTs at 365.2/370.8 and 252.6/257.9 K for PBI. Both analogues crystallize at room temperature in the orthorhombic Cmcm structure, which transforms, in the case of PBI, to monoclinic P21/n at low temperature. According to the X-ray diffraction results, the anionic component is discrete and built of face-sharing bioctahedra, [M2I9]3-, in both compounds, whereas cations exhibit distinct dynamical disorder over high temperature phases. Dielectric spectroscopy and 1H NMR spectroscopy have been used to characterise the dynamical state of the C3N2H5+ cations. The ferroelastic domain structure has been characterised by observations under a polarized optical microscope. Both compounds are semiconductors with narrow bandgaps of 1.97 eV (PBI) and 2.10 eV (PSI).
Collapse
Affiliation(s)
- Przemysław Szklarz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Ryszard Jakubas
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Wojciech Medycki
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Anna Gągor
- W. Trzebiatowski Institute of Low Temperature and Structure Research Polish Academy of Science, P.O. Box 1410, 50-950 Wrocław, Poland
| | - Jakub Cichos
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Mirosław Karbowiak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Grażyna Bator
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|
34
|
Wang X, Bai T, Yang B, Zhang R, Zheng D, Jiang J, Tao S, Liu F, Han KL. Germanium Halides Serving as Ideal Precursors: Designing a More Effective and Less Toxic Route to High-Optoelectronic-Quality Metal Halide Perovskite Nanocrystals. NANO LETTERS 2022; 22:636-643. [PMID: 35019656 DOI: 10.1021/acs.nanolett.1c03527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The three-precursors approach has proven to be advantageous for obtaining high-quality metal halide perovskite nanocrystals (PNCs). However, the current halide precursors of choice are mainly limited to those highly toxic organohalides, being unfavorable for large-scale and sustainable use. Moreover, most of the resulting PNCs still suffer from low quality in terms of photoluminescence quantum yield (PLQY). Herein we present all-inorganic germanium salts, GeX4 (X = Cl, Br, I), serving as robust and less hazardous alternatives that are capable of ensuring improved material properties for both Pb-based and Pb-free PNCs. Importantly, unlike most of the other inorganic halide sources, the GeX4 compound does not deliver the Ge element into the final compositions, whereas the PLQY and phase stability of the resulting nanocrystals are significantly improved. Theoretical calculations suggest that Ge halide precursors provide favorable conditions in both dielectric environment and thermodynamics, which jointly contribute to the formation of size-confined defect-suppressed nanoparticles.
Collapse
Affiliation(s)
- Xiaochen Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, People's Republic of China
| | - Tianxin Bai
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, People's Republic of China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, People's Republic of China
| | - Daoyuan Zheng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, People's Republic of China
| | - Junke Jiang
- Materials Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Center for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Shuxia Tao
- Materials Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Center for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Feng Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, People's Republic of China
| | - Ke-Li Han
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, People's Republic of China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| |
Collapse
|
35
|
Huang H, Weng B, Zhang H, Lai F, Long J, Hofkens J, Douthwaite RE, Steele JA, Roeffaers MBJ. Solar-to-Chemical Fuel Conversion via Metal Halide Perovskite Solar-Driven Electrocatalysis. J Phys Chem Lett 2022; 13:25-41. [PMID: 34957833 DOI: 10.1021/acs.jpclett.1c03668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Sunlight is an abundant and clean energy source, the harvesting of which could make a significant contribution to society's increasing energy demands. Metal halide perovskites (MHP) have recently received attention for solar fuel generation through photocatalysis and solar-driven electrocatalysis. However, MHP photocatalysis is limited by low solar energy conversion efficiency, poor stability, and impractical reaction conditions. Compared to photocatalysis, MHP solar-driven electrocatalysis not only exhibits higher solar conversion efficiency but also is more stable when operating under practical reaction conditions. In this Perspective, we outline three leading types of MHP solar-driven electrocatalysis device technologies now in the research spotlight, namely, (1) photovoltaic-electrochemical (PV-EC), (2) photovoltaic-photoelectrochemical (PV-PEC), and (3) photoelectrochemical (PEC) approaches for solar-to-fuel reactions, including water-splitting and the CO2 reduction reaction. In addition, we compare each technology to show their relative technical advantages and limitations and highlight promising research directions for the rapidly emerging scientific field of MHP-based solar-driven electrocatalysis.
Collapse
Affiliation(s)
- Haowei Huang
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Bo Weng
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Hongwen Zhang
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Jinlin Long
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | | | - Julian A Steele
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Maarten B J Roeffaers
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
36
|
Zhao S, Leng J, Wang S, Yan X, Yin Z, Yin Y, Zhang J, Jin S. Probing Longitudinal Carrier Transport in Perovskite Thin Films via Modified Transient Reflection Spectroscopy. Chem Sci 2022; 13:8334-8340. [PMID: 35919708 PMCID: PMC9297385 DOI: 10.1039/d2sc01826h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Accurate characterization of the longitudinal (along the thickness direction) carrier transport property is of significant importance for evaluating the quality and performance of perovskite thin films. Herein, we report the development of a modified transient reflection (TR) spectroscopy method to realize the direct observation and determination of the longitudinal carrier transport process in MAPbI3 polycrystalline thin films. Unlike the traditional TR spectroscopy, the carrier transport dynamics along the film thickness is resolved by making the pump (excitation) and probe beams spatially separated on each side of the film, so that the carrier transport from the excitation side to the probe side is directly captured. Utilizing this method, the longitudinal carrier diffusion coefficients (D) in various perovskite films with different thicknesses and grain sizes (extracted from SEM images) are determined, showing D values of ∼1.5 to 1.8 cm2 s−1 (∼0.5 to 0.8 cm2 s−1) for films with grain size larger (smaller) than the thickness. This empirical correlation between the longitudinal D and film thickness/grain size provides a reference for quick quality screening and evaluation of perovskite polycrystalline thin films. A back-excitation transient reflection spectroscopy was developed to visualize longitudinal carrier transport in perovskite films, showing that the longitudinal diffusion coefficient decreases sharply with increasing thickness-to-grain-size ratio.![]()
Collapse
Affiliation(s)
- Shengli Zhao
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Jing Leng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Shiping Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Department of Chemistry, School of Science, Tianjin University Tianjin 300354 China
| | - Xianchang Yan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Zixi Yin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Yanfeng Yin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Jun Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 China
- College of Materials Science and Engineering, China University of Petroleum (East China) Qingdao 266580 China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
37
|
Nguyen TMH, Lee SK, Kim S, Bark CW. Practical Demonstration of Deep-Ultraviolet Detection with Wearable and Self-Powered Halide Perovskite-Based Photodetector. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57609-57618. [PMID: 34807569 DOI: 10.1021/acsami.1c18099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flexible and self-powered photodetectors (PDs) have become one of the most popular topics, attracting researchers in the field of optoelectronic applications. In this study, for the first time, we demonstrate partial discharge detection in a practical environment with a prepared flexible device. Poly(vinylidene fluoride) (PVDF) is utilized as a highly transparent material in the UVC region, to create a flexible substrate with the antihumidity property. A detector that uses a mixed-halide perovskite (FAPbI3)1-x(MAPbBr3)x as the photoactive material is constructed in a vertical structure on the as-prepared hydrophobic PVDF substrate. The fabricated device exhibits good performance with a fast response speed (trise = 82 ms, tfall = 64 ms) and a high detectivity of 7.21 × 1010 Jones at zero bias under 254 nm UV illumination, along with superior mechanical flexibility at various bending angles. Additionally, the air-exposure stability and reproducibility of the as-prepared device exhibit almost the original performance after 6 weeks of storage. For practical applications, we demonstrate a facile and sensitive detection for UVC leakage from a germicidal lamp and simulated a partial discharge system using our PD without energy consumption. These results indicate that this new approach may be useful and convenient for the detection of the partial discharge as well as for several practical applications.
Collapse
Affiliation(s)
- Thi My Huyen Nguyen
- Department of Electrical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea
| | - Shin Kyu Lee
- Department of Electrical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea
| | - Sangmo Kim
- School of Intelligent Mechatronics Engineering, Sejong University, Gwangjin-gu, Seoul 05006, South Korea
| | - Chung Wung Bark
- Department of Electrical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea
| |
Collapse
|
38
|
Kipkorir A, DuBose J, Cho J, Kamat PV. CsPbBr 3-CdS heterostructure: stabilizing perovskite nanocrystals for photocatalysis. Chem Sci 2021; 12:14815-14825. [PMID: 34820097 PMCID: PMC8597851 DOI: 10.1039/d1sc04305f] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/21/2021] [Indexed: 11/23/2022] Open
Abstract
The instability of cesium lead bromide (CsPbBr3) nanocrystals (NCs) in polar solvents has hampered their use in photocatalysis. We have now succeeded in synthesizing CsPbBr3-CdS heterostructures with improved stability and photocatalytic performance. While the CdS deposition provides solvent stability, the parent CsPbBr3 in the heterostructure harvests photons to generate charge carriers. This heterostructure exhibits longer emission lifetime (τ ave = 47 ns) than pristine CsPbBr3 (τ ave = 7 ns), indicating passivation of surface defects. We employed ethyl viologen (EV2+) as a probe molecule to elucidate excited state interactions and interfacial electron transfer of CsPbBr3-CdS NCs in toluene/ethanol mixed solvent. The electron transfer rate constant as obtained from transient absorption spectroscopy was 9.5 × 1010 s-1 and the quantum efficiency of ethyl viologen reduction (Φ EV+˙) was found to be 8.4% under visible light excitation. The Fermi level equilibration between CsPbBr3-CdS and EV2+/EV+˙ redox couple has allowed us to estimate the apparent conduction band energy of the heterostructure as -0.365 V vs. NHE. The insights into effective utilization of perovskite nanocrystals built around a quasi-type II heterostructures pave the way towards effective utilization in photocatalytic reduction and oxidation processes.
Collapse
Affiliation(s)
- Anthony Kipkorir
- Radiation Laboratory, University of Notre Dame Notre Dame Indiana 46556 USA
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Jeffrey DuBose
- Radiation Laboratory, University of Notre Dame Notre Dame Indiana 46556 USA
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Junsang Cho
- Radiation Laboratory, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Prashant V Kamat
- Radiation Laboratory, University of Notre Dame Notre Dame Indiana 46556 USA
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame Indiana 46556 USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame Notre Dame Indiana 46556 USA
| |
Collapse
|
39
|
Cui J, Liu Y, Deng Y, Lin C, Fang Z, Xiang C, Bai P, Du K, Zuo X, Wen K, Gong S, He H, Ye Z, Gao Y, Tian H, Zhao B, Wang J, Jin Y. Efficient light-emitting diodes based on oriented perovskite nanoplatelets. SCIENCE ADVANCES 2021; 7:eabg8458. [PMID: 34623917 PMCID: PMC8500509 DOI: 10.1126/sciadv.abg8458] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Solution-processed planar perovskite light-emitting diodes (LEDs) promise high-performance and cost-effective electroluminescent devices ideal for large-area display and lighting applications. Exploiting emission layers with high ratios of horizontal transition dipole moments (TDMs) is expected to boost the photon outcoupling of planar LEDs. However, LEDs based on anisotropic perovskite nanoemitters remain to be inefficient (external quantum efficiency, EQE <5%) due to the difficulties of simultaneously controlling the orientations of TDMs, achieving high photoluminescence quantum yields (PLQYs) and realizing charge balance in the films of assembled nanostructures. Here, we demonstrate efficient electroluminescence from an in situ grown perovskite film composed of a monolayer of face-on oriented nanoplatelets. The ratio of horizontal TDMs of the perovskite nanoplatelet film is ~84%, which leads to a light-outcoupling efficiency of ~31%, substantially higher than that of isotropic emitters (~23%). In consequence, LEDs with a peak EQE of 23.6% are achieved, representing highly efficient planar perovskite LEDs.
Collapse
Affiliation(s)
- Jieyuan Cui
- Zhejiang Key Laboratory for Excited-State Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yang Liu
- Zhejiang Key Laboratory for Excited-State Materials, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yunzhou Deng
- Zhejiang Key Laboratory for Excited-State Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chen Lin
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhishan Fang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chensheng Xiang
- Centre of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Peng Bai
- China State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Kai Du
- Centre of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaobing Zuo
- X-Ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Kaichuan Wen
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Shaolong Gong
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, China
| | - Haiping He
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhizhen Ye
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-WZ Novel Materials Science & Technology Innovation Center, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
- Corresponding author. (Z.Y.); (Y.J.)
| | - Yunan Gao
- China State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - He Tian
- Centre of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Baodan Zhao
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yizheng Jin
- Zhejiang Key Laboratory for Excited-State Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Corresponding author. (Z.Y.); (Y.J.)
| |
Collapse
|
40
|
Bera S, Shyamal S, Pradhan N. Chemically Spiraling CsPbBr 3 Perovskite Nanorods. J Am Chem Soc 2021; 143:14895-14906. [PMID: 34469686 DOI: 10.1021/jacs.1c07231] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Light emitting lead halide perovskite nanocrystals are currently emerging as the workhorse in quantum dot research. Most of these reported nanocrystals are isotropic cubes or polyhedral; but anisotropic nanostructures with controlled anisotropic directions still remain a major challenge. For orthorhombic CsPbBr3, the 1D shaped nanostructures reported are linear and along either of the axial directions ⟨100⟩. In contrast, herein, spiral CsPbBr3 perovskite nanorods in the orthorhombic phase are reported with unusual anisotropy having (101) planes remaining perpendicular to the major axis [201]. While these nanorods are synthesized using the prelattice of orthorhombic Cs2CdBr4 with Pb(II) diffusion, the spirality is controlled by manipulation of the compositions of alkylammonium ions in the reaction system which selectively dissolve some spiral facets of the nanorods. Further, as spirality varied with facet creation and elimination, these nanorods were explored as photocatalysts for CO2 reduction, and the evolution of methane was also found to be dependent on the depth of the spiral nanorods. The entire study demonstrates facet manipulation of complex nanorods, and these results suggest that even if perovskites are ionic in nature, their shape could be constructed by design with proper reaction manipulation.
Collapse
Affiliation(s)
- Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sanjib Shyamal
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
41
|
Kim EB, Akhtar MS, Shin HS, Ameen S, Nazeeruddin MK. A review on two-dimensional (2D) and 2D-3D multidimensional perovskite solar cells: Perovskites structures, stability, and photovoltaic performances. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100405] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Chandra P. Modern Trends in the Applications of Perovskites for Selective Organic Transformations. ChemistrySelect 2021. [DOI: 10.1002/slct.202101434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Prakash Chandra
- Department of Chemistry School of Technology Pandit Deendayal Petroleum University Knowledge Corridor, Raisan Village Gandinagar Gujarat 382007
| |
Collapse
|
43
|
Hsu BW, Chuang YT, Cheng CY, Chen CY, Chen YJ, Brumberg A, Yang L, Huang YS, Schaller RD, Chen LJ, Chuu CS, Lin HW. Very Robust Spray-Synthesized CsPbI 3 Quantum Emitters with Ultrahigh Room-Temperature Cavity-Free Brightness and Self-Healing Ability. ACS NANO 2021; 15:11358-11368. [PMID: 33729770 DOI: 10.1021/acsnano.1c00733] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although colloidal lead halide perovskite quantum dots (PQDs) exhibit desirable emitter characteristics with high quantum yields and narrow bandwidths, instability has limited their applications in devices. In this paper, we describe spray-synthesized CsPbI3 PQD quantum emitters displaying strong photon antibunching and high brightness at room temperature and stable performance under continuous excitation with a high-intensity laser for more than 24 h. Our PQDs provided high single-photon emission rates, exceeding 9 × 106 count/s, after excluding multiexciton emissions and strong photon antibunching, as confirmed by low values of the second-order correlation function g(2)(0) (reaching 0.021 and 0.061 for the best and average PQD performance, respectively). With such high brightness and stability, we applied our PQDs as quantum random number generators, which demonstrably passed all of the National Institute of Standards and Technology's randomness tests. Intriguingly, all of the PQDs exhibited self-healing behavior and restored their PL intensities to greater than half of their initial values after excitation at extremely high intensity. Half of the PQDs even recovered almost all of their initial PL intensity. The robust properties of these spray-synthesized PQDs resulted from high crystallinity and good ligand encapsulation. Our results suggest that spray-synthesized PQDs have great potential for use in future quantum technologies (e.g., quantum communication, quantum cryptography, and quantum computing).
Collapse
Affiliation(s)
- Bo-Wei Hsu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yung-Tang Chuang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Yuan Cheng
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
- Center for Quantum Technology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-Yu Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208 United States
| | - Yen-Ju Chen
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
- Center for Quantum Technology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Alexandra Brumberg
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208 United States
| | - Lin Yang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Sheng Huang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208 United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439 United States
| | - Lih-J Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chih-Sung Chuu
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
- Center for Quantum Technology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hao-Wu Lin
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
44
|
Massasa EH, Strassberg R, Vurgaft A, Kauffmann Y, Cohen N, Bekenstein Y. Thin Layer Buckling in Perovskite CsPbBr 3 Nanobelts. NANO LETTERS 2021; 21:5564-5571. [PMID: 34181431 PMCID: PMC8397391 DOI: 10.1021/acs.nanolett.1c00962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Flexible semiconductor materials, where structural fluctuations and transformation are tolerable and have low impact on electronic properties, focus interest for future applications. Two-dimensional thin layer lead halide perovskites are hailed for their unconventional optoelectronic features. We report structural deformations via thin layer buckling in colloidal CsPbBr3 nanobelts adsorbed on carbon substrates. The microstructure of buckled nanobelts is determined using transmission electron microscopy and atomic force microscopy. We measured significant decrease in emission from the buckled nanobelt using cathodoluminescence, marking the influence of such mechanical deformations on electronic properties. By employing plate buckling theory, we approximate adhesion forces between the buckled nanobelt and the substrate to be Fadhesion ∼ 0.12 μN, marking a limit to sustain such deformation. This work highlights detrimental effects of mechanical buckling on electronic properties in halide perovskite nanostructures and points toward the capillary action that should be minimized in fabrication of future devices and heterostructures based on nanoperovskites.
Collapse
Affiliation(s)
- Emma H. Massasa
- Department
of Materials Science and Engineering, Technion
− Israel Institute of Technology, Haifa 32000, Israel
| | - Rotem Strassberg
- Department
of Materials Science and Engineering, Technion
− Israel Institute of Technology, Haifa 32000, Israel
- The
Solid-State Institute, Technion −
Israel Institute of Technology, 32000 Haifa, Israel
| | - Amit Vurgaft
- The
Solid-State Institute, Technion −
Israel Institute of Technology, 32000 Haifa, Israel
| | - Yaron Kauffmann
- Department
of Materials Science and Engineering, Technion
− Israel Institute of Technology, Haifa 32000, Israel
| | - Noy Cohen
- Department
of Materials Science and Engineering, Technion
− Israel Institute of Technology, Haifa 32000, Israel
| | - Yehonadav Bekenstein
- Department
of Materials Science and Engineering, Technion
− Israel Institute of Technology, Haifa 32000, Israel
- The
Solid-State Institute, Technion −
Israel Institute of Technology, 32000 Haifa, Israel
- The
Nancy and Stephen Grand Technion Energy Program, Technion − Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
45
|
Mulder J, du Fossé I, Alimoradi Jazi M, Manna L, Houtepen AJ. Electrochemical p-Doping of CsPbBr 3 Perovskite Nanocrystals. ACS ENERGY LETTERS 2021; 6:2519-2525. [PMID: 34307881 PMCID: PMC8294022 DOI: 10.1021/acsenergylett.1c00970] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/15/2021] [Indexed: 05/21/2023]
Abstract
Lead halide perovskite nanocrystals have drawn attention as active light-absorbing or -emitting materials for opto-electronic applications due to their facile synthesis, intrinsic defect tolerance, and color-pure emission ranging over the entire visible spectrum. To optimize their application in, e.g., solar cells and light-emitting diodes, it is desirable to gain control over electronic doping of these materials. However, predominantly due to the intrinsic instability of perovskites, successful electronic doping has remained elusive. Using spectro-electrochemistry and electrochemical transistor measurements, we demonstrate here that CsPbBr3 nanocrystals can be successfully and reversibly p-doped via electrochemical hole injection. From an applied potential of ∼0.9 V vs NHE, the emission quenches, the band edge absorbance bleaches, and the electronic conductivity quickly increases, demonstrating the successful injection of holes into the valence band of the CsPbBr3 nanocrystals.
Collapse
Affiliation(s)
- Jence
T. Mulder
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Indy du Fossé
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Maryam Alimoradi Jazi
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Liberato Manna
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
- Department
of Nanochemistry, Istituto Italiano di Tecnologia
(IIT), Via Morego 30, 16163 Genova, Italy
| | - Arjan J. Houtepen
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| |
Collapse
|
46
|
Yuan J, Liu H, Wang S, Li X. How to apply metal halide perovskites to photocatalysis: challenges and development. NANOSCALE 2021; 13:10281-10304. [PMID: 34096559 DOI: 10.1039/d0nr07716j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Semiconductor photocatalysts are widely used in environmental remediation and energy conversion processes that affect social development. These processes involve, for example, hydrogen production from water splitting, carbon dioxide reduction, pollutant degradation, and the conversion of raw organic chemical materials into high-value-added chemicals. Metal halide perovskites (MHPs) have become a new class of promising cheap and easy to manufacture candidate materials for use in photocatalytic semiconductors due to their advantages of high extinction coefficients, optimal band gaps, high photoluminescence quantum yields, and long electron-hole diffusion lengths. However, their unstable ion-bonded crystal structures (very low theoretical decomposition energy barriers) limit their widespread application. In this review, we introduce the physical properties of MHP materials suitable for photocatalysis, and MHP-based photocatalytic particle suspension systems, photoelectrode thin film systems, and photovoltaic-photo(electro)chemical systems. Then, numerous studies realizing efficient and stable photocatalytic water splitting, carbon dioxide reduction, organic conversion, and other reactions involving MHP materials were highlighted. In addition, we conducted rigorous analysis of the potential problems that could hinder progress in this new scientific research field, such as Pb element toxicity and material instability. Finally, we outline the potential opportunities and directions for photocatalysis research based on MHPs.
Collapse
Affiliation(s)
- Jia Yuan
- Tianjin University, School of Chemical Engineering and Technology, Tianjin 300072, China.
| | | | | | | |
Collapse
|
47
|
Younis A, Lin CH, Guan X, Shahrokhi S, Huang CY, Wang Y, He T, Singh S, Hu L, Retamal JRD, He JH, Wu T. Halide Perovskites: A New Era of Solution-Processed Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005000. [PMID: 33938612 DOI: 10.1002/adma.202005000] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/29/2020] [Indexed: 05/26/2023]
Abstract
Organic-inorganic mixed halide perovskites have emerged as an excellent class of materials with a unique combination of optoelectronic properties, suitable for a plethora of applications ranging from solar cells to light-emitting diodes and photoelectrochemical devices. Recent works have showcased hybrid perovskites for electronic applications through improvements in materials design, processing, and device stability. Herein, a comprehensive up-to-date review is presented on hybrid perovskite electronics with a focus on transistors and memories. These applications are supported by the fundamental material properties of hybrid perovskite semiconductors such as tunable bandgap, ambipolar charge transport, reasonable mobility, defect characteristics, and solution processability, which are highlighted first. Then, recent progresses on perovskite-based transistors are reviewed, covering aspects of fabrication process, patterning techniques, contact engineering, 2D versus 3D material selection, and device performance. Furthermore, applications of perovskites in nonvolatile memories and artificial synaptic devices are presented. The ambient instability of hybrid perovskites and the strategies to tackle this bottleneck are also discussed. Finally, an outlook and opportunities to develop perovskite-based electronics as a competitive and feasible technology are highlighted.
Collapse
Affiliation(s)
- Adnan Younis
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Physics, College of Science, University of Bahrain, P.O. Box 32038, Sakhir Campus, Zallaq, Kingdom of Bahrain
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xinwei Guan
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shamim Shahrokhi
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chien-Yu Huang
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yutao Wang
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tengyue He
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Simrjit Singh
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jose Ramon Duran Retamal
- Computer, Electrical and Mathematical Sciences and Engineering, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
48
|
Wu W, Zhou M, Li D, Li S, Yang Z, Huo Z, Wu Y, Tan Y, Han X, Pan C, Pan A. A novel visible light sensing and recording system enabled by integration of photodetector and electrochromic devices. NANOSCALE 2021; 13:9177-9184. [PMID: 33988216 DOI: 10.1039/d1nr01805a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The integration of multiple electronic or optoelectronic devices is an effective strategy to use their unique functions to realize a specific goal. A state-of-the-art photodetector (PD) array can realize real-time image sensing, but the image information will disappear immediately with the removal of the light stimuli. Here, we design a visible light sensing and recording system by the integration of a perovskite PD array with a tungsten trioxide-based electrochromic device (ECD) array (10 × 10 pixels). The system can convert the received visible light signals into electrical signals to change the storable color of the corresponding pixels in the ECD array, thus realizing optical information recording in the form of the color display. As a conceptual demonstration, the system achieves the recording of the "H"-shaped visible light pattern projected to the active area of the PD array. Besides, after removing the illumination stimuli, the recording of the light pattern continues in the absence of the power supply owing to the "color memory effect". The recorded length can be regulated through the periods of illumination stimulation. The proof-of-concept system may have potential applications in image sensors, electronic eyes, and intelligent electronics.
Collapse
Affiliation(s)
- Wenqiang Wu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China. and CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
| | - Mengmeng Zhou
- ARC Research Hub for Computational Particle Technology, Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Dong Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Shengman Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Zheng Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
| | - Zhihao Huo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
| | - Yanqing Wu
- Institute of Microelectronics and Key Laboratory of Microelectronic Devices and Circuits (MOE) and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, 100871, China
| | - Yongwen Tan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Xun Han
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
49
|
Kao TS, Hong YH, Hong KB, Lu TC. Perovskite random lasers: a tunable coherent light source for emerging applications. NANOTECHNOLOGY 2021; 32:282001. [PMID: 33621968 DOI: 10.1088/1361-6528/abe907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/22/2021] [Indexed: 05/24/2023]
Abstract
Metal halide perovskites have attracted increasing attention due to their superior optical and electrical characteristics, flexible tunability, and easy fabrication processes. Apart from their unprecedented successes in photovoltaic devices, lasing action is the latest exploitation of the optoelectronic performance of perovskites. Among the substantial body of research on the configuration design and light emission quality of perovskite lasers, the random laser is a very interesting stimulated emission phenomenon with unique optical characteristics. In this review article, we first comprehensively overview the development of perovskite-based optoelectronic devices and then focus our discussion on random lasing performance. After an introduction to the historical development of versatile random lasers and perovskite random lasers, we summarize several synthesis methods and discuss their material configurations and stability in synthesized perovskite materials. Following this, a theoretical approach is provided to explain the random lasing mechanism in metal halide perovskites. Finally, we propose future applications of perovskite random lasers, presenting conclusions as well as future challenges, such as quality stability and toxicity reduction, of perovskite materials with regard to practical applications in this promising field.
Collapse
Affiliation(s)
- Tsung Sheng Kao
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30050, Taiwan
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30050, Taiwan
| | - Yu-Heng Hong
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30050, Taiwan
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30050, Taiwan
| | - Kuo-Bin Hong
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30050, Taiwan
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30050, Taiwan
| | - Tien-Chang Lu
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30050, Taiwan
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30050, Taiwan
| |
Collapse
|
50
|
Tanwar M, Pathak DK, Chaudhary A, Krylov AS, Pfnür H, Sharma A, Ahn B, Lee S, Kumar R. Pseudo-Anomalous Size-Dependent Electron-Phonon Interaction in Graded Energy Band: Solving the Fano Paradox. J Phys Chem Lett 2021; 12:2044-2051. [PMID: 33606540 DOI: 10.1021/acs.jpclett.1c00217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Quantum size effects on interferons (electron-phonon bound states), confined in fractal silicon (Si) nanostructures (NSs), have been studied by using Raman spectromicroscopy. A paradoxical size dependence of Fano parameters, estimated from Raman spectra, has been observed as a consequence of longitudinal variation of nanocrystallite size along the Si wires leading to local variations in the dopants' density which actually starts governing the Fano coupling, thus liberating the interferons to exhibit the typical quantum size effect. These interferons are more dominated by the effective reduction in dopants' density rather than the quantum confinement effect. Detailed experimental and theoretical Raman line shape analyses have been performed to solve the paradox by establishing that the increasing size effect actually is accompanied by receding Fano coupling due to the weakened electronic continuum. The latter has been validated by observing a consequent variation in the Raman signal from dopants which was found to be consistent with the above conclusion.
Collapse
Affiliation(s)
- Manushree Tanwar
- Materials and Device Laboratory, Discipline of Physics, Indian Institute of Technology Indore, Simrol 453552, India
| | - Devesh K Pathak
- Materials and Device Laboratory, Discipline of Physics, Indian Institute of Technology Indore, Simrol 453552, India
| | - Anjali Chaudhary
- Materials and Device Laboratory, Discipline of Physics, Indian Institute of Technology Indore, Simrol 453552, India
| | - Alexander S Krylov
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS Krasnoyarsk 660036, Russia
| | - Herbert Pfnür
- Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstr. 2, D-30167 Hannover, Germany
| | - Ashutosh Sharma
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Korea
| | - Byungmin Ahn
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Korea
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Sangyeob Lee
- Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Korea
| | - Rajesh Kumar
- Materials and Device Laboratory, Discipline of Physics, Indian Institute of Technology Indore, Simrol 453552, India
- Centre for Advanced Electronics, Indian Institute of Technology Indore, Simrol 453552, India
| |
Collapse
|