1
|
Bagherpour S, Vázquez P, Duch M, Pablo Agusil J, Plaza JA, Redondo-Horcajo M, Suárez T, Pérez-García L. Silicon oxide microchips functionalized with fluorescent probes for quantitative real-time glutathione sensing in living cells. J Mater Chem B 2025; 13:1630-1642. [PMID: 39716783 DOI: 10.1039/d4tb01859a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Glutathione (GSH) plays a vital role in the regulation of intracellular functions which alterations in physiological glutathione levels are associated to various diseases. Molecular bioimaging is a sensitive method for GSH detection, but challenges persist in the development of fluorescent probes, mainly concerning long-term tracking of intracellular GSH concentration because of aggregation of molecular probes and their washout in cells. Engineered nanomaterials have shown great promise for increasing the disease diagnosis accuracy. Microchips generated by advanced microfabrication techniques can be applied in designing biomedical devices due to control over size, shape, and bioactive coatings utilization. In the current work, the synthesis and characterization of two GSH probes, Bdpy1 and Bdpy2, is reported, each offering irreversible and reversible GSH reactions, respectively. These GSH probes are immobilized on silicon oxide microchips (SOμC), micro-fabricated using photolithographic techniques, to give SOμC-Bdpy1 and SOμC-Bdpy2. Both functionalized microchips exhibited sensitivity to GSH, and, notably, the reversible SOμC-Bdpy2 showed less time dependency, making it more suitable for long-term intracellular GSH sensing. In vitro experiments in HeLa cells reveal both SOμC-Bdpy1 and SOμC-Bdpy2 were internalized in living cells, showing SOμC-Bdpy2 more reliable results (due to its less time dependency) for quantifying intracellular GSH. Remarkably, the intracellular GSH measurement was monitored by SOμC-Bdpy2 for 48 h, indicating the functionalized microchips capability to detect GSH amount in different time intervals. This study introduces a promising approach for long term quantification of intracellular GSH, overcoming the limitation of fluorescent probes and offering valuable insights into microchip-based sensing methodologies.
Collapse
Affiliation(s)
- Saman Bagherpour
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Patricia Vázquez
- Centro de Investigaciones Biológicas Margarita Salas, CIB (CSIC), Madrid, 28040, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Marta Duch
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Juan Pablo Agusil
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - José Antonio Plaza
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | | | - Teresa Suárez
- Centro de Investigaciones Biológicas Margarita Salas, CIB (CSIC), Madrid, 28040, Spain
| | - Lluïsa Pérez-García
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
2
|
Porolnik W, Karpinska N, Murias M, Piskorz J, Kucinska M. Novel BODIPY Dyes with a Meso-Benzoxadiazole Substituent: Synthesis, Photophysical Studies, and Cytotoxic Activity Under Normoxic and Hypoxic Conditions. Biomedicines 2025; 13:297. [PMID: 40002710 PMCID: PMC11853430 DOI: 10.3390/biomedicines13020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Novel boron dipyrromethene derivatives with a heterocyclic, benzoxadiazole substituent were obtained as potential candidates for the photodynamic therapy (PDT) of cancers. Photochemical properties (e.g., singlet oxygen generation quantum yields (ΦΔ), absorption, and emission spectra) and cytotoxic activity studies in normoxic and hypoxic conditions were performed to verify the potential of novel BODIPYs as photosensitizers for PDT. Methods: Obtained dyes were characterized using mass spectrometry and various NMR techniques. The relative method with Rose Bengal as a reference and 1,3-diphenylisobenzofuran as a singlet oxygen quencher was used to determine ΦΔ values. The in vitro studies were conducted on human ovarian carcinoma (A2780) and human breast adenocarcinoma (MDA-MB-231) cells. Results: Photochemical studies showed that the presence of benzoxadiazole moiety only slightly affected the localization of the absorption maxima but resulted in fluorescence quenching compared with meso-phenyl-substituted analogs. In addition, brominated and iodinated analogs revealed a high ability to generate singlet oxygen. Anticancer studies showed high light-induced cytotoxicity of BODIPYs containing heavy atoms with very low IC50 values in the 3.5-10.3 nM range. Further experiments revealed that both compounds also demonstrated phototoxic activity under hypoxic conditions. The most potent cytotoxic effect in these conditions was observed in the iodinated BODIPY analog with IC50 values of about 0.3 and 0.4 μM for A2780 and MDA-MB-231 cells, respectively. Conclusions: The results of this study highlighted the advantages and some potential drawbacks of BODIPY compounds with heavy atoms and benzoxadiazole moiety as a useful scaffold in medicinal chemistry for designing new photosensitizers.
Collapse
Affiliation(s)
- Weronika Porolnik
- Chair and Department of Toxicology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (W.P.); (M.M.)
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland;
- Doctoral School, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznan, Poland
| | - Natalia Karpinska
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland;
| | - Marek Murias
- Chair and Department of Toxicology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (W.P.); (M.M.)
| | - Jaroslaw Piskorz
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland;
| | - Malgorzata Kucinska
- Chair and Department of Toxicology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (W.P.); (M.M.)
| |
Collapse
|
3
|
Hu X, Duan R, Wang J, Li M, Chen H, Zhang J, Zeng L. Simultaneous detection of cysteine and glutathione in food with a two-channel near-infrared fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125098. [PMID: 39255549 DOI: 10.1016/j.saa.2024.125098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
L-Cysteine (Cys) and glutathione (GSH) are closely related biological species that widely exist in food and living cells. To simultaneously detect Cys and GSH from different emission channels, we developed a fluorescent probe (BDP-NBD) based on near-infrared BODIPY and 7-nitrobenzofurazan (NBD). Upon nucleophilic substitution reaction with GSH, BDP-NBD generated an emission band at 713 nm, which can be used to determine GSH (0-100 μM) with a low detection limit (34 nM). Different from GSH, BDP-NBD underwent a nucleophilic substitution-rearrangement reaction with Cys, affording two emission bands at 550 nm and 713 nm, respectively. BDP-NBD was successfully employed to quantify Cys and GSH in various food samples with good recoveries (86.6%-104.6%). Besides, BDP-NBD can image Cys and GSH in living cells from two emission channels. Therefore, this work developed a tool for the simultaneous determination of Cys and GSH in both food and living cells so as to ensure food safety and human health.
Collapse
Affiliation(s)
- Xichao Hu
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Ruizhe Duan
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiali Wang
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Mingchao Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hong Chen
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Jin Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Lintao Zeng
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Yu Z, Liu T, Zheng X, Wang Y, Sha J, Shan L, Mu T, Zhang W, Lee CS, Liu W, Wang P. A glutathione responsive photosensitizer based on hypocrellin B for photodynamic therapy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125052. [PMID: 39236568 DOI: 10.1016/j.saa.2024.125052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Abstract
As a typical natural photosensitizer, hypocrellin B (HB) offers the advantages of high molar extinction coefficient, high phototoxicity, low dark toxicity, and fast metabolism in vivo. However, the lack of tumor specificity hinders its clinical applications. Herein, we designed and synthesized a glutathione (GSH) responsive photosensitizer based on HB. The 7 - nitro - 2,1,3 - benzoxadiazole (NBD) covalently connected to HB not only served as a fluorescence quenching group but also as a GSH activating group. The photosensitizer HB-NBD showed almost no fluorescence and singlet oxygen generation as a result of the photoinduced electron transfer between HB and NBD. The designed photosensitizer HB-NBD can be activated by GSH in solutions and cancer cells, and then obtain recuperative fluorescence and photosensitive activity.
Collapse
Affiliation(s)
- Zhe Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tian Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yanping Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jie Sha
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lin Shan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tong Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chun Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
5
|
Łapok Ł, Obłoza M, Pędziński T, Stadnicka KM. 1,4-Benzodioxane Substituted Aza-BODIPY: Towards Photostable yet Efficient Triplet Photosensitizer. Chem Asian J 2024; 19:e202400885. [PMID: 39258994 DOI: 10.1002/asia.202400885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
We report herein the synthesis of aza-BODIPY substituted with 1,4-benzodioxane-6-yl substituents at 3,5 positions of the chromophore system. Both pyrrole rings of the aza-BODIPY in question were substituted with bromine atoms in order to induce highly desirable photophysical properties, such as highly populated excited triplet state (T1) and long excited triplet-state lifetime (τT) of 21 μs. The photosensitized oxygenation of a model compounds, viz. DPBF, points to a high singlet oxygen and/or other ROS formation quantum yield of 0.42. The photosensitizer studied exhibited an absorption band within the so-called "therapeutic window", with λabs 678 nm. As estimated by CV/DPV measurements the 1,4-benzodioxane-6-yl substituted aza-BODIPYs studied exhibited a multi-electron oxidations at a relatively low potentials (Eox), pointing to the very good electron-donating properties of these molecules. High photostability and thermal stability was observed for all compounds studied. The good singlet oxygen quantum yield measured combined with an exceptional photostability makes this aza-BODIPY a promising candidate for applications such as photocatalysis and photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Łukasz Łapok
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Magdalena Obłoza
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Tomasz Pędziński
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, 89b Umultowska, 61-614, Poznań, Poland
| | - Katarzyna M Stadnicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| |
Collapse
|
6
|
Wu Z, Xu N, Zhang D, Liu H, Li L, Wang F, Ren J, Wang E. A mitochondria-targeted fluorescent probe for discrimination of biothiols by dual-channel imaging in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124846. [PMID: 39059262 DOI: 10.1016/j.saa.2024.124846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Biothiols, including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play distinct yet crucial roles in various mitochondrial physiological activities. However, due to their similar chemical structures, distinguishing and detecting Cys/Hcy/GSH poses a considerable challenge. In this study, we developed a dual-channel, mitochondrial-targeted fluorescent probe termed QX-NBD, designed specifically for discriminating Cys/Hcy from GSH. The incorporation of a quinolinium group endowed the probe with excellent mitochondrial targeting capabilities. This functionality arose from the positively charged group's ability to selectively bind to negatively charged mitochondrial membranes through electrostatic interactions. Additionally, the ether bond between 4-chloro-7-nitro-1,2,3-benzoxadiazole and the near-infrared fluorophore QX-OH rendered the probe susceptible to nucleophilic attack by biothiols. Upon the introduction of Cys/Hcy, the probe exhibited dual fluorescence emissions in red and green. Conversely, the presence of GSH resulted in only red fluorescence emission. The detection limits of the probe for Cys and Hcy at 542 nm in buffer solution were determined to be 0.044 μM and 0.042 μM, respectively. Similarly, the detection limit for all these biothiols was 0.028 μM at 678 nm. Furthermore, the response times for Cys/Hcy/GSH were recorded as 4.0 min, 5.5 min, and 9.5 min, respectively. Moreover, the probe was employed to monitor fluctuations in biothiol levels during oxidative stress in both HeLa cells and zebrafish, demonstrating its applicability and utility in biological contexts.
Collapse
Affiliation(s)
- Zhengjun Wu
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, PR China
| | - Ningge Xu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research & Hainan Provincial Clinical Research Center for Thalassemia & Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, PR China
| | - Dan Zhang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, PR China
| | - Heng Liu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research & Hainan Provincial Clinical Research Center for Thalassemia & Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, PR China
| | - Linglan Li
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, PR China.
| | - Feiyi Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, PR China
| | - Jun Ren
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, PR China.
| | - Erfei Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
7
|
Cugnasca BS, Santos HM, Duarte F, Capelo-Martínez JL, Dos Santos AA, Lodeiro C. Fluorescent discrimination of cysteine, homocysteine, and glutathione in urine samples using a novel seleno-BODIPY probe. J Mater Chem B 2024; 12:12038-12049. [PMID: 39441087 DOI: 10.1039/d4tb01539h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Biothiols, such as cysteine (Cys), glutathione (GSH), and homocysteine (Hcy), play crucial roles in various physiological processes and serve as biomarkers for oxidative stress and redox homeostasis. Their structural similarities, however, pose significant challenges in selective detection and quantification, limiting the availability of suitable probes. Here, we report the design and synthesis of a novel ratiometric fluorescent sensor based on a seleno-BODIPY (Se-BODIPY) derivative, enabling rapid discrimination and quantification of Cys, Hcy, and GSH with low detection limits (Cys = 0.8 μM, Hcy = 20.4 μM, and GSH = 35.9 μM) via fluorescence. The probe exhibits high selectivity towards these biothiols over 11 amino acids, operating through dual-mode detection (absorption and emission spectra) with a visible color change from blue to orange (Cys/Hcy) or pink (GSH) in a turn-on fluorescence process. Notably, the distinct reaction mechanisms between Se-BODIPY and GSH versus Cys/Hcy lead to a more prominent blue shift for Cys/Hcy, facilitating their differentiation. Kinetic studies further differentiate Cys from Hcy, with the BODIPY reacting much faster with Cys than the latter. The effectiveness of the sensor was demonstrated in quantifying biothiols in urine samples, providing a non-invasive method with high recovery rates. Additionally, its incorporation into paper strips allows detection of biothiols in water samples via visible and UV light-induced color changes, indicating its potential for solid-state detection without organic solvents.
Collapse
Affiliation(s)
- Beatriz S Cugnasca
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000 São Paulo, SP, Brazil.
- BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry, NOVA-FCT, NOVA University Lisbon, 2829-516 Caparica, Portugal.
| | - Hugo M Santos
- BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry, NOVA-FCT, NOVA University Lisbon, 2829-516 Caparica, Portugal.
- PROTEOMASS Scientific Society, 2825-466 Costa da Caparica, Portugal
| | - Frederico Duarte
- BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry, NOVA-FCT, NOVA University Lisbon, 2829-516 Caparica, Portugal.
| | - José Luis Capelo-Martínez
- BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry, NOVA-FCT, NOVA University Lisbon, 2829-516 Caparica, Portugal.
- PROTEOMASS Scientific Society, 2825-466 Costa da Caparica, Portugal
| | - Alcindo A Dos Santos
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000 São Paulo, SP, Brazil.
| | - Carlos Lodeiro
- BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry, NOVA-FCT, NOVA University Lisbon, 2829-516 Caparica, Portugal.
- PROTEOMASS Scientific Society, 2825-466 Costa da Caparica, Portugal
| |
Collapse
|
8
|
Ömeroğlu İ, Sanko V, Şenocak A, Tümay SO. The preparation of a fluorescent dual-modality nanosensor for the discrimination and determination of biothiols in real samples and its practical detection kit. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7210-7223. [PMID: 39315914 DOI: 10.1039/d4ay01025f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Biothiols widely exist in living organisms and have a crucial function of maintaining redox balance in the human body. It is vital yet difficult to develop probes that can simultaneously detect and distinguish biothiols. In this study, a highly sensitive dual-modality nanosensor, NBD-Nap@NCC, was developed for the discrimination and determination of biothiols in real samples, and its practical application was elucidated based on RGB analysis using a smartphone. The sensitive nanosensor was successfully prepared through the surface modification of nanocrystalline cellulose (NCC), combining NBD and naphthalene fluorophores. Owing to the high electron-withdrawing behavior of the NBD group, which led to a PET mechanism between the fluorophores, the prepared NBD-Nap@NCC nanosensor had a very weak fluorescence response. However, after treatment with Hcy or Cys, NBD-Nap@NCC quickly provided remarkable and different rates of fluorescence "turn-on" responses in both blue and green channels, which was attributed to naphthalene and NBD fluorophores as a result of the inhibition of the PET mechanism. However, after treatment with GSH, only a significant blue-channel emission, which was attributed to the naphthalene fluorophore was obtained, indicating the inhibition of the PET mechanism. Furthermore, the NCC platform demonstrated improved sensitivity and selectivity because of the increased surface area and higher number of binding sites due to modification of the NBD group on the surface. The detection limit ranged from 0.910 to 1.150 μmol L-1 for biothiols with a large dynamic response range. The accuracy of the sensor in determining the concentrations of Hcy, Cys, and GSH in real samples was evaluated via HPLC and spike/recovery analysis. Additionally, paper-based analysis kits were fabricated for the practical detection of biothiols based on RGB changes using a smartphone application.
Collapse
Affiliation(s)
- İpek Ömeroğlu
- Department of Chemistry, Gebze Technical University, Kocaeli, 41400, Türkiye
| | - Vildan Sanko
- Department of Chemistry, Gebze Technical University, Kocaeli, 41400, Türkiye
- Department of Chemistry, Hacettepe University, Ankara, 06800, Türkiye
- METU MEMS Center, Ankara, 06530, Türkiye
| | - Ahmet Şenocak
- Department of Chemistry, Gebze Technical University, Kocaeli, 41400, Türkiye
| | - Süreyya Oğuz Tümay
- Department of Chemistry, Gebze Technical University, Kocaeli, 41400, Türkiye
- Department of Chemistry, Atatürk University, Erzurum, 25240, Türkiye.
| |
Collapse
|
9
|
Tanaka Y, Fujihara M, Takamura Y, Kawasaki M, Nakano S, Makishima M, Kakuta H. Simple Fluorescence Labeling Method Enables Detection of Intracellular Distribution and Expression Level of Retinoid X Receptors. ACS Med Chem Lett 2024; 15:640-645. [PMID: 38746897 PMCID: PMC11089654 DOI: 10.1021/acsmedchemlett.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 05/11/2025] Open
Abstract
There is no straightforward method to visualize the intracellular distribution of nuclear receptors, such as retinoid X receptors (RXRs), which are trafficked between the cytosol and nucleus. Here, in order to develop a simple fluorescence labeling method for RXRs, we designed and synthesized compound 4, consisting of an RXR-selective antagonist, CBTF-EE (2), linked via an ether bond to the fluorophore nitrobenzoxadiazole (NBD). Compound 4 is nonfluorescent, but the ether bond (-O-NBD) reacts with biothiols such as cysteine and homocysteine to generate a thioether (-S-NBD), followed by intramolecular Smiles rearrangement with an amino group such as that of lysine to form a fluorescent secondary amine (-NH-NBD) adjacent to the binding site. Fluorescence microscopy of intact or RXR-overexpressing MCF-7 cells after incubation with 4 enabled us to visualize RXR expression as well as nuclear transfer of RXR induced by the agonist bexarotene (1).
Collapse
Affiliation(s)
- Yukina Tanaka
- Graduate
School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Michiko Fujihara
- Graduate
School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuta Takamura
- Graduate
School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Mayu Kawasaki
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shogo Nakano
- School
of Food and Nutritional Sciences, University
of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Makoto Makishima
- Division
of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Hiroki Kakuta
- Graduate
School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
10
|
Cheng HB, Cao X, Zhang S, Zhang K, Cheng Y, Wang J, Zhao J, Zhou L, Liang XJ, Yoon J. BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Self-Assembly, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207546. [PMID: 36398522 DOI: 10.1002/adma.202207546] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Indexed: 05/05/2023]
Abstract
The use of boron dipyrromethene (BODIPY) in biomedicine is reviewed. To open, its synthesis and regulatory strategies are summarized, and inspiring cutting-edge work in post-functionalization strategies is highlighted. A brief overview of assembly model of BODIPY is then provided: BODIPY is introduced as a promising building block for the formation of single- and multicomponent self-assembled systems, including nanostructures suitable for aqueous environments, thereby showing the great development potential of supramolecular assembly in biomedicine applications. The frontier progress of BODIPY in biomedical application is thereafter described, supported by examples of the frontiers of biomedical applications of BODIPY-containing smart materials: it mainly involves the application of materials based on BODIPY building blocks and their assemblies in fluorescence bioimaging, photoacoustic imaging, disease treatment including photodynamic therapy, photothermal therapy, and immunotherapy. Lastly, not only the current status of the BODIPY family in the biomedical field but also the challenges worth considering are summarized. At the same time, insights into the future development prospects of biomedically applicable BODIPY are provided.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xiaoqiao Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Keyue Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Yang Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jing Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| |
Collapse
|
11
|
Niu H, Liu J, O'Connor HM, Gunnlaugsson T, James TD, Zhang H. Photoinduced electron transfer (PeT) based fluorescent probes for cellular imaging and disease therapy. Chem Soc Rev 2023; 52:2322-2357. [PMID: 36811891 DOI: 10.1039/d1cs01097b] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Typical PeT-based fluorescent probes are multi-component systems where a fluorophore is connected to a recognition/activating group by an unconjugated linker. PeT-based fluorescent probes are powerful tools for cell imaging and disease diagnosis due to their low fluorescence background and significant fluorescence enhancement towards the target. This review provides research progress towards PeT-based fluorescent probes that target cell polarity, pH and biological species (reactive oxygen species, biothiols, biomacromolecules, etc.) over the last five years. In particular, we emphasise the molecular design strategies, mechanisms, and application of these probes. As such, this review aims to provide guidance and to enable researchers to develop new and improved PeT-based fluorescent probes, as well as promoting the use of PeT-based systems for sensing, imaging, and disease therapy.
Collapse
Affiliation(s)
- Huiyu Niu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Junwei Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Helen M O'Connor
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Tony D James
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China. .,Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| |
Collapse
|
12
|
Gu H, Wang W, Wu W, Wang M, Liu Y, Jiao Y, Wang F, Wang F, Chen X. Excited-state intramolecular proton transfer (ESIPT)-based fluorescent probes for biomarker detection: design, mechanism, and application. Chem Commun (Camb) 2023; 59:2056-2071. [PMID: 36723346 DOI: 10.1039/d2cc06556h] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biomarkers are essential in biology, physiology, and pharmacology; thus, their detection is of extensive importance. Fluorescent probes provide effective tools for detecting biomarkers exactly. Excited state intramolecular proton transfer (ESIPT), one of the significant photophysical processes that possesses specific photoisomerization between Keto and Enol forms, can effectively avoid annoying interference from the background with a large Stokes shift. Hence, ESIPT is an excellent choice for biomarker monitoring. Based on the ESIPT process, abundant probes were designed and synthesized using three major design methods. In this review, we conclude probes for 14 kinds of biomarkers based on ESIPT explored in the past five years, summarize these general design methods, and highlight their application for biomarker detection in vitro or in vivo.
Collapse
Affiliation(s)
- Hao Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Wenjing Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Wenyan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Maolin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Yongrong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Yanjun Jiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Fan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Fang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
13
|
Kaushik R, Nehra N, Novakova V, Zimcik P. Near-Infrared Probes for Biothiols (Cysteine, Homocysteine, and Glutathione): A Comprehensive Review. ACS OMEGA 2023; 8:98-126. [PMID: 36643462 PMCID: PMC9835641 DOI: 10.1021/acsomega.2c06218] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/06/2022] [Indexed: 06/01/2023]
Abstract
Biothiols (cysteine, homocysteine, and glutathione) are an important class of compounds with a free thiol group. These biothiols plays an important role in several metabolic processes in living bodies when present in optimum concentration. Researchers have developed several probes for the detection and quantification of biothiols that can absorb in UV, visible, and near-infrared (NIR) regions of the electromagnetic spectrum. Among them, NIR organic probes have attracted significant attention due to their application in in vivo and in vitro imaging. In this review, we have summarized probes for these biothiols, which could work in the NIR region, and discussed their sensing mechanism and potential applications. Along with focusing on the pros and cons of the reported probes we have classified them according to the fluorophore used and summarized their photophysical and sensing properties (emission, response time, limit of detection).
Collapse
Affiliation(s)
- Rahul Kaushik
- Chemical
Oceanography Division, CSIR National Institute
of Oceanography, Dona Paula 403004, Goa, India
- Department
of Pharmaceutical Chemistry and Pharmaceutical Analysis, Univerzita Karlova v Praze Farmaceuticka fakulta v
Hradci Kralove, Akademika Heyrovského 1203, Hradec
Králové 50005, Czech Republic
| | - Nidhi Nehra
- School
of Chemical Sciences, Indian Association
for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Veronika Novakova
- Department
of Pharmaceutical Chemistry and Pharmaceutical Analysis, Univerzita Karlova v Praze Farmaceuticka fakulta v
Hradci Kralove, Akademika Heyrovského 1203, Hradec
Králové 50005, Czech Republic
| | - Petr Zimcik
- Department
of Pharmaceutical Chemistry and Pharmaceutical Analysis, Univerzita Karlova v Praze Farmaceuticka fakulta v
Hradci Kralove, Akademika Heyrovského 1203, Hradec
Králové 50005, Czech Republic
| |
Collapse
|
14
|
Sonkaya Ö, Soylukan C, Pamuk Algi M, Algi F. Aza-BODIPY-based Fluorescent and Colorimetric Sensors and Probes. Curr Org Synth 2023; 20:20-60. [PMID: 35170414 DOI: 10.2174/1570179419666220216123033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/30/2021] [Accepted: 12/18/2021] [Indexed: 12/16/2022]
Abstract
Aza-boron-dipyrromethenes (Aza-BODIPYs) represent an important class of chromophores absorbing and emitting in the near-infrared (NIR) region. They have unique optical and electronic features and higher physiological and photo stability than other NIR dyes. Especially after the development of facile synthetic routes, Aza-BODIPYs have become indispensable fluors that can find various applications ranging from chemosensors, bioimaging, phototherapy, solar energy materials, photocatalysis, photon upconversion, lasers, and optoelectronics. Herein, we review Aza-BODIPY based fluorescent and colorimetric chemosensors. We show the potential and untapped toolbox of Aza-BODIPY based fluorescent and colorimetric chemosensors. Hence, we divide the fluorescent and colorimetric chemosensors and probes into five sections according to the target analytes. The first section begins with the chemosensors developed for pH. Next, we discuss Aza-BODIPY based ion sensors, including metal ions and anions. Finally, we present the chemosensors and probes concerning reactive oxygen (ROS) and nitrogen species (RNS) along with biologically relevant species in the last two sections. We believe that Aza-BODIPYs are still in their infancy, and they have a promising future for translation from the bench to real biomedical and materials science applications. After two decades of intensive research, it seems that there are many more to come in this already fertile field. Overall, we hope that future work will further expand the applications of Aza-BODIPY in many areas.
Collapse
Affiliation(s)
- Ömer Sonkaya
- Department of Chemistry, Aksaray University, TR-68100 Aksaray, Turkey
- ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
| | - Caner Soylukan
- ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
- Department of Biotechnology & ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
| | - Melek Pamuk Algi
- Department of Chemistry, Aksaray University, TR-68100 Aksaray, Turkey
- ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
| | - Fatih Algi
- ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
- Department of Biotechnology & ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
| |
Collapse
|
15
|
Pino Y, Aguilera JA, García-González V, Alatorre-Meda M, Rodríguez-Velázquez E, Espinoza KA, Frayde-Gómez H, Rivero IA. Synthesis of Aza-BODIPYs, Their Differential Binding for Cu(II), and Results of Bioimaging as Fluorescent Dyes of Langerhans β-Cells. ACS OMEGA 2022; 7:42752-42762. [PMID: 36467934 PMCID: PMC9713790 DOI: 10.1021/acsomega.2c04151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Cellular labeling through the use of dyes is of great interest to the biomedical sciences for the characterization of the location and distribution of biomolecules and also for the tracking of the course of biological processes in both health and illness. This paper reports the synthesis, characterization, and subsequent evaluation as metal sensors and cell staining probes of four aza-BODIPY compounds [herein referred to as 7(a-d)]. Compounds 7(b-d) were found to display an outstanding selectivity for Cu(II) because their emission band at 720 nm was progressively quenched by this metal, presenting fluorescence quenching between 75 and 95%. On the other hand, cell imaging studies with pancreatic β-cells proved that aza-BODIPYs 7a and 7b showed selectivity for the cytoplasm, while 7c and 7d were selective for the cell membrane. Moreover, aza-BODIPY 7b allowed to characterize in a clear way a lipotoxic condition mediated by saturated fatty acids, a critical phenomenon on β-cell damage associated with diabetes mellitus type II. Taken together, the presented results highlight the obtained aza-BODIPY compounds as selective sensing/staining probes with the potential to be used in the biomedical field.
Collapse
Affiliation(s)
- Yaneth
C. Pino
- Centro
de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto
Tecnológico de Tijuana, Blvd. Alberto Limón Padilla S/N, Tijuana, BC 22510, México
| | - Jorge A. Aguilera
- Centro
de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto
Tecnológico de Tijuana, Blvd. Alberto Limón Padilla S/N, Tijuana, BC 22510, México
| | - Víctor García-González
- Departamento
de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, BC 21100, México
| | - Manuel Alatorre-Meda
- Centro
de Graduados e Investigación en Química-Grupo de Biomateriales
y Nanomedicina, CONACyT-Tecnológico
Nacional de México/Instituto Tecnológico de Tijuana, Blvd. Alberto Limón Padilla
S/N, Tijuana, BC 22510, México
| | - Eustolia Rodríguez-Velázquez
- Facultad
de Odontología, Universidad Autónoma
de Baja California, Campus Tijuana, Calzada de Universidad 14418, Tijuana, BC 22390, México
- Centro
de Graduados e Investigación en Química-Grupo de Biomateriales
y Nanomedicina, Tecnológico Nacional
de México/Instituto Tecnológico de Tijuana, Blvd. Alberto Limón Padilla
S/N, Tijuana, BC 22510, México
| | - Karla A. Espinoza
- Centro
de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto
Tecnológico de Tijuana, Blvd. Alberto Limón Padilla S/N, Tijuana, BC 22510, México
| | - Héctor Frayde-Gómez
- Departamento
de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, BC 21100, México
| | - Ignacio A. Rivero
- Centro
de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto
Tecnológico de Tijuana, Blvd. Alberto Limón Padilla S/N, Tijuana, BC 22510, México
| |
Collapse
|
16
|
Shi WJ, Wan QH, Yang F, Wang X, Wei YF, Lin XR, Zhang JY, Deng RH, Chen JY, Zheng L, Liu F, Gao L. A novel TCF-aza-BODIPY-based near-infrared fluorescent probe for highly selective detection of hypochlorous acid in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121490. [PMID: 35691168 DOI: 10.1016/j.saa.2022.121490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Hypochlorous acid/hypochlorite (HOCl/ClO-) plays important roles in killing bacterial and causing damage to living tissues, and its abnormal levels could lead to many diseases. Although great efforts have been devoted, fluorescent probes for HOCl/ClO- with near-infrared fluorescence, good selectivity/sensitivity, and low background are still important and urgent. In this work, a novel double-bond-linked TCF-aza-BODIPY-based near-infrared fluorescent probe (3) was rationally designed, successfully prepared, and applied for sensing HOCl/ClO- in both solutions and living RAW264.7 cells, showing good selectivity and fluorescence "turn-on" phenomenon at 670 nm with low background. The limit of detection towards ClO- was determined to be 0.36 μM through the linear fluorescence changes at 670 nm in a broad ClO--concentration range of 0-150 μM. Furthermore, the sensing mechanism was investigated by mass spectrometry and compared with 1, suggesting that the remarkable spectroscopic changes could be ascribed to the oxidization of the double bond to the aldehyde group, accompanied with the leaving of the TCF group. Confocal imaging experiments also confirmed the remarkable intracellular fluorescence enhancements through incubation of ClO- and phorbol ester 12-myristate 13-acetate (PMA) in RAW264.7 cells. Therefore, for the first time, we reported a near-infrared TCF-aza-BODIPY-based fluorescent probe for highly sensitive and fluorescence "turn-on" detection of both exogenous and endogenous HOCl in living RAW264.7 cells through the quick oxidation of a conjugated double bond.
Collapse
Affiliation(s)
- Wen-Jing Shi
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Qing-Hui Wan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Fen Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Yong-Feng Wei
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Xin-Ru Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jian-Ying Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Ri-Hui Deng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jie-Yan Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Fenggang Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China.
| |
Collapse
|
17
|
Gut A, Ciejka J, Makuszewski J, Majewska I, Brela M, Łapok Ł. Near-Infrared fluorescent unsymmetrical aza-BODIPYs: Synthesis, photophysics and TD-DFT calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120898. [PMID: 35077984 DOI: 10.1016/j.saa.2022.120898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
In view of the ever-growing demand for efficient NIR fluorophores for biomedical applications, we herein report the synthesis and properties of four unsymmetrical aza-BODIPYs exhibiting NIR fluorescence. Highly desirable photophysical and photochemical properties were induced in these molecules due to the presence of both strongly electron-withdrawing p-nitrophenyl rings (p-NO2Ph-) and mildly electron-donating p-methoxyphenyl rings (p-MeOPh-) within the aza-BODIPY core. In particular, upon excitation with λabs the unsymmetrical aza-BODIPYs studied exhibited NIR emission with λf ranging from 699 nm to 718 nm in toluene. The fluorescence quantum yields (Φf), depending on the substitution pattern, ranged from Φf = 0.49 to Φf = 0.22 and the fluorescence lifetimes ranged from τf = 1.90 ns to τf = 3.59 ns. Aza-BODIPY with electron-donating substituent at 3 position and electron-withdrawing substituent at 5 position was identified as cell permeable, NIR emitting fluorophore suitable for bioimaging.
Collapse
Affiliation(s)
- Arkadiusz Gut
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Justyna Ciejka
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jakub Makuszewski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Izabela Majewska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Mateusz Brela
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Łukasz Łapok
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
18
|
He X, Li H, Liu S, Li Y, Lin X, Zheng H, Zhou Z, Zeng D. Synthesis of a Single‐Stranded DNA Aptamer Modified Near‐infrared, Water‐Soluble Fluorophore for Lung Cancer Cell Imaging. ChemistrySelect 2022. [DOI: 10.1002/slct.202103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoyan He
- Shanghai Key Laboratory of Molecular Imaging Shanghai University of Medicine and Health Sciences Shanghai 201318 China
- School of Pharmacy Shanghai University of Medicine and Health Sciences Shanghai 201318 China
| | - Hui Li
- School of Medical Instrument Shanghai University of Medicine and Health Sciences Shanghai 201318 China
| | - Sisi Liu
- School of Medical Instrument Shanghai University of Medicine and Health Sciences Shanghai 201318 China
| | - Yue Li
- Shanghai Key Laboratory of Molecular Imaging Shanghai University of Medicine and Health Sciences Shanghai 201318 China
| | - Xiangde Lin
- School of Medical Instrument Shanghai University of Medicine and Health Sciences Shanghai 201318 China
| | - Haoyang Zheng
- Shanghai Key Laboratory of Molecular Imaging Shanghai University of Medicine and Health Sciences Shanghai 201318 China
- School of Pharmacy Shanghai University of Medicine and Health Sciences Shanghai 201318 China
| | - Zhaoli Zhou
- Shanghai Key Laboratory of Molecular Imaging Shanghai University of Medicine and Health Sciences Shanghai 201318 China
- School of Pharmacy Shanghai University of Medicine and Health Sciences Shanghai 201318 China
| | - Dongdong Zeng
- Shanghai Key Laboratory of Molecular Imaging Shanghai University of Medicine and Health Sciences Shanghai 201318 China
- School of Medical Instrument Shanghai University of Medicine and Health Sciences Shanghai 201318 China
| |
Collapse
|
19
|
Gao MX, Su S, Yang CL, Kang H, Liang CL, Jing J, Zhang XL. One-step synthesis of PY-NBD to distinguish Cys/Hcy and GSH in aqueous solutions and living cells by dual channels. NEW J CHEM 2022. [DOI: 10.1039/d1nj06165h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An easy-to-synthesize fluorescent probe PY-NBD was developed to distinguish Cys/Hcy and GSH by two channels in aqueous solutions and living cells.
Collapse
Affiliation(s)
- Meng-Xu Gao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro photonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Sa Su
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro photonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chun-Lei Yang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro photonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hao Kang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro photonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chen-Lu Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro photonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jing Jing
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro photonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiao-Ling Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro photonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
20
|
Liu Z, Dai X, Xu Q, Sun X, Liu Y. Fluorescence Sensing of Glutathione Thiyl Radical by
BODIPY‐Modified β‐Cyclodextrin. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhixue Liu
- College of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, Nankai University Tianjin 300071 China
| | - Xianyin Dai
- College of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, Nankai University Tianjin 300071 China
| | - Qiaoyan Xu
- College of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, Nankai University Tianjin 300071 China
| | - Xiaohan Sun
- College of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, Nankai University Tianjin 300071 China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
21
|
Ren H, Huo F, Shen T, Liu X, Yin C. Molecular-Dimension-Dependent ESIPT Break for Specific Reversible Response to GSH and Its Real-Time Bioimaging. Anal Chem 2021; 93:12801-12807. [PMID: 34498863 DOI: 10.1021/acs.analchem.1c03376] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glutathione (GSH) plays many important roles in maintaining intracellular redox homeostasis, and determining its real-time levels in the biological system is essential for the diagnosis, treatment, and pathological research of related diseases. Fluorescence imaging has been regarded as a powerful tool for tracking biomarkers in vivo, for which specificity, reversibility, and fast response are the main issues to ensure the real-time effective detection of analytes. The determination of GSH is often interfered with by other active sulfur species. However, in addition to the common features of nucleophilic addition, GSH is unique in its large molecular scale. 2-(2-Hydroxyphenyl) benzothiazole (HBT) was often formed in the ESIPT process. In this study, HBT was installed with α,β-unsaturated ketone conjugated coumarin derivates or nitrobenzene, which were used to adjust the reactivity of α,β-unsaturated ketone. Experimental and theoretical calculations found ESIPT to be favorable in HBT-COU but not HBT-COU-NEt2 or HBT-BEN-NO2 due to the higher electronic energies in the keto form. Thus, for HBT-COU, in the presence of GSH, the hydrogen-bonding interaction between C═N of the HBT unit and carboxyl of GSH would inhibit the process, simultaneously promoting the Michel addition reaction between α,β-unsaturated ketone and GSH. As a consequence, probe HBT-COU could exhibit a rapid reversible ratiometric response to GSH. Small structures of Hcy and Cys are passivated for such reactions. Cell imaging demonstrated the specific response of the probe to GSH, and the probe was successfully used to monitor fluctuations in GSH concentration during cells apoptosis in real-time.
Collapse
Affiliation(s)
- Haixian Ren
- Xinzhou Teachers University, Xinzhou 034000, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Tianruo Shen
- Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Xiaogang Liu
- Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Caixia Yin
- Xinzhou Teachers University, Xinzhou 034000, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
22
|
A novel selective probe for detecting glutathione from other biothiols based on the concept of Fluorescence Fusion. Anal Chim Acta 2021; 1177:338786. [PMID: 34482889 DOI: 10.1016/j.aca.2021.338786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 01/23/2023]
Abstract
Biological thiols importantly regulate the intracellular redox activity and metabolic level, but many of the developed probes for biothiols are facing difficulty in effectively distinguishing GSH from Cys/Hcy due to the similarity in mechanism. In this work, despite the previous pattern of "Logic Gate", we reported the concept of "Fluorescence Fusion" for the first time to achieve only one excitation-emission process. The exploited the probe, MZ-NBD, could quickly measure GSH in 10 min with a large Stokes shift (130 nm). Though the reacting mechanism was similar, only GSH could cause the "Fluorescence Fusion" with only one strong fluorescence response while Cys/Hcy caused two peaks. Adjusting the excitation wavelength could hardly split the fused peak into two. Though image recognition by artificial intelligence could easily distinguish the patterns of peaks, here we used the signal-treating method to realize the high selectivity towards GSH. Moreover, MZ-NBD could be utilized for rapid detection of GSH in living MCF-7 cells, which was more suitable for GSH than using the "Logic Gate" strategy. More than introducing a novel probe with the new concept, this work was meaningful as the linker of traditional reaction-based fluorescent probes and potential image recognition by artificial intelligence, thus led to various future researches in inter-disciplines.
Collapse
|
23
|
Jiang C, Huang H, Kang X, Yang L, Xi Z, Sun H, Pluth MD, Yi L. NBD-based synthetic probes for sensing small molecules and proteins: design, sensing mechanisms and biological applications. Chem Soc Rev 2021; 50:7436-7495. [PMID: 34075930 PMCID: PMC8763210 DOI: 10.1039/d0cs01096k] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Compounds with a nitrobenzoxadiazole (NBD) skeleton exhibit prominent useful properties including environmental sensitivity, high reactivity toward amines and biothiols (including H2S) accompanied by distinct colorimetric and fluorescent changes, fluorescence-quenching ability, and small size, all of which facilitate biomolecular sensing and self-assembly. Amines are important biological nucleophiles, and the unique activity of NBD ethers with amines has allowed for site-specific protein labelling and for the detection of enzyme activities. Both H2S and biothiols are involved in a wide range of physiological processes in mammals, and misregulation of these small molecules is associated with numerous diseases including cancers. In this review, we focus on NBD-based synthetic probes as advanced chemical tools for biomolecular sensing. Specifically, we discuss the sensing mechanisms and selectivity of the probes, the design strategies for multi-reactable multi-quenching probes, and the associated biological applications of these important constructs. We also highlight self-assembled NBD-based probes and outline future directions for NBD-based chemosensors. We hope that this comprehensive review will facilitate the development of future probes for investigating and understanding different biological processes and aid the development of potential theranostic agents.
Collapse
Affiliation(s)
- Chenyang Jiang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Haojie Huang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Xueying Kang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Liu Yang
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongyan Sun
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. and Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| |
Collapse
|
24
|
Chen X, Bai J, Yuan G, Zhang L, Ren L. One-pot preparation of nitrogen-doped carbon dots for sensitive and selective detection of Ag+ and glutathione. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106156] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Shi WJ, Feng LX, Wang X, Huang Y, Wei YF, Huang YY, Ma HJ, Wang W, Xiang M, Gao L. A near-infrared-emission aza-BODIPY-based fluorescent probe for fast, selective, and "turn-on" detection of HClO/ClO . Talanta 2021; 233:122581. [PMID: 34215073 DOI: 10.1016/j.talanta.2021.122581] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/20/2022]
Abstract
A novel near-infrared-emitting aza-BODIPY-based fluorescent probe with two tellurium atoms at two upper benzyl rings has been prepared and explored for its fluorescent sensing properties towards hypochlorous acid/hypochorite (HClO/ClO-), which showed high selectivity and absolutely fluorescent "turn-on" phenomenon at 738 nm. The fluorescence of this probe was sufficiently quenched due to photoindued electron transfer by two tellurium atoms. Upon exposure to HClO/ClO-, a strong near-infrared emission at 738 nm appeared with fluorescence quantum yields changing from 0 to 0.11. This remarkable fluorescence change was ascribed to the oxidation of both electron-rich tellurium atoms. The detection limit of this probe towards HClO/ClO- was calculated to 0.09 μM in acetonitrile aqueous solution by the linear fluorescence change at 738 nm in the HClO/ClO--concentration range of 0-30 μM. Interestingly, this probe was found to be applicable in a broad pH range (2-10). Meanwhile, the oxidized probe could be further responsive to biothiols with substantial fluorescence disappearance. The bioimaging experiments in RAW264.7 cells showed the appearance of intracellular near-infrared fluorescence after addition of HClO/ClO- and PMA, and the fluorescence could also be reversed to be silenced by further introduction of GSH, confirming its potential application for exogenous and endogenous detection of HClO/ClO- in living cells.
Collapse
Affiliation(s)
- Wen-Jing Shi
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China; The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou, 510006, China.
| | - Liu-Xia Feng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Yan Huang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Yong-Feng Wei
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Yan-Yu Huang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Huai-Jin Ma
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, PR China.
| |
Collapse
|
26
|
Shi WJ, Wei YF, Li CF, Sun H, Feng LX, Pang S, Liu F, Zheng L, Yan JW. A novel near-infrared-emitting aza-boron-dipyrromethene-based remarkable fluorescent probe for Hg 2+ in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119207. [PMID: 33248887 DOI: 10.1016/j.saa.2020.119207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023]
Abstract
A new near-infrared (NIR)-emitting aza-boron-dipyrromethene dye with two electron-donating amino groups at 1- and 7-positions has been prepared via several steps of reactions. This probe showed a NIR absorption at 748 nm with an obvious shoulder peak at 634 nm in CH3CN/H2O. Interestingly, a NIR fluorescence emission at 843 nm was observed with a large Stokes shift of 95 nm. This novel NIR-emitting aza-boron-dipyrromethene dye was further investigated as a Hg2+-sensing fluorescent probe, which selectively bound to Hg2+, showing a blue-shifted and sharp absorption band at 695 nm with the disappearance of the shoulder peak at 634 nm. Correspondingly, the color change could be easily seen from blue to green. Interestingly, the emission exhibited an absolutely "turn-on" peak at 725 nm with a significant blue shift by 118 nm (from 843 to 725 nm), due to the efficient inhibition of the intramolecular-charge-transfer process arising from two amino groups. This probe was finally introduced to Hela cells, showing a "OFF-ON" NIR emission upon exposure to Hg2+. The overall results confirmed that this novel NIR-emitting aza-boron-dipyrromethene fluorescent probe with a large Stokes shift could serve as a colorimetric and fluorescent "turn-on" sensor for Hg2+ in both solutions and living cells.
Collapse
Affiliation(s)
- Wen-Jing Shi
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Yong-Feng Wei
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Chun-Feng Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Han Sun
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Liu-Xia Feng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Shi Pang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Fenggang Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jin-Wu Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
27
|
Synthesis and optical properties of 1-ethyl-indol-3-yl-substituted aza-BODIPY dyes at the 1,7-positions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Rational design of a bifunctional fluorescent probe for distinguishing Hcy/Cys from GSH with ideal properties. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Shen B, Ma C, Ji Y, Dai J, Li B, Zhang X, Huang H. Detection of Carboxylesterase 1 and Chlorpyrifos with ZIF-8 Metal-Organic Frameworks Using a Red Emission BODIPY-Based Probe. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8718-8726. [PMID: 33569946 DOI: 10.1021/acsami.0c19811] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In this work, a red emission fluorescent probe CBZ-BOD@zeolitic imidazolate framework-8 (ZIF-8) was fabricated based on metal-organic frameworks (MOFs) for detecting carboxylesterase 1 (CES1). The small molecule probe CBZ-BOD was first synthesized and then used to prepare the functionalized MOF material. ZIF-8 was chosen as an encapsulation shell to improve the detection properties of CBZ-BOD. Using this unique porous materials, ultrasensitive quantification of CES1 and chlorpyrifos was successfully realized. The low detection limit and high fluorescence quantum yield were calculated as 1.15 ng/mL and 0.65 for CBZ-BOD@ZIF-8, respectively. CBZ-BOD@ZIF-8 has good biocompatibility and was successfully applied to monitor the activity of CES1 in living cells. A molecular docking study was used to explore the binding of CES1 and CBZ-BOD, finding that CES1 can bind with the probe before and after hydrolysis. This type of materialized probe can inspire the development of fluorescent tools for further exploration of many pathological processes.
Collapse
Affiliation(s)
- Baoxing Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Chenggong Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Yuan Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jianan Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
30
|
David S, Chang HJ, Lopes C, Brännlund C, Le Guennic B, Berginc G, Van Stryland E, Bondar MV, Hagan D, Jacquemin D, Andraud C, Maury O. Benzothiadiazole-Substituted Aza-BODIPY Dyes: Two-Photon Absorption Enhancement for Improved Optical Limiting Performances in the Short-Wave IR Range. Chemistry 2021; 27:3517-3525. [PMID: 33330997 DOI: 10.1002/chem.202004899] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Aza-boron dipyrromethenes (aza-BODIPYs) presenting a benzothiadiazole substitution on upper positions are described. The strong electron-withdrawing effect of the benzothiadiazole moiety permits enhancement of the accepting strength and improves the delocalization of the aza-BODIPY core to attain a significant degree of electronic communication between the lower donating groups and the upper accepting groups. The nature of the intramolecular charge transfer is studied both experimentally and theoretically. Linear spectroscopy highlighted the strongly redshifted absorption and emission of the synthesized molecules with recorded fluorescence spectra over 1000 nm. Nonlinear optical properties were also investigated. Strong enhancement of the two-photon absorption of the substituted dyes compared with the unsubstituted one (up to 4520 GM at 1300 nm) results in an approximately 15-20 % improvement of the optical power limiting performances. These dyes are therefore a good starting point for further improvement of optical power limiting in the short-wave IR range.
Collapse
Affiliation(s)
- Sylvain David
- Laboratoire de Chimie, UMR 5182, ENS Lyon, CNRS, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon, France
| | - Hao-Jung Chang
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | - Cesar Lopes
- Electrooptical Systems, Swedish Defense Research Agency (FOI), Linköping, 58111, Sweden
| | - Carl Brännlund
- Electrooptical Systems, Swedish Defense Research Agency (FOI), Linköping, 58111, Sweden
| | - Boris Le Guennic
- CNRS, Institut des Sciences Chimiques de Rennes UMR 6226, Université Rennes, 35000, Rennes, France
| | - Gérard Berginc
- Thales LAS France, 2 Avenue Gay Lussac, 78990, Élancourt, France
| | - Eric Van Stryland
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | - Mykailo V Bondar
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA.,Institute of Physics NASU, Prospect Nauki, 46, Kyiv-28, 03028, Ukraine
| | - David Hagan
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | | | - Chantal Andraud
- Laboratoire de Chimie, UMR 5182, ENS Lyon, CNRS, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon, France
| | - Olivier Maury
- Laboratoire de Chimie, UMR 5182, ENS Lyon, CNRS, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon, France
| |
Collapse
|
31
|
Sun ZB, Hua Y, Gao MJ, Shang YJ, Kang YF. Highly Selective Fluorescent 4-(4-(Diethylamino)-2-Hydroxystyryl)-1-Methylpyridine Iodide and Nitrobenzofurazan Based Probe for Cysteine with Application in Living Cells. ANAL LETT 2021. [DOI: 10.1080/00032719.2020.1767121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Zhi-Bin Sun
- College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Yun Hua
- College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Meng-Jiao Gao
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and College of Laboratory Medicine, Hebei North University, Zhangjiakou, China
| | - Ya-jing Shang
- College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Yan-Fei Kang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and College of Laboratory Medicine, Hebei North University, Zhangjiakou, China
| |
Collapse
|
32
|
Liu Y, Yu Y, Zhao Q, Tang C, Zhang H, Qin Y, Feng X, Zhang J. Fluorescent probes based on nucleophilic aromatic substitution reactions for reactive sulfur and selenium species: Recent progress, applications, and design strategies. Coord Chem Rev 2021; 427:213601. [PMID: 33024340 PMCID: PMC7529596 DOI: 10.1016/j.ccr.2020.213601] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
Reactive sulfur species (RSS) and reactive selenium species (RSeS) are important substances for the maintenance of physiological balance. Imbalance of RSS and RSeS is closely related to a series of human diseases, so it is considered to be an important biomarker in early diagnosis, treatment, and stage monitoring. Fast and accurate quantitative analysis of different RSS and RSeS in complex biological systems may promote the development of personalized diagnosis and treatment in the future. One way to explore the physiological function of various types of RSS and RSeS in vivo is to detect them at the molecular level, and one of the most effective methods for this is to use fluorescent probes. Nucleophilic aromatic substitution (SNAr) reactions are commonly exploited as a detection mechanism for RSS and RSeS in fluorescent probes. In this review, we cover recent progress in fluorescent probes for RSS and RSeS based on SNAr reactions, and discuss their response mechanisms, properties, and applications. Benzenesulfonate, phenyl-O ether, phenyl-S ether, phenyl-Se ether, 7-nitro-2,1,3-benzoxadiazole (NBD), benzoate, and selenium-nitrogen bonds are all good detection groups. Moreover, based on an integration of different reports, we propose the design and synthesis of RSS- and RSeS-selective probes based on SNAr reactions, current challenges, and future research directions, considering the selection of active sites, the effect of substituents on the benzene ring, and the introduction of other functional groups.
Collapse
Affiliation(s)
- Yuning Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanan Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiyan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
33
|
Chen D, Nie G, Dang Y, Liang W, Li W, Zhong C. Rational design of near-infrared fluorophores with a phenolic D–A type structure and construction of a fluorescent probe for cysteine imaging. NEW J CHEM 2021. [DOI: 10.1039/d1nj02459k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The structural modulation of phenolic D–A type fluorophores and a NIR fluorescent probe for cysteine imaging in vitro and in vivo.
Collapse
Affiliation(s)
- Dugang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Gang Nie
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Yecheng Dang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wenjie Liang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wanqing Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Cheng Zhong
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
34
|
Ren H, Huo F, Yin C. Dual modulation sites for a reversible fluorescent probe for GSH over Cys/Hcy. NEW J CHEM 2021. [DOI: 10.1039/d1nj01490k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An abnormal concentration of glutathione (GSH) is a health-associated risk factor, and it is an important signal for diseases such as Parkinson's disease, liver injury and cancer.
Collapse
Affiliation(s)
- Haixian Ren
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou 034000
- China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
| | - Fangjun Huo
- Research Institute of Applied Chemistry
- Shanxi University
- Taiyuan 030006
- China
| | - Caixia Yin
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou 034000
- China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
| |
Collapse
|
35
|
A fluorescent probe for discrimination of cysteine/homocysteine, glutathione and hydrogen polysulfides. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04320-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
36
|
Tian M, Liu Y, Jiang FL. On the Route to Quantitative Detection and Real-Time Monitoring of Glutathione in Living Cells by Reversible Fluorescent Probes. Anal Chem 2020; 92:14285-14291. [PMID: 33063515 DOI: 10.1021/acs.analchem.0c03418] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the last few decades, growing numbers of fluorescent probes have been developed to detect intracellular GSH. However, the majority of probes for GSH were irreversible without monitoring the changes of intracellular GSH concentration. Therefore, recently, fluorescent probes for monitoring concentrations of GSH in real-time in living cells have come into being to address this challenge. This Perspective aimed at the development of reversible probes for GSH was organized by structural features, chemical reactions, and physicochemical properties. The reversible probes designed by a coumarin skeleton as a read-out fluorophore and the Michael addition reaction as a response mechanism accounted for most of the reported reversible probes. The performances of reversible fluorescent probes based on Michael addition could be roughly predicted by fundamental laws of kinetics and thermodynamics in physical chemistry. Essentially, the design principles included a highly reactive site for GSH, a small thermodynamic driving force, a desirable Kd of 1-10 mM, and excellent cell membrane permeability. Prospectively, the development of various mechanisms and fluorophores will be effective measures to enrich the types of reversible probes for GSH.
Collapse
Affiliation(s)
- Ming Tian
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.,Hubei Province Key Laboratory for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.,Guangxi Key Laboratory of Natural Polymer Chemistry, College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, P. R. China
| | - Feng-Lei Jiang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
37
|
Chen D, Feng Y. Recent Progress of Glutathione (GSH) Specific Fluorescent Probes: Molecular Design, Photophysical Property, Recognition Mechanism and Bioimaging. Crit Rev Anal Chem 2020; 52:649-666. [PMID: 32941060 DOI: 10.1080/10408347.2020.1819193] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The selective detection of glutathione (GSH) in vitro and in vivo has attracted great attentions, credited to its important role in life activities and association with a series of diseases. Among all kinds of analytical techniques, the fluorescent probe for GSH detection become prevalent recently because of its ease of operation, high temporal-spatial resolution, visualization and noninvasiveness, etc. The special structural features of GSH, such as the nucleophilicity of sulfhydryl group, the concerted reaction ability of amino group, the negative charged nature, the latent hydrogen bonding ability along with its flexible molecular chain, are all potent factors to be employed to design the specific fluorescent probe for GSH and discriminate it from other bio-species including its analogues cysteine (Cys) and homocysteine (Hcy). This paper reviewed the studies in the last 3 years and was organized based on the reaction mechanism of each probe. According to the reactivity of GSH, various recognition mechanisms including Michael addition, nucleophilic aromatic substitution, ordinary nucleophilic substitution, multi-site reaction, and other unique reactions have been utilized to construct the GSH specific fluorescent probes, and the molecular design strategy, photophysical property, recognition mechanism, and bioimaging application of each reported probe were all discussed here systematically. Great progress has been made in this area, and we believe the analyses and summarization of these excellent studies would provide valuable message and inspiration to researchers to advance the research toward clinic applications.
Collapse
Affiliation(s)
- Dugang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Yangzhen Feng
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, P. R. China
| |
Collapse
|
38
|
Liu C, Liu J, Zhang W, Wang Y, Liu Q, Song B, Yuan J, Zhang R. "Two Birds with One Stone" Ruthenium(II) Complex Probe for Biothiols Discrimination and Detection In Vitro and In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000458. [PMID: 32714756 PMCID: PMC7375222 DOI: 10.1002/advs.202000458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/18/2020] [Indexed: 05/21/2023]
Abstract
In this work, a "two birds with one stone" ruthenium(II) complex probe, Ru-NBD, is proposed as an effective tool for biothiols detection and discrimination in vitro and in vivo. Ru-NBD is nonluminescent due to the quenching of Ru(II) complex emission by photoinduced electron transfer (PET) from Ru(II) center to NBD and the quenching of NBD emission through 4-substitution with "O" ether bond. Ru-NBD is capable of reacting with Cys/Hcy to form long-lived red-emitting Ru-OH and short-lived green-emitting NBD-NR, while reacting with GSH to produce Ru-OH and nonemissive NBD-SR. The long lifetime emission of Ru(II) complex allows elimination of short lifetime background and NBD-NR fluorescence for total biothiols detection ("bird" one) by time-gated luminescence (TGL) analysis, and the remarkable difference in luminescence color response allows discrimination GSH and Cys/Hcy ("bird" two) through steady-state luminescence analysis. Ru-NBD features high sensitivity and selectivity, rapid luminescence response, and low cytotoxicity, which enables it to be used as the probe for luminescence and background-free TGL detection and visualization of biothiols in live cells, zebrafish, and mice. The successful development of this probe is anticipated to contribute to the future biological studies of biothiols roles in various diseases.
Collapse
Affiliation(s)
- Chaolong Liu
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Jianping Liu
- Australian Institute for Bioengineering and NanotechnologyThe University of Queensland, St. LuciaBrisbaneQLD4072Australia
| | - Wenzhu Zhang
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Yong‐Lei Wang
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSE‐10691Sweden
| | - Qi Liu
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Bo Song
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Jingli Yuan
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Run Zhang
- Australian Institute for Bioengineering and NanotechnologyThe University of Queensland, St. LuciaBrisbaneQLD4072Australia
| |
Collapse
|
39
|
Łapok Ł, Cieślar I, Pędziński T, Stadnicka KM, Nowakowska M. Near-Infrared Photoactive Aza-BODIPY: Thermally Robust and Photostable Photosensitizer and Efficient Electron Donor. Chemphyschem 2020; 21:725-740. [PMID: 32073190 DOI: 10.1002/cphc.202000117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Indexed: 01/18/2023]
Abstract
We report herein the synthesis of aza-BODIPY substituted with strongly electron-donating p-(diphenylamino)phenyl substituents (p-Ph2 N-) at 3,5-positions. The presence of p-Ph2 N- groups lowers the energy of the singlet excited state (Es ) to 1.48 eV and induces NIR absorption with λabs at 789 nm in THF. The compound studied is weakly emissive with the emission band (λf ) at 837 nm and with the singlet lifetime (τS ) equal to 100 ps. Nanosecond laser photolysis experiments of the aza-BODIPY in question revealed T1 →Tn absorption spanning from ca. 350-550 nm with the triplet lifetime (τT ) equal to 21 μs. By introducing a heavy atom (Br) into the structure of the aza-BODIPY, we managed to turn it into a NIR operating photosensitizer. The photosensitized oxygenation of the model compound-diphenylisobenzofuran (DPBF)-proceedes via Type I and/or Type III mechanism without formation of singlet oxygen (1 O2 ). As estimated by CV/DPV measurements, the p-Ph2 N- substituted aza-BODIPYs studied exhibits oxidation processes at relatively low oxidation potentials (Eox 1 ), pointing to the very good electron-donating properties of these molecules. Extremely high photostability and thermal robustness up to approximately 300 °C are observed for the p-Ph2 N- substituted aza-BODIPYs.
Collapse
Affiliation(s)
- Łukasz Łapok
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Igor Cieślar
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Tomasz Pędziński
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, 89b Umultowska, 61-614, Poznań, Poland.,Center for Advanced Technology, Adam Mickiewicz University in Poznań 10, 61-614, Poznań, Poland
| | - Katarzyna M Stadnicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Maria Nowakowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| |
Collapse
|
40
|
Gu XH, Lei Y, Wang S, Cao F, Zhang Q, Chen S, Wang KP, Hu ZQ. Tetrahydro[5]helicene fused nitrobenzoxadiazole as a fluorescence probe for hydrogen sulfide, cysteine/homocysteine and glutathione. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:118003. [PMID: 31923786 DOI: 10.1016/j.saa.2019.118003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/08/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Biological thiols including homocysteine (Hcy), cysteine (Cys), hydrogen sulfide (H2S) and glutathione (GSH) play crucial roles in various pathological and physiological processes. The development of optical probes for biothiols has been an active research area in recent years. Herein, a new turn-on fluorescence probe (HD-NBD) was designed and synthesized by fusing tetrahydro[5]helicene and 7-nitro-2,1,3-benzoxadiazole (NBD) for simultaneous discrimination of Hcy/Cys, H2S and GSH in aqueous solution. This probe is able to show unique absorbance enhancement at 548 nm for H2S and additional fluorescence enhancement at 536 nm only for Cys/Hcy, which can be used to discriminate H2S, Cys/Hcy and GSH simultaneously. In addition, HD-NBD also shows low background without any self-fluorescence, as well as high selectivity toward common biothiols. The low detection limits of this probe are about 0.15 μM for Hcy with a wide linear range (1-80 μM), 0.36 μM for Cys (linear range: 1-45 μM), 0.79 μM for H2S (linear range: 1-80 μM) and 4.44 μM for GSH (linear range: 1-60 μM). Moreover, HD-NBD can identify Hcy/Cys, H2S from GSH and other amino acids with high sensitivity and selectivity, therefore it could be used for detecting endogenous and exogenous Hcy/Cys under biological condition.
Collapse
Affiliation(s)
- Xing-Hao Gu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yang Lei
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuo Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fan Cao
- School of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Qi Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaojin Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kun-Peng Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Zhi-Qiang Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
41
|
Zhang J, Wang N, Ji X, Tao Y, Wang J, Zhao W. BODIPY-Based Fluorescent Probes for Biothiols. Chemistry 2020; 26:4172-4192. [PMID: 31769552 DOI: 10.1002/chem.201904470] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/23/2019] [Indexed: 12/22/2022]
Abstract
Fluorescent probes for biothiols have aroused increasing interest owing to their potential to enable better understanding of the diverse physiological and pathological processes related to the biothiol species. BODIPY fluorophores exhibit excellent optical properties, which can be readily tailored by introducing diverse functional units at various positions of the BODIPY core. In the present review, the development of fluorescent probes based on BODIPYs for the detection of biothiols are systematically summarized, with emphasis on the preferable detection of individual biothiols, as well as simultaneous discrimination among cysteine (Cys), homocysteine (Hcy), reduced glutathione (GSH). In addition, organelle-targeting probes for biothiols are also highlighted. The general design principles, various recognition mechanisms, and biological applications are elaboratively discussed, which could provide a useful reference to researchers worldwide interested in this area.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Nannan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Xin Ji
- School of Pharmacy, Institute of Integrative Medicine, Fudan University, Shanghai, 201203, P. R. China
| | - Yuanfang Tao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Jiamin Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, of Henan Province, Henan University, Kaifeng, 475004, P. R. China
| | - Weili Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China.,School of Pharmacy, Institute of Integrative Medicine, Fudan University, Shanghai, 201203, P. R. China
| |
Collapse
|
42
|
Dang Y, Chen L, Yuan L, Li J, Chen D. A New Fluorescent Probe for Selective Detection of Endogenous Cysteine and Live Cell Imaging. ChemistrySelect 2020. [DOI: 10.1002/slct.201904093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yecheng Dang
- Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 P. R. China
| | - Li Chen
- Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 P. R. China
| | - Li Yuan
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 P. R. China
| | - Junbo Li
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 P. R. China
| | - Dugang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 P. R. China
| |
Collapse
|
43
|
Cui M, Xia L, Gu Y, Wang P. A dihydronaphthalene based fluorescence probe for sensitive detection of cysteine and its application in bioimaging. NEW J CHEM 2020. [DOI: 10.1039/c9nj05432d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel small molecule fluorescent probe NC-Cys for monitoring cysteine based on dihydronaphthalene was developed.
Collapse
Affiliation(s)
- Mengyuan Cui
- Department of Biomedical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Lili Xia
- Department of Biomedical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yueqing Gu
- Department of Biomedical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Peng Wang
- Department of Biomedical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
44
|
Huang H, Ji X, Jiang Y, Zhang C, Kang X, Zhu J, Sun L, Yi L. NBD-based fluorescent probes for separate detection of cysteine and biothiols via different reactivities. Org Biomol Chem 2020; 18:4004-4008. [DOI: 10.1039/d0ob00040j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A NBD-based fluorescent probe is developed to seperately detect Cys and all biothiols via different reactivity.
Collapse
Affiliation(s)
- Haojie Huang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xiuru Ji
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Yaqing Jiang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Changyu Zhang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xueying Kang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jiqin Zhu
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Lu Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Long Yi
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
45
|
Shi Z, Han X, Hu W, Bai H, Peng B, Ji L, Fan Q, Li L, Huang W. Bioapplications of small molecule Aza-BODIPY: from rational structural design to in vivo investigations. Chem Soc Rev 2020; 49:7533-7567. [DOI: 10.1039/d0cs00234h] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the empirical design guidelines and photophysical property manipulation of Aza-BODIPY dyes and the latest advances in their bioapplications.
Collapse
Affiliation(s)
- Zhenxiong Shi
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Xu Han
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Lei Ji
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- P. R. China
| | - Lin Li
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| |
Collapse
|
46
|
Xu Z, Qin T, Zhou X, Wang L, Liu B. Fluorescent probes with multiple channels for simultaneous detection of Cys, Hcy, GSH, and H2S. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115672] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Chen J, Wang Z, She M, Liu M, Zhao Z, Chen X, Liu P, Zhang S, Li J. Precise Synthesis of GSH-Specific Fluorescent Probe for Hepatotoxicity Assessment Guided by Theoretical Calculation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32605-32612. [PMID: 31423764 DOI: 10.1021/acsami.9b08522] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug-induced hepatotoxicity is the main cause of acute liver injury, and its early diagnosis is indispensable in pharmacological and pathological studies. As a hepatotoxicity indicator, the GSH distribution in the liver could reflect the damage degree in situ. In this work, we have provided a theoretical design strategy to determine the generation of photo-induced electron transfer mechanism and achieve high selectivity for the target. After that, we precisely synthesized a novel near-infrared fluorescent probe BSR1 to specifically monitor endogenous GSH and hepatotoxicity in biosystem with a moderate fluorescent quantum yield (Φ = 0.394) and low detection limit (83 nM) under this strategy. Moreover, this mapping method for imaging GSH depletion in vivo to assay hepatotoxicity may provide a powerful molecular tool for early diagnosis of some diseases and contribute to assay hepatotoxicity for the development of new drugs. Importantly, this theoretical calculation-guided design strategy may provide an effective way for the precise synthesis of the target-specific fluorescent probe and change this research area from "trial-and-error" to concrete molecular engineering.
Collapse
Affiliation(s)
- Jiao Chen
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an , Shaanxi Province 710127 , P. R. China
| | - Zesi Wang
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an , Shaanxi Province 710127 , P. R. China
| | - Mengyao She
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an , Shaanxi Province 710127 , P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, The College of Life Sciences , Northwest University , Xi'an , Shaanxi Province 710069 , P. R. China
| | - Mengdi Liu
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an , Shaanxi Province 710127 , P. R. China
| | - Zebin Zhao
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an , Shaanxi Province 710127 , P. R. China
| | - Xi Chen
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an , Shaanxi Province 710127 , P. R. China
| | - Ping Liu
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an , Shaanxi Province 710127 , P. R. China
| | - Shengyong Zhang
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an , Shaanxi Province 710127 , P. R. China
| | - Jianli Li
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an , Shaanxi Province 710127 , P. R. China
| |
Collapse
|
48
|
Dong W, Wang R, Gong X, Dong C. An efficient turn-on fluorescence biosensor for the detection of glutathione based on FRET between N,S dual-doped carbon dots and gold nanoparticles. Anal Bioanal Chem 2019; 411:6687-6695. [PMID: 31407048 DOI: 10.1007/s00216-019-02042-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 02/01/2023]
Abstract
Fluorescence resonance energy transfer (FRET) is a kind of energy transfer mechanism depending on the distance between donor and acceptor, which exhibited potential application in biosensors. In this study, an efficient fluorescence "turn-on" strategy for the detection of glutathione (GSH) has been established based on FRET between nitrogen and sulfur dual-doped carbon dots (N,S-CDs) and gold nanoparticles (Au NPs). A novel N,S-CDs was synthesized by a one-pot hydrothermal treatment of 3-aminothiophenol, which possessed excellent fluorescence property with the maximum emission wavelength of 530 nm. Then, the as-prepared N,S-CDs served as energy donor to transfer energy to Au NPs via FRET process, resulting in fluorescence quenching of N,S-CDs. However, the fluorescence of N,S-CDs was recovered efficiently by adding GSH into the mixture solution of N,S-CDs and Au NPs. Therefore, the FRET assembly of N,S-CDs and Au NPs was used as a fluorescence probe for the "turn-on" sensing GSH with the linear range from 3.8 to 415.1 μM and the limit detection of 0.21 μM. This nanosensor platform was employed to monitor GSH in serum samples with satisfying results. Graphical abstract.
Collapse
Affiliation(s)
- Wenjuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, 92 Wu Cheng Road, Taiyuan, 030006, Shanxi, China.
| | - Ruiping Wang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, 92 Wu Cheng Road, Taiyuan, 030006, Shanxi, China
| | - Xiaojuan Gong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, 92 Wu Cheng Road, Taiyuan, 030006, Shanxi, China.
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, 92 Wu Cheng Road, Taiyuan, 030006, Shanxi, China
| |
Collapse
|
49
|
Gao J, Tao Y, Zhang J, Wang N, Ji X, He J, Si Y, Zhao W. Development of Lysosome-Targeted Fluorescent Probes for Cys by Regulating the Boron-dipyrromethene (BODIPY) Molecular Structure. Chemistry 2019; 25:11246-11256. [PMID: 31210399 DOI: 10.1002/chem.201902301] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/18/2019] [Indexed: 12/12/2022]
Abstract
Our previous discovery suggested that substituents on the 1,7 positions delicately modulate the sensing ability of the meso-arylmercapto boron-dipyrromethene (BODIPY) to biothiols. In this work, the impact of delicate modulations on the sensing ability is investigated. Therefore, 1,7-dimethyl, 3,5-diaryl substituted BODIPY is designed and developed and its conformationally restricted species with a meso-arylmercapto moiety (DM-BDP-SAr and DM-BDP-R-SAr) as selective fluorescent probes for Cys. Moreover, the lysosome-target probes (Lyso-S and Lyso-D) based on DM-BDP-SAr carrying one or two morpholinoethoxy moieties were developed. They were able to detect Cys selectively in vitro with low detection limits. Both Lyso-S and Lyso-D localized nicely in lysosomes in living HeLa cells and exhibited red fluorescence for Cys. Moreover, a novel fluorescence quenching mechanism was proposed from the calculations by density functional theory (DFT). The probes may go through intersystem crossing (from singlet excited state to triplet excited state) to result in fluorescence quenching.
Collapse
Affiliation(s)
- Jinhua Gao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Yuanfang Tao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Nannan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Xin Ji
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Jinling He
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Yubing Si
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, 450006, P. R. China
| | - Weili Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China.,School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, 201203, P. R. China
| |
Collapse
|
50
|
Obłoza M, Łapok Ł, Pędziński T, Nowakowska M. A Beneficial Effect of Bromination on the Photophysical and Photochemical Properties of Aza‐BODIPY Dyes with Electron‐Donating Groups. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Magdalena Obłoza
- Faculty of ChemistryJagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Łukasz Łapok
- Faculty of ChemistryJagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Tomasz Pędziński
- Faculty of ChemistryAdam Mickiewicz University 89b Umultowska 61-614 Poznań Poland
| | - Maria Nowakowska
- Faculty of ChemistryJagiellonian University Gronostajowa 2 30-387 Kraków Poland
| |
Collapse
|