1
|
An RF, Wu KT, Pan J, Zhang WJ, Qin HY, Li XR, Liu W, Huang XF. Design, synthesis and cytotoxic activity of novel lipophilic cationic derivatives of diosgenin and sarsasapogenin. Bioorg Med Chem Lett 2025; 119:130094. [PMID: 39778752 DOI: 10.1016/j.bmcl.2025.130094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/27/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Novel lipophilic cationic derivatives including quaternary ammonium salt and triphenylphosphine series were designed and synthesized using diosgenin (1) and sarsasapogenin (2) as substrates to improve the cytotoxicity and selectivity. Most of the derivatives showed higher cytotoxicity against all cancer cell lines tested, compound 13 exhibited the most superior activity against A549 cells with an IC50 value of 0.95 μM, which was 34-fold of diosgenin. Preliminary cellular mechanism studies elucidated that compound 13 might arrest cell cycle at G0/G1 phase, trigger apoptosis via up-regulating the expression of Bax, down-regulating the expression of Bcl-2 and caspase-3, and induce an increase in the generation of intracellular reactive oxygen species (ROS) in A549 cells. In addition, molecular docking analysis revealed that compound 13 could occupy the active site of p38α-MAPK well and interact to the surrounding amino acids by salt bridge and conjugation. These results suggested that compound 13 had the potential to serve as an antitumor lead agent, probably exert antitumor effect through mitochondrial pathway and p38α MAPK pathway.
Collapse
Affiliation(s)
- Ren-Feng An
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 China
| | - Kai-Tian Wu
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 China
| | - Jie Pan
- Department of Pharmacology, Nanjing Medical University, Nanjing 210029 China
| | - Wen-Jin Zhang
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 China
| | - Hui-Ying Qin
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 China
| | - Xiao-Rui Li
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 China
| | - Wei Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing 210029 China.
| | - Xue-Feng Huang
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 China.
| |
Collapse
|
2
|
Puerta A, González-Bakker A, Romanos E, Domínguez IA, Martínez-Montiel M, Merino-Montiel P, Herrera RP, Gimeno MC, Fernández-Bolaños JG, López Ó, Padrón JM. Multimodal antiproliferative effects of oleanolic acid mitocans: In vitro and in vivo studies. Biochem Pharmacol 2025; 234:116807. [PMID: 39978689 DOI: 10.1016/j.bcp.2025.116807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Mitochondria-targeting drugs (mitocans) based on organic cations are emerging as powerful and selective cancer therapeutics. In this study, we have evaluated a novel series of oleanolic acid-derived mitocans, revealing nanomolar-range antiproliferative effects against human solid tumor cells. Continuous live-cell imaging revealed extensive cytoplasmic vacuolation, while mechanistic studies identified paraptosis as the dominant form of cell death. Remarkably, in vivo experiments demonstrated significant tumor growth inhibition in mice, with no detectable toxicity at therapeutic doses. These findings highlight the potential of oleanolic acid-derived mitocans as promising candidates for cancer therapy.
Collapse
Affiliation(s)
- Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, Apartado 456, E-38200 La Laguna, Spain
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, Apartado 456, E-38200 La Laguna, Spain
| | - Eduardo Romanos
- Servicio de Imagen Médica y Fenotipado, Instituto Aragonés de Ciencias de la Salud, Centro de Investigación Biomédica de Aragón (CIBA), Avda. San Juan Bosco, 13, Planta D, E-50009 Zaragoza, Spain; Laboratorio de Organocatálisis Asimétrica, Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain; Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain
| | - Inmaculada Aguilar Domínguez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Mónica Martínez-Montiel
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico
| | - Raquel P Herrera
- Laboratorio de Organocatálisis Asimétrica, Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain.
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain
| | - José G Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain.
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, Apartado 456, E-38200 La Laguna, Spain.
| |
Collapse
|
3
|
Kooshan Z, Srinivasan S, Janjua TI, Popat A, Batra J. Lactoferrin conjugated radicicol nanoparticles enhanced drug delivery and cytotoxicity in prostate cancer cells. Eur J Pharmacol 2025; 991:177300. [PMID: 39870236 DOI: 10.1016/j.ejphar.2025.177300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Pyruvate dehydrogenase kinase-1 (PDK1) plays a crucial role in cancer cell metabolism by regulating the glycolytic pathway. Although, inhibitors targeting PDK1 have been effective in inhibiting glycolysis in multiple cancers, their lack of selectivity leading to off-target effects limit their therapeutic benefit. Herein, we investigated the inhibitory potential of six PDK1 inhibitors on cellular proliferation, migration, and invasion of androgen-sensitive LNCaP and androgen-negative PC-3 prostate cancer cells. Of the six PDK1 inhibitors, radicicol and dicumarol significantly inhibited cellular proliferation and exhibited lower metabolic activity in both LNCaP and PC-3 metastatic prostate cancer cells. Radicicol was highly effective at lower concentration. Moreover, radicicol significantly inhibited migration and invasion in PC-3 cells. We then developed a lactoferrin nanoparticle (LF-NP) encapsulated with Radicicol (Ra-LF-NP), using a rotary evaporation method. Spheroid assays confirmed the higher inhibitory potential of Ra-LF-NP with a reduction in spheroid area by 80%, and invasiveness compared to radicicol alone. Lactoferrin receptors are overexpressed on the surface of many cancer cells, including prostate cancer. Conjugating radicicol with lactoferrin nanoparticles, potentially enhanced the specific uptake of the drug by prostate cancer cells while minimizing the off-target effects on healthy cells. This targeted therapy approach could lead to improved treatment outcomes and reduced side effects. Our study demonstrated the potential of radicicol delivery by lactoferrin-conjugated nanoparticle as an efficient drug delivery strategy for prostate cancer treatment.
Collapse
Affiliation(s)
- Zeinab Kooshan
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Translational Research Institute, Queensland University of Technology, Brisbane, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Translational Research Institute, Queensland University of Technology, Brisbane, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
4
|
Burčík D, Macko J, Podrojková N, Demeterová J, Stano M, Oriňak A. Role of Cell Adhesion in Cancer Metastasis Formation: A Review. ACS OMEGA 2025; 10:5193-5213. [PMID: 39989825 PMCID: PMC11840620 DOI: 10.1021/acsomega.4c08140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 02/25/2025]
Abstract
Intercellular adhesion is accompanied by several physical quantities and actions. In this review, we tried to collect information about the influence of surface energy and its impact on cell-cell adhesion. It still undergoes development for cancer treatment. Data on receptor-ligand interactions that occur on circulating tumor cells (CTCs) are described, and adhesion receptors as therapeutic targets are collected. Additionally, the impact of surface roughness on the interactions between CTC cells and the surface was monitored. The effects of different cell adhesion molecules (CAMs) on cell adhesion, growth, and proliferation were investigated. This review offers general principles of cell adhesion, through the blockade of adhesion with blocking drugs and inhibitors like computational models that describe the process of adhesion. Some theoretical models based on the minimum of the total free energy of interaction between CAMs and selected organic molecules have been presented. The final aim was to find information on how modulation of the surface of CTCs (by medicals or physically) inhibits cancer metastases formation.
Collapse
Affiliation(s)
- Denis Burčík
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Ján Macko
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Natália Podrojková
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Jana Demeterová
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Michal Stano
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Andrej Oriňak
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| |
Collapse
|
5
|
Kooshan Z, Cárdenas-Piedra L, Clements J, Batra J. Glycolysis, the sweet appetite of the tumor microenvironment. Cancer Lett 2024; 600:217156. [PMID: 39127341 DOI: 10.1016/j.canlet.2024.217156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Cancer cells display an altered metabolic phenotype, characterised by increased glycolysis and lactate production, even in the presence of sufficient oxygen - a phenomenon known as the Warburg effect. This metabolic reprogramming is a crucial adaptation that enables cancer cells to meet their elevated energy and biosynthetic demands. Importantly, the tumor microenvironment plays a pivotal role in shaping and sustaining this metabolic shift in cancer cells. This review explores the intricate relationship between the tumor microenvironment and the Warburg effect, highlighting how communication within this niche regulates cancer cell metabolism and impacts tumor progression and therapeutic resistance. We discuss the potential of targeting the Warburg effect as a promising therapeutic strategy, with the aim of disrupting the metabolic advantage of cancer cells and enhancing our understanding of this complex interplay within the tumor microenvironment.
Collapse
Affiliation(s)
- Zeinab Kooshan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Lilibeth Cárdenas-Piedra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia.
| |
Collapse
|
6
|
Spivak AY, Kuzmina US, Nedopekina DA, Dubinin MV, Khalitova RR, Davletshin EV, Vakhitova YV, Belosludtsev KN, Vakhitov VA. Synthesis and comparative analysis of the cytotoxicity and mitochondrial effects of triphenylphosphonium and F16 maslinic and corosolic acid hybrid derivatives. Steroids 2024; 209:109471. [PMID: 39002922 DOI: 10.1016/j.steroids.2024.109471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The cytotoxic profile and antiproliferative and mitochondrial effects of triterpene acid conjugates with mitochondriotropic lipophilic triphenylphosphonium (TPP+) and F16 cations were evaluated. Maslinic and corosolic acids chosen as the investigation objects were synthesized from commercially available oleanolic and ursolic acids. Study of the cytotoxic activity of TPP+ and F16 triterpenoid derivatives against six tumor cell lines demonstrated a comparable synergistic effect in the anticancer activity, which was most pronounced in the case of MCF-7 mammary adenocarcinoma cells and Jurkat and THP-1 leukemia cells. The corosolic and maslinic acid hybrid derivatives caused changes in the progression of tumor cell cycle phases when present in much lower doses than their natural triterpene acid precursors. The treatment of tumor cell lines with the conjugates resulted in the cell cycle arrest in the G1 phase and increase in the cell population in the subG1 phase. The cationic derivatives of the acids were markedly superior to their precursors as inducers of hyperproduction of reactive oxygen species and more effectively decreased the mitochondrial potential in isolated rat liver mitochondria. We concluded that the observed cytotoxic effect of TPP+ and F16 triterpenoid conjugates is attributable to the ability of these compounds to initiate mitochondrial dysfunctions. Their cytotoxicity, antiproliferative action, and mitochondrial effects depend little on the type of cationic groups used.
Collapse
Affiliation(s)
- Anna Yu Spivak
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia
| | - Ulyana Sh Kuzmina
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 71, 450054 Ufa, Russia
| | - Darya A Nedopekina
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia
| | - Mikhail V Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia.
| | - Rezeda R Khalitova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia
| | - Eldar V Davletshin
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia
| | - Yulia V Vakhitova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 71, 450054 Ufa, Russia
| | - Konstantin N Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Vener A Vakhitov
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 71, 450054 Ufa, Russia
| |
Collapse
|
7
|
Sun C, Wang Q, Li P, Dong R, Lei Y, Hu Y, Yan Y, Song G. The ROS Mediates MCUb in Mitochondria-Regulated Apoptosis of TM4 Cells Induced by Titanium Dioxide Nanoparticles. Biol Trace Elem Res 2024:10.1007/s12011-024-04339-6. [PMID: 39192169 DOI: 10.1007/s12011-024-04339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) can cause mitochondrial apoptosis of TM4 cells associated with reactive oxygen species (ROS) accumulation and Ca2+ overload, but the relations among these processes remain unclear. This study aimed to evaluate whether the accumulation of ROS caused by TiO2 NPs inhibits MCUb expression, leading to mitochondrial calcium overload and subsequent cell apoptosis through the mitochondrial pathway. TM4 cells were exposed to different concentrations of TiO2 NPs (0, 25, 50, 75, 100 μg/mL) for 24 h. We assessed cell viability, ROS level, MCUb and VDAC1 expression, mitochondrial and cytoplasmic Ca2+ levels, mitochondrial membrane potential (MMP), apoptosis rate, and key proteins related to mitochondrial apoptosis (Bcl-2, Bax, Caspase 3, Caspase 9, p53 and Cyt c). Additionally, the effect of N-acetylcysteine (NAC) on MCUb expression, calcium homeostasis, and cell apoptosis was evaluated. Compared to control group, TiO2 NPs significantly increased ROS level, downregulated MCUb expression, elevated Ca2+ levels in mitochondria and cytoplasm, and enhanced mitochondria-regulated apoptosis, starting from the 50 μg/mL TiO2 NPs group. However, NAC significantly increased MCUb expression, attenuated Ca2+ levels in mitochondria and cytoplasm, and reduced mitochondria-related apoptosis. In conclusion, TiO2 NPs induced ROS accumulation, which inhibited the expression of MCUb. The decreased MCUb level led to Ca2+ overload in mitochondria, causing TM4 cell apoptosis via the mitochondrial pathway. This research elucidates, for the first time, the role of MCUb and its relation with ROS in apoptosis of TM4 cells induced by TiO2 NPs, which supplementing the molecular mechanism of cell apoptosis caused by TiO2 NPs.
Collapse
Grants
- 2023AB049 Corps Science and Technology Planning Project
- 2023AB049 Corps Science and Technology Planning Project
- 2023AB049 Corps Science and Technology Planning Project
- 2023AB049 Corps Science and Technology Planning Project
- 2023AB049 Corps Science and Technology Planning Project
- 2023AB049 Corps Science and Technology Planning Project
- 2023AB049 Corps Science and Technology Planning Project
- 2023AB049 Corps Science and Technology Planning Project
- 21966027, 81560536, and 32060125 National Natural Science Foundation of China
- 21966027, 81560536, and 32060125 National Natural Science Foundation of China
- 21966027, 81560536, and 32060125 National Natural Science Foundation of China
- 21966027, 81560536, and 32060125 National Natural Science Foundation of China
- 21966027, 81560536, and 32060125 National Natural Science Foundation of China
- 21966027, 81560536, and 32060125 National Natural Science Foundation of China
- 21966027, 81560536, and 32060125 National Natural Science Foundation of China
- 21966027, 81560536, and 32060125 National Natural Science Foundation of China
- 2023CB008-18 Youth Science and Technology Innovation Talents Project of Xinjiang Production and Construction Corps
- 2023CB008-18 Youth Science and Technology Innovation Talents Project of Xinjiang Production and Construction Corps
- 2023CB008-18 Youth Science and Technology Innovation Talents Project of Xinjiang Production and Construction Corps
- 2023CB008-18 Youth Science and Technology Innovation Talents Project of Xinjiang Production and Construction Corps
- 2023CB008-18 Youth Science and Technology Innovation Talents Project of Xinjiang Production and Construction Corps
- 2023CB008-18 Youth Science and Technology Innovation Talents Project of Xinjiang Production and Construction Corps
- 2023CB008-18 Youth Science and Technology Innovation Talents Project of Xinjiang Production and Construction Corps
- 2023CB008-18 Youth Science and Technology Innovation Talents Project of Xinjiang Production and Construction Corps
Collapse
Affiliation(s)
- Chenhao Sun
- Department of Preventive Medicine/ the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Qianqian Wang
- Department of Preventive Medicine/ the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Pengfei Li
- Department of Preventive Medicine/ the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Ruoyun Dong
- Department of Preventive Medicine/ the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yuzhu Lei
- Department of Preventive Medicine/ the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yunhua Hu
- Department of Preventive Medicine/ the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yizhong Yan
- Department of Preventive Medicine/ the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Guanling Song
- Department of Preventive Medicine/ the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
8
|
Khwaza V, Aderibigbe BA. Potential Pharmacological Properties of Triterpene Derivatives of Ursolic Acid. Molecules 2024; 29:3884. [PMID: 39202963 PMCID: PMC11356970 DOI: 10.3390/molecules29163884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Ursolic acid (UA) and its derivatives have garnered significant attention due to their extensive pharmacological activity. UA is a pentacyclic triterpenoid found in a variety of plants, such as apples, rosemary, thyme, etc., and it possesses a range of pharmacological properties. Researchers have synthesized various derivatives of UA through structural modifications to enhance its potential pharmacological properties. Various in vitro and in vivo studies have indicated that UA and its derivatives possess diverse biological activities, such as anticancer, antifungal, antidiabetic, antioxidant, antibacterial, anti-inflammatory and antiviral properties. This review article provides a review of the biological activities of UA and its derivatives to show their valuable therapeutic properties useful in the treatment of different diseases, mainly focusing on the relevant structure-activity relationships (SARs), the underlying molecular targets/pathways, and modes of action.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa
| | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa
| |
Collapse
|
9
|
Wang Q, Yang Y, Li P, Dong R, Sun C, Song G, Wang Y. Titanium dioxide nanoparticles induce apoptosis through ROS-Ca 2+-p38/AKT/mTOR pathway in TM4 cells. J Appl Toxicol 2024; 44:818-832. [PMID: 38272789 DOI: 10.1002/jat.4583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) can cause apoptosis in TM4 cells; however, the underlying mechanism has not been entirely elucidated. The purpose of this study was to investigate the effects of TiO2 NPs on ROS, Ca2+ level, p38/AKT/mTOR pathway, and apoptosis in TM4 cells and to evaluate the role of Ca2+ in p38/AKT/mTOR pathway and apoptosis. After exposure to different concentrations (0, 50, 100, 150, and 200 μg/mL) of TiO2 NPs for 24 h, cell viability, ROS, Ca2+ level, Ca2+-ATPase activity, p38/AKT/mTOR pathway-related proteins, apoptosis rate, and apoptosis-related proteins (Bax, Bcl-2, Caspase 3, Caspase 9, and p53) were detected. The ROS scavenger NAC was used to determine the effect of ROS on Ca2+ level. The Ca2+ chelator BAPTA-AM was used to evaluate the role of Ca2+ in p38/AKT/mTOR pathway and apoptosis. TiO2 NPs significantly inhibited cell viability, increased ROS level, and elevated Ca2+ level while suppressing Ca2+-ATPase activity. TiO2 NPs regulated the p38/AKT/mTOR pathway via increasing p-p38 level and decreasing p-AKT and p-mTOR levels. TiO2 NPs significantly enhanced the apoptosis. NAC attenuated Ca2+ overload and reduction in Ca2+-ATPase activity caused by TiO2 NPs. BAPTA-AM alleviated TiO2 NPs-induced abnormal expression of p38/AKT/mTOR pathway-related proteins. BAPTA-AM assuaged the apoptosis caused by TiO2 NPs. Altogether, this study revealed that TiO2 NPs elevated intracellular Ca2+ level through ROS accumulation. Subsequently, the heightened intracellular Ca2+ level was observed to exert regulation over the p38/AKT/mTOR pathway, ultimately culminating in apoptosis. These results provides a complementary understanding to the mechanism of TiO2 NPs-induced apoptosis in TM4 cells.
Collapse
Affiliation(s)
- Qianqian Wang
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, China
| | | | - Pengfei Li
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, China
| | - Ruoyun Dong
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, China
| | - Chenhao Sun
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, China
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, China
| | - Yan Wang
- School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
10
|
Mironiuk-Puchalska E, Karatsai O, Żuchowska A, Wróblewski W, Borys F, Lehka L, Rędowicz MJ, Koszytkowska-Stawińska M. Development of 5-fluorouracil-dichloroacetate mutual prodrugs as anticancer agents. Bioorg Chem 2023; 140:106784. [PMID: 37639758 DOI: 10.1016/j.bioorg.2023.106784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
5-Fluorouracil (5-FU) is one of the most widely applied chemotherapeutic agents with a broad spectrum of activity. However, despite this versatile activity, its use poses many limitations. Herein, novel derivatives of 5-FU and dichloroacetic acid have been designed and synthesized as a new type of codrugs, also known as mutual prodrugs, to overcome the drawbacks of 5-FU and enhance its therapeutic efficiency. The stability of the obtained compounds has been tested at various pH values using different analytical techniques, namely HPLC and potentiometry. The antiproliferative activity of the new 5-FU derivatives was assessed in vitro on SK-MEL-28 and WM793 human melanoma cell lines in 2D culture as well as on A549 human lung carcinoma, MDA-MB-231 breast adenocarcinoma, LL24 normal lung tissue, and HMF normal breast tissue as a multicellular 3D spheroid model cultured in standard (static) conditions and with the use of microfluidic systems, which to a great extent resembles the in vivo environment. In all cases, new mutual prodrugs showed a higher cytotoxic activity toward cancer models and lower to normal cell models than the parent 5-FU itself.
Collapse
Affiliation(s)
- Ewa Mironiuk-Puchalska
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego St., 00-664 Warsaw, Poland.
| | - Olena Karatsai
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology Polish Academy of Science, 3 Pasteur St., 02-093-Warsaw, Poland
| | - Agnieszka Żuchowska
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego St., 00-664 Warsaw, Poland
| | - Wojciech Wróblewski
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego St., 00-664 Warsaw, Poland
| | - Filip Borys
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego St., 00-664 Warsaw, Poland
| | - Lilya Lehka
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology Polish Academy of Science, 3 Pasteur St., 02-093-Warsaw, Poland
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology Polish Academy of Science, 3 Pasteur St., 02-093-Warsaw, Poland
| | | |
Collapse
|
11
|
Heise NV, Denner TC, Becker S, Hoenke S, Csuk R. Developing an Amide-Spacered Triterpenoid Rhodamine Hybrid of Nano-Molar Cytotoxicity Combined with Excellent Tumor Cell/Non-Tumor Cell Selectivity. Molecules 2023; 28:6404. [PMID: 37687233 PMCID: PMC10489938 DOI: 10.3390/molecules28176404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Asiatic acid, a pentacyclic triterpene, was converted into a series of piperazinyl, homopiperazinyl, and 1,5-diazocinyl spacered rhodamine conjugates, differing in the type of spacer and the substitution pattern on the rhodamine moiety of the hybrids. The compounds were tested for cytotoxic activity in SRB assays and compound 12, holding an EC50 of 0.8 nM, was the most cytotoxic compound of this series, but compound 18 (containing a ring expanded 1,5-diazocinyl moiety and n-propyl substituents on the rhodamine) was the most selective compound exhibiting a selectivity factor of almost 190 while retaining high cytotoxicity (EC50 = 1.9 nM, for A2780 ovarian carcinoma).
Collapse
Affiliation(s)
| | | | | | | | - René Csuk
- NF II, Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle (Saale), Germany; (N.V.H.); (T.C.D.); (S.B.); (S.H.)
| |
Collapse
|
12
|
Tsepaeva OV, Salikhova TI, Ishkaeva RA, Kundina AV, Abdullin TI, Laikov AV, Tikhomirova MV, Idrisova LR, Nemtarev AV, Mironov VF. Bifunctionalized Betulinic Acid Conjugates with C-3-Monodesmoside and C-28-Triphenylphosphonium Moieties with Increased Cancer Cell Targetability. JOURNAL OF NATURAL PRODUCTS 2023; 86:1939-1949. [PMID: 37497692 DOI: 10.1021/acs.jnatprod.3c00304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A convenient synthesis is presented for a new class of bioactive bifunctionalized conjugates of lupane-type triterpenoids with triphenylphosphonium (TPP) and glycopyranosyl targeting moieties. The main synthesis steps include glycosylation of haloalkyl esters of the triterpene acid at the C-3 position by the imidate derivatives of glycopyranose followed by the product modification at the C-28 position with triphenylphosphine. The conjugates of betulinic acid (BetA) with TPP and d-glucose, l-rhamnose, or d-mannose moieties were thus synthesized as potential next-generation BetA-derived anticancer compounds. LC-MS/MS analysis in glucose-free physiological solution indicated that the glycosides showed better accumulation in PC-3 prostate cancer cells than both BetA and TPP-BetA conjugate, while the transporting effect of monosaccharide residues increased as follows: d-mannose < l-rhamnose ≈ d-glucose. At saturated concentrations, the glycosides caused a disturbing effect on mitochondria with a more drastic drop in transmembrane potential but weaker overproduction of mitochondrial reactive oxygen species (ROS) compared to TPP-BetA conjugate. Cytotoxicity of the glycosides in culture medium was comparable with or higher than that of the nonglycosylated conjugate, depending on the cancer cell line, whereas the compounds were less active toward primary fibroblasts. Glycosylation tended to increase pro-apoptotic and decrease pro-autophagic activities of the BetA derivatives. Cytotoxicity of the synthesized glycosides was considered in comparison with the summarized data on the natural and modified BetA glycosides. The results obtained are important for the development of bifunctionalized conjugates of triterpenoids with an increased cancer cell targetability.
Collapse
Affiliation(s)
- Olga V Tsepaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russian Federation
| | - Taliya I Salikhova
- Kazan (Volga Region) Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation
| | - Rezeda A Ishkaeva
- Kazan (Volga Region) Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation
| | - Alexandra V Kundina
- Kazan (Volga Region) Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation
| | - Timur I Abdullin
- Kazan (Volga Region) Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation
| | - Alexander V Laikov
- Kazan (Volga Region) Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation
| | - Mariya V Tikhomirova
- Kazan (Volga Region) Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation
| | - Leysan R Idrisova
- Kazan (Volga Region) Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation
| | - Andrey V Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russian Federation
| | - Vladimir F Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russian Federation
| |
Collapse
|
13
|
Dubinin MV, Nedopekina DA, Ilzorkina AI, Semenova AA, Sharapov VA, Davletshin EV, Mikina NV, Belsky YP, Spivak AY, Akatov VS, Belosludtseva NV, Liu J, Belosludtsev KN. Conjugation of Triterpenic Acids of Ursane and Oleanane Types with Mitochondria-Targeting Cation F16 Synergistically Enhanced Their Cytotoxicity against Tumor Cells. MEMBRANES 2023; 13:563. [PMID: 37367767 PMCID: PMC10303159 DOI: 10.3390/membranes13060563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
The present work shows the cytotoxic effects of novel conjugates of ursolic, oleanolic, maslinic, and corosolic acids with the penetrating cation F16 on cancer cells (lung adenocarcinoma A549 and H1299, breast cancer cell lines MCF-7 and BT474) and non-tumor human fibroblasts. It has been established that the conjugates have a significantly enhanced toxicity against tumor-derived cells compared to native acids and also demonstrate selectivity to some cancer cells. The toxic effect of the conjugates is shown to be due to ROS hyperproduction in cells, induced by the effect on mitochondria. The conjugates caused dysfunction of isolated rat liver mitochondria and, in particular, a decrease in the efficiency of oxidative phosphorylation, a decrease in the membrane potential, and also an overproduction of ROS by organelles. The paper discusses how the membranotropic- and mitochondria-targeted effects of the conjugates may be related to their toxic effects.
Collapse
Affiliation(s)
- Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia; (A.A.S.); (V.A.S.); (N.V.M.); (N.V.B.); (K.N.B.)
| | - Darya A. Nedopekina
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia; (D.A.N.); (E.V.D.); (A.Y.S.)
| | - Anna I. Ilzorkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia; (A.I.I.); (V.S.A.)
| | - Alena A. Semenova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia; (A.A.S.); (V.A.S.); (N.V.M.); (N.V.B.); (K.N.B.)
| | - Vyacheslav A. Sharapov
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia; (A.A.S.); (V.A.S.); (N.V.M.); (N.V.B.); (K.N.B.)
| | - Eldar V. Davletshin
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia; (D.A.N.); (E.V.D.); (A.Y.S.)
| | - Natalia V. Mikina
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia; (A.A.S.); (V.A.S.); (N.V.M.); (N.V.B.); (K.N.B.)
| | - Yuri P. Belsky
- Centre of Preclinical Translational Research, Almazov National Medical Research Centre, St. Petersburg 197371, Russia;
| | - Anna Yu. Spivak
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia; (D.A.N.); (E.V.D.); (A.Y.S.)
| | - Vladimir S. Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia; (A.I.I.); (V.S.A.)
| | - Natalia V. Belosludtseva
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia; (A.A.S.); (V.A.S.); (N.V.M.); (N.V.B.); (K.N.B.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia; (A.I.I.); (V.S.A.)
| | - Jiankang Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China;
| | - Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia; (A.A.S.); (V.A.S.); (N.V.M.); (N.V.B.); (K.N.B.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia; (A.I.I.); (V.S.A.)
| |
Collapse
|
14
|
Michalak O, Cybulski M, Szymanowski W, Gornowicz A, Kubiszewski M, Ostrowska K, Krzeczyński P, Bielawski K, Trzaskowski B, Bielawska A. Synthesis, Biological Activity, ADME and Molecular Docking Studies of Novel Ursolic Acid Derivatives as Potent Anticancer Agents. Int J Mol Sci 2023; 24:ijms24108875. [PMID: 37240221 DOI: 10.3390/ijms24108875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
A series of new ursolic acid (UA) derivatives substituted with various amino acids (AAs) or dipeptides (DP) at the C-3 position of the steroid skeleton was designed and synthesized. The compounds were obtained by the esterification of UA with the corresponding AAs. The cytotoxic activity of the synthesized conjugates was determined using the hormone-dependent breast cancer cell line MCF-7 and the triple-negative breast cancer cell line MDA. Three derivatives (l-seryloxy-, l-prolyloxy- and l-alanyl-l-isoleucyloxy-) showed micromolar IC50 values and reduced the concentrations of matrix metalloproteinases 2 and 9. Further studies revealed that for two compounds (l-seryloxy- and l-alanyl-l-isoleucyloxy-), a possible mechanism of their antiproliferative action is the activation of caspase-7 and the proapoptotic Bax protein in the apoptotic pathway. The third compound (l-prolyloxy- derivative) showed a different mechanism of action as it induced autophagy as measured by an increase in the concentrations of three autophagy markers: LC3A, LC3B, and beclin-1. This derivative also showed statistically significant inhibition of the proinflammatory cytokines TNF-α and IL-6. Finally, for all synthesized compounds, we computationally predicted their ADME properties as well as performed molecular docking to the estrogen receptor to assess their potential for further development as anticancer agents.
Collapse
Affiliation(s)
- Olga Michalak
- Chemistry Section, Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Marcin Cybulski
- Chemistry Section, Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Wojciech Szymanowski
- Department of Biotechnology, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| | - Agnieszka Gornowicz
- Department of Biotechnology, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| | - Marek Kubiszewski
- Analytical Research Section, Pharmaceutical Analysis Laboratory, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Kinga Ostrowska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Piotr Krzeczyński
- Chemistry Section, Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| | - Bartosz Trzaskowski
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, 2C Banacha Str., 02-097 Warsaw, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| |
Collapse
|
15
|
Brandes B, Hoenke S, Schultz C, Deigner HP, Csuk R. Converting bile acids into mitocans. Steroids 2023; 189:109148. [PMID: 36414156 DOI: 10.1016/j.steroids.2022.109148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
Cholic acid (1, CD), deoxycholic (3, DCA), chenodeoxycholic acid (5, CDCA), ursodeoxycholic acid (7, UDCA), and lithocholic acid (9, LCA) were acetylated and converted into their piperazinyl spacered rhodamine B conjugates 16-20. While the parent bile acids showed almost no cytotoxic effects for several human tumor cell lines, the piperazinyl amides were cytostatic but an even superior effect was observed for the rhodamine B conjugates. Extra staining experiments showed these compounds as mitocans; they led to a cell arrest in the G1 phase.
Collapse
Affiliation(s)
- Benjamin Brandes
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Sophie Hoenke
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Christian Schultz
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Hans-Peter Deigner
- Furtwangen University, Institute of Precision Medicine, Medical and Life Science Faculty, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
| | - René Csuk
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|
16
|
Ursolic Acid Analogs as Potential Therapeutics for Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248981. [PMID: 36558113 PMCID: PMC9785537 DOI: 10.3390/molecules27248981] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpene isolated from a large variety of vegetables, fruits and many traditional medicinal plants. It is a structural isomer of Oleanolic Acid. The medicinal application of UA has been explored extensively over the last two decades. The diverse pharmacological properties of UA include anti-inflammatory, antimicrobial, antiviral, antioxidant, anti-proliferative, etc. Especially, UA holds a promising position, potentially, as a cancer preventive and therapeutic agent due to its relatively non-toxic properties against normal cells but its antioxidant and antiproliferative activities against cancer cells. Cell culture studies have shown interference of UA with multiple pharmacological and molecular targets that play a critical role in many cells signaling pathways. Although UA is considered a privileged natural product, its clinical applications are limited due to its low absorption through the gastro-intestinal track and rapid elimination. The low bioavailability of UA limits its use as a therapeutic drug. To overcome these drawbacks and utilize the importance of the scaffold, many researchers have been engaged in designing and developing synthetic analogs of UA via structural modifications. This present review summarizes the synthetic UA analogs and their cytotoxic antiproliferative properties reported in the last two decades.
Collapse
|
17
|
Spivak AY, Davletshin EV, Gubaidullin RR, Tukhbatullin AA, Nedopekina DA. Synthesis of Bodipy-Labeled Fluorescent Betulinic Acid Derivatives with a Terminal Triphenylphosphonium Group on Side-Chain C-28. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Belosludtsev KN, Ilzorkina AI, Belosludtseva NV, Sharapov VA, Penkov NV, Serov DA, Karagyaur MN, Nedopekina DA, Davletshin EV, Solovieva ME, Spivak AY, Kuzmina US, Vakhitova YV, Akatov VS, Dubinin MV. Comparative Study of Cytotoxic and Membranotropic Properties of Betulinic Acid-F16 Conjugate on Breast Adenocarcinoma Cells (MCF-7) and Primary Human Fibroblasts. Biomedicines 2022; 10:2903. [PMID: 36428470 PMCID: PMC9687851 DOI: 10.3390/biomedicines10112903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The present study evaluates the cytotoxicity of a previously synthesized conjugate of betulinic acid (BA) with the penetrating cation F16 on breast adenocarcinoma (MCF-7) and human fibroblast (HF) cell lines, and also shows the mechanism underlying its membranotropic action. It was confirmed that the conjugate exhibits higher cytotoxicity compared to native BA at low doses also blocking the proliferation of both cell lines and causing cell cycle arrest in the G0/G1 phase. We show that the conjugate indeed has a high potential for accumulation in mitochondria, being visualized in these organelles, which is most pronounced in cancer cells. The effect of the conjugate was observed to be accompanied by ROS hyperproduction in both cancerous and healthy cells, despite the lower base level of ROS in the latter. Along with this, using artificial liposomes, we determined that the conjugate is able to influence the phase state of lipid membranes, make them more fluid, and induce nonspecific permeabilization contributing to the overall cytotoxicity of the tested agent. We conclude that the studied BA-F16 conjugate does not have significant selective cytotoxicity, at least against the studied breast cancer cell line MCF-7.
Collapse
Affiliation(s)
- Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Anna I. Ilzorkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Natalia V. Belosludtseva
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Vyacheslav A. Sharapov
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Nikita V. Penkov
- Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute of Cell Biophysics of the Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Dmitriy A. Serov
- Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute of Cell Biophysics of the Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov St. 38, 119991 Moscow, Russia
| | - Maxim N. Karagyaur
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Darya A. Nedopekina
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia
| | - Eldar V. Davletshin
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia
| | - Marina E. Solovieva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Anna Yu Spivak
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia
| | - Ulyana Sh. Kuzmina
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 71, 450054 Ufa, Russia
| | - Yulia V. Vakhitova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 71, 450054 Ufa, Russia
| | - Vladimir S. Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| |
Collapse
|
19
|
Gubaidullin RR, Spivak AY, Maistrenko VN, Parfenova LV. Au(I)‐Catalyzed Synthesis of [3,2‐
b
]pyrrole‐fused Pentacyclic Triterpenoids. ChemistrySelect 2022. [DOI: 10.1002/slct.202202241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rinat R. Gubaidullin
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences 141 Prospekt Oktyabrya Ufa 450075 Russian Federation
| | - Anna Yu. Spivak
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences 141 Prospekt Oktyabrya Ufa 450075 Russian Federation
| | | | - Lyudmila V. Parfenova
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences 141 Prospekt Oktyabrya Ufa 450075 Russian Federation
| |
Collapse
|
20
|
Nistor G, Trandafirescu C, Prodea A, Milan A, Cristea A, Ghiulai R, Racoviceanu R, Mioc A, Mioc M, Ivan V, Șoica C. Semisynthetic Derivatives of Pentacyclic Triterpenes Bearing Heterocyclic Moieties with Therapeutic Potential. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196552. [PMID: 36235089 PMCID: PMC9572482 DOI: 10.3390/molecules27196552] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022]
Abstract
Medicinal plants have been used by humans since ancient times for the treatment of various diseases and currently represent the main source of a variety of phytocompounds, such as triterpenes. Pentacyclic triterpenes have been subjected to numerous studies that have revealed various biological activities, such as anticancer, antidiabetic, anti-inflammatory, antimicrobial, and hepatoprotective effects, which can be employed in therapy. However, due to their high lipophilicity, which is considered to exert a significant influence on their bioavailability, their current use is limited. A frequent approach employed to overcome this obstacle is the chemical derivatization of the core structure with different types of moieties including heterocycles, which are considered key elements in medicinal chemistry. The present review aims to summarize the literature published in the last 10 years regarding the derivatives of pentacyclic triterpenes bearing heterocyclic moieties and focuses on the biologically active derivatives as well as their structure-activity relationships. Predominantly, the targeted positions for the derivatization of the triterpene skeleton are C-3 (hydroxyl/oxo group), C-28 (hydroxyl/carboxyl group), and C-30 (allylic group) or the extension of the main scaffold by fusing various heterocycles with the A-ring of the phytocompound. In addition, numerous derivatives also contain linker moieties that connect the triterpenic scaffold with heterocycles; one such linker, the triazole moiety, stands out as a key pharmacophore for its biological effect. All these studies support the hypothesis that triterpenoid conjugates with heterocyclic moieties may represent promising candidates for future clinical trials.
Collapse
Affiliation(s)
- Gabriela Nistor
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Cristina Trandafirescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Alexandra Prodea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Correspondence: (A.P.); (A.M.); Tel.: +40-256-494-604 (A.P.)
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Correspondence: (A.P.); (A.M.); Tel.: +40-256-494-604 (A.P.)
| | - Andreea Cristea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Viviana Ivan
- Department of Internal Medicine II, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Codruța Șoica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| |
Collapse
|
21
|
Aswathy M, Vijayan A, Daimary UD, Girisa S, Radhakrishnan KV, Kunnumakkara AB. Betulinic acid: A natural promising anticancer drug, current situation, and future perspectives. J Biochem Mol Toxicol 2022; 36:e23206. [PMID: 36124371 DOI: 10.1002/jbt.23206] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/16/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Natural products serve as the single most productive source for the discovery of drugs and pharmaceutical leads. Among the various chemicals derived from microbes, plants, and animals, phytochemicals have emerged as potential candidates for the development of anticancer drugs due to their structural diversities, complexities, and pleiotropic effects. Herein, we discuss betulinic acid (BA), a ubiquitously distributed lupane structured pentacyclic triterpenoid, scrutinized as a promising natural agent for the prevention, suppression, and management of various human malignancies. Ease of availability, common occurrences, cell-specific cytotoxicity, and astonishing selectivity are the important factors that contribute to the development of BA as an anticancer agent. The current review delineates the mechanistic framework of BA-mediated cancer suppression through the modulation of multiple signaling pathways and also summarizes the key outcomes of BA in preclinical investigations.
Collapse
Affiliation(s)
- Maniyamma Aswathy
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ajesh Vijayan
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Uzini D Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Kokkuvayil V Radhakrishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| |
Collapse
|
22
|
Grymel M, Lalik A, Kazek-Kęsik A, Szewczyk M, Grabiec P, Erfurt K. Design, Synthesis and Preliminary Evaluation of the Cytotoxicity and Antibacterial Activity of Novel Triphenylphosphonium Derivatives of Betulin. Molecules 2022; 27:molecules27165156. [PMID: 36014398 PMCID: PMC9416257 DOI: 10.3390/molecules27165156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
For several decades, natural products have been widely researched and their native scaffolds are the basis for the design and synthesis of new potential therapeutic agents. Betulin is an interesting biologically attractive natural parent molecule with a high safety profile and can easily undergo a variety of structural modifications. Herein, we describe the synthesis of new molecular hybrids of betulin via covalent linkage with an alkyltriphenylphosphonium moiety. The proposed strategy enables the preparation of semi-synthetic derivatives (28-TPP⊕ BN and 3,28-bisTPP⊕ BN) from betulin through simple transformations in high yields. The obtained results showed that the presence of a lipophilic cation improved the solubility of the tested analogs compared to betulin, and increased their cytotoxicity. Among the triphenylphosphonium derivatives tested, analogs 7a (IC50 of 5.56 µM) and 7b (IC50 of 5.77 µM) demonstrated the highest cytotoxicity against the colorectal carcinoma cell line (HCT 116). TPP⊕-conjugates with betulin showed antimicrobial properties against Gram-positive reference Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis ATCC 12228 bacteria, at a 200 µM concentration in water. Hence, the conjugation of betulin's parent backbone with a triphenylphosphonium moiety promotes transport through the hydrophobic barriers of the mitochondrial membrane, making it a promising strategy to improve the bioavailability of natural substances.
Collapse
Affiliation(s)
- Mirosława Grymel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
- Correspondence: ; Tel.: +48-032-237-1873; Fax: +48-032-237-2094
| | - Anna Lalik
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Alicja Kazek-Kęsik
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland
| | - Marietta Szewczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Patrycja Grabiec
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| |
Collapse
|
23
|
Wagner A, Kosnacova H, Chovanec M, Jurkovicova D. Mitochondrial Genetic and Epigenetic Regulations in Cancer: Therapeutic Potential. Int J Mol Sci 2022; 23:ijms23147897. [PMID: 35887244 PMCID: PMC9321253 DOI: 10.3390/ijms23147897] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are dynamic organelles managing crucial processes of cellular metabolism and bioenergetics. Enabling rapid cellular adaptation to altered endogenous and exogenous environments, mitochondria play an important role in many pathophysiological states, including cancer. Being under the control of mitochondrial and nuclear DNA (mtDNA and nDNA), mitochondria adjust their activity and biogenesis to cell demands. In cancer, numerous mutations in mtDNA have been detected, which do not inactivate mitochondrial functions but rather alter energy metabolism to support cancer cell growth. Increasing evidence suggests that mtDNA mutations, mtDNA epigenetics and miRNA regulations dynamically modify signalling pathways in an altered microenvironment, resulting in cancer initiation and progression and aberrant therapy response. In this review, we discuss mitochondria as organelles importantly involved in tumorigenesis and anti-cancer therapy response. Tumour treatment unresponsiveness still represents a serious drawback in current drug therapies. Therefore, studying aspects related to genetic and epigenetic control of mitochondria can open a new field for understanding cancer therapy response. The urgency of finding new therapeutic regimens with better treatment outcomes underlines the targeting of mitochondria as a suitable candidate with new therapeutic potential. Understanding the role of mitochondria and their regulation in cancer development, progression and treatment is essential for the development of new safe and effective mitochondria-based therapeutic regimens.
Collapse
Affiliation(s)
- Alexandra Wagner
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Helena Kosnacova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Miroslav Chovanec
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Correspondence:
| |
Collapse
|
24
|
Kirdeeva Y, Fedorova O, Daks A, Barlev N, Shuvalov O. How Should the Worldwide Knowledge of Traditional Cancer Healing Be Integrated with Herbs and Mushrooms into Modern Molecular Pharmacology? Pharmaceuticals (Basel) 2022; 15:868. [PMID: 35890166 PMCID: PMC9320176 DOI: 10.3390/ph15070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional herbal medicine (THM) is a "core" from which modern medicine has evolved over time. Besides this, one third of people worldwide have no access to modern medicine and rely only on traditional medicine. To date, drugs of plant origin, or their derivates (paclitaxel, vinblastine, vincristine, vinorelbine, etoposide, camptothecin, topotecan, irinotecan, and omacetaxine), are very important in the therapy of malignancies and they are included in most chemotherapeutic regimes. To date, 391,000 plant and 14,000 mushroom species exist. Their medical and biochemical capabilities have not been studied in detail. In this review, we systematized the information about plants and mushrooms, as well as their active compounds with antitumor properties. Plants and mushrooms are divided based on the regions where they are used in ethnomedicine to treat malignancies. The majority of their active compounds with antineoplastic properties and mechanisms of action are described. Furthermore, on the basis of the available information, we divided them into two priority groups for research and for their potential of use in antitumor therapy. As there are many prerequisites and some examples how THM helps and strengthens modern medicine, finally, we discuss the positive points of THM and the management required to transform and integrate THM into the modern medicine practice.
Collapse
Affiliation(s)
- Yulia Kirdeeva
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Nikolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| |
Collapse
|
25
|
Kubik J, Humeniuk E, Adamczuk G, Madej-Czerwonka B, Korga-Plewko A. Targeting Energy Metabolism in Cancer Treatment. Int J Mol Sci 2022; 23:ijms23105572. [PMID: 35628385 PMCID: PMC9146201 DOI: 10.3390/ijms23105572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second most common cause of death worldwide after cardiovascular diseases. The development of molecular and biochemical techniques has expanded the knowledge of changes occurring in specific metabolic pathways of cancer cells. Increased aerobic glycolysis, the promotion of anaplerotic responses, and especially the dependence of cells on glutamine and fatty acid metabolism have become subjects of study. Despite many cancer treatment strategies, many patients with neoplastic diseases cannot be completely cured due to the development of resistance in cancer cells to currently used therapeutic approaches. It is now becoming a priority to develop new treatment strategies that are highly effective and have few side effects. In this review, we present the current knowledge of the enzymes involved in the different steps of glycolysis, the Krebs cycle, and the pentose phosphate pathway, and possible targeted therapies. The review also focuses on presenting the differences between cancer cells and normal cells in terms of metabolic phenotype. Knowledge of cancer cell metabolism is constantly evolving, and further research is needed to develop new strategies for anti-cancer therapies.
Collapse
Affiliation(s)
- Joanna Kubik
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| | - Ewelina Humeniuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
- Correspondence: ; Tel.: +48-81-448-65-20
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| | - Barbara Madej-Czerwonka
- Human Anatomy Department, Faculty of Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Agnieszka Korga-Plewko
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| |
Collapse
|
26
|
Heise NV, Ströhl D, Schmidt T, Csuk R. Stable triterpenoid iminium salts and their activity as inhibitors of butyrylcholinesterase. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Romanov SR, Bakhtiyarova YV, Morozov MV, Karataeva FK, Klochkov VV, Galkina IV, Galkin VI. Carboxylate Phosphabetaines Containing Chiral Carbon Atom: Synthesis and NMR Spectroscopy Data. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221070112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Conjugation of Natural Triterpenic Acids with Delocalized Lipophilic Cations: Selective Targeting Cancer Cell Mitochondria. J Pers Med 2021; 11:jpm11060470. [PMID: 34070567 PMCID: PMC8226687 DOI: 10.3390/jpm11060470] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, a new line of research on mitochondria-targeted anticancer drugs is actively developing in the field of biomedicine and medicinal chemistry. The distinguishing features of this universal target for anticancer agents include presence of mitochondria in the overwhelming majority, if not all types of transformed cells, crucial importance of these cytoplasmic organelles in energy production, regulation of cell death pathways, as well as generation of reactive oxygen species and maintenance of calcium homeostasis. Hence, mitochondriotropic anticancer mitocan agents, acting through mitochondrial destabilization, have good prospects in cancer therapy. Available natural pentacyclic triterpenoids are considered promising scaffolds for development of new mitochondria-targeted anticancer agents. These secondary metabolites affect the mitochondria of tumor cells and initiate formation of reactive oxygen species. The present paper focuses on the latest research outcomes of synthesis and study of cytotoxic activity of conjugates of pentacyclic triterpenoids with some mitochondria-targeted cationic lipophilic molecules and highlights the advantages of applying them as novel mitocan agents compared to their prototype natural triterpenic acids.
Collapse
|
29
|
Dubinin MV, Semenova AA, Ilzorkina AI, Penkov NV, Nedopekina DA, Sharapov VA, Khoroshavina EI, Davletshin EV, Belosludtseva NV, Spivak AY, Belosludtsev KN. Mitochondria-targeted prooxidant effects of betulinic acid conjugated with delocalized lipophilic cation F16. Free Radic Biol Med 2021; 168:55-69. [PMID: 33812008 DOI: 10.1016/j.freeradbiomed.2021.03.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
The paper examines the molecular mechanisms of the cytotoxicity of conjugates of betulinic acid with the penetrating cation F16. The in vitro experiments on rat thymocytes revealed that all the obtained F16-betulinic acid derivatives showed more than 10-fold higher cytotoxicity as compared to betulinic acid and F16. In this case, 0.5-1 μM of all conjugates showed mitochondria-targeted action, inducing superoxide overproduction and reducing the mitochondrial potential of cells. Experiments on isolated rat liver mitochondria revealed the ability of conjugates to dose-dependently reduce the membrane potential of organelles, as well as the intensity of respiration and oxidative phosphorylation, which is also accompanied by an increase in the production of hydrogen peroxide by mitochondria. It was shown that these actions of derivatives may be due to several effects: the reversion of ATP synthase, changes in the activity of complexes of the respiratory chain and permeabilization of the inner mitochondrial membrane. All compounds also demonstrated the ability to induce aggregation of isolated rat liver mitochondria. Using the model of lecithin liposomes, we found that the F6 conjugate (2 μM) induces the permeability of vesicle membranes for the fluorescent probe sulforhodamine B. High concentrations (25 μM) of the F6 derivative have been found to induce dynamic processes in the liposome membrane leading to aggregation and/or fusion of vesicle membranes. The paper discusses the relationship between the mitochondria-targeted effects of F16-betulinic acid conjugates and their cytotoxicity.
Collapse
Affiliation(s)
- Mikhail V Dubinin
- Mari State University, Pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia.
| | - Alena A Semenova
- Mari State University, Pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Anna I Ilzorkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| | - Nikita V Penkov
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| | - Darya A Nedopekina
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa, Republic of Bashkortostan, 450075, Russia
| | | | | | - Eldar V Davletshin
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa, Republic of Bashkortostan, 450075, Russia
| | - Natalia V Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| | - Anna Yu Spivak
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa, Republic of Bashkortostan, 450075, Russia
| | - Konstantin N Belosludtsev
- Mari State University, Pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova 38, Moscow, 119991, Russia
| |
Collapse
|
30
|
Zang L, Xu H, Huang C, Wang C, Wang R, Chen Y, Wang L, Wang H. A link between chemical structure and biological activity in triterpenoids. Recent Pat Anticancer Drug Discov 2021; 17:145-161. [PMID: 33982656 DOI: 10.2174/1574892816666210512031635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Plants with triterpenoid compounds in nature have various biological activities and are reported in many scientific works of literature. Triterpenoids are compounds that draw the attention of scientists because of their wide source, wide variety, high medicinal value, and anti-tumor properties. However, a lack of approach to understand their chemical structures has limited the fundamental comprehension of these compounds in cancer cell therapy. OBJECTIVE To seek anti-cancer activity of the structures of triterpenoid compounds and their derivatives, we summarized a number of plants and their derivatives that are a source of potential novel therapeutic anti-cancer agents. METHODS This work focuses on relevant 1036 patents and references that detail the structure of organic compounds and derivatives for the treatment of tumors. RESULT Compared to tetracyclic triterpenoid, pentacyclic triterpenoid has contributed more to improve the autophagic signaling pathways of cancer cells. CONCLUSION The heterogenous skeleton structure of triterpenoids impaired the programmed cell death signaling pathway in various cancers.
Collapse
Affiliation(s)
- Li Zang
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Hao Xu
- College of Clinical Medicine, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Chao Huang
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Cunqin Wang
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Rongbin Wang
- Anhui College of Traditional Chinese Medicine, Wuhu, Anhui 241000, China
| | - Ying Chen
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Lei Wang
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Hongting Wang
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, China
| |
Collapse
|
31
|
Dubinin MV, Semenova AA, Nedopekina DA, Davletshin EV, Spivak AY, Belosludtsev KN. Effect of F16-Betulin Conjugate on Mitochondrial Membranes and Its Role in Cell Death Initiation. MEMBRANES 2021; 11:membranes11050352. [PMID: 34068772 PMCID: PMC8151401 DOI: 10.3390/membranes11050352] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023]
Abstract
This work demonstrates the effects of a newly synthesized conjugate of the plant triterpenoid betulin and the penetrating cation F16 used for mitochondrial targeting. The resulting F16-betulin conjugate revealed a mitochondria-targeted effect, decreasing the mitochondrial potential and inducing superoxide overproduction in rat thymocytes in vitro. It has been suggested that this may cause the cytotoxic effect of the conjugate, which significantly exceeds the effectiveness of its precursors, betulin and F16. Using isolated rat liver mitochondria, we found that the F16-betulin conjugate has a surface-active effect on mitochondrial membranes, causing organelle aggregation. This effect of the derivative resulted in a dose-dependent decrease in mitochondrial transmembrane potential, as well as suppression of respiration and oxidative phosphorylation, especially in the case of nicotinamide adenine dinucleotide (NAD)-fueled organelles. In addition, the F16-betulin conjugate caused an increase in H2O2 generation by mitochondria fueled with glutamate and malate. These effects of the derivative can presumably be due to the powerful suppression of the redox activity of complex I of the mitochondrial electron transport chain. The paper discusses how the mitochondria-targeted effects of the F16-betulin conjugate may be related to its cytotoxic effects.
Collapse
Affiliation(s)
- Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (A.A.S.); (K.N.B.)
- Correspondence: ; Tel.: +7-987-701-0437
| | - Alena A. Semenova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (A.A.S.); (K.N.B.)
| | - Darya A. Nedopekina
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia; (D.A.N.); (E.V.D.); (A.Y.S.)
| | - Eldar V. Davletshin
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia; (D.A.N.); (E.V.D.); (A.Y.S.)
| | - Anna Yu. Spivak
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia; (D.A.N.); (E.V.D.); (A.Y.S.)
| | - Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (A.A.S.); (K.N.B.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
- Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova 38, 119991 Moscow, Russia
| |
Collapse
|
32
|
Coricovac D, Dehelean CA, Pinzaru I, Mioc A, Aburel OM, Macasoi I, Draghici GA, Petean C, Soica C, Boruga M, Vlaicu B, Muntean MD. Assessment of Betulinic Acid Cytotoxicity and Mitochondrial Metabolism Impairment in a Human Melanoma Cell Line. Int J Mol Sci 2021; 22:ijms22094870. [PMID: 34064489 PMCID: PMC8125295 DOI: 10.3390/ijms22094870] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022] Open
Abstract
Melanoma represents one of the most aggressive and drug resistant skin cancers with poor prognosis in its advanced stages. Despite the increasing number of targeted therapies, novel approaches are needed to counteract both therapeutic resistance and the side effects of classic therapy. Betulinic acid (BA) is a bioactive phytocompound that has been reported to induce apoptosis in several types of cancers including melanomas; however, its effects on mitochondrial bioenergetics are less investigated. The present study performed in A375 human melanoma cells was aimed to characterize the effects of BA on mitochondrial bioenergetics and cellular behavior. BA demonstrated a dose-dependent inhibitory effect in both mitochondrial respiration and glycolysis in A375 melanoma cells and at sub-toxic concentrations (10 μM) induced mitochondrial dysfunction by eliciting a decrease in the mitochondrial membrane potential and changes in mitochondria morphology and localization. In addition, BA triggered a dose-dependent cytotoxic effect characterized by apoptotic features: morphological alterations (nuclear fragmentation, apoptotic bodies) and the upregulation of pro-apoptotic markers mRNA expression (Bax, Bad and Bak). BA represents a viable therapeutic option via a complex modulatory effect on mitochondrial metabolism that might be useful in advanced melanoma or as reliable strategy to counteract resistance to standard therapy.
Collapse
Affiliation(s)
- Dorina Coricovac
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Iulia Pinzaru
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
- Correspondence: (I.P.); (A.M.); Tel.: +40-256-494-604
| | - Alexandra Mioc
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
- Correspondence: (I.P.); (A.M.); Tel.: +40-256-494-604
| | - Oana-Maria Aburel
- Faculty of Medicine “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (O.-M.A.); (M.B.); (B.V.); (M.D.M.)
- Center for Translational Research and Systems Medicine, Faculty of Medicine,” Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. no. 2, RO-300041 Timișoara, Romania
| | - Ioana Macasoi
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - George Andrei Draghici
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Crina Petean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
| | - Codruta Soica
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Madalina Boruga
- Faculty of Medicine “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (O.-M.A.); (M.B.); (B.V.); (M.D.M.)
| | - Brigitha Vlaicu
- Faculty of Medicine “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (O.-M.A.); (M.B.); (B.V.); (M.D.M.)
| | - Mirela Danina Muntean
- Faculty of Medicine “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (O.-M.A.); (M.B.); (B.V.); (M.D.M.)
- Center for Translational Research and Systems Medicine, Faculty of Medicine,” Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. no. 2, RO-300041 Timișoara, Romania
| |
Collapse
|
33
|
Xu C, Xiao L, Zhang X, Zhuang T, Mu L, Yang X. Synthesis and biological activities of novel mitochondria-targeted artemisinin ester derivatives. Bioorg Med Chem Lett 2021; 39:127912. [PMID: 33691167 DOI: 10.1016/j.bmcl.2021.127912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 11/18/2022]
Abstract
A series of novel artemisinin ester derivatives were designed and synthesized for targeting mitochondria. Cytotoxicity against SMMC-7721, HepG2, OVCAR3, A549 and J82 cancer cell lines was evaluated. Compound 2c (IC50 = 3.0 μM) was the most potent anti-proliferative molecule against the OVCAR3 cells with low cytotoxicity in normal HUVEC cells. The mechanism of action of compound 2c was further investigated by analyzing cell apoptosis, mitochondrial membrane potential (Δψm) and intracellular ROS generation. The results indicated that compound 2c targeted mitochondria and induced cell apoptosis. ROS and heme attributed to the cytotoxicity and cell apoptosis of compound 2c. These promising findings indicated the compound 2c could serve as a great candidate against ovarian cancer for further investigation.
Collapse
Affiliation(s)
- Cangcang Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Linfan Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xia Zhang
- Department of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Tao Zhuang
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingli Mu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.
| |
Collapse
|
34
|
Aitfella Lahlou R, Bounechada M, Mohammedi A, Silva LR, Alves G. Dietary use of Rosmarinus officinalis and Thymus vulgaris as anticoccidial alternatives in poultry. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Romanov SR, Dolgova YV, Morozov MV, Ivshin KA, Semenov DA, Bakhtiyarova YV, Galkina IV, Kataeva ON, Galkin VI. New phosphonium salts based on 3-(diphenylphosphino)propanoic and ω-haloalkanoic acids. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.03.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Tsepaeva OV, Nemtarev AV, Salikhova TI, Abdullin TI, Grigor Eva LR, Khozyainova SA, Mironov VF. Synthesis, Anticancer, and Antibacterial Activity of Betulinic and Betulonic Acid C-28-Triphenylphosphonium Conjugates with Variable Alkyl Linker Length. Anticancer Agents Med Chem 2021; 20:286-300. [PMID: 31660842 DOI: 10.2174/1871520619666191014153554] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/13/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Conjugation of triterpenoids such as betulinic acid 1 with the Triphenylphosphonium (TPP) group is a powerful approach to generating medicinal compounds. Their development proposes structure optimization in respect of availability and activity towards target cells and organelles. Selection of 1 or its precursor betulonic acid 2 and the optimal linker is of particular importance for drug candidate identification among the TPP-triterpenoid conjugates. OBJECTIVE In this study, new C-28-TPP conjugated derivatives of 1 and 2 with the alkyl/alkoxyalkyl linkers of variable length were synthesized and compared regarding their anticancer, antibacterial, and mitochondriatargeted effects. METHODS The TPP conjugates of 1 and 2 [6a-f, 7a-f] were synthesized by the reaction of halogenalkyl esters [3a-f, 4a-f, 5] with triphenylphosphine in acetonitrile upon heating. Cytotoxicity (MTT assay), antibacterial activity (microdilution assay), and mitochondrial effects (flow cytofluorometry) were studied. RESULTS Conjugation with the TPP group greatly increased the cytotoxicity of the triterpenoids up to 30 times. The conjugates were up to 10-17 times more active against MCF-7 (IC50 = 0.17μM, 72h, 6c) and PC-3 (IC50 = 0.14μM, 72h, 6a) cancer cells than for human skin fibroblasts. The enhanced antibacterial (bactericidal) activity of the TPP-triterpenoid conjugates with MIC for Gram-positive bacteria as low as 2μM (6a, 7a) was for the first time revealed. The conjugates were found to effectively inhibit fluorescence of 2′,7′-dichlorofluorescin probe in the cytosol upon oxidation, decrease transmembrane potential, and increase superoxide radical level in mitochondria. CONCLUSION Relationships between the effects and structure of the TPP-triterpenoid conjugates were evaluated and discussed. Based on the results, 6a can be selected for further preclinical investigation as a potential anticancer compound.
Collapse
Affiliation(s)
- Olga V Tsepaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russian Federation
| | - Andrey V Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russian Federation.,Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russian Federation
| | - Taliya I Salikhova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russian Federation
| | - Timur I Abdullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russian Federation
| | - Leysan R Grigor Eva
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russian Federation
| | - Svetlana A Khozyainova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russian Federation
| | - Vladimir F Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russian Federation.,Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russian Federation
| |
Collapse
|
37
|
Spivak AY, Nedopekina DA, Gubaidullin RR, Davletshin EV, Tukhbatullin AA, D’yakonov VA, Yunusbaeva MM, Dzhemileva LU, Dzhemilev UM. Pentacyclic triterpene acid conjugated with mitochondria-targeting cation F16: Synthesis and evaluation of cytotoxic activities. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02702-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
38
|
Tsepaeva OV, Nemtarev AV, Kundina AV, Grigor’eva LR, Mironov VF. Synthesis of novel mannopyranosyl betulinic acid phosphoniohexyl ester. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Verdan M, Branquinho L, Silva-Filho S, Oliveira R, Cardoso CL, Arena A, Kassuya CL. Antiarthritic and antinociceptive potential of ethanolic extract from leaves of Doliocarpus dentatus (aubl.) standl. in mouse model. Pharmacognosy Res 2021. [DOI: 10.4103/pr.pr_79_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
40
|
Huang M, Myers CR, Wang Y, You M. Mitochondria as a Novel Target for Cancer Chemoprevention: Emergence of Mitochondrial-targeting Agents. Cancer Prev Res (Phila) 2020; 14:285-306. [PMID: 33303695 DOI: 10.1158/1940-6207.capr-20-0425] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/24/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
Cancer chemoprevention is the most effective approach to control cancer in the population. Despite significant progress, chemoprevention has not been widely adopted because agents that are safe tend to be less effective and those that are highly effective tend to be toxic. Thus, there is an urgent need to develop novel and effective chemopreventive agents, such as mitochondria-targeted agents, that can prevent cancer and prolong survival. Mitochondria, the central site for cellular energy production, have important functions in cell survival and death. Several studies have revealed a significant role for mitochondrial metabolism in promoting cancer development and progression, making mitochondria a promising new target for cancer prevention. Conjugating delocalized lipophilic cations, such as triphenylphosphonium cation (TPP+), to compounds of interest is an effective approach for mitochondrial targeting. The hyperpolarized tumor cell membrane and mitochondrial membrane potential allow for selective accumulation of TPP+ conjugates in tumor cell mitochondria versus those in normal cells. This could enhance direct killing of precancerous, dysplastic, and tumor cells while minimizing potential toxicities to normal cells.
Collapse
Affiliation(s)
- Mofei Huang
- Center for Disease Prevention Research, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Charles R Myers
- Center for Disease Prevention Research, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yian Wang
- Center for Disease Prevention Research, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ming You
- Center for Disease Prevention Research, Medical College of Wisconsin, Milwaukee, Wisconsin. .,Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
41
|
Zhang LH, Jin LL, Liu F, Jin C, Jin CM, Wei ZY. Evaluation of ursolic acid derivatives with potential anti-Toxoplasma gondii activity. Exp Parasitol 2020; 216:107935. [PMID: 32569599 DOI: 10.1016/j.exppara.2020.107935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Abstract
Toxoplasma gondii is an important pathogen that causes serious public health problems. Currently, therapeutic drugs for toxoplasmosis cause serious side effects, and more effective and novel substances with relatively low toxicity are urgently needed. Ursolic acid (UA) has many properties that can be beneficial to healthcare. In this study, we synthesized eight series of UA derivatives bearing a tetrazole moiety and evaluated their anti-T. gondii activity in vitro using spiramycin as a positive control. Most of the synthesized derivatives exhibited better anti-T. gondii activity in vitro than UA, among which compound 12a exhibited the most potent anti-T. gondii activity. Furthermore, the results of biochemical parameter determination indicated that 12a effectively restored the normal body weight of mice infected with T. gondii, reduced hepatotoxicity, and exerted significant anti-oxidative effects compared with the findings for spiramycin. Additionally, our molecular docking study indicated that the synthesized compounds could act as potential inhibitors of T. gondii calcium-dependent protein kinase 1 (TgCDPK1), with 12a possessing strong affinity for TgCDPK1 via binding to the key amino acids GLU129 and TYR131.
Collapse
Affiliation(s)
- Lin-Hao Zhang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, 133002, China
| | - Li-Li Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, 133002, China
| | - Fang Liu
- Department of Pharmacy, Yanbian University Hospital, Yanji, 133002, China
| | - Chunmei Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, 133002, China
| | - Chun-Mei Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, 133002, China.
| | - Zhi-Yu Wei
- Medical College of Dalian University, Dalian, 116622, China.
| |
Collapse
|
42
|
Khwaza V, Oyedeji OO, Aderibigbe BA. Ursolic Acid-Based Derivatives as Potential Anti-Cancer Agents: An Update. Int J Mol Sci 2020; 21:E5920. [PMID: 32824664 PMCID: PMC7460570 DOI: 10.3390/ijms21165920] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Ursolic acid is a pharmacologically active pentacyclic triterpenoid derived from medicinal plants, fruit, and vegetables. The pharmacological activities of ursolic acid have been extensively studied over the past few years and various reports have revealed that ursolic acid has multiple biological activities, which include anti-inflammatory, antioxidant, anti-cancer, etc. In terms of cancer treatment, ursolic acid interacts with a number of molecular targets that play an essential role in many cell signaling pathways. It suppresses transformation, inhibits proliferation, and induces apoptosis of tumor cells. Although ursolic acid has many benefits, its therapeutic applications in clinical medicine are limited by its poor bioavailability and absorption. To overcome such disadvantages, researchers around the globe have designed and developed synthetic ursolic acid derivatives with enhanced therapeutic effects by structurally modifying the parent skeleton of ursolic acid. These structurally modified compounds display enhanced therapeutic effects when compared to ursolic acid. This present review summarizes various synthesized derivatives of ursolic acid with anti-cancer activity which were reported from 2015 to date.
Collapse
Affiliation(s)
| | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa; (V.K.); (O.O.O.)
| |
Collapse
|
43
|
Dubinin MV, Semenova AA, Ilzorkina AI, Mikheeva IB, Yashin VA, Penkov NV, Vydrina VA, Ishmuratov GY, Sharapov VA, Khoroshavina EI, Gudkov SV, Belosludtsev KN. Effect of betulin and betulonic acid on isolated rat liver mitochondria and liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183383. [PMID: 32522531 DOI: 10.1016/j.bbamem.2020.183383] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/01/2023]
Abstract
The paper considers the effects of plant triterpenoid betulin and its derivative betulonic acid on rat liver mitochondria and liposomes. It was found that betulonic acid and, to a lesser extent, betulin, activate mitochondrial respiration in states 2 and 4 and inhibit ADP- and DNP-stimulated (uncoupled) respiration. The effect of betulonic acid resulted in a significant decrease of the respiratory control and ADP/O ratios and decrease in Δψ. The effects of both compounds were most pronounced in the case of succinate-fueled mitochondrial respiration. This may include both the possible protonophore effect of betulonic acid and the inhibition of respiratory chain complexes by both compounds. Both agents enhanced H2O2 production in succinate-fueled mitochondria, while betulonic acid exerted an antioxidant effect with NAD-dependent substrates. Betulin was found to induce mitochondrial aggregation, but had no effect on membrane permeability. A similar pattern was found on liposomes. As revealed by the laurdan generalized polarization (GP) technique, betulin increased laurdan GP in lecithin liposomes, indicating a decrease in membrane fluidity. Measurements of GP as a function of fluorescence excitation wavelength gave an ascending line for high concentrations of betulin, which can be interpreted as phase heterogeneity of the lipid/betulin system. High concentrations of betulin (> 60 mol%) was also demonstrated to cause permeabilization of lecithin liposomes. Betulonic acid was much less effective in inducing the aggregation of mitochondria and liposomes and had no effect on membrane permeability. The possible mechanisms of betulin and betulonic acid effect on rat liver mitochondria and liposomes are discussed.
Collapse
Affiliation(s)
- Mikhail V Dubinin
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia.
| | - Alena A Semenova
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Anna I Ilzorkina
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Irina B Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| | - Valery A Yashin
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| | - Nikita V Penkov
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| | - Valentina A Vydrina
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Prosp. Oktyabrya 71, Ufa, Republic of Bashkortostan, 450054, Russia
| | - Gumer Yu Ishmuratov
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Prosp. Oktyabrya 71, Ufa, Republic of Bashkortostan, 450054, Russia
| | | | | | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova 38, Moscow, 119991, Russia
| | - Konstantin N Belosludtsev
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
44
|
Synthesis of C-29-phosphonium derivatives of 3,28-diacetoxylup-20(29)-en-30-oic acid. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Synthesis of a new betulinic acid glycoconjugate with N-acetyl-d-galactosamine for the targeted delivery to hepatocellular carcinoma cells. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2737-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
46
|
Hodon J, Borkova L, Pokorny J, Kazakova A, Urban M. Design and synthesis of pentacyclic triterpene conjugates and their use in medicinal research. Eur J Med Chem 2019; 182:111653. [PMID: 31499360 DOI: 10.1016/j.ejmech.2019.111653] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 01/12/2023]
Abstract
Triterpenoids are natural products from plants and many other organisms that have various biological activities, such as antitumor, antiviral, antimicrobial, and protective activities. This review covers the synthesis and biological evaluation of pentacyclic triterpene (PT) conjugates with other molecules that have been found to increase the IC50 or improve the pharmacological profile of the parent PT. Some of these molecules are designed to target specific proteins or cellular organelles, which has resulted in highly selective lead structures for drug development. Other PT conjugates are useful for investigating their mechanism of action. This concept has been very successful: 1) Many compounds, especially mitochondria-targeting PT conjugates, have reached a selective cytotoxicity at low nanomolar concentrations in cancer cells. 2) A number of PT conjugates have had high activity against HIV or the influenza virus. 3) Fluorescent PT conjugates have been able to visualize the PT in living cells, which has allowed quantification of the uptake and distribution of the PT within the cell. 4) Biotinylated PT conjugates have been used to identify target proteins, which may help to show their mechanism of action. 5) A large number of PT conjugates with polyethylene glycol (PEG), polyamines, etc. form nanometer-sized micelles that have a much better pharmacological profile than the PT alone. In summary, the connection of a PT to an appropriate modifying molecule has resulted in extremely useful semisynthetic compounds with a high potential to treat cancer or viral infections or compounds that are useful for the study of the mechanism of action of PTs at the molecular level.
Collapse
Affiliation(s)
- Jiri Hodon
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Lucie Borkova
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Jan Pokorny
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Anna Kazakova
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Milan Urban
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinská 5, 779 00, Olomouc, Czech Republic.
| |
Collapse
|
47
|
Grymel M, Zawojak M, Adamek J. Triphenylphosphonium Analogues of Betulin and Betulinic Acid with Biological Activity: A Comprehensive Review. JOURNAL OF NATURAL PRODUCTS 2019; 82:1719-1730. [PMID: 31141361 DOI: 10.1021/acs.jnatprod.8b00830] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Naturally occurring pentacyclic lupane triterpenoids such as betulin (1) or betulinic acid (2) and their synthetic derivatives display a broad spectrum of biological activities and, therefore, have been the subject of great interest. However, the use of these compounds as potential therapeutic agents is limited by their low bioavailability, high hydrophobicity, and insufficient intracellular accumulation. In this context, research on modifications of the parent structures that will improve their pharmacokinetic properties is particularly important. In the past few years, methods of synthesis as well as cytotoxic and antiparasitic properties of a series of lupane triterpenoids modified by introducing one or two triphenylphosphonium moieties at the C-2, C-3, C-28, or C-30 positions by carbon-carbon or ester bonds have been described. The presence of triphenylphosphonium groups affects not only physical properties but also the mechanism of action of a potential drug. This review summarizes published findings on synthetic methods and biological properties of the triphenylphosphonium derivatives of betulin and betulinic acid.
Collapse
Affiliation(s)
- Mirosława Grymel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology , Silesian University of Technology , 44-100 Gliwice , Poland
- Biotechnology Center of Silesian University of Technology , 44-100 Gliwice , Poland
| | - Mateusz Zawojak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology , Silesian University of Technology , 44-100 Gliwice , Poland
| | - Jakub Adamek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology , Silesian University of Technology , 44-100 Gliwice , Poland
- Biotechnology Center of Silesian University of Technology , 44-100 Gliwice , Poland
| |
Collapse
|
48
|
Zhang LH, Zhang ZH, Li MY, Wei ZY, Jin XJ, Piao HR. Synthesis and evaluation of the HIF-1α inhibitory activities of novel ursolic acid tetrazole derivatives. Bioorg Med Chem Lett 2019; 29:1440-1445. [PMID: 31006525 DOI: 10.1016/j.bmcl.2019.04.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023]
Abstract
The hypoxia-inducible factor-1α (HIF-1α) pathway has been implicated in tumor angiogenesis, growth, and metastasis. Therefore, the inhibition of this pathway is an important therapeutic target for the treatment of various types of cancers. Here, we designed and synthesized 31 ursolic acid (UA) derivatives containing a tetrazole moiety and evaluated them for their potential anti-tumor activities as HIF-1α transcriptional inhibitors. Of these, compound 14d (IC50 0.8 ± 0.2 µM) displayed the most potent activity and compounds 14a (IC50 4.7 ± 0.2 µM) exhibited the most promising biological profile. Analysis of the structure-activity relationships of these compounds with HIF-1α suggested that the presence of a tetrazole group located at C-28 of the UA derivatives was critical for their inhibitory activities.
Collapse
Affiliation(s)
- Lin-Hao Zhang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, China
| | - Zhi-Hong Zhang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, China
| | - Ming-Yue Li
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, China
| | - Zhi-Yu Wei
- Medical College of Dalian University, Dalian, Liaoning Province, 116622, China
| | - Xue-Jun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, China.
| | - Hu-Ri Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, China.
| |
Collapse
|
49
|
Mitochondria-targeted triphenylphosphonium conjugated glycyrrhetinic acid derivatives as potent anticancer drugs. Bioorg Chem 2019; 85:179-190. [DOI: 10.1016/j.bioorg.2018.12.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 12/25/2022]
|
50
|
Sousa JLC, Freire CSR, Silvestre AJD, Silva AMS. Recent Developments in the Functionalization of Betulinic Acid and Its Natural Analogues: A Route to New Bioactive Compounds. Molecules 2019; 24:molecules24020355. [PMID: 30669472 PMCID: PMC6359067 DOI: 10.3390/molecules24020355] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/22/2022] Open
Abstract
Betulinic acid (BA) and its natural analogues betulin (BN), betulonic (BoA), and 23-hydroxybetulinic (HBA) acids are lupane-type pentacyclic triterpenoids. They are present in many plants and display important biological activities. This review focuses on the chemical transformations used to functionalize BA/BN/BoA/HBA in order to obtain new derivatives with improved biological activity, covering the period since 2013 to 2018. It is divided by the main chemical transformations reported in the literature, including amination, esterification, alkylation, sulfonation, copper(I)-catalyzed alkyne-azide cycloaddition, palladium-catalyzed cross-coupling, hydroxylation, and aldol condensation reactions. In addition, the synthesis of heterocycle-fused BA/HBA derivatives and polymer‒BA conjugates are also addressed. The new derivatives are mainly used as antitumor agents, but there are other biological applications such as antimalarial activity, drug delivery, bioimaging, among others.
Collapse
Affiliation(s)
- Joana L C Sousa
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Carmen S R Freire
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | - Artur M S Silva
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|