1
|
Kaboodkhani R, Mehrabani D, Moghaddam A, Salahshoori I, Khonakdar HA. Tissue engineering in otology: a review of achievements. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1105-1153. [PMID: 38386362 DOI: 10.1080/09205063.2024.2318822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Tissue engineering application in otology spans a distance from the pinna to auditory nerve covered with specialized tissues and functions such as sense of hearing and aesthetics. It holds the potential to address the barriers of lack of donor tissue, poor tissue match, and transplant rejection through provision of new and healthy tissues similar to the host and possesses the capacity to renew, to regenerate, and to repair in-vivo and was shown to be a bypasses for any need to immunosuppression. This review aims to investigate the application of tissue engineering in otology and to evaluate the achievements and challenges in external, middle and inner ear sections. Since gaining the recent knowledge and training on use of different scaffolds is essential for otology specialists and who look for the recovery of ear function and aesthetics of patients, it is shown in this review how utilizing tissue engineering and cell transplantation, regenerative medicine can provide advancements in hearing and ear aesthetics to fit different patients' needs.
Collapse
Affiliation(s)
- Reza Kaboodkhani
- Otorhinolaryngology Research Center, Department of Otorhinolaryngology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | | | | | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Lu B, Lim JM, Yu B, Song S, Neeli P, Sobhani N, K P, Bonam SR, Kurapati R, Zheng J, Chai D. The next-generation DNA vaccine platforms and delivery systems: advances, challenges and prospects. Front Immunol 2024; 15:1332939. [PMID: 38361919 PMCID: PMC10867258 DOI: 10.3389/fimmu.2024.1332939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Vaccines have proven effective in the treatment and prevention of numerous diseases. However, traditional attenuated and inactivated vaccines suffer from certain drawbacks such as complex preparation, limited efficacy, potential risks and others. These limitations restrict their widespread use, especially in the face of an increasingly diverse range of diseases. With the ongoing advancements in genetic engineering vaccines, DNA vaccines have emerged as a highly promising approach in the treatment of both genetic diseases and acquired diseases. While several DNA vaccines have demonstrated substantial success in animal models of diseases, certain challenges need to be addressed before application in human subjects. The primary obstacle lies in the absence of an optimal delivery system, which significantly hampers the immunogenicity of DNA vaccines. We conduct a comprehensive analysis of the current status and limitations of DNA vaccines by focusing on both viral and non-viral DNA delivery systems, as they play crucial roles in the exploration of novel DNA vaccines. We provide an evaluation of their strengths and weaknesses based on our critical assessment. Additionally, the review summarizes the most recent advancements and breakthroughs in pre-clinical and clinical studies, highlighting the need for further clinical trials in this rapidly evolving field.
Collapse
Affiliation(s)
- Bowen Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Ming Lim
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Boyue Yu
- Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, CA, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Praveen Neeli
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Navid Sobhani
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Pavithra K
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Rajendra Kurapati
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
3
|
Bako P, Lippai B, Nagy J, Kramer S, Kaszas B, Tornoczki T, Bock-Marquette I. Thymosin beta-4 - A potential tool in healing middle ear lesions in adult mammals. Int Immunopharmacol 2023; 116:109830. [PMID: 38706788 PMCID: PMC11068331 DOI: 10.1016/j.intimp.2023.109830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Acute tympanic membrane perforations primarily occur due to injury or infection in humans. In acute cases, nearly 80-94 % of the perforations heal spontaneously. In chronic cases, non-surgical treatment becomes significantly limited, and the perforation can be restored only by myringoplasty. In addition to classical grafts such as the fascia or cartilage, promising results have been reported with various biological materials including silk or acellular collagen. However, despite of all the efforts, healing remains insufficient. Consequentially, a need for substances which actively promote tympanic cell migration and proliferation is deemed essential. In our study, we utilized Thymosin beta-4 (TB4), a 43aa peptide possessing many regenerative properties in various organ systems. Our aim was to reveal the impact of externally administered TB4 regarding impairments of the middle ear, particularly the tympanic membrane. We harvested tympanic membranes from adult mice and treated these with TB4 or PBS on both collagen gel matrixes and in the form of floating, ex vivo explants. Cell migration and proliferation was measured, while immunocytochemical analyses were performed to determine cell type and the nature of the targeted molecules. We discovered the peptide affects the behavior of epidermal and epithelial cells of the tympanic membrane in vitro. Moreover, as our initial results imply, it is not the differentiated, yet most likely the local epidermal progenitor cells which are the primary targets of the molecule. Our present results unveil a new, thus far undiscovered field regarding clinical utilization for TB4 in the future.
Collapse
Affiliation(s)
- Peter Bako
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pecs, Medical School, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
| | - Balint Lippai
- Department of Biochemistry and Medical Chemistry University of Pecs, Medical School, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
| | - Jazmin Nagy
- Szentagothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
| | - Sofie Kramer
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pecs, Medical School, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
| | - Balint Kaszas
- Department of Pathology, University of Pecs, Medical School, H-7624 Pecs, Hungary
| | - Tamas Tornoczki
- Department of Pathology, University of Pecs, Medical School, H-7624 Pecs, Hungary
| | - Ildiko Bock-Marquette
- Department of Biochemistry and Medical Chemistry University of Pecs, Medical School, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
| |
Collapse
|
4
|
Biocompatible Materials in Otorhinolaryngology and Their Antibacterial Properties. Int J Mol Sci 2022; 23:ijms23052575. [PMID: 35269718 PMCID: PMC8910137 DOI: 10.3390/ijms23052575] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 12/29/2022] Open
Abstract
For decades, biomaterials have been commonly used in medicine for the replacement of human body tissue, precise drug-delivery systems, or as parts of medical devices that are essential for some treatment methods. Due to rapid progress in the field of new materials, updates on the state of knowledge about biomaterials are frequently needed. This article describes the clinical application of different types of biomaterials in the field of otorhinolaryngology, i.e., head and neck surgery, focusing on their antimicrobial properties. The variety of their applications includes cochlear implants, middle ear prostheses, voice prostheses, materials for osteosynthesis, and nasal packing after nasal/paranasal sinuses surgery. Ceramics, such as as hydroxyapatite, zirconia, or metals and metal alloys, still have applications in the head and neck region. Tissue engineering scaffolds and drug-eluting materials, such as polymers and polymer-based composites, are becoming more common. The restoration of life tissue and the ability to prevent microbial colonization should be taken into consideration when designing the materials to be used for implant production. The authors of this paper have reviewed publications available in PubMed from the last five years about the recent progress in this topic but also establish the state of knowledge of the most common application of biomaterials over the last few decades.
Collapse
|
5
|
Wang Y, Wen F, Yao X, Zeng L, Wu J, He Q, Li H, Fang L. Hybrid Hydrogel Composed of Hyaluronic Acid, Gelatin, and Extracellular Cartilage Matrix for Perforated TM Repair. Front Bioeng Biotechnol 2022; 9:811652. [PMID: 35004660 PMCID: PMC8741272 DOI: 10.3389/fbioe.2021.811652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022] Open
Abstract
A novel series of composite hydrogels, built from the three components 1), hyaluronic acid methacryloyl (HAMA); 2), gelatin methacryloyl (GelMA), and 3), extracellular cartilage matrix (ECM), was prepared and studied regarding the possible utility in the surgical repair of damaged (perforated) tympanic membrane (TM). Noteworthy is component 3), which was harvested from the ribs of α-1,3-galactosidyltransferase-knockout (α-1,3 GalT-KO) pigs. The absence of α-1,3-galactosyl glycoprotein is hypothesized to prevent rejection due to foreign-body immunogenicity. The composite hydrogels were characterized by various aspects, using a variety of physicochemical techniques: aqueous swelling, structural degradation, behavior under compression, and morphology, e.g., in vitro biocompatibility was assessed by the CCK-8 and live–dead assays and through cytoskeleton staining/microscopy. Alcian blue staining and real-time PCR (RT-PCR) were performed to examine the chondrogenic induction potential of the hydrogels. Moreover, a rat TM defect model was used to evaluate the in vivo performance of the hydrogels in this particular application. Taken together, the results from this study are surprising and promising. Much further development work will be required to make the material ready for surgical use.
Collapse
Affiliation(s)
- Yili Wang
- ENT Department, Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Joint Centre of Translational Medicine, Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Feng Wen
- ENT Department, Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Joint Centre of Translational Medicine, Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Xueting Yao
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lulu Zeng
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiaming Wu
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qinhong He
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Huaqiong Li
- ENT Department, Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Joint Centre of Translational Medicine, Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.,School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| | - Lian Fang
- ENT Department, Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Huang J, Teh BM, Xu Z, Yuan Z, Zhou C, Shi Y, Shen Y. The possible mechanism of Hippophae fructus oil applied in tympanic membrane repair identified based on network pharmacology and molecular docking. J Clin Lab Anal 2022; 36:e24157. [PMID: 34859918 PMCID: PMC8761429 DOI: 10.1002/jcla.24157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE This study aimed to explore the mechanisms of Hippophae fructus oil (HFO) in the treatment of tympanic membrane (TM) perforation through network pharmacology-based identification. METHODS The compounds and related targets of HFO were extracted from the TCMSP database, and disease information was obtained from the OMIM, GeneCards, PharmGkb, TTD, and DrugBank databases. A Venn diagram was generated to show the common targets of HFO and TM, and GO and KEGG analyses were performed to explore the potential biological processes and signaling pathways. The PPI network and core gene subnetwork were constructed using the STRING database and Cytoscape software. A molecular docking analysis was also conducted to simulate the combination of compounds and gene proteins. RESULTS A total of 33 compounds and their related targets were obtained from the TCMSP database. After screening the 393 TM-related targets, 21 compounds and 22 gene proteins were selected to establish the network diagram. GO and KEGG enrichment analyses revealed that HFO may promote TM healing by influencing cellular oxidative stress and related signaling pathways. A critical subnetwork was obtained by analyzing the PPI network with nine core genes: CASP3, MMP2, IL1B, TP53, EGFR, CXCL8, ESR1, PTGS2, and IL6. In addition, a molecular docking analysis revealed that quercetin strongly binds the core proteins. CONCLUSION According to the analysis, HFO can be utilized to repair perforations by influencing cellular oxidative stress. Quercetin is one of the active compounds that potentially plays an important role in TM regeneration by influencing 17 gene proteins.
Collapse
Affiliation(s)
- Juntao Huang
- Department of Otolaryngology Head and Neck SurgeryNingbo Medical Center (Ningbo Lihuili Hospital)The Affiliated Lihuili Hospital of Ningbo UniversityNingboChina
- School of MedicineNingbo UniversityNingboChina
| | - Bing Mei Teh
- Department of Ear Nose and Throat, Head and Neck SurgeryEastern HealthBox HillVictoriaAustralia
- Department of Otolaryngology, Head and Neck SurgeryMonash HealthClaytonVictoriaAustralia
- Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVictoriaAustralia
| | - Ziqian Xu
- Department of DermatologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhechen Yuan
- Department of Otolaryngology Head and Neck SurgeryNingbo Medical Center (Ningbo Lihuili Hospital)The Affiliated Lihuili Hospital of Ningbo UniversityNingboChina
- School of MedicineNingbo UniversityNingboChina
| | - Chongchang Zhou
- Department of Otolaryngology Head and Neck SurgeryNingbo Medical Center (Ningbo Lihuili Hospital)The Affiliated Lihuili Hospital of Ningbo UniversityNingboChina
- School of MedicineNingbo UniversityNingboChina
| | - Yunbin Shi
- Department of Otolaryngology Head and Neck SurgeryNingbo Medical Center (Ningbo Lihuili Hospital)The Affiliated Lihuili Hospital of Ningbo UniversityNingboChina
- School of MedicineNingbo UniversityNingboChina
| | - Yi Shen
- Department of Otolaryngology Head and Neck SurgeryNingbo Medical Center (Ningbo Lihuili Hospital)The Affiliated Lihuili Hospital of Ningbo UniversityNingboChina
- School of MedicineNingbo UniversityNingboChina
| |
Collapse
|
7
|
Strüder D, Lachmann C, van Bonn SM, Grambow E, Schraven SP, Mlynski R, Vollmar B. The Dorsal Skinfold Chamber as a New Tympanic Membrane Wound Healing Model: Intravital Insights into the Pathophysiology of Epithelialized Wounds. Eur Surg Res 2021; 63:1-15. [PMID: 34856545 PMCID: PMC9808650 DOI: 10.1159/000519774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/05/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Tympanic membrane perforations (TMPs) are a common complication of trauma and infection. Persisting perforations result from the unique location of the tympanic membrane. The wound is surrounded by air of the middle ear and the external auditory canal. The inadequate wound bed, growth factor, and blood supply lead to circular epithelialization of the perforation's edge and premature interruption of defect closure. Orthotopic animal models use mechanical or chemical tympanic membrane laceration to identify bioactive wound dressings and overcome premature epithelialization. However, all orthotopic models essentially lack repetitive visualization of the biomaterial-wound interface. Therefore, recent progress in 3D printing of customized wound dressings has not yet been transferred to the unique wound setup of the TMP. Here, we present a novel application for the mice dorsal skinfold chamber (DSC) with an epithelialized full-thickness defect as TMP model. METHODS A circular 2-mm defect was cut into the extended dorsal skinfold using a biopsy punch. The skinfold was either perforated through both skin layers without prior preparation or perforated on 1 side, following resection of the opposing skin layer. In both groups, the wound was sealed with a coverslip or left unclosed (n = 4). All animals were examined for epithelialization of the edge (histology), size of the perforation (planimetry), neovascularization (repetitive intravital fluorescence microscopy), and inflammation (immunohistology). RESULTS The edge of the perforation was overgrown by the cornified squamous epithelium in all pre-parations. Reduction in the perforation's size was enhanced by application of a coverslip. Microsurgical preparation before biopsy punch perforation and sealing with a coverslip enabled repetitive high-quality intravital fluorescence microscopy. However, spontaneous reduction of the perforation occurred frequently. Therefore, the direct biopsy punch perforation without microsurgical preparation was favorable: spontaneous reduction did not occur throughout 21 days. Moreover, the visualization of the neovascularization was sufficient in intravital microscopy. CONCLUSIONS The DSC full-thickness defect is a valuable supplement to orthotopic TMP models. Repetitive intravital microscopy of the epithelialized edge enables investigation of the underlying pathophysiology during the transition from the inflammation to the proliferation phase of wound healing. Using established analysis procedures, the present model provides an effective platform for the screening of bioactive materials and transferring progress in tissue engineering to the special conditions of tympanic membrane wound healing.
Collapse
Affiliation(s)
- Daniel Strüder
- Department of Otorhinolaryngology, Head and Neck Surgery “Otto Körner”, Rostock University Medical Center, Rostock, Germany,Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany,*Daniel Strüder,
| | - Christoph Lachmann
- Department of Otorhinolaryngology, Head and Neck Surgery “Otto Körner”, Rostock University Medical Center, Rostock, Germany
| | - Sara Maria van Bonn
- Department of Otorhinolaryngology, Head and Neck Surgery “Otto Körner”, Rostock University Medical Center, Rostock, Germany
| | - Eberhard Grambow
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany,Department of General, Visceral, Vascular and Transplantation Surgery, Rostock University Medical Center, Rostock, Germany
| | - Sebastian P. Schraven
- Department of Otorhinolaryngology, Head and Neck Surgery “Otto Körner”, Rostock University Medical Center, Rostock, Germany
| | - Robert Mlynski
- Department of Otorhinolaryngology, Head and Neck Surgery “Otto Körner”, Rostock University Medical Center, Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
8
|
A design-thinking approach to therapeutic translation: tympanic regeneration. Curr Opin Otolaryngol Head Neck Surg 2021; 28:274-280. [PMID: 32833885 DOI: 10.1097/moo.0000000000000650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Clinician researchers face the pressures of meeting academic benchmarks combined with advancing new therapies to patients. The vast majority of drug discoveries fail in translation. A new method of meeting the challenges of preclinical therapeutic translation is presented using the example of tympanic regeneration. RECENT FINDINGS The key to a design-thinking approach to therapeutic translation is to 'begin with the end in mind' by widening the scope of the problem, with multiple points of view, to not only understand the disease but the context for the patient and the health system in which it occurs. Idea for therapeutics should be tested in relevant models early and once proof of efficacy is established, translational milestones that represent the greatest risk, such as safety and toxicity should be addressed first. It is important to seek the feedback of industry early to understand what milestones should be best addressed next with limited academic resources. Whenever proceeding, guidelines for maintaining scientific reproducibility should be followed to minimize risk of failure during transfer into industry. SUMMARY A Design-thinking approach addresses the potential failures in drug discovery and preclinical translation.
Collapse
|
9
|
Aleemardani M, Bagher Z, Farhadi M, Chahsetareh H, Najafi R, Eftekhari B, Seifalian A. Can Tissue Engineering Bring Hope to the Development of Human Tympanic Membrane? TISSUE ENGINEERING PART B-REVIEWS 2021; 27:572-589. [PMID: 33164696 DOI: 10.1089/ten.teb.2020.0176] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tympanic membrane (TM), more commonly known as the eardrum, consists of a thin layer of tissue in the human ear that receives sound vibrations from outside of the body and transmits them to the auditory ossicles. The TM perforations (TMPs) are a common ontological condition, which in some cases can result in permanent hearing loss. Despite the spontaneous healing capacity of the TM to regenerate in the majority of cases of acute perforation, chronic perforations require surgical interventions. However, the disadvantages of the surgical procedure include infection, anesthetic risks, and high failure of graft patency. The tissue engineering strategy, which includes the applications of a three-dimensional (3D) scaffold, cells, and biomolecules or a combination of them for the closure of chronic perforation, has been considered as an emerging treatment. Using this approach, emerging products are currently under development to regenerate the TM structure and its properties. This research aimed to highlight the problems with the current methods of TMP treatment, and critically evaluate the tissue engineering approaches, which may overcome these drawbacks. The focus of this review is on recent literature to critically discuss the emerging advanced materials used as a 3D scaffold in the development of a TM with cellular engineering, biomolecules, cells, and the fabrications of the TM and its pathway to the clinical application. In this review, we discuss the properties of TM and the advantages and disadvantages of the current clinical products for repair and replacement of the TM. Furthermore, we provide an overview of the in vitro and preclinical studies of emerging products over the past 5 years. The results of recent preclinical studies suggest that the tissue engineering field holds significant promise.
Collapse
Affiliation(s)
- Mina Aleemardani
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head & Neck Research Centre and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head & Neck Research Centre and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Chahsetareh
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Roghayeh Najafi
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Behnaz Eftekhari
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd.), London BioScience Innovation Centre, London, United Kingdom
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW One of the most common diseases of the tympanic membrane is a perforation, and tympanoplasty is one of the more common procedures in otolaryngology. Tympanic membrane regeneration and bioengineering aim to improve the success rate of the procedure, increase the availability of different scaffolds and provide innovative tools that will simplify the surgical technique and make it accessible for surgeons with varying expertise level. This review aims to raise awareness of current tissue engineering developments in tympanic membrane regeneration and how they may augment current clinical practices. We focus here on achievements in tympanic membrane cell cultures and on innovations in development of new scaffolds and growth factors that enhance regeneration of patient's native tympanic membranes. RECENT FINDINGS In recent years, great achievements were reached in the field of tympanic membrane regeneration in the three hallmarks of bioengineering: cells, scaffolds and bioactive molecules. New techniques for modeling normal tympanic membrane proliferation were developed, as well as for isolation and expansion of normal tympanic membrane keratinocytes from miniature samples of scarred tissue. Ongoing clinical trials aim to seal the perforation by applying different scaffolds infiltrated by growth factors on the tympanic membrane. SUMMARY Research efforts in tympanic membrane regeneration continue to seek the ideal single tissue-engineered substitute. Recent advances in tympanic membrane bioengineering include new types of scaffolds that may augment and provide a safe and effective alternative to the current gold-standard autograft. New bioactive molecules may simplify the surgical procedure and reduce surgical time by augmenting the native tympanic membrane regeneration. Several groups of bioengineering scientists and neurotologists are continuing to move forward and develop new strategies, seeking to create a fully functional tissue-engineered tympanic membrane.
Collapse
|
11
|
Cai W, Chen M, Fan J, Jin H, Yu D, Qiang S, Peng C, Yu J. Fluorescein sodium loaded by polyethyleneimine for fundus fluorescein angiography improves adhesion. Nanomedicine (Lond) 2019; 14:2595-2611. [PMID: 31361188 DOI: 10.2217/nnm-2019-0008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: To improve the retention of fluorescein sodium (FS) as a kind of clinical contrast agent for fundus fluorescein angiography (FFA). Materials & methods: Polyethyleneimine (PEI) was designed to synthesize PEI–NHAc–FS nanoparticles (NPs), and the formed NPs were characterized by both physicochemical properties and their effects on FFA. Results: Compared with free FS, PEI–NHAc–FS NPs showed similar optical performance, and could obviously reduce cellular adsorption and uptake both in vitro and in vivo, which could promote the metabolism of NPs in ocular blood vessels. Conclusion: PEI–NHAc–FS NPs represent a smart nanosize fluorescence contrast agent, which hold promising potential for clinical FFA diagnosis, therapy and research work.
Collapse
Affiliation(s)
- Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Meixiu Chen
- State Key Laboratory for Modification of Chemical Fibers & Polymer Materials, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Jiaqi Fan
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
- Department of Ophthalmology, Nanjing Medical University, Nanjing, 211166, PR China
| | - Huizi Jin
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Donghui Yu
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Sujing Qiang
- Department of Central Laboratory, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Chen Peng
- Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
- Department of Ophthalmology, Ninghai First Hospital, Ninghai, Zhejiang, 315600, PR China
| |
Collapse
|
12
|
Seonwoo H, Kim SW, Shin B, Jang KJ, Lee M, Choo OS, Choi MJ, Kim J, Lim KT, Jang JH, Chung JH, Choung YH. Latent stem cell-stimulating therapy for regeneration of chronic tympanic membrane perforations using IGFBP2-releasing chitosan patch scaffolds. J Biomater Appl 2019; 34:198-207. [PMID: 31060420 DOI: 10.1177/0885328219845082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hoon Seonwoo
- 1 Department of Industrial Machinery Engineering, College of Life Sciences and Natural Resources, Sunchon National University, Suncheon, Republic of Korea
| | - Seung Won Kim
- 2 Department of Burns and Plastic Surgery, Affiliated Hospital of Yanbian University, Yanji, Jilin, P. R. China
| | - Beomyong Shin
- 3 Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Kyoung-Je Jang
- 4 Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Myungchul Lee
- 4 Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Oak-Sung Choo
- 5 Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea.,6 Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Mi-Jin Choi
- 3 Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Jangho Kim
- 7 Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
| | - Ki-Taek Lim
- 8 Department of Biosystems Engineering, College of Agricultural and Life Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Jeong Hun Jang
- 5 Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jong Hoon Chung
- 4 Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea.,9 Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yun-Hoon Choung
- 3 Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea.,5 Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea.,6 Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
13
|
Zheng X, Guan S, Zhang C, Qu T, Wen W, Zhao Y, Chen A. A Cut-and-Weld Process to 3D Architectures from Multiresponsive Crosslinked Liquid Crystalline Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900110. [PMID: 30913373 DOI: 10.1002/smll.201900110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Crosslinked liquid crystalline polymers (CLCPs) have garnered extensive attention in recent years for their significant values in the design of light-driven soft actuators. However, poor processabilities due to the insoluble and infusible crosslinked networks prevent their practical applications severely. In this study, a weldable azobenzene-containing CLCP is designed with photo- and humidity-responsive actuations, which enables a cut-and-weld process to 3D CLCP architectures. The tensile properties and stability are almost unchanged after welding, much better than those of the films pasted by common adhesive tapes. Meanwhile, the mechanisms of the welding process are clarified on the base of surface hydrogen bonding and further crosslinking. By taking advantage of the cut-and-weld process, a 3D "claw" integrated into a robotic arm is realized for grabbing millimeter-scale objects by remote control. This work enhances significantly not only the processability of CLCP films but also the utilization of leftover pieces, which provides an efficient approach to create functional 3D structures from film precursors for the potential application in the smart materials.
Collapse
Affiliation(s)
- Xiaoxiong Zheng
- School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Song Guan
- School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Chen Zhang
- School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Ting Qu
- School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Wei Wen
- School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Yongbin Zhao
- Shandong Oubo New Material Co Ltd., Dongying Part Economic Development Zone, Shandong, 257088, China
| | - Aihua Chen
- School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| |
Collapse
|
14
|
pNNS-Conjugated Chitosan Mediated IGF-1 and miR-140 Overexpression in Articular Chondrocytes Improves Cartilage Repair. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2761241. [PMID: 31016187 PMCID: PMC6448336 DOI: 10.1155/2019/2761241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 12/21/2022]
Abstract
The aim of the present study was to investigate the effects of phosphorylatable nucleus localization signal linked nucleic kinase substrate short peptide (pNNS)-conjugated chitosan (pNNS-CS) mediated miR-140 and IGF-1 in both rabbit chondrocytes and cartilage defects model. pNNS-CS was combined with pBudCE4.1-IGF-1, pBudCE4.1-miR-140, and negative control pBudCE4.1 to form pDNA/pNNS-CS complexes. Then these complexes were transfected into chondrocytes or injected intra-articularly into the knee joints. High levels of IGF-1 and miR-140 expression were detected both in vitro and in vivo. Compared with pBudCE4.1 group, in vitro, the transgenic groups significantly promoted chondrocyte proliferation, increased glycosaminoglycan (GAG) synthesis, and ACAN, COL2A1, and TIMP-1 levels, and reduced the levels of nitric oxide (NO), MMP-13, and ADAMTS-5. In vivo, the exogenous genes enhanced COL2A1, ACAN, and TIMP-1 expression in cartilage and reduced cartilage Mankin score and the contents of NO, IL-1β, TNF-α, and GAG contents in synovial fluid of rabbits, MMP-13, ADAMTS-5, COL1A2, and COL10A1 levels in cartilage. Double gene combination showed better results than single gene. This study indicate that pNNS-CS is a better gene delivery vehicle in gene therapy for cartilage defects and that miR-140 combination IGF-1 transfection has better biologic effects on cartilage defects.
Collapse
|
15
|
Yang C, Mi X, Su H, Yang J, Gu Y, Zhang L, Sun W, Liang X, Zhang C. GE11-PDA-Pt@USPIOs nano-formulation for relief of tumor hypoxia and MRI/PAI-guided tumor radio-chemotherapy. Biomater Sci 2019; 7:2076-2090. [DOI: 10.1039/c8bm01492b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
GE11-PDA-Pt@USPIOs can relieve tumor hypoxic conditions efficiently and are highly effective for radio-chemotherapy of EGFR-positive tumors.
Collapse
Affiliation(s)
- Chengcheng Yang
- Department of Nuclear Medicine
- Rui Jin Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200025
| | - Xuan Mi
- Department of Nuclear Medicine
- Rui Jin Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200025
| | - Huilan Su
- State Key Laboratory of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Jingxing Yang
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai 200230
- China
| | - Yiyun Gu
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai 200230
- China
| | - Lu Zhang
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai 200230
- China
| | - Wenshe Sun
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai 200230
- China
| | - Xiaowen Liang
- The University of Queensland Diamantina Institute
- The University of Queensland
- QLD 4102
- Australia
| | - Chunfu Zhang
- Department of Nuclear Medicine
- Rui Jin Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200025
| |
Collapse
|