1
|
Motta MA, Martin-Saldaña S, Beloqui A, Calderón M, Larrañaga A. Polypeptide-based multilayer capsules with anti-inflammatory properties: exploring different strategies to incorporate hydrophobic drugs. J Mater Chem B 2025. [PMID: 40207430 DOI: 10.1039/d4tb01906g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
More than 90% of drug candidates used in the drug development pipeline and about 40% of drugs on the market are poorly soluble in water based on the definition of the biopharmaceutical classification system. The advent of drug delivery approaches has represented a striking tool to overcome the challenges associated with the use of hydrophobic drugs, such as their low bioavailability and off-target effects. Drug carrier formulations composed of biodegradable and biocompatible polymers, such as polypeptides, have been explored as platforms to host poorly water-soluble drugs to prolong drug circulation, enhance their safety, reduce their immunogenicity, and promote their controlled release. In this work, we evaluated three strategies-co-precipitation, post-encapsulation, and conjugation-to incorporate a hydrophobic model drug, i.e., curcumin (CUR), into biodegradable multilayer capsules fabricated via a layer-by-layer (LbL) approach. Poly(L-lysine) (PLys) and poly(L-glutamic acid) (PGlu) were adopted as building blocks and alternately assembled onto calcium carbonate (CaCO3) microparticles to build a polypeptide-multilayer membrane, which acted as a barrier to control the release of the drug. The application of our three formulations in in vitro inflammatory models of THP-1 derived human macrophages and murine microglia showed a reduction of the inflammation with the suppression of three pivotal pro-inflammatory cytokines (i.e., interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α). Moreover, the intracellular release of CUR detected upon uptake studies on activated microglia suggested that our systems could represent a potential therapeutic approach to reduce acute neuroinflammation and modulate microglia phenotype.
Collapse
Affiliation(s)
- Maria Angela Motta
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain.
| | - Sergio Martin-Saldaña
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
| | - Ana Beloqui
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain.
| |
Collapse
|
2
|
Motta MA, Mulko L, Marin E, Larrañaga A, Calderón M. Polypeptide-based multilayer nanoarchitectures: Controlled assembly on planar and colloidal substrates for biomedical applications. Adv Colloid Interface Sci 2024; 331:103248. [PMID: 39033588 DOI: 10.1016/j.cis.2024.103248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Polypeptides have shown an excellent potential in nanomedicine thanks to their biocompatibility, biodegradability, high functionality, and responsiveness to several stimuli. Polypeptides exhibit high propensity to organize at the supramolecular level; hence, they have been extensively considered as building blocks in the layer-by-layer (LbL) assembly. The LbL technique is a highly versatile methodology, which involves the sequential assembly of building blocks, mainly driven by electrostatic interactions, onto planar or colloidal templates to fabricate sophisticated multilayer nanoarchitectures. The simplicity and the mild conditions required in the LbL approach have led to the inclusion of biopolymers and bioactive molecules for the fabrication of a wide spectrum of biodegradable, biocompatible, and precisely engineered multilayer films for biomedical applications. This review focuses on those examples in which polypeptides have been used as building blocks of multilayer nanoarchitectures for tissue engineering and drug delivery applications, highlighting the characteristics of the polypeptides and the strategies adopted to increase the stability of the multilayer film. Cross-linking is presented as a powerful strategy to enhance the stability and stiffness of the multilayer network, which is a fundamental requirement for biomedical applications. For example, in tissue engineering, a stiff multilayer coating, the presence of adhesion promoters, and/or bioactive molecules boost the adhesion, growth, and differentiation of cells. On the contrary, antimicrobial coatings should repel and inhibit the growth of bacteria. In drug delivery applications, mainly focused on particles and capsules at the micro- and nano-meter scale, the stability of the multilayer film is crucial in terms of retention and controlled release of the payload. Recent advances have shown the key role of the polypeptides in the adsorption of genetic material with high loading efficiency, and in addressing different pathways of the particles/capsules during the intracellular uptake, paving the way for applications in personalized medicine. Although there are a few studies, the responsiveness of the polypeptides to the pH changes, together with the inclusion of stimuli-responsive entities into the multilayer network, represents a further key factor for the development of smart drug delivery systems to promote a sustained release of therapeutics. The degradability of polypeptides may be an obstacle in certain scenarios for the controlled intracellular release of a drug once an external stimulus is applied. Nowadays, the highly engineered design of biodegradable LbL particles/capsules is oriented on the development of theranostics that, limited to use of polypeptides, are still in their infancy.
Collapse
Affiliation(s)
- Maria Angela Motta
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| | - Lucinda Mulko
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Edurne Marin
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| | - Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain.
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain.
| |
Collapse
|
3
|
Tang J, Liu Z, Wang R, Wang Y, Zou Z, Xie J, Zhang P, Fu Z. Bio-Inspired Photosynthesis Platform for Enhanced NADH Conversion and L-Glutamate Synthesis. Polymers (Basel) 2024; 16:2198. [PMID: 39125224 PMCID: PMC11314224 DOI: 10.3390/polym16152198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Inspired by the layered structure, light absorption, and charge carrier pathway of chloroplast thylakoids in natural photosynthesis, we propose a novel artificial photosynthesis platform, which is composed of layered structured vaterite as the scaffold with gold nanoparticles (AuNPs), photosensitizer eosin Y (EY), and redox enzyme L-glutamate dehydrogenase (GDH) as the functional components. The EY exhibited significantly enhanced light absorption and charge carrier generation due to the localized surface plasmon resonance (LSPR) around the AuNPs and light refraction within the layers. This artificial photosynthesis platform can regenerate reduced nicotinamide adenine dinucleotide (NADH) under visible light and promote the rapid conversion of α-ketoglutarate to L-glutamate (0.453 Mm/h). The excellent biocompatibility of layered vaterite significantly enhances the resistance of GDH to harsh conditions, including high pH (pH = 10) and elevated temperatures (37-57 °C).
Collapse
Affiliation(s)
- Junxiao Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (J.T.); (R.W.); (Y.W.); (Z.Z.)
| | - Zhenyu Liu
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China;
| | - Rongjie Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (J.T.); (R.W.); (Y.W.); (Z.Z.)
| | - Yanze Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (J.T.); (R.W.); (Y.W.); (Z.Z.)
| | - Zhaoyong Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (J.T.); (R.W.); (Y.W.); (Z.Z.)
| | - Jingjing Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (J.T.); (R.W.); (Y.W.); (Z.Z.)
| | - Pengchao Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (J.T.); (R.W.); (Y.W.); (Z.Z.)
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (J.T.); (R.W.); (Y.W.); (Z.Z.)
| |
Collapse
|
4
|
Biny L, Gerasimovich E, Karaulov A, Sukhanova A, Nabiev I. Functionalized Calcium Carbonate-Based Microparticles as a Versatile Tool for Targeted Drug Delivery and Cancer Treatment. Pharmaceutics 2024; 16:653. [PMID: 38794315 PMCID: PMC11124899 DOI: 10.3390/pharmaceutics16050653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Nano- and microparticles are increasingly widely used in biomedical research and applications, particularly as specific labels and targeted delivery vehicles. Silica has long been considered the best material for such vehicles, but it has some disadvantages limiting its potential, such as the proneness of silica-based carriers to spontaneous drug release. Calcium carbonate (CaCO3) is an emerging alternative, being an easily available, cost-effective, and biocompatible material with high porosity and surface reactivity, which makes it an attractive choice for targeted drug delivery. CaCO3 particles are used in this field in the form of either bare CaCO3 microbeads or core/shell microparticles representing polymer-coated CaCO3 cores. In addition, they serve as removable templates for obtaining hollow polymer microcapsules. Each of these types of particles has its specific advantages in terms of biomedical applications. CaCO3 microbeads are primarily used due to their capacity for carrying pharmaceutics, whereas core/shell systems ensure better protection of the drug-loaded core from the environment. Hollow polymer capsules are particularly attractive because they can encapsulate large amounts of pharmaceutical agents and can be so designed as to release their contents in the target site in response to specific stimuli. This review focuses first on the chemistry of the CaCO3 cores, core/shell microbeads, and polymer microcapsules. Then, systems using these structures for the delivery of therapeutic agents, including drugs, proteins, and DNA, are outlined. The results of the systematic analysis of available data are presented. They show that the encapsulation of various therapeutic agents in CaCO3-based microbeads or polymer microcapsules is a promising technique of drug delivery, especially in cancer therapy, enhancing drug bioavailability and specific targeting of cancer cells while reducing side effects. To date, research in CaCO3-based microparticles and polymer microcapsules assembled on CaCO3 templates has mainly dealt with their properties in vitro, whereas their in vivo behavior still remains poorly studied. However, the enormous potential of these highly biocompatible carriers for in vivo applications is undoubted. This last issue is addressed in depth in the Conclusions and Outlook sections of the review.
Collapse
Affiliation(s)
- Lara Biny
- Université de Reims Champagne-Ardenne, BIOSPECT, 51100 Reims, France;
| | - Evgeniia Gerasimovich
- Life Improvement by Future Technologies (LIFT) Center, Laboratory of Optical Quantum Sensors, Skolkovo, 143025 Moscow, Russia;
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Alyona Sukhanova
- Université de Reims Champagne-Ardenne, BIOSPECT, 51100 Reims, France;
| | - Igor Nabiev
- Université de Reims Champagne-Ardenne, BIOSPECT, 51100 Reims, France;
- Life Improvement by Future Technologies (LIFT) Center, Laboratory of Optical Quantum Sensors, Skolkovo, 143025 Moscow, Russia;
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| |
Collapse
|
5
|
Ermakov AV, Chapek SV, Lengert EV, Konarev PV, Volkov VV, Artemov VV, Soldatov MA, Trushina DB. Microfluidically Assisted Synthesis of Calcium Carbonate Submicron Particles with Improved Loading Properties. MICROMACHINES 2023; 15:16. [PMID: 38276844 PMCID: PMC10818696 DOI: 10.3390/mi15010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
The development of advanced methods for the synthesis of nano- and microparticles in the field of biomedicine is of high interest due to a range of reasons. The current synthesis methods may have limitations in terms of efficiency, scalability, and uniformity of the particles. Here, we investigate the synthesis of submicron calcium carbonate using a microfluidic chip with a T-shaped oil supply for droplet-based synthesis to facilitate control over the formation of submicron calcium carbonate particles. The design of the chip allowed for the precise manipulation of reaction parameters, resulting in improved porosity while maintaining an efficient synthesis rate. The pore size distribution within calcium carbonate particles was estimated via small-angle X-ray scattering. This study showed that the high porosity and reduced size of the particles facilitated the higher loading of a model peptide: 16 vs. 9 mass.% for the particles synthesized in a microfluidic device and in bulk, correspondingly. The biosafety of the developed particles in the concentration range of 0.08-0.8 mg per plate was established by the results of the cytotoxicity study using mouse fibroblasts. This innovative approach of microfluidically assisted synthesis provides a promising avenue for future research in the field of particle synthesis and drug delivery systems.
Collapse
Affiliation(s)
- Alexey V. Ermakov
- Institute of Molecular Theranostics, First Moscow State Medical University, 119991 Moscow, Russia; (E.V.L.); (D.B.T.)
| | - Sergei V. Chapek
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia; (S.V.C.); (M.A.S.)
| | - Ekaterina V. Lengert
- Institute of Molecular Theranostics, First Moscow State Medical University, 119991 Moscow, Russia; (E.V.L.); (D.B.T.)
| | - Petr V. Konarev
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (V.V.V.); (V.V.A.)
| | - Vladimir V. Volkov
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (V.V.V.); (V.V.A.)
| | - Vladimir V. Artemov
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (V.V.V.); (V.V.A.)
| | - Mikhail A. Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia; (S.V.C.); (M.A.S.)
| | - Daria B. Trushina
- Institute of Molecular Theranostics, First Moscow State Medical University, 119991 Moscow, Russia; (E.V.L.); (D.B.T.)
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (V.V.V.); (V.V.A.)
| |
Collapse
|
6
|
Lin YH, Singuru MMR, Marpaung DSS, Liao WC, Chuang MC. Ethylene Glycol-Manipulated Syntheses of Calcium Carbonate Particles and DNA Capsules toward Efficient ATP-Responsive Cargo Release. ACS APPLIED BIO MATERIALS 2023; 6:3351-3360. [PMID: 37466412 DOI: 10.1021/acsabm.3c00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Cargo molecule-encapsulated DNA capsules synthesized with a solid sacrificial template have elicited significant interest in the last decade and have been used for active materials in applications ranging from biosensors to drug delivery. However, the correlation between template properties and the subsequent assembly and triggered release behavior of the resultant carriers remain uninvestigated. In this study, ethylene glycol (EG) was added during the CaCO3 precipitation synthesis to yield particles of various sizes and surface properties, and the adenosine triphosphate (ATP)-responsive release characteristics of the fabricated DNA capsules affected by these particle properties were investigated. The geometry, crystallization, and surface morphology of the CaCO3 particles co-precipitated at various EG concentrations were characterized. We discuss the integrity of cross-linking hybridization, fluorescent molecule internalization, degree of leakage, and release efficiency of the resulting DNA capsules and their relevance brought by particle properties. To achieve efficient encapsulation and cargo release, the surface roughness of the CaCO3 particles was explored and was deemed a key determinant of the compactness of the DNA shell after template removal. This effect was particularly strong in CaCO3 particles in connection with high EG concentrations. The DNA capsules fabricated using 83% EG exhibited low leakage, high loading, and moderate release efficiencies as well as a greater apparent association constant with ATP due to their small particle size and the high-integrity DNA shells.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Department of Chemistry, Tunghai University, Taichung 407224, Taiwan
| | | | - David Septian Sumanto Marpaung
- International Ph.D. Program in Biomedical and Materials Science, Tunghai University, Taichung 407224, Taiwan
- Department of Biosystems Engineering, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia
| | - Wei-Ching Liao
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Min-Chieh Chuang
- Department of Chemistry, Tunghai University, Taichung 407224, Taiwan
- International Ph.D. Program in Biomedical and Materials Science, Tunghai University, Taichung 407224, Taiwan
| |
Collapse
|
7
|
Marmo VLM, Ambrósio JAR, Gonçalves EP, Raniero LJ, Beltrame Junior M, Pinto JG, Ferreira-Strixino J, Simioni AR. Vaterite microparticle-loaded methylene blue for photodynamic activity in macrophages infected with Leishmania braziliensis. Photochem Photobiol Sci 2023; 22:1977-1989. [PMID: 37115408 DOI: 10.1007/s43630-023-00426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
Calcium carbonate (CaCO3) exhibits a variety of crystalline phases, including the anhydrous crystalline polymorphs calcite, aragonite, and vaterite. Developing porous calcium carbonate microparticles in the vaterite phase for the encapsulation of methylene blue (MB) as a photosensitizer (PS) for use in photodynamic therapy (PDT) was the goal of this investigation. Using an adsorption approach, the PS was integrated into the CaCO3 microparticles. The vaterite microparticles were characterized by scanning electron microscopy (SEM) and steady-state techniques. The trypan blue exclusion method was used to measure the biological activity of macrophages infected with Leishmania braziliensis in vitro. The vaterite microparticles produced are highly porous, non-aggregated, and uniform in size. After encapsulation, the MB-loaded microparticles kept their photophysical characteristics. The carriers that were captured allowed for dye localization inside the cells. The results obtained in this study indicated that the MB-loaded vaterite microparticles show promising photodynamic activity in macrophages infected with Leishmania braziliensis.
Collapse
Affiliation(s)
- Vitor Luca Moura Marmo
- Research and Development Institute-IPD, Vale do Paraíba University-UNIVAP, Av. Shishima Hifumi, 2911, São José Dos Campos, SP, CEP 12244-000, Brazil
| | - Jéssica A R Ambrósio
- Research and Development Institute-IPD, Vale do Paraíba University-UNIVAP, Av. Shishima Hifumi, 2911, São José Dos Campos, SP, CEP 12244-000, Brazil
| | - Erika Peterson Gonçalves
- Research and Development Institute-IPD, Vale do Paraíba University-UNIVAP, Av. Shishima Hifumi, 2911, São José Dos Campos, SP, CEP 12244-000, Brazil
| | - Leandro José Raniero
- Research and Development Institute-IPD, Vale do Paraíba University-UNIVAP, Av. Shishima Hifumi, 2911, São José Dos Campos, SP, CEP 12244-000, Brazil
| | - Milton Beltrame Junior
- Research and Development Institute-IPD, Vale do Paraíba University-UNIVAP, Av. Shishima Hifumi, 2911, São José Dos Campos, SP, CEP 12244-000, Brazil
| | - Juliana G Pinto
- Research and Development Institute-IPD, Vale do Paraíba University-UNIVAP, Av. Shishima Hifumi, 2911, São José Dos Campos, SP, CEP 12244-000, Brazil
| | - Juliana Ferreira-Strixino
- Research and Development Institute-IPD, Vale do Paraíba University-UNIVAP, Av. Shishima Hifumi, 2911, São José Dos Campos, SP, CEP 12244-000, Brazil
| | - Andreza R Simioni
- Research and Development Institute-IPD, Vale do Paraíba University-UNIVAP, Av. Shishima Hifumi, 2911, São José Dos Campos, SP, CEP 12244-000, Brazil.
| |
Collapse
|
8
|
Campbell J, Taghavi A, Preis A, Martin S, Skirtach AG, Franke J, Volodkin D, Vikulina A. Spontaneous shrinkage drives macromolecule encapsulation into layer-by-layer assembled biopolymer microgels. J Colloid Interface Sci 2023; 635:12-22. [PMID: 36577351 DOI: 10.1016/j.jcis.2022.12.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
HYPOTHESIS Recently, the anomalous shrinkage of surface-supported hyaluronate/poly-l-lysine (HA/PLL) microgels (µ-gels), which exceeds that reported for any other multilayer-based systems, has been reported [1]. The current study investigates the capability of these unique µ-gels for the encapsulation and retention of macromolecules, and proposes the shrinkage-driven assembly of biopolymer-based µ-gels as a novel tool for one-step surface biofunctionalization. EXPERIMENTS A set of dextrans (DEX) and their charged derivatives - carboxymethyl (CM)-DEX and diethylaminoethyl (DEAE)-DEX - has been utilized to evaluate the effects of macromolecular mass and net charge on µ-gel shrinkage and macromolecule entrapment. µ-gels formation on the surface of silicone catheters exemplifies their potential to tailor biointerfaces. FINDINGS Shrinkage-driven µ-gel formation strongly depends on the net charge and mass content of encapsulated macromolecules. Inclusion of neutral DEX decreases the degree of shrinkage several times, whilst charged DEXs adopt to the backbone of oppositely charged polyelectrolytes, resulting in shrinkage comparable to that of non-loaded µ-gels. Retention of CM-DEX in µ-gels is significantly higher compared to DEAE-DEX. These insights into the mechanisms of macromolecular entrapment into biopolymer-based µ-gels promotes fundamental understanding of molecular dynamics within the multilayer assemblies. Organization of biodegradable µ-gels at biomaterial surfaces opens avenues for their further exploitation in a diverse array of bioapplications.
Collapse
Affiliation(s)
- Jack Campbell
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom; Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 77, 90762 Fürth, Germany
| | - Aaron Taghavi
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Alexander Preis
- Institute for Factory Automation and Production Systems (FAPS), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 7-9, 91058 Erlangen, Germany
| | - Sina Martin
- Institute for Factory Automation and Production Systems (FAPS), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 7-9, 91058 Erlangen, Germany
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jörg Franke
- Institute for Factory Automation and Production Systems (FAPS), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 7-9, 91058 Erlangen, Germany
| | - Dmitry Volodkin
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom.
| | - Anna Vikulina
- Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 77, 90762 Fürth, Germany.
| |
Collapse
|
9
|
Vaterite vectors for the protection, storage and release of silver nanoparticles. J Colloid Interface Sci 2023; 631:165-180. [DOI: 10.1016/j.jcis.2022.10.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
|
10
|
Li J, Parakhonskiy BV, Skirtach AG. A decade of developing applications exploiting the properties of polyelectrolyte multilayer capsules. Chem Commun (Camb) 2023; 59:807-835. [PMID: 36472384 DOI: 10.1039/d2cc04806j] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Transferring the layer-by-layer (LbL) coating approach from planar surfaces to spherical templates and subsequently dissolving these templates leads to the fabrication of polyelectrolyte multilayer capsules. The versatility of the coatings of capsules and their flexibility upon bringing in virtually any material into the coatings has quickly drawn substantial attention. Here, we provide an overview of the main developments in this field, highlighting the trends in the last decade. In the beginning, various methods of encapsulation and release are discussed followed by a broad range of applications, which were developed and explored. We also outline the current trends, where the range of applications is continuing to grow, including addition of whole new and different application areas.
Collapse
Affiliation(s)
- Jie Li
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan V Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
11
|
Tan C, Dima C, Huang M, Assadpour E, Wang J, Sun B, Kharazmi MS, Jafari SM. Advanced CaCO3-derived delivery systems for bioactive compounds. Adv Colloid Interface Sci 2022; 309:102791. [DOI: 10.1016/j.cis.2022.102791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
|
12
|
Schijven LM, Saggiomo V, Velders AH, Bitter JH, Nikiforidis CV. On the influence of protein aggregate sizes for the formation of solid and hollow protein microparticles. J Colloid Interface Sci 2022; 631:181-190. [DOI: 10.1016/j.jcis.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
13
|
Surfactant-free hydrothermal fabrication of vaterite CaCO3 with hexagonal bipyramidal morphologies using seawater. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Zhang H, Zhang T, Zang J, Lv C, Zhao G. Construction of alginate beads for efficient conversion of CO2 into vaterite CaCO3 particles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Trushina DB, Borodina TN, Belyakov S, Antipina MN. Calcium carbonate vaterite particles for drug delivery: Advances and challenges. MATERIALS TODAY. ADVANCES 2022; 14:100214. [PMID: 36785703 PMCID: PMC9909585 DOI: 10.1016/j.mtadv.2022.100214] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/01/2022] [Indexed: 06/01/2023]
Abstract
The recent successful application of lipid-based nanoparticles as delivery vehicles in COVID-19 vaccines demonstrated the superior potential of nanoparticle-based technology for targeted drug delivery in biomedicine. Among novel, rapidly advancing delivery platforms, the inorganic nano/microparticles gradually reach new heights and attract well-deserved attention among scientists and clinicians. Calcium carbonate in its vaterite form is used as a biocompatible carrier for a progressively increasing number of biomedical applications. Its growing popularity is conferred by beneficial porosity of particles, high mechanical stability, biodegradability under certain physiological conditions, ability to provide a continuous steady release of bioactives, preferential safety profile, and low cost, which make calcium carbonate a suitable entity of highly efficacious formulations for controlled drug delivery and release. The focal point of the current review is the success of the recent vaterite applications in the delivery of various diagnostics and therapeutic drugs. The manuscript highlights the nuances of drug loading in vaterite particles, connecting it with particle morphology, size, and charge of the loaded molecules, payload concentration, mono- or multiple drug loading. The manuscript also depicts recent successful methods of increasing the loading capacity developed for vaterite carriers. In addition, the review describes the various administration routes for vaterite particles with bioactive payloads, which were reported in recent years. Special attention is given to the multi-drug-loaded vaterite particles ("molecular cocktails") and reports on their successful delivery in vitro and in vivo.
Collapse
Affiliation(s)
- Daria B Trushina
- A.V. Shubnikov Institute of Crystallography of Federal Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Russian Academy of Sciences, Moscow, 119333, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Tatiana N Borodina
- A.V. Shubnikov Institute of Crystallography of Federal Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Sergei Belyakov
- Theracross Technologies Pte Ltd, 251 Pasir Panjang Rd, Singapore, 118610, Singapore
| | - Maria N Antipina
- Singapore Institute of Food and Biotechnology Innovation A∗STAR, 31 Biopolis Way, #01-02 Nanos, Singapore, 138669, Singapore
| |
Collapse
|
16
|
Qiu H, Lan G, Ding W, Wang X, Wang W, Shou D, Lu F, Hu E, Yu K, Shang S, Xie R. Dual-Driven Hemostats Featured with Puncturing Erythrocytes for Severe Bleeding in Complex Wounds. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9762746. [PMID: 35707050 PMCID: PMC9178490 DOI: 10.34133/2022/9762746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022]
Abstract
Achieving rapid hemostasis in complex and deep wounds with secluded hemorrhagic sites is still a challenge because of the difficulty in delivering hemostats to these sites. In this study, a Janus particle, SEC-Fe@CaT with dual-driven forces, bubble-driving, and magnetic field- (MF-) mediated driving, was prepared via in situ loading of Fe3O4 on a sunflower sporopollenin exine capsule (SEC), and followed by growth of flower-shaped CaCO3 clusters. The bubble-driving forces enabled SEC-Fe@CaT to self-diffuse in the blood to eliminate agglomeration, and the MF-mediated driving force facilitated the SEC-Fe@CaT countercurrent against blood to access deep bleeding sites in the wounds. During the movement in blood flow, the meteor hammer-like SEC from SEC-Fe@CaT can puncture red blood cells (RBCs) to release procoagulants, thus promoting activation of platelet and rapid hemostasis. Animal tests suggested that SEC-Fe@CaT stopped bleeding in as short as 30 and 45 s in femoral artery and liver hemorrhage models, respectively. In contrast, the similar commercial product Celox™ required approximately 70 s to stop the bleeding in both bleeding modes. This study demonstrates a new hemostat platform for rapid hemostasis in deep and complex wounds. It was the first attempt integrating geometric structure of sunflower pollen with dual-driven movement in hemostasis.
Collapse
Affiliation(s)
- Haoyu Qiu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Guangqian Lan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Weiwei Ding
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu Province, China
| | - Xinyu Wang
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu Province, China
| | - Wenyi Wang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Dahua Shou
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Fei Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Enling Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kun Yu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Songmin Shang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Ruiqi Xie
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
17
|
Huang Y, Cao L, Parakhonskiy BV, Skirtach AG. Hard, Soft, and Hard- and-Soft Drug Delivery Carriers Based on CaCO 3 and Alginate Biomaterials: Synthesis, Properties, Pharmaceutical Applications. Pharmaceutics 2022; 14:909. [PMID: 35631494 PMCID: PMC9146629 DOI: 10.3390/pharmaceutics14050909] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Because free therapeutic drug molecules often have adverse effects on normal tissues, deliver scanty drug concentrations and exhibit a potentially low efficacy at pathological sites, various drug carriers have been developed for preclinical and clinical trials. Their physicochemical and toxicological properties are the subject of extensive research. Inorganic calcium carbonate particles are promising candidates as drug delivery carriers owning to their hardness, porous internal structure, high surface area, distinctive pH-sensitivity, low degradability, etc, while soft organic alginate hydrogels are also widely used because of their special advantages such as a high hydration, bio-adhesiveness, and non-antigenicity. Here, we review these two distinct substances as well as hybrid structures encompassing both types of carriers. Methods of their synthesis, fundamental properties and mechanisms of formation, and their respective applications are described. Furthermore, we summarize and compare similarities versus differences taking into account unique advantages and disadvantages of these drug delivery carriers. Moreover, rational combination of both carrier types due to their performance complementarity (yin-&yang properties: in general, yin is referred to for definiteness as hard, and yang is broadly taken as soft) is proposed to be used in the so-called hybrid carriers endowing them with even more advanced properties envisioned to be attractive for designing new drug delivery systems.
Collapse
Affiliation(s)
| | - Lin Cao
- NanoBio Technology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Bogdan V. Parakhonskiy
- NanoBio Technology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Andre G. Skirtach
- NanoBio Technology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
18
|
Moghazy MAEF, Taha GM. Effect of precursor chemistry on purity and characterization of CaCO 3 nanoparticles and its application for adsorption of methyl orange from aqueous solutions. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2056478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Marwa Abd El-Fatah Moghazy
- Environmental Applications of Nanomaterials Lab, Chemistry Department, Faculty of Science, Aswan University, Aswan, Egypt
| | - Gharib Mahmoud Taha
- Environmental Applications of Nanomaterials Lab, Chemistry Department, Faculty of Science, Aswan University, Aswan, Egypt
| |
Collapse
|
19
|
Zafar B, Campbell J, Cooke J, Skirtach AG, Volodkin D. Modification of Surfaces with Vaterite CaCO 3 Particles. MICROMACHINES 2022; 13:473. [PMID: 35334765 PMCID: PMC8954061 DOI: 10.3390/mi13030473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
Former studies have demonstrated a strong interest toward the crystallization of CaCO3 polymorphs in solution. Nowadays, CaCO3 crystallization on solid surfaces is extensively being studied using biomolecules as substrates for the control of the growth aiming at various applications of CaCO3. Calcium carbonate exists in an amorphous state, as three anhydrous polymorphs (aragonite, calcite and vaterite), and as two hydrated polymorphs (monohydrocalcite and ikaite). The vaterite polymorph is considered as one of the most attractive forms due to its large surface area, biocompatibility, mesoporous nature, and other features. Based on physical or chemical immobilization approaches, vaterite can be grown directly on solid surfaces using various (bio)molecules, including synthetic polymers, biomacromolecules such as proteins and peptides, carbohydrates, fibers, extracellular matrix components, and even biological cells such as bacteria. Herein, the progress on the modification of solid surfaces by vaterite CaCO3 crystals is reviewed, focusing on main findings and the mechanism of vaterite growth initiated by various substances mentioned above, as well as the discussion of the applications of such modified surfaces.
Collapse
Affiliation(s)
- Bushra Zafar
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (B.Z.); (J.C.); (J.C.)
| | - Jack Campbell
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (B.Z.); (J.C.); (J.C.)
| | - Jake Cooke
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (B.Z.); (J.C.); (J.C.)
| | - Andre G. Skirtach
- Nanotechnology Laboratory, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Dmitry Volodkin
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (B.Z.); (J.C.); (J.C.)
| |
Collapse
|
20
|
Microfluidic Synthesis and Analysis of Bioinspired Structures Based on CaCO 3 for Potential Applications as Drug Delivery Carriers. Pharmaceutics 2022; 14:pharmaceutics14010139. [PMID: 35057035 PMCID: PMC8777975 DOI: 10.3390/pharmaceutics14010139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
Naturally inspired biomaterials such as calcium carbonate, produced in biological systems under specific conditions, exhibit superior properties that are difficult to reproduce in a laboratory. The emergence of microfluidic technologies provides an effective approach for the synthesis of such materials, which increases the interest of researchers in the creation and investigation of crystallization processes. Besides accurate tuning of the synthesis parameters, microfluidic technologies also enable an analysis of the process in situ with a range of methods. Understanding the mechanisms behind the microfluidic biomineralization processes could open a venue for new strategies in the development of advanced materials. In this review, we summarize recent advances in microfluidic synthesis and analysis of CaCO3-based bioinspired nano- and microparticles as well as core-shell structures on its basis. Particular attention is given to the application of calcium carbonate particles for drug delivery.
Collapse
|
21
|
Using saponified olive oil to make cost effective calcium carbonate particles superhydrophobic. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2021.103399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Wang D, Kim J, Park CB. Lignin-Induced CaCO 3 Vaterite Structure for Biocatalytic Artificial Photosynthesis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58522-58531. [PMID: 34851105 DOI: 10.1021/acsami.1c16661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The vaterite phase of CaCO3 exhibits unique characteristics, such as high porosity, surface area, dispersivity, and low specific gravity, but it is the most unstable polymorph. Here, we report lignin-induced stable vaterite as a support matrix for integrated artificial photosynthesis through the encapsulation of key active components such as the photosensitizer (eosin y, EY) and redox enzyme (l-glutamate dehydrogenase, GDH). The lignin-vaterite/EY/GDH photobiocatalytic platform enabled the regeneration of the reduced nicotinamide cofactor under visible light and facilitated the rapid conversion of α-ketoglutarate into l-glutamate (initial conversion rate, 0.41 mM h-1; turnover frequency, 1060 h-1; and turnover number, 39,750). The lignin-induced vaterite structure allowed for long-term protection and recycling of the active components while facilitating the photosynthesis reaction due to the redox-active lignin. Succession of stability tests demonstrated a significant improvement of GDH's robustness in the lignin-vaterite structure against harsh environments. This work provides a simple approach for solar-to-chemical conversion using a sustainable, integrated light-harvesting system.
Collapse
Affiliation(s)
- Ding Wang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| |
Collapse
|
23
|
Vaneev A, Tikhomirova V, Chesnokova N, Popova E, Beznos O, Kost O, Klyachko N. Nanotechnology for Topical Drug Delivery to the Anterior Segment of the Eye. Int J Mol Sci 2021; 22:12368. [PMID: 34830247 PMCID: PMC8621153 DOI: 10.3390/ijms222212368] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023] Open
Abstract
Topical drug delivery is one of the most challenging aspects of eye therapy. Eye drops are the most prevalent drug form, especially for widely distributed anterior segment eye diseases (cataracts, glaucoma, dry eye syndrome, inflammatory diseases, etc.), because they are convenient and easy to apply by patients. However, conventional drug formulations are usually characterized by short retention time in the tear film, insufficient contact with epithelium, fast elimination, and difficulties in overcoming ocular tissue barriers. Not more than 5% of the total drug dose administered in eye drops reaches the interior ocular tissues. To overcome the ocular drug delivery barriers and improve drug bioavailability, various conventional and novel drug delivery systems have been developed. Among these, nanosize carriers are the most attractive. The review is focused on the different drug carriers, such as synthetic and natural polymers, as well as inorganic carriers, with special attention to nanoparticles and nanomicelles. Studies in vitro and in vivo have demonstrated that new formulations could help to improve the bioavailability of the drugs, provide sustained drug release, enhance and prolong their therapeutic action. Promising results were obtained with drug-loaded nanoparticles included in in situ gel.
Collapse
Affiliation(s)
- Alexander Vaneev
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119991 Moscow, Russia
| | - Victoria Tikhomirova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
| | - Natalia Chesnokova
- Department of Pathophysiology and Biochemistry, Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia; (N.C.); (O.B.)
| | - Ekaterina Popova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
| | - Olga Beznos
- Department of Pathophysiology and Biochemistry, Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia; (N.C.); (O.B.)
| | - Olga Kost
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
| | - Natalia Klyachko
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Research Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia
| |
Collapse
|
24
|
Vikulina AS, Campbell J. Biopolymer-Based Multilayer Capsules and Beads Made via Templating: Advantages, Hurdles and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2502. [PMID: 34684943 PMCID: PMC8537085 DOI: 10.3390/nano11102502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
One of the undeniable trends in modern bioengineering and nanotechnology is the use of various biomolecules, primarily of a polymeric nature, for the design and formulation of novel functional materials for controlled and targeted drug delivery, bioimaging and theranostics, tissue engineering, and other bioapplications. Biocompatibility, biodegradability, the possibility of replicating natural cellular microenvironments, and the minimal toxicity typical of biogenic polymers are features that have secured a growing interest in them as the building blocks for biomaterials of the fourth generation. Many recent studies showed the promise of the hard-templating approach for the fabrication of nano- and microparticles utilizing biopolymers. This review covers these studies, bringing together up-to-date knowledge on biopolymer-based multilayer capsules and beads, critically assessing the progress made in this field of research, and outlining the current challenges and perspectives of these architectures. According to the classification of the templates, the review sequentially considers biopolymer structures templated on non-porous particles, porous particles, and crystal drugs. Opportunities for the functionalization of biopolymer-based capsules to tailor them toward specific bioapplications is highlighted in a separate section.
Collapse
Affiliation(s)
- Anna S. Vikulina
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg, 1, 14476 Potsdam, Germany
- Bavarian Polymer Institute, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Dr.-Mack-Straße, 77, 90762 Fürth, Germany
| | - Jack Campbell
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| |
Collapse
|
25
|
Song X, Weng C, Cao Y, Kong H, Luo X. Facile synthesis of pure vaterite using steamed ammonia liquid waste and ammonium carbonate without additives via simple mechanical mixing. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.03.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Muslimov AR, Antuganov D, Tarakanchikova YV, Karpov TE, Zhukov MV, Zyuzin MV, Timin AS. An investigation of calcium carbonate core-shell particles for incorporation of 225Ac and sequester of daughter radionuclides: in vitro and in vivo studies. J Control Release 2021; 330:726-737. [DOI: 10.1016/j.jconrel.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/04/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
|
27
|
Chernozem RV, Surmeneva MA, Abalymov AA, Parakhonskiy BV, Rigole P, Coenye T, Surmenev RA, Skirtach AG. Piezoelectric hybrid scaffolds mineralized with calcium carbonate for tissue engineering: Analysis of local enzyme and small-molecule drug delivery, cell response and antibacterial performance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111909. [PMID: 33641905 DOI: 10.1016/j.msec.2021.111909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
As the next generation of materials for bone reconstruction, we propose a multifunctional bioactive platform based on biodegradable piezoelectric polyhydroxybutyrate (PHB) fibrous scaffolds for tissue engineering with drug delivery capabilities. To use the entire surface area for local drug delivery, the scaffold surface was uniformly biomineralized with biocompatible calcium carbonate (CaCO3) microparticles in a vaterite-calcite polymorph mixture. CaCO3-coated PHB scaffolds demonstrated a similar elastic modulus compared to that of pristine one. However, reduced tensile strength and failure strain of 31% and 67% were observed, respectively. The biomimetic immobilization of enzyme alkaline phosphatase (ALP) and glycopeptide antibiotic vancomycin (VCM) preserved the CaCO3-mineralized PHB scaffold morphology and resulted in partial recrystallization of vaterite to calcite. In comparison to pristine scaffolds, the loading efficiency of CaCO3-mineralized PHB scaffolds was 4.6 and 3.5 times higher for VCM and ALP, respectively. Despite the increased number of cells incubated with ALP-immobilized scaffolds (up to 61% for non-mineralized and up to 36% for mineralized), the CaCO3-mineralized PHB scaffolds showed cell adhesion; those containing both VCM and ALP molecules had the highest cell density. Importantly, no toxicity for pre-osteoblastic cells was detected, even in the VCM-immobilized scaffolds. In contrast with antibiotic-free scaffolds, the VCM-immobilized ones had a pronounced antibacterial effect against gram-positive bacteria Staphylococcus aureus. Thus, piezoelectric hybrid PHB scaffolds modified with CaCO3 layers and immobilized VCM/ALP are promising materials in bone tissue engineering.
Collapse
Affiliation(s)
- Roman V Chernozem
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Maria A Surmeneva
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Anatolii A Abalymov
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; Department of Nano- and Biomedical Technologies, Saratov State University, Saratov 410012, Russia
| | | | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Roman A Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia.
| | - Andre G Skirtach
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
28
|
Campbell J, Abnett J, Kastania G, Volodkin D, Vikulina AS. Which Biopolymers Are Better for the Fabrication of Multilayer Capsules? A Comparative Study Using Vaterite CaCO 3 as Templates. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3259-3269. [PMID: 33410679 PMCID: PMC7880531 DOI: 10.1021/acsami.0c21194] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The polymer layer-by-layer assembly is accounted among the most attractive approaches for the design of advanced drug delivery platforms and biomimetic materials in 2D and 3D. The multilayer capsules can be made of synthetic or biologically relevant (e.g., natural) polymers. The biopolymers are advantageous for bioapplications; however, the design of such "biocapsules" is more challengeable due to intrinsic complexity and lability of biopolymers. Until now, there are no systematic studies that report the formation mechanism for multilayer biocapsules templated upon CaCO3 crystals. This work evaluates the structure-property relationship for 16 types of capsules made of different biopolymers and proposes the capsule formation mechanism. The capsules have been fabricated upon mesoporous cores of vaterite CaCO3, which served as a sacrificial template. Stable capsules of polycations poly-l-lysine or protamine and four different polyanions were successfully formed. However, capsules made using the polycation collagen and dextran amine underwent dissolution. Formation of the capsules has been correlated with the stability of the respective polyelectrolyte complexes at increased ionic strength. All formed capsules shrink upon core dissolution and the degree of shrinkage increased in the series of polyanions: heparin sulfate < dextran sulfate < chondroitin sulfate < hyaluronic acid. The same trend is observed for capsule adhesiveness to the glass surface, which correlates with the decrease in polymer charge density. The biopolymer length and charge density govern the capsule stability and internal structure; all formed biocapsules are of a matrix-type, other words are microgels. These findings can be translated to other biopolymers to predict biocapsule properties.
Collapse
Affiliation(s)
- Jack Campbell
- Department
of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, U.K.
| | - Jordan Abnett
- Department
of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, U.K.
| | - Georgia Kastania
- Department
of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, U.K.
| | - Dmitry Volodkin
- Department
of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, U.K.
- . Phone: +44-115-848-3140
| | - Anna S. Vikulina
- Branch
Bioanalytics and Bioprocesses, Fraunhofer
Institute for Cell Therapy and Immunology, Am Mühlenberg 13-Golm, 14476 Potsdam, Germany
- . Phone: +49-331 58187-122
| |
Collapse
|
29
|
Ferreira AM, Vikulina AS, Volodkin D. CaCO 3 crystals as versatile carriers for controlled delivery of antimicrobials. J Control Release 2020; 328:470-489. [PMID: 32896611 DOI: 10.1016/j.jconrel.2020.08.061] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
CaCO3 crystals have been known for a long time as naturally derived and simply fabricated nano(micro)-sized materials able to effectively host and release various molecules. This review summarises the use of CaCO3 crystals as versatile carriers to host, protect and release antimicrobials, offering a strong tool to tackle antimicrobial resistance, a serious global health problem. The main methods for the synthesis of CaCO3 crystals with different properties, as well as the approaches for the loading and release of antimicrobials are presented. Finally, prospects to utilize the crystals in order to improve the therapeutic outcome and combat antimicrobial resistance are highlighted. Ultimately, this review intends to provide an in-depth overview of the application of CaCO3 crystals for the smart and controlled delivery of antimicrobial agents and aims at identifying the advantages and drawbacks as well as guiding future works, research directions and industrial applications.
Collapse
Affiliation(s)
- Ana M Ferreira
- School of Science and Technology, Department of Chemistry and Forensics, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Anna S Vikulina
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muhlenberg 13, Potsdam, Golm 14476, Germany
| | - Dmitry Volodkin
- School of Science and Technology, Department of Chemistry and Forensics, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| |
Collapse
|
30
|
Kastania G, Campbell J, Mitford J, Volodkin D. Polyelectrolyte Multilayer Capsule (PEMC)-Based Scaffolds for Tissue Engineering. MICROMACHINES 2020; 11:E797. [PMID: 32842692 PMCID: PMC7570195 DOI: 10.3390/mi11090797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022]
Abstract
Tissue engineering (TE) is a highly multidisciplinary field that focuses on novel regenerative treatments and seeks to tackle problems relating to tissue growth both in vitro and in vivo. These issues currently involve the replacement and regeneration of defective tissues, as well as drug testing and other related bioapplications. The key approach in TE is to employ artificial structures (scaffolds) to support tissue development; these constructs should be capable of hosting, protecting and releasing bioactives that guide cellular behaviour. A straightforward approach to integrating bioactives into the scaffolds is discussed utilising polyelectrolyte multilayer capsules (PEMCs). Herein, this review illustrates the recent progress in the use of CaCO3 vaterite-templated PEMCs for the fabrication of functional scaffolds for TE applications, including bone TE as one of the main targets of PEMCs. Approaches for PEMC integration into scaffolds is addressed, taking into account the formulation, advantages, and disadvantages of such PEMCs, together with future perspectives of such architectures.
Collapse
Affiliation(s)
| | | | | | - Dmitry Volodkin
- School of Science and Technology, Department of Chemistry and Forensics, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK; (G.K.); (J.C.); (J.M.)
| |
Collapse
|
31
|
Encapsulation of Low-Molecular-Weight Drugs into Polymer Multilayer Capsules Templated on Vaterite CaCO 3 Crystals. MICROMACHINES 2020; 11:mi11080717. [PMID: 32722123 PMCID: PMC7463826 DOI: 10.3390/mi11080717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022]
Abstract
Polyelectrolyte multilayer capsules (PEMCs) templated onto biocompatible and easily degradable vaterite CaCO3 crystals via the layer-by-layer (LbL) polymer deposition process have served as multifunctional and tailor-made vehicles for advanced drug delivery. Since the last two decades, the PEMCs were utilized for effective encapsulation and controlled release of bioactive macromolecules (proteins, nucleic acids, etc.). However, their capacity to host low-molecular-weight (LMW) drugs (<1–2 kDa) has been demonstrated rather recently due to a limited retention ability of multilayers to small molecules. The safe and controlled delivery of LMW drugs plays a vital role for the treatment of cancers and other diseases, and, due to their tunable and inherent properties, PEMCs have shown to be good candidates for smart drug delivery. Herein, we summarize recent progress on the encapsulation of LMW drugs into PEMCs templated onto vaterite CaCO3 crystals. The drug loading and release mechanisms, advantages and limitations of the PEMCs as LMW drug carriers, as well as bio-applications of drug-laden capsules are discussed based upon the recent literature findings.
Collapse
|
32
|
Van der Meeren L, Li J, Konrad M, Skirtach AG, Volodkin D, Parakhonskiy BV. Temperature Window for Encapsulation of an Enzyme into Thermally Shrunk, CaCO
3
Templated Polyelectrolyte Multilayer Capsules. Macromol Biosci 2020; 20:e2000081. [DOI: 10.1002/mabi.202000081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/26/2020] [Indexed: 12/16/2022]
Affiliation(s)
| | - Jie Li
- Department of BiotechnologyGhent University Ghent 9000 Belgium
| | - Manfred Konrad
- Max Planck Institute for Biophysical Chemistry Göttingen 37077 Germany
| | | | - Dmitry Volodkin
- School of Science and TechnologyNottingham Trent University Nottingham NG11 8NS UK
| | | |
Collapse
|
33
|
Abalymov A, Van Poelvoorde L, Atkin V, Skirtach AG, Konrad M, Parakhonskiy B. Alkaline Phosphatase Delivery System Based on Calcium Carbonate Carriers for Acceleration of Ossification. ACS APPLIED BIO MATERIALS 2020; 3:2986-2996. [DOI: 10.1021/acsabm.0c00053] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Anatolii Abalymov
- Department of Biotechnology, University of Ghent, 9000 Ghent, Belgium
- Department of Nano- and Biomedical Technologies, Saratov State University, 410012 Saratov, Russia
| | | | - Vsevolod Atkin
- Department of Nano- and Biomedical Technologies, Saratov State University, 410012 Saratov, Russia
| | - Andre G. Skirtach
- Department of Biotechnology, University of Ghent, 9000 Ghent, Belgium
| | - Manfred Konrad
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | |
Collapse
|
34
|
Qi H, Yang L, Shan P, Zhu S, Ding H, Xue S, Wang Y, Yuan X, Li P. The Stability Maintenance of Protein Drugs in Organic Coatings Based on Nanogels. Pharmaceutics 2020; 12:E115. [PMID: 32024083 PMCID: PMC7076513 DOI: 10.3390/pharmaceutics12020115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/30/2022] Open
Abstract
Protein drugs are often loaded on scaffolds with organic coatings to realize a spatiotemporal controlled release. The stability or activity of protein drugs, however, is largely affected by the organic coating, particularly with organic solvents, which can dramatically reduce their delivery efficiency and limit their application scope. In spite of this, little attention has been paid to maintaining the stability of protein drugs in organic coatings, to date. Here, we used catalase as a model protein drug to exploit a kind of chemically cross-linked nanogel that can efficiently encapsulate protein drugs. The polymeric shells of nanogels can maintain the surface hydration shell to endow them with a protein protection ability against organic solvents. Furthermore, the protection efficiency of nanogels is higher when the polymeric shell is more hydrophilic. In addition, nanogels can be dispersed in polylactic acid (PLA) solution and subsequently coated on scaffolds to load catalase with high activity. To the best of our knowledge, this is the first use of hydrophilic nanogels as a protection niche to load protein drugs on scaffolds through an organic coating, potentially inspiring researchers to exploit new methods for protein drug loading.
Collapse
Affiliation(s)
- Hongzhao Qi
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China; (P.S.); (S.Z.); (H.D.); (S.X.); (Y.W.); (P.L.)
| | - Lijun Yang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
| | - Peipei Shan
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China; (P.S.); (S.Z.); (H.D.); (S.X.); (Y.W.); (P.L.)
| | - Sujie Zhu
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China; (P.S.); (S.Z.); (H.D.); (S.X.); (Y.W.); (P.L.)
| | - Han Ding
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China; (P.S.); (S.Z.); (H.D.); (S.X.); (Y.W.); (P.L.)
| | - Sheng Xue
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China; (P.S.); (S.Z.); (H.D.); (S.X.); (Y.W.); (P.L.)
| | - Yin Wang
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China; (P.S.); (S.Z.); (H.D.); (S.X.); (Y.W.); (P.L.)
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China;
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China; (P.S.); (S.Z.); (H.D.); (S.X.); (Y.W.); (P.L.)
| |
Collapse
|
35
|
Feoktistova NA, Balabushevich NG, Skirtach AG, Volodkin D, Vikulina AS. Inter-protein interactions govern protein loading into porous vaterite CaCO3 crystals. Phys Chem Chem Phys 2020; 22:9713-9722. [DOI: 10.1039/d0cp00404a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Loading of therapeutic proteins into mesoporous vaterite crystals is driven by inter-protein interactions in bulk solution and inside the crystals.
Collapse
Affiliation(s)
- Natalia A. Feoktistova
- Department of Chemistry
- Lomonosov Moscow State University
- 119991 Moscow
- Russia
- Fraunhofer Institute for Cell Therapy and Immunology
| | | | - Andre G. Skirtach
- Department of Biotechnology & NB-Photonics
- University of Ghent
- 9000 Gent
- Belgium
| | - Dmitry Volodkin
- Department of Chemistry
- Lomonosov Moscow State University
- 119991 Moscow
- Russia
- School of Science and Technology
| | - Anna S. Vikulina
- Fraunhofer Institute for Cell Therapy and Immunology
- Branch Bioanalytics and Bioprocesses
- 14476 Potsdam-Golm
- Germany
| |
Collapse
|
36
|
Vikulina A, Voronin D, Fakhrullin R, Vinokurov V, Volodkin D. Naturally derived nano- and micro-drug delivery vehicles: halloysite, vaterite and nanocellulose. NEW J CHEM 2020. [DOI: 10.1039/c9nj06470b] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We discuss prospects for halloysite nanotubes, vaterite crystals and nanocellulose to enter the market of biomaterials for drug delivery and tissue engineering, and their potential for economically viable production from abundant natural sources.
Collapse
Affiliation(s)
- Anna Vikulina
- Fraunhofer Institute for Cell Therapy and Immunology
- Branch Bioanalytics and Bioprocesses
- 14476 Potsdam-Golm
- Germany
| | - Denis Voronin
- Gubkin Russian State University of Oil and Gas
- Department of Physical Chemistry
- Moscow, 119991
- Russian Federation
- Saratov State University
| | - Rawil Fakhrullin
- Gubkin Russian State University of Oil and Gas
- Department of Physical Chemistry
- Moscow, 119991
- Russian Federation
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kreml uramı 18
| | - Vladimir Vinokurov
- Gubkin Russian State University of Oil and Gas
- Department of Physical Chemistry
- Moscow, 119991
- Russian Federation
| | - Dmitry Volodkin
- Gubkin Russian State University of Oil and Gas
- Department of Physical Chemistry
- Moscow, 119991
- Russian Federation
- School of Science and Technology
| |
Collapse
|
37
|
Binevski PV, Balabushevich NG, Uvarova VI, Vikulina AS, Volodkin D. Bio-friendly encapsulation of superoxide dismutase into vaterite CaCO3 crystals. Enzyme activity, release mechanism, and perspectives for ophthalmology. Colloids Surf B Biointerfaces 2019; 181:437-449. [DOI: 10.1016/j.colsurfb.2019.05.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 12/22/2022]
|
38
|
Vikulina AS, Skirtach AG, Volodkin D. Hybrids of Polymer Multilayers, Lipids, and Nanoparticles: Mimicking the Cellular Microenvironment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8565-8573. [PMID: 30726090 DOI: 10.1021/acs.langmuir.8b04328] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here we address research directions and trends developed following novel concepts in 2D/3D self-assembled polymer structures established in the department led by Helmuth Möhwald. These functional structures made of hybrids of polymer multilayers, lipids, and nanoparticles stimulated research in the design of the cellular microenvironment. The composition of the extracellular matrix (ECM) and dynamics of biofactor presentation in the ECM can be recapitulated by the hybrids. Proteins serve as models for protein-based biofactors such as growth factors, cytokines, hormones, and so forth. A fundamental understanding of complex intermolecular interactions and approaches developed for the externally IR-light-triggered release offers a powerful tool for controlling the biofactor presentation. Pure protein beads made via a mild templating on vaterite CaCO3 crystals can mimic cellular organelles in terms of the compartmentalization of active proteins. We believe that an integration of the approaches developed and described here offers a strong tool for engineering and mimicking both extra- and intracellular microenvironments.
Collapse
Affiliation(s)
- A S Vikulina
- Branch Bioanalytics and Bioprocesses, Department Cellular Biotechnology & Biochips , Fraunhofer Institute for Cell Therapy and Immunology , Am Mühlenberg 13 , 14476 Potsdam-Golm , Germany
| | - A G Skirtach
- NanoBioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering , Ghent University , 9000 Ghent , Belgium
| | - D Volodkin
- Department of Chemistry and Forensics, School of Science & Technology , Nottingham Trent University , Clifton Lane , Nottingham NG11 8NS , United Kingdom
| |
Collapse
|
39
|
Sergeeva A, Vikulina AS, Volodkin D. Porous Alginate Scaffolds Assembled Using Vaterite CaCO 3 Crystals. MICROMACHINES 2019; 10:E357. [PMID: 31146472 PMCID: PMC6630714 DOI: 10.3390/mi10060357] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/11/2022]
Abstract
Formulation of multifunctional biopolymer-based scaffolds is one of the major focuses in modern tissue engineering and regenerative medicine. Besides proper mechanical/chemical properties, an ideal scaffold should: (i) possess a well-tuned porous internal structure for cell seeding/growth and (ii) host bioactive molecules to be protected against biodegradation and presented to cells when required. Alginate hydrogels were extensively developed to serve as scaffolds, and recent advances in the hydrogel formulation demonstrate their applicability as "ideal" soft scaffolds. This review focuses on advanced porous alginate scaffolds (PAS) fabricated using hard templating on vaterite CaCO3 crystals. These novel tailor-made soft structures can be prepared at physiologically relevant conditions offering a high level of control over their internal structure and high performance for loading/release of bioactive macromolecules. The novel approach to assemble PAS is compared with traditional methods used for fabrication of porous alginate hydrogels. Finally, future perspectives and applications of PAS for advanced cell culture, tissue engineering, and drug testing are discussed.
Collapse
Affiliation(s)
- Alena Sergeeva
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Mühlenberg 13, 14476 Potsdam-Golm, Germany.
| | - Anna S Vikulina
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Mühlenberg 13, 14476 Potsdam-Golm, Germany.
- School of Science and Technology, Nottingham Trent University, Clifton Lane,Nottingham NG11 8NS, UK.
| | - Dmitry Volodkin
- School of Science and Technology, Nottingham Trent University, Clifton Lane,Nottingham NG11 8NS, UK.
| |
Collapse
|
40
|
Saveleva MS, Eftekhari K, Abalymov A, Douglas TEL, Volodkin D, Parakhonskiy BV, Skirtach AG. Hierarchy of Hybrid Materials-The Place of Inorganics- in-Organics in it, Their Composition and Applications. Front Chem 2019; 7:179. [PMID: 31019908 PMCID: PMC6459030 DOI: 10.3389/fchem.2019.00179] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
Hybrid materials, or hybrids incorporating both organic and inorganic constituents, are emerging as a very potent and promising class of materials due to the diverse, but complementary nature of the properties inherent of these different classes of materials. The complementarity leads to a perfect synergy of properties of desired material and eventually an end-product. The diversity of resultant properties and materials used in the construction of hybrids, leads to a very broad range of application areas generated by engaging very different research communities. We provide here a general classification of hybrid materials, wherein organics-in-inorganics (inorganic materials modified by organic moieties) are distinguished from inorganics-in-organics (organic materials or matrices modified by inorganic constituents). In the former area, the surface functionalization of colloids is distinguished as a stand-alone sub-area. The latter area-functionalization of organic materials by inorganic additives-is the focus of the current review. Inorganic constituents, often in the form of small particles or structures, are made of minerals, clays, semiconductors, metals, carbons, and ceramics. They are shown to be incorporated into organic matrices, which can be distinguished as two classes: chemical and biological. Chemical organic matrices include coatings, vehicles and capsules assembled into: hydrogels, layer-by-layer assembly, polymer brushes, block co-polymers and other assemblies. Biological organic matrices encompass bio-molecules (lipids, polysaccharides, proteins and enzymes, and nucleic acids) as well as higher level organisms: cells, bacteria, and microorganisms. In addition to providing details of the above classification and analysis of the composition of hybrids, we also highlight some antagonistic yin-&-yang properties of organic and inorganic materials, review applications and provide an outlook to emerging trends.
Collapse
Affiliation(s)
- Mariia S. Saveleva
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Remote Controlled Theranostic Systems Lab, Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
| | - Karaneh Eftekhari
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anatolii Abalymov
- Remote Controlled Theranostic Systems Lab, Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
| | - Timothy E. L. Douglas
- Engineering Department and Materials Science Institute (MSI), Lancaster University, Lancaster, United Kingdom
| | - Dmitry Volodkin
- School of Science & Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Bogdan V. Parakhonskiy
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Andre G. Skirtach
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
41
|
Mucin adsorption on vaterite CaCO 3 microcrystals for the prediction of mucoadhesive properties. J Colloid Interface Sci 2019; 545:330-339. [PMID: 30901672 DOI: 10.1016/j.jcis.2019.03.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023]
Abstract
Porous vaterite CaCO3 crystals are widely used as containers for drug loading and as sacrificial templates to assemble polymer-based nano- and micro-particles at mild conditions. Special attention is paid nowadays to mucosal delivery where the glycoprotein mucin plays a crucial role as a main component of a mucous. In this work mucoadhesive properties of vaterite crystals have been tested by investigation of mucin binding to the crystals as a function of (i) time, (ii) glycoprotein concentration, (iii) adsorption conditions and (iv) degree of mucin desialization. Mucin adsorption follows Bangham equation indicating that diffusion into crystal pores is the rate-limiting step. Mucin strongly binds to the crystals (ΔG = -35 ± 4 kJ mol-1) via electrostatic and hydrophobic interactions forming a gel and thus giving the tremendous mucin mass content in the crystals of up to 16%. Despite strong intermolecular mucin-mucin interactions, pure mucin spheres formed after crystal dissolution are unstable. However, introduction of protamine, actively used for mucosal delivery, makes the spheres stable via additional electrostatic bonding. The results of this work indicate that the vaterite crystals are extremely promising carriers for mucosal drug delivery and for development of test-systems for the analysis of the mucoadhesion.
Collapse
|
42
|
Jeannot L, Bell M, Ashwell R, Volodkin D, Vikulina AS. Internal Structure of Matrix-Type Multilayer Capsules Templated on Porous Vaterite CaCO₃ Crystals as Probed by Staining with a Fluorescence Dye. MICROMACHINES 2018; 9:E547. [PMID: 30715046 PMCID: PMC6265917 DOI: 10.3390/mi9110547] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/24/2022]
Abstract
Multilayer capsules templated on decomposable vaterite CaCO₃ crystals are widely used as vehicles for drug delivery. The capsule represents typically not a hollow but matrix-like structure due to polymer diffusion into the porous crystals during multilayer deposition. The capsule formation mechanism is not well-studied but its understanding is crucial to tune capsule structure for a proper drug release performance. This study proposes new approach to noninvasively probe and adjust internal capsule structure. Polymer capsules made of poly(styrene-sulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDAD) have been stained with fluorescence dye rhodamine 6G. Physical-chemical aspects of intermolecular interactions required to validate the approach and adjust capsule structure are addressed. The capsules consist of a defined shell (typically 0.5⁻2 µm) and an internal matrix of PSS-PDAD complex (typically 10⁻40% of a total capsule volume). An increase of ionic strength and polymer deposition time leads to the thickening of the capsule shell and formation of a denser internal matrix, respectively. This is explained by effects of a polymer conformation and limitations in polymer diffusion through the crystal pores. We believe that the design of the capsules with desired internal structure will allow achieving effective encapsulation and controlled/programmed release of bioactives for advanced drug delivery applications.
Collapse
Affiliation(s)
- Lucas Jeannot
- Robert Schuman University Institute of Technology (IUT Robert Schuman), University of Strasbourg, 72 Route Du Rhin, 67411 Illkirch CEDEX, France.
| | - Michael Bell
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| | - Ryan Ashwell
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| | - Dmitry Volodkin
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia.
| | - Anna S Vikulina
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
- Department Cellular Biotechnology & Biochips, Branch Bioanalytics and Bioprocesses (Fraunhofer IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology, Am Mühlenberg 13, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
43
|
Self-Assembled Mucin-Containing Microcarriers via Hard Templating on CaCO₃ Crystals. MICROMACHINES 2018; 9:mi9060307. [PMID: 30424240 PMCID: PMC6187553 DOI: 10.3390/mi9060307] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022]
Abstract
Porous vaterite crystals of CaCO3 are extensively used for the fabrication of self-assembled polymer-based microparticles (capsules, beads, etc.) utilized for drug delivery and controlled release. The nature of the polymer used plays a crucial role and discovery of new perspective biopolymers is essential to assemble microparticles with desired characteristics, such as biocompatibility, drug loading efficiency/capacity, release rate, and stability. Glycoprotein mucin is tested here as a good candidate to assemble the microparticles because of high charge due to sialic acids, mucoadhesive properties, and a tendency to self-assemble, forming gels. Mucin loading into the crystals via co-synthesis is twice as effective as via adsorption into preformed crystals. Desialylated mucin has weaker binding to the crystals most probably due to electrostatic interactions between sialic acids and calcium ions on the crystal surface. Improved loading of low-molecular-weight inhibitor aprotinin into the mucin-containing crystals is demonstrated. Multilayer capsules (mucin/protamine)3 have been made by the layer-by-layer self-assembly. Interestingly, the deposition of single mucin layers (mucin/water)3 has also been proven, however, the capsules were unstable, most probably due to additional (to hydrogen bonding) electrostatic interactions in the case of the two polymers used. Finally, approaches to load biologically-active compounds (BACs) into the mucin-containing microparticles are discussed.
Collapse
|