1
|
Abdulmojeed MB, Grashei M, Dilday S, Wodtke P, McBride S, Davidsson A, Curran E, MacCulloch K, Browning A, TomHon P, Schmidt AB, Chekmenev EY, Schilling F, Theis T. SABRE-SHEATH Hyperpolarization of [1,5- 13C 2]Z-OMPD for Noninvasive pH Sensing. ACS Sens 2024; 9:6372-6381. [PMID: 39555976 DOI: 10.1021/acssensors.4c01102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Hyperpolarized (HP) 13C-labeled probes are emerging as promising agents to noninvasively image pH in vivo. HP [1,5-13C2]Z-OMPD (Z-4-methyl-2-oxopent-3-enedioic acid) in particular has recently been used to simultaneously report on kidney perfusion, filtration, and pH homeostasis, in addition to the ability to detect local tumor acidification. In previous studies, dissolution dynamic nuclear polarization was used to hyperpolarize Z-OMPD. Here, we pioneered the hyperpolarization of [1,5-13C2]Z-OMPD via SABRE-SHEATH (signal amplification by reversible exchange in shield enabling alignment transfer to heteronuclei), which is relatively simple and fast and promises to be highly scalable. With SABRE-SHEATH, we achieve enhancement values of ∼3950 and ∼2400 at 1.1 T (P13C = 0.4 and 0.25%) on the labeled C-1 and C-5 positions of Z-OMPD. Density functional theory calculations at the B3LYP level of theory were used to investigate possible binding modes of Z-OMPD on the iridium-based polarization transfer catalyst. The experimental and theoretical results suggest that the equatorial binding mode to the catalyst, where Z-OMPD binds to the catalyst at both C-1 and C-5 carboxylate positions, is the most stable complex. The HP signals were used to measure the Z-OMPD chemical shift as a function of pH showing an ∼3 ppm shift across pH 4-11. This work lays a foundation for the development of a simple, low-cost hyperpolarization technique to image pH.
Collapse
Affiliation(s)
- Mustapha B Abdulmojeed
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Martin Grashei
- Technical University of Munich, School of Medicine and Health, Department of Nuclear Medicine, TUM University Hospital, D-81675 Munich, Germany
| | - Seth Dilday
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Pascal Wodtke
- Technical University of Munich, School of Medicine and Health, Department of Nuclear Medicine, TUM University Hospital, D-81675 Munich, Germany
| | - Stephen McBride
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Atli Davidsson
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Erica Curran
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Keilian MacCulloch
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Austin Browning
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Patrick TomHon
- Vizma Life Sciences, Chapel Hill, North Carolina 27514, United States
| | - Andreas B Schmidt
- Division of Medical Physics, Department of Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
- Department of Chemistry, Integrated Biosciences (Ibio), Wayne State University, Karmanos Center Institute (KCI), Detroit, Michigan 48202, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrated Biosciences (Ibio), Wayne State University, Karmanos Center Institute (KCI), Detroit, Michigan 48202, United States
| | - Franz Schilling
- Technical University of Munich, School of Medicine and Health, Department of Nuclear Medicine, TUM University Hospital, D-81675 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
2
|
Santi MD, Hune TLK, Rodriguez GG, Fries LM, Mei R, Sternkopf S, Elsaßer J, Glöggler S. Parahydrogen-enhanced pH measurements using [1- 13C]bicarbonate derived from non-enzymatic decarboxylation of [1- 13C]pyruvate-d 3. Analyst 2024; 149:5022-5033. [PMID: 39230365 PMCID: PMC11373534 DOI: 10.1039/d4an00832d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Alterations in pH are a hallmark in several pathologies including cancer, ischemia, and inflammation. Non-invasive magnetic resonance methods to measure pH offer a new approach for early diagnosis of diseases characterized by acid-base imbalances. The hyperpolarization with parahydrogen-induced polarization (PHIP) enhances inherently low signals in magnetic resonance experiments by several orders of magnitude and offers a suitable platform to obtain biocompatible markers in less than one minute. Here, we present an optimized preparation of an hyperpolarized H13CO3-/13CO2 pH sensor via non-enzymatic decarboxylation with H2O2 of [1-13C]pyruvate-d3 obtained by PHIP at 7 T. An improved 13C polarization of purified [1-13C]pyruvate-d3 in water with 36.65 ± 0.06% polarization was obtained starting from 50 mM precursor. Subsequent decarboxylation, H13CO3-/13CO2 exhibited 12.46 ± 0.01% of polarization at physiological pH, 45 seconds after the reaction start. Considering the dilution factor that [1-13C]pyruvate-d3 exhibits in vivo, we optimized our methodology to test the accuracy of the pH sensor at single digit millimolar concentration. In vitro pH estimations on phantoms and cell culture media demonstrated accurate pH calculations with uncertainties of less than 0.08 units. These promising results highlight the efficiency of a pH sensor generated via PHIP in less than one minute, with remarkable polarization, and biocompatibility suitable for future in vivo studies.
Collapse
Affiliation(s)
- Maria Daniela Santi
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Theresa Luca Katrin Hune
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Gonzalo Gabriel Rodriguez
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Lisa M Fries
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Ruhuai Mei
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Sonja Sternkopf
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Josef Elsaßer
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| |
Collapse
|
3
|
Chen S, Zhang L, Li S, Yuan Y, Jiang B, Jiang Z, Zhang X, Zhou X, Liu M. Detecting biomarkers by dynamic nuclear polarization enhanced magnetic resonance. Natl Sci Rev 2024; 11:nwae228. [PMID: 39144741 PMCID: PMC11321254 DOI: 10.1093/nsr/nwae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/26/2024] [Accepted: 06/16/2024] [Indexed: 08/16/2024] Open
Abstract
Hyperpolarization stands out as a technique capable of significantly enhancing the sensitivity of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). Dynamic nuclear polarization (DNP), among various hyperpolarization methods, has gained prominence for its efficacy in real-time monitoring of metabolism and physiology. By administering a hyperpolarized substrate through dissolution DNP (dDNP), the biodistribution and metabolic changes of the DNP agent can be visualized spatiotemporally. This approach proves to be a distinctive and invaluable tool for non-invasively studying cellular metabolism in vivo, particularly in animal models. Biomarkers play a pivotal role in influencing the growth and metastasis of tumor cells by closely interacting with them, and accordingly detecting pathological alterations of these biomarkers is crucial for disease diagnosis and therapy. In recent years, a range of hyperpolarized DNP molecular bioresponsive agents utilizing various nuclei, such as 13C, 15N, 31P, 89Y, etc., have been developed. In this context, we explore how these magnetic resonance signals of nuclear spins enhanced by DNP respond to biomarkers, including pH, metal ions, enzymes, or redox processes. This review aims to offer insights into the design principles of responsive DNP agents, target selection, and the mechanisms of action for imaging. Such discussions aim to propel the future development and application of DNP-based biomedical imaging agents.
Collapse
Affiliation(s)
- Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Lei Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sha Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaping Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongxing Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Grashei M, Wodtke P, Skinner JG, Sühnel S, Setzer N, Metzler T, Gulde S, Park M, Witt D, Mohr H, Hundshammer C, Strittmatter N, Pellegata NS, Steiger K, Schilling F. Simultaneous magnetic resonance imaging of pH, perfusion and renal filtration using hyperpolarized 13C-labelled Z-OMPD. Nat Commun 2023; 14:5060. [PMID: 37604826 PMCID: PMC10442412 DOI: 10.1038/s41467-023-40747-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
pH alterations are a hallmark of many pathologies including cancer and kidney disease. Here, we introduce [1,5-13C2]Z-OMPD as a hyperpolarized extracellular pH and perfusion sensor for MRI which allows to generate a multiparametric fingerprint of renal disease status and to detect local tumor acidification. Exceptional long T1 of two minutes at 1 T, high pH sensitivity of up to 1.9 ppm per pH unit and suitability of using the C1-label as internal frequency reference enables pH imaging in vivo of three pH compartments in healthy rat kidneys. Spectrally selective targeting of both 13C-resonances enables simultaneous imaging of perfusion and filtration in 3D and pH in 2D within one minute to quantify renal blood flow, glomerular filtration rates and renal pH in healthy and hydronephrotic kidneys with superior sensitivity compared to clinical routine methods. Imaging multiple biomarkers within a single session renders [1,5-13C2]Z-OMPD a promising new hyperpolarized agent for oncology and nephrology.
Collapse
Affiliation(s)
- Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Pascal Wodtke
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Sandra Sühnel
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Nadine Setzer
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Thomas Metzler
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine, Technical University of Munich, D-81675, Munich, Germany
| | - Sebastian Gulde
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Mihyun Park
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich, D-85748, Garching, Germany
| | - Daniela Witt
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich, D-85748, Garching, Germany
| | - Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Nicole Strittmatter
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich, D-85748, Garching, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
- Department of Biology and Biotechnology, University of Pavia, I-27100, Pavia, Italy
| | - Katja Steiger
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine, Technical University of Munich, D-81675, Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany.
- Munich Institute of Biomedical Engineering, Technical University of Munich, D-85748, Garching, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Angelovski G, Tickner BJ, Wang G. Opportunities and challenges with hyperpolarized bioresponsive probes for functional imaging using magnetic resonance. Nat Chem 2023; 15:755-763. [PMID: 37264100 DOI: 10.1038/s41557-023-01211-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/19/2023] [Indexed: 06/03/2023]
Abstract
The development of hyperpolarized bioresponsive probes for magnetic resonance imaging (MRI) applications is an emerging and rapidly growing topic in chemistry. A wide range of hyperpolarized molecular biosensors for functional MRI have been developed in recent years. These probes comprise many different types of small-molecule reporters that can be hyperpolarized using dissolution dynamic nuclear polarization and parahydrogen-induced polarization or xenon-chelated macromolecular conjugates hyperpolarized using spin-exchange optical pumping. In this Perspective, we discuss how the amplified magnetic resonance signals of these agents are responsive to biologically relevant stimuli such as target proteins, reactive oxygen species, pH or metal ions. We examine how functional MRI using these systems allows a great number of biological processes to be monitored rapidly. Consequently, hyperpolarized bioresponsive probes may play a critical role in functional molecular imaging for observing physiology and pathology in real time.
Collapse
Affiliation(s)
- Goran Angelovski
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, People's Republic of China.
| | - Ben J Tickner
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, York, UK
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Gaoji Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
6
|
Miyanishi K, Mizukami W, Motoyama M, Ichijo N, Kagawa A, Negoro M, Kitagawa M. Prediction of 1H Singlet Relaxation via Intermolecular Dipolar Couplings Using the Molecular Dynamics Method. J Phys Chem B 2022; 126:3530-3538. [PMID: 35538043 DOI: 10.1021/acs.jpcb.1c10799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dissolution dynamic nuclear polarization has been applied in various fields, including chemistry, biology, and medical science. To expand the scope of these applications, the nuclear singlet state, which is decoherence-free against dipolar relaxation between spin pairs, has been studied experimentally, theoretically, and numerically. The singlet state composed of proton spins is used in several applications, such as enhanced polarization preservation, molecular tagging to probe slow dynamic processes, and detection of ligand-protein complexes. In this study, we predict the lifetimes of the nuclear spin states composed of proton spin pairs using the molecular dynamics method and quantum chemistry simulations. We consider intramolecular dipolar, intermolecular dipolar between solvent and solute, chemical shift anisotropy, and spin-rotation interactions. In particular, the relaxation rate of intermolecular dipolar interactions is calculated using the molecular dynamics method for various solvents. The calculated values and the experimental values are of the same order of magnitude. Our program would provide insight into the molecular design of several NMR applications and would be helpful in predicting the nuclear spin relaxation time of synthetic molecules in advance.
Collapse
Affiliation(s)
- K Miyanishi
- Division of Advanced Electronics and Optical Science, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.,Center for Quantum Information and Quantum Biology, Osaka University, 1-2 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - W Mizukami
- Center for Quantum Information and Quantum Biology, Osaka University, 1-2 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.,JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - M Motoyama
- Division of Advanced Electronics and Optical Science, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - N Ichijo
- Division of Advanced Electronics and Optical Science, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - A Kagawa
- Division of Advanced Electronics and Optical Science, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.,Center for Quantum Information and Quantum Biology, Osaka University, 1-2 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.,JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - M Negoro
- Center for Quantum Information and Quantum Biology, Osaka University, 1-2 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.,Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba 263-8555, Japan
| | - M Kitagawa
- Division of Advanced Electronics and Optical Science, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.,Center for Quantum Information and Quantum Biology, Osaka University, 1-2 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
7
|
Xu K, Zhang C, Li M, Gong S, Zhang Y, Wang X, Wang Z, Wang S. A myrtenal-based colorimetric and fluorescent probe for reversibly monitoring alkaline pH and bioimaging in living cells and zebrafish. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
A camphor-based Schiff base fluorescent probe for detection of alkaline pH and its applications in living cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Zhang Z, Li M, Zuo Y, Chen S, Zhuo Y, Lu M, Shi G, Gu H. In Vivo Monitoring of pH in Subacute PD Mouse Brains with a Ratiometric Electrochemical Microsensor Based on Poly(melamine) Films. ACS Sens 2022; 7:235-244. [PMID: 34936337 DOI: 10.1021/acssensors.1c02051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In vivo monitoring of cerebral pH is of great significance because its disturbance is related to some pathological processes such as neurodegenerative diseases, for example, Parkinson's disease (PD). In this study, we developed an electrochemical microsensor based on poly(melamine) (PMel) films for ratiometric monitoring of pH in subacute PD mouse brains. In this microsensor, PMel films were prepared from a simple electropolymerization approach in a melamine-containing solution, serving as the selective pH recognition membrane undergoing a 2H+/2e- process. Meanwhile, electrochemically oxidized graphene oxide (EOGO) produced a built-in correction signal which helped avoid the environmental interference of the complicated brain systems. The potential difference between the peaks generated from EOGO and PMel gradually decreased with the aqueous pH increasing from 4.0 to 9.0, constituting the detection foundation of the ratiometric electrochemical microsensor (REM). The in vitro studies demonstrated that this proposed method exhibited a high sensitivity (a Nernstian response of -61.35 mV/pH) and remarkable selectivity against amino acids, anions, cations, and biochemical and reactive oxygen species coexisting in the brain. Coupled with its excellent stability and reproducibility and good antibiofouling based on short-term detection, the developed REM could serve as a disposable sensor for the determination of cerebral pH in vivo. Its following successful application in the real-time measurement of pH in the striatum, hippocampus, and cortex of rat brains in the events of global cerebral ischemia/reperfusion verified the reliability of this method. Finally, we adopted this robust REM to systematically analyze and compare the average pH in different regions of normal and subacute PD mouse brains.
Collapse
Affiliation(s)
- Ziyi Zhang
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Mengyin Li
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Yimei Zuo
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Shu Chen
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Yi Zhuo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Hui Gu
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| |
Collapse
|
10
|
Shaul D, Azar A, Sapir G, Uppala S, Nardi-Schreiber A, Gamliel A, Sosna J, Gomori JM, Katz-Brull R. Correlation between lactate dehydrogenase/pyruvate dehydrogenase activities ratio and tissue pH in the perfused mouse heart: A potential noninvasive indicator of cardiac pH provided by hyperpolarized magnetic resonance. NMR IN BIOMEDICINE 2021; 34:e4444. [PMID: 33258527 DOI: 10.1002/nbm.4444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/05/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Cardiovascular diseases account for more than 30% of all deaths worldwide and many could be ameliorated with early diagnosis. Current cardiac imaging modalities can assess blood flow, heart anatomy and mechanical function. However, for early diagnosis and improved treatment, further functional biomarkers are needed. One such functional biomarker could be the myocardium pH. Although tissue pH is already determinable via MR techniques, and has been since the early 1990s, it remains elusive to use practically. The objective of this study was to explore the possibility to evaluate cardiac pH noninvasively, using in-cell enzymatic rates of hyperpolarized [1-13 C]pyruvate metabolism (ie, moles of product produced per unit time) determined directly in real time using magnetic resonance spectroscopy in a perfused mouse heart model. As a gold standard for tissue pH we used 31 P spectroscopy and the chemical shift of the inorganic phosphate (Pi) signal. The nonhomogenous pH distribution of the perfused heart was analyzed using a multi-parametric analysis of this signal, thus taking into account the heterogeneous nature of this characteristic. As opposed to the signal ratio of hyperpolarized [13 C]bicarbonate to [13 CO2 ], which has shown correlation to pH in other studies, we investigated here the ratio of two intracellular enzymatic rates: lactate dehydrogenase (LDH) and pyruvate dehydrogenase (PDH), by way of determining the production rates of [1-13 C]lactate and [13 C]bicarbonate, respectively. The enzyme activities determined here are intracellular, while the pH determined using the Pi signal may contain an extracellular component, which could not be ruled out. Nevertheless, we report a strong correlation between the tissue pH and the LDH/PDH activities ratio. This work may pave the way for using the LDH/PDH activities ratio as an indicator of cardiac intracellular pH in vivo, in an MRI examination.
Collapse
Affiliation(s)
- David Shaul
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Assad Azar
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Gal Sapir
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Sivaranjan Uppala
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Atara Nardi-Schreiber
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Ayelet Gamliel
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - J Moshe Gomori
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
11
|
Tumor Microenvironment Biosensors for Hyperpolarized Carbon-13 Magnetic Resonance Spectroscopy. Mol Imaging Biol 2021; 23:323-334. [PMID: 33415679 DOI: 10.1007/s11307-020-01570-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/12/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Hyperpolarization (HP) of a carbon-13 molecule via dynamic nuclear polarization (DNP) involves polarization at low temperature, followed by a dissolution procedure producing a solution with highly polarized spins at room temperature. This dissolution DNP method significantly increases the signal-to-noise ratio (SNR) of nuclear magnetic resonance (NMR) over 10,000-fold and facilitates the use of magnetic resonance spectroscopy (MRS) to image not only metabolism but also the extracellular microenvironment. The extracellular tumor microenvironment (TME) closely interacts with tumor cells and stimulates their growth and metastasis. Thus, the ability to detect pathological changes in the TME is pivotal for the detection and study of cancers. This review highlights the potential use of MRS to study features of the TME-elevated export of lactate, reduced interstitial pH, imbalanced redox equilibrium, and altered metal homeostasis. The promising outcomes of both in vitro and in vivo assays suggest that DNP-MRS may be a useful technique to study aspects of the TME. With continued improvements, this tool has the potential to study the TME and provide guidance for accurate patient stratification and precise personal therapy. Graphical Abstract.
Collapse
|
12
|
Bøgh N, Hansen ESS, Mariager CØ, Bertelsen LB, Ringgaard S, Laustsen C. Cardiac pH-Imaging With Hyperpolarized MRI. Front Cardiovasc Med 2020; 7:603674. [PMID: 33244471 PMCID: PMC7683793 DOI: 10.3389/fcvm.2020.603674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/16/2020] [Indexed: 11/13/2022] Open
Abstract
Regardless of the importance of acid-base disturbances in cardiac disease, there are currently no methods for clinical detection of pH in the heart. Several magnetic resonance imaging techniques hold translational promise and may enable in-vivo mapping of pH. We provide a brief overview of these emerging techniques. A particular focus is on the promising advance of magnetic resonance spectroscopy and imaging with hyperpolarized 13C-subtrates as biomarkers of myocardial pH. Hyperpolarization allows quantification of key metabolic substrates and their metabolites. Hereby, pH-sensitive reactions can be probed to provide a measure of acid-base alterations. To date, the most used substrates are [1-13C]pyruvate and 13C-labeled bicarbonate; however, others have been suggested. In cardiovascular medicine, hyperpolarized magnetic resonance spectroscopy has been used to probe acid-base disturbances following pharmacological stress, ischemia and heart failure in animals. In addition to pH-estimation, the technique can quantify fluxes such as the pivotal conversion of pyruvate to lactate via lactate dehydrogenase. This capability, a good safety profile and the fact that the technique is employable in clinical scanners have led to recent translation in early clinical trials. Thus, magnetic resonance spectroscopy and imaging may provide clinical pH-imaging in the near future.
Collapse
Affiliation(s)
- Nikolaj Bøgh
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Lotte Bonde Bertelsen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Steffen Ringgaard
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Wang Q, Parish C, Niedbalski P, Ratnakar J, Kovacs Z, Lumata L. Hyperpolarized 89Y-EDTMP complex as a chemical shift-based NMR sensor for pH at the physiological range. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 320:106837. [PMID: 33039915 PMCID: PMC7895333 DOI: 10.1016/j.jmr.2020.106837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/16/2020] [Accepted: 09/26/2020] [Indexed: 05/04/2023]
Abstract
Yttrium (III) complexes are interesting due to the similarity of their chemistry with gadolinium complexes that are used as contrast agents in nuclear magnetic resonance (NMR) spectroscopy or imaging (MRI). While most of the paramagnetic Gd3+-based MRI contrast agents are T1 or T2 relaxation-based sensors such as Gd3+-complexes for zinc or pH detection, a number of diamagnetic Y3+-complexes rely on changes in the chemical shift for potential quantitative MRI in biological milieu. 89Y, however, is a challenging nucleus to work with in conventional NMR or MRI due to its inherently low sensitivity and relatively long T1 relaxation time. This insensitivity problem in 89Y-based complexes can be circumvented with the use of dissolution dynamic nuclear polarization (DNP) which allows for several thousand-fold enhancement of the NMR or MRI signal relative to thermal equilibrium signal. Herein, we report on the feasibility of using hyperpolarized 89Y-complexes with phosphonated open-chain ligands, 89Y-EDTMP and 89Y-DTPMP, as potential chemical shift-based pH NMR sensors. Our DNP-NMR data show that hyperpolarized 89Y-DTPMP has an apparent pKa ~ 7.01 with a 4 ppm-wide chemical shift dispersion with the signal disappearing at pH below 6.2. On the other hand, pH titration data on hyperpolarized 89Y-EDTMP show that it has an apparent pKa of pH 6.7 and a 16-ppm wide chemical shift dispersion at pH 5-9 range. In comparison, the previously reported hyperpolarized pH NMR sensor 89Y-DOTP has a pKa of 7.64 and ~ 10-ppm wide chemical shift dispersion at pH 4-9 range. Overall, our data suggest that hyperpolarized 89Y-EDTMP is better than hyperpolarized 89Y-DOTP in terms of pH sensing capability at the physiological range.
Collapse
Affiliation(s)
- Qing Wang
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Christopher Parish
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA; Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Peter Niedbalski
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA; Pulmonary and Critical Care Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - James Ratnakar
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 750390, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 750390, USA.
| | - Lloyd Lumata
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA.
| |
Collapse
|
14
|
Lee SH, Griffiths JR. How and Why Are Cancers Acidic? Carbonic Anhydrase IX and the Homeostatic Control of Tumour Extracellular pH. Cancers (Basel) 2020; 12:cancers12061616. [PMID: 32570870 PMCID: PMC7352839 DOI: 10.3390/cancers12061616] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
The acidic tumour microenvironment is now recognized as a tumour phenotype that drives cancer somatic evolution and disease progression, causing cancer cells to become more invasive and to metastasise. This property of solid tumours reflects a complex interplay between cellular carbon metabolism and acid removal that is mediated by cell membrane carbonic anhydrases and various transport proteins, interstitial fluid buffering, and abnormal tumour-associated vessels. In the past two decades, a convergence of advances in the experimental and mathematical modelling of human cancers, as well as non-invasive pH-imaging techniques, has yielded new insights into the physiological mechanisms that govern tumour extracellular pH (pHe). In this review, we examine the mechanisms by which solid tumours maintain a low pHe, with a focus on carbonic anhydrase IX (CAIX), a cancer-associated cell surface enzyme. We also review the accumulating evidence that suggest a role for CAIX as a biological pH-stat by which solid tumours stabilize their pHe. Finally, we highlight the prospects for the clinical translation of CAIX-targeted therapies in oncology.
Collapse
Affiliation(s)
- Shen-Han Lee
- Department of Otorhinolaryngology, Hospital Sultanah Bahiyah, Jalan Langgar, Alor Setar 05460, Kedah, Malaysia
- Correspondence:
| | - John R. Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK;
| |
Collapse
|
15
|
Korenchan DE, Bok R, Sriram R, Liu K, Santos RD, Qin H, Lobach I, Korn N, Wilson DM, Kurhanewicz J, Flavell RR. Hyperpolarized in vivo pH imaging reveals grade-dependent acidification in prostate cancer. Oncotarget 2019; 10:6096-6110. [PMID: 31692908 PMCID: PMC6817439 DOI: 10.18632/oncotarget.27225] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/10/2019] [Indexed: 01/29/2023] Open
Abstract
There is an unmet clinical need for new and robust imaging biomarkers to distinguish indolent from aggressive prostate cancer. Hallmarks of aggressive tumors such as a decrease in extracellular pH (pHe) can potentially be used to identify aggressive phenotypes. In this study, we employ an optimized, high signal-to-noise ratio hyperpolarized (HP) 13C pHe imaging method to discriminate between indolent and aggressive disease in a murine model of prostate cancer. Transgenic adenocarcinoma of the mouse prostate (TRAMP) mice underwent a multiparametric MR imaging exam, including HP [13C] bicarbonate MRI for pHe, with 1H apparent diffusion coefficient (ADC) mapping and HP [1-13C] pyruvate MRI to study lactate metabolism. Tumor tissue was excised for histological staining and qRT-PCR to quantify mRNA expression for relevant glycolytic enzymes and transporters. We observed good separation in pHe between low- and high-grade tumor regions, with high-grade tumors demonstrating a lower pHe. The pHe also correlated strongly with monocarboxylate transporter Mct4 gene expression across all tumors, suggesting that lactate export via MCT4 is associated with acidification in this model. Our results implicate extracellular acidification as an indicator of indolent-to-aggressive transition in prostate cancer and suggest feasibility of HP pHe imaging to detect high-grade, clinically significant disease in men as part of a multiparametric MRI examination.
Collapse
Affiliation(s)
- David E Korenchan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Kristina Liu
- Department of Physical Chemistry, Technical University of Munich, Munich, Germany
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Hecong Qin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Iryna Lobach
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Natalie Korn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, CA, USA
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| |
Collapse
|
16
|
Wang S, Korenchan DE, Perez PM, Taglang C, Hayes TR, Sriram R, Bok R, Hong AS, Wu Y, Li H, Wang Z, Kurhanewicz J, Wilson DM, Flavell RR. Amino Acid-Derived Sensors for Specific Zn 2+ Detection Using Hyperpolarized 13 C Magnetic Resonance Spectroscopy. Chemistry 2019; 25:11842-11846. [PMID: 31338914 PMCID: PMC6742520 DOI: 10.1002/chem.201902771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/14/2019] [Indexed: 11/05/2022]
Abstract
Alterations in Zn2+ concentration are seen in normal tissues and in disease states, and for this reason imaging of Zn2+ is an area of active investigation. Herein, enriched [1-13 C]cysteine and [1-13 C2 ]iminodiacetic acid were developed as Zn2+ -specific imaging probes using hyperpolarized 13 C magnetic resonance spectroscopy. [1-13 C]cysteine was used to accurately quantify Zn2+ in complex biological mixtures. These sensors can be employed to detect Zn2+ via imaging mechanisms including changes in 13 C chemical shift, resonance linewidth, or T1 .
Collapse
Affiliation(s)
- Sinan Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (USA, 94107, USA
| | - David E Korenchan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (USA, 94107, USA
| | - Paola M Perez
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (USA, 94107, USA
| | - Céline Taglang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (USA, 94107, USA
| | - Thomas R Hayes
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (USA, 94107, USA
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (USA, 94107, USA
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (USA, 94107, USA
| | - Andrew S Hong
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (USA, 94107, USA
| | - Yunkou Wu
- Department of Radiology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Henry Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (USA, 94107, USA
| | - Zhen Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (USA, 94107, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (USA, 94107, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94107, USA
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (USA, 94107, USA
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (USA, 94107, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94107, USA
| |
Collapse
|
17
|
Spatiotemporal pH Heterogeneity as a Promoter of Cancer Progression and Therapeutic Resistance. Cancers (Basel) 2019; 11:cancers11071026. [PMID: 31330859 PMCID: PMC6678451 DOI: 10.3390/cancers11071026] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of pH in solid tumors is a hallmark of cancer. In recent years, the role of altered pH heterogeneity in space, between benign and aggressive tissues, between individual cancer cells, and between subcellular compartments, has been steadily elucidated. Changes in temporal pH-related processes on both fast and slow time scales, including altered kinetics of bicarbonate-CO2 exchange and its effects on pH buffering and gradual, progressive changes driven by changes in metabolism, are further implicated in phenotypic changes observed in cancers. These discoveries have been driven by advances in imaging technologies. This review provides an overview of intra- and extracellular pH alterations in time and space reflected in cancer cells, as well as the available technology to study pH spatiotemporal heterogeneity.
Collapse
|
18
|
Korenchan DE, Gordon JW, Subramaniam S, Sriram R, Baligand C, VanCriekinge M, Bok R, Vigneron DB, Wilson DM, Larson PEZ, Kurhanewicz J, Flavell RR. Using bidirectional chemical exchange for improved hyperpolarized [ 13 C]bicarbonate pH imaging. Magn Reson Med 2019; 82:959-972. [PMID: 31050049 DOI: 10.1002/mrm.27780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Rapid chemical exchange can affect SNR and pH measurement accuracy for hyperpolarized pH imaging with [13 C]bicarbonate. The purpose of this work was to investigate chemical exchange effects on hyperpolarized imaging sequences to identify optimal sequence parameters for high SNR and pH accuracy. METHODS Simulations were performed under varying rates of bicarbonate-CO2 chemical exchange to analyze exchange effects on pH quantification accuracy and SNR under different sampling schemes. Four pulse sequences, including 1 new technique, a multiple-excitation 2D EPI (multi-EPI) sequence, were compared in phantoms using hyperpolarized [13 C]bicarbonate, varying parameters such as tip angles, repetition time, order of metabolite excitation, and refocusing pulse design. In vivo hyperpolarized bicarbonate-CO2 exchange measurements were made in transgenic murine prostate tumors to select in vivo imaging parameters. RESULTS Modeling of bicarbonate-CO2 exchange identified a multiple-excitation scheme for increasing CO2 SNR by up to a factor of 2.7. When implemented in phantom imaging experiments, these sampling schemes were confirmed to yield high pH accuracy and SNR gains. Based on measured bicarbonate-CO2 exchange in vivo, a 47% CO2 SNR gain is predicted. CONCLUSION The novel multi-EPI pulse sequence can boost CO2 imaging signal in hyperpolarized 13 C bicarbonate imaging while introducing minimal pH bias, helping to surmount a major hurdle in hyperpolarized pH imaging.
Collapse
Affiliation(s)
- David E Korenchan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Sukumar Subramaniam
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Celine Baligand
- Molecular Imaging Research Center, French Alternative Energies and Atomic Energy Commission Fontenay-aux-Roses, France
| | - Mark VanCriekinge
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,UC Berkeley, UCSF Graduate Program in Bioengineering, University of California, University of California, San Francisco, Berkeley, California
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,UC Berkeley, UCSF Graduate Program in Bioengineering, University of California, University of California, San Francisco, Berkeley, California
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,UC Berkeley, UCSF Graduate Program in Bioengineering, University of California, University of California, San Francisco, Berkeley, California
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|
19
|
Timm KN, Miller JJ, Henry JA, Tyler DJ. Cardiac applications of hyperpolarised magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 106-107:66-87. [PMID: 31047602 DOI: 10.1016/j.pnmrs.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 05/05/2023]
Abstract
Cardiovascular disease is the leading cause of death world-wide. It is increasingly recognised that cardiac pathologies show, or may even be caused by, changes in metabolism, leading to impaired cardiac energetics. The heart turns over 15 times its own weight in ATP every day and thus relies heavily on the availability of substrates and on efficient oxidation to generate this ATP. A number of old and emerging drugs that target different aspects of metabolism are showing promising results with regard to improved cardiac outcomes in patients. A non-invasive imaging technique that could assess the role of different aspects of metabolism in heart disease, as well as measure changes in cardiac energetics due to treatment, would be valuable in the routine clinical care of cardiac patients. Hyperpolarised magnetic resonance spectroscopy and imaging have revolutionised metabolic imaging, allowing real-time metabolic flux assessment in vivo for the first time. In this review we summarise metabolism in the healthy and diseased heart, give an introduction to the hyperpolarisation technique, 'dynamic nuclear polarisation' (DNP), and review the preclinical studies that have thus far explored healthy cardiac metabolism and different models of human heart disease. We furthermore show what advances have been made to translate this technique into the clinic, what technical challenges still remain and what unmet clinical needs and unexplored metabolic substrates still need to be assessed by researchers in this exciting and fast-moving field.
Collapse
Affiliation(s)
- Kerstin N Timm
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK; Clarendon Laboratory, Department of Physics, University of Oxford, UK.
| | - John A Henry
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
20
|
Taglang C, Korenchan DE, von Morze C, Yu J, Najac C, Wang S, Blecha JE, Subramaniam S, Bok R, VanBrocklin HF, Vigneron DB, Ronen SM, Sriram R, Kurhanewicz J, Wilson DM, Flavell RR. Late-stage deuteration of 13C-enriched substrates for T 1 prolongation in hyperpolarized 13C MRI. Chem Commun (Camb) 2018; 54:5233-5236. [PMID: 29726563 PMCID: PMC6054790 DOI: 10.1039/c8cc02246a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A robust and selective late-stage deuteration methodology was applied to 13C-enriched amino and alpha hydroxy acids to increase spin-lattice relaxation constant T1 for hyperpolarized 13C magnetic resonance imaging. For the five substrates with 13C-labeling on the C1-position ([1-13C]alanine, [1-13C]serine, [1-13C]lactate, [1-13C]glycine, and [1-13C]valine), significant increase of their T1 was observed at 3 T with deuterium labeling (+26%, 22%, +16%, +25% and +29%, respectively). Remarkably, in the case of [2-13C]alanine, [2-13C]serine and [2-13C]lactate, deuterium labeling led to a greater than four fold increase in T1. [1-13C,2-2H]alanine, produced using this method, was applied to in vitro enzyme assays with alanine aminotransferase, demonstrating a kinetic isotope effect.
Collapse
Affiliation(s)
- Céline Taglang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - David E. Korenchan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Justin Yu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Sinan Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Joseph E. Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Sukumar Subramaniam
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - David M. Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| |
Collapse
|
21
|
Léonce E, Dognon JP, Pitrat D, Mulatier JC, Brotin T, Berthault P. Accurate pH Sensing using Hyperpolarized 129
Xe NMR Spectroscopy. Chemistry 2018; 24:6534-6537. [DOI: 10.1002/chem.201800900] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Estelle Léonce
- NIMBE, CEA, CNRS; Université Paris Saclay, CEA Saclay; 91191 Gif-sur-Yvette France
| | - Jean-Pierre Dognon
- NIMBE, CEA, CNRS; Université Paris Saclay, CEA Saclay; 91191 Gif-sur-Yvette France
| | - Delphine Pitrat
- Laboratoire de Chimie de L'ENS LYON (UMR 5182); Ecole Normale Supérieure de Lyon; 46, Allée d'Italie 69364 Lyon Cedex 07 France
| | - Jean-Christophe Mulatier
- Laboratoire de Chimie de L'ENS LYON (UMR 5182); Ecole Normale Supérieure de Lyon; 46, Allée d'Italie 69364 Lyon Cedex 07 France
| | - Thierry Brotin
- Laboratoire de Chimie de L'ENS LYON (UMR 5182); Ecole Normale Supérieure de Lyon; 46, Allée d'Italie 69364 Lyon Cedex 07 France
| | - Patrick Berthault
- NIMBE, CEA, CNRS; Université Paris Saclay, CEA Saclay; 91191 Gif-sur-Yvette France
| |
Collapse
|
22
|
Hyperpolarized Amino Acid Derivatives as Multivalent Magnetic Resonance pH Sensor Molecules. SENSORS 2018; 18:s18020600. [PMID: 29462891 PMCID: PMC5856118 DOI: 10.3390/s18020600] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 11/17/2022]
Abstract
pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP) magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (pKa). Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the pKa of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1-13C]serine amide and [1-13C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei (13C, 15N, 31P) with high sensitivity up to 4.8 ppm/pH and we show that 13C spins can be hyperpolarized with dissolution dynamic polarization (DNP). Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.
Collapse
|
23
|
Hundshammer C, Düwel S, Köcher SS, Gersch M, Feuerecker B, Scheurer C, Haase A, Glaser SJ, Schwaiger M, Schilling F. Deuteration of Hyperpolarized 13
C-Labeled Zymonic Acid Enables Sensitivity-Enhanced Dynamic MRI of pH. Chemphyschem 2017; 18:2422-2425. [DOI: 10.1002/cphc.201700779] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Christian Hundshammer
- Department of Nuclear Medicine; Klinikum rechts der Isar; Technical University of Munich; Ismaninger Str. 22 81675 München Germany
- Department of Chemistry; Technical University of Munich; Lichtenbergstr. 4 85748 Garching Germany
| | - Stephan Düwel
- Department of Nuclear Medicine; Klinikum rechts der Isar; Technical University of Munich; Ismaninger Str. 22 81675 München Germany
- Department of Chemistry; Technical University of Munich; Lichtenbergstr. 4 85748 Garching Germany
- Institute of Medical Engineering; Technical University of Munich; Boltzmannstr. 11 85748 Garching Germany
| | - Simone S. Köcher
- Department of Chemistry; Technical University of Munich; Lichtenbergstr. 4 85748 Garching Germany
- Institute of Energy and Climate Research (IEK-9); Forschungszentrum Jülich, Ostring O10 52425 Jülich Germany
| | - Malte Gersch
- Department of Chemistry; Technical University of Munich; Lichtenbergstr. 4 85748 Garching Germany
| | - Benedikt Feuerecker
- Department of Nuclear Medicine; Klinikum rechts der Isar; Technical University of Munich; Ismaninger Str. 22 81675 München Germany
| | - Christoph Scheurer
- Department of Chemistry; Technical University of Munich; Lichtenbergstr. 4 85748 Garching Germany
| | - Axel Haase
- Institute of Medical Engineering; Technical University of Munich; Boltzmannstr. 11 85748 Garching Germany
| | - Steffen J. Glaser
- Department of Chemistry; Technical University of Munich; Lichtenbergstr. 4 85748 Garching Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine; Klinikum rechts der Isar; Technical University of Munich; Ismaninger Str. 22 81675 München Germany
| | - Franz Schilling
- Department of Nuclear Medicine; Klinikum rechts der Isar; Technical University of Munich; Ismaninger Str. 22 81675 München Germany
| |
Collapse
|
24
|
Hundshammer C, Düwel S, Schilling F. Imaging of Extracellular pH Using Hyperpolarized Molecules. Isr J Chem 2017. [DOI: 10.1002/ijch.201700017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar; Technical University of Munich; Ismaninger Str. 22 81675 München Germany
- Department of Chemistry; Technical University of Munich; Lichtenbergstr. 2 85748 Garching Germany
| | - Stephan Düwel
- Department of Nuclear Medicine, Klinikum rechts der Isar; Technical University of Munich; Ismaninger Str. 22 81675 München Germany
- Department of Chemistry; Technical University of Munich; Lichtenbergstr. 2 85748 Garching Germany
- Institute of Medical Engineering; Technical University of Munich; Boltzmannstr. 11 85748 Garching Germany
| | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar; Technical University of Munich; Ismaninger Str. 22 81675 München Germany
| |
Collapse
|