1
|
Medin J, Kyriakidou M, Santoso B, Gupta P, Järlebark J, Schaefer A, Ferrand-Drake Del Castillo G, Cans AS, Dahlin A. Enzymatic Polymer Brush Interfaces for Electrochemical Sensing in Biofluids. ACS APPLIED BIO MATERIALS 2025; 8:4008-4019. [PMID: 40269558 DOI: 10.1021/acsabm.5c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Electrochemical sensors enable specific and sensitive detection of biological markers. However, most small molecule analytes are not electroactive. Therefore, enzymes are widely used for selective breakdown of the markers into electro-active species. However, it has proven difficult to design a sensor interface where any enzyme can be controllably immobilized in high amounts with preserved activity. In addition, most interfaces cease to function in biofluids due to "fouling" of the sensor surface. Here we present a generic strategy employting polymer brushes for enzymatic electrochemical sensing which resolves these issues. Generic conjugation chemistry is used to covalently bind large amounts of enzymes (>1 μg/cm2). Remarkably, despite this enzyme load, the (∼200 nm thick) brushes remain highly hydrated and practically invisible by electrochemical methods: Small molecules freely access the underlying electrode and the charge transfer resistance increment is exceptionally low (<10 Ω). The enzymatic polymer brush interfaces enable specific detection of the biomarkers glucose and glutamate by simple chronoamperometry. Furthermore, by sequential immobilization of several enzymes, cascade reactions can be performed, as illustrated by detection of acetylcholine. Finally, the sensor interface still functions in cerebrospinal fluid (10× diluted, unfiltered). In conclusion, polymer brushes provide extended possibilities for enzymatic catalysis and electrochemical sensing.
Collapse
Affiliation(s)
- Jesper Medin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Maria Kyriakidou
- Nyctea Technologies AB, AstraZeneca BioVentureHub, 431 83 Mölndal, Sweden
| | - Bagus Santoso
- Nyctea Technologies AB, AstraZeneca BioVentureHub, 431 83 Mölndal, Sweden
| | - Pankaj Gupta
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Julia Järlebark
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Andreas Schaefer
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | | | - Ann-Sofie Cans
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Andreas Dahlin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|
2
|
Wu M, Du Y, Xu H, Zhang X, Ma J, Li A, Chou LY. Enzyme Surface Residues Direct Encapsulation into Metal-Organic Frameworks for Performance Regulation. Angew Chem Int Ed Engl 2025; 64:e202423741. [PMID: 39981653 DOI: 10.1002/anie.202423741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/29/2025] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
Herein, we highlight the role of nitrogen-enriched surface groups on proteins in directing topological transformations of metal-organic frameworks (MOFs). Using a modified-protein-directed MOFs template synthesis (mDTS) strategy, we demonstrate that these surface modifications on cytochrome c (Cyt c) selectively induce the formation of leaf-like zeolitic imidazolate frameworks (ZIF-L). This approach not only enables a structural transition from ZIF-8 to a more open ZIF-L framework but also substantially enhances the catalytic activity and loading of Cyt c beyond traditional immobilization methods. Adjusting the concentration of the surface modifier allows for precise tuning of the Cyt c activity, allowing optimal enzyme function at specific modifier levels. Furthermore, our results reveal that surface modifications of a variety of proteins can facilitate the formation of ZIF-L, emphasizing the broad applicability of the mDTS method. This approach offers significant promise for developing highly efficient protein-MOF composites, offering transformative potential for industrial catalysis and biotechnological applications.
Collapse
Affiliation(s)
- Mengyao Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Yuexin Du
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Hui Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Xiehaoran Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Jialong Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Ao Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Lien-Yang Chou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| |
Collapse
|
3
|
Cai X, Huang Y, Zhu C. Immobilized Multi-Enzyme/Nanozyme Biomimetic Cascade Catalysis for Biosensing Applications. Adv Healthc Mater 2025; 14:e2401834. [PMID: 38889805 DOI: 10.1002/adhm.202401834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Multiple enzyme-induced cascade catalysis has an indispensable role in the process of complex life activities, and is widely used to construct robust biosensors for analyzing various targets. The immobilized multi-enzyme cascade catalysis system is a novel biomimetic catalysis strategy that immobilizes various enzymes with different functions in stable carriers to simulate the synergistic catalysis of multiple enzymes in biological systems, which enables high stability of enzymes and efficiency enzymatic cascade catalysis. Nanozymes, a type of nanomaterial with intrinsic enzyme-like characteristics and excellent stabilities, are also widely applied instead of enzymes to construct immobilized cascade systems, achieving better catalytic performance and reaction stability. Due to good stability, reusability, and remarkably high efficiency, the immobilized multi-enzyme/nanozyme biomimetic cascade catalysis systems show distinct advantages in promoting signal transduction and amplification, thereby attracting vast research interest in biosensing applications. This review focuses on the research progress of the immobilized multi-enzyme/nanozyme biomimetic cascade catalysis systems in recent years. The construction approaches, factors affecting the efficiency, and applications for sensitive biosensing are discussed in detail. Further, their challenges and outlooks for future study are also provided.
Collapse
Affiliation(s)
- Xiaoli Cai
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Yuteng Huang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| |
Collapse
|
4
|
Ejeromedoghene O, Kumi M, Akor E, Zhang Z. The application of machine learning in 3D/4D printed stimuli-responsive hydrogels. Adv Colloid Interface Sci 2025; 336:103360. [PMID: 39615076 DOI: 10.1016/j.cis.2024.103360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
The integration of machine learning (ML) in materials fabrication has seen significant advancements in recent scientific innovations, particularly in the realm of 3D/4D printing. ML algorithms are crucial in optimizing the selection, design, functionalization, and high-throughput manufacturing of materials. Meanwhile, 3D/4D printing with responsive material components has increased the vast design flexibility for printed hydrogel composite materials with stimuli responsiveness. This review focuses on the significant developments in using ML in 3D/4D printing to create hydrogel composites that respond to stimuli. It discusses the molecular designs, theoretical calculations, and simulations underpinning these materials and explores the prospects of such technologies and materials. This innovative technological advancement will offer new design and fabrication opportunities in biosensors, mechatronics, flexible electronics, wearable devices, and intelligent biomedical devices. It also provides advantages such as rapid prototyping, cost-effectiveness, and minimal material wastage.
Collapse
Affiliation(s)
- Onome Ejeromedoghene
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, 215123 Suzhou, Jiangsu Province, PR China.
| | - Moses Kumi
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, 710072 Xi'an, Shaanxi Province, PR China
| | - Ephraim Akor
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University P.M.B 230 Ede, Osun State, Nigeria
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, 215123 Suzhou, Jiangsu Province, PR China.
| |
Collapse
|
5
|
Wang H, Ma S, Diao M, Wenhui L, Huan M, Sun X, Wu Y. Engineering Thermoresponsive Enzyme-Polymer Conjugates via Glycan-Selective In Situ Polymerization for Recyclable Homogeneous Biocatalysis. Biomacromolecules 2024; 25:7951-7957. [PMID: 39576121 DOI: 10.1021/acs.biomac.4c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Enzymes are crucial for various technological applications, but their inherent instability and short lifespan pose challenges. This study presents facile immobilized enzyme technology with the development of thermoresponsive enzyme-polymer conjugates (EPCs), using glucose oxidase (GOx) as a model enzyme, to address these limitations. By conjugating heteropolymers to the glycan moieties of GOx through a precise in situ polymerization process, we could modulate the lower critical solution temperature of the EPCs, enhancing enzyme performance without compromising its active site. The EPCs demonstrate a switchable behavior that facilitates efficient homogeneous catalysis and easy heterogeneous separation, reducing costs and environmental impact in industrial applications. Our strategy presents a versatile platform for creating efficient biocatalysts with tunable properties, marking a step forward in sustainable and cost-effective bioprocessing.
Collapse
Affiliation(s)
- Huiru Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Shanyun Ma
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Muyan Diao
- Central Laboratory of Health Quarantine, International Travel Health Care Center, Shenzhen Customs District, Shenzhen 518045, China
| | - Li Wenhui
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Min Huan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaofang Sun
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yuanzi Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
6
|
Zhong C, Vyas A, Liu JDH, Oostenbrink C, Nidetzky B. Keeping the Distance: Activity Control in Solid-Supported Sucrose Phosphorylase by a Rigid α-Helical Linker of Tunable Spacer Length. ACS Catal 2024; 14:17090-17102. [PMID: 39569159 PMCID: PMC11574764 DOI: 10.1021/acscatal.4c05616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024]
Abstract
Enzyme immobilization into carrier materials has broad importance in biotechnology, yet understanding the catalysis of enzymes bound to solid surfaces remains challenging. Here, we explore surface effects on the catalysis of sucrose phosphorylase through a fusion protein approach. We immobilize the enzyme via a structurally rigid α-helical linker [EA3K] n of tunable spacer length due to the variable number of pentapeptide repeats used (n = 6, 14, 19). Molecular modeling and simulation approaches delineate the conformational space sampled by each linker relative to its His-tag cap used for surface tethering. The population distribution of linker conformers gets broader, with a consequent shift of the enzyme-to-surface distance to larger values (≤15 nm), as the spacer length increases. Based on temperature kinetic studies, we obtain an energetic description of catalysis by the enzyme-to-linker fusions in solution and immobilize on Ni2+-chelate agarose. The solid-supported enzymes involve distinct changes in enthalpy-entropy partitioning within the frame of invariant Gibbs free energy of activation (ΔG ‡ = ∼61 kJ/mol at 30 °C). The entropic contribution (-TΔS ‡) to ΔG ‡ increases with the spacer length, from -16.4 kJ/mol in the linker-free enzyme to +7.9 kJ/mol in the [EA3K]19 linked fusion. The immobilized [EA3K]19 fusion protein is indistinguishable in its catalytic properties from the enzymes in solution, which behave identically regardless of their linker. Enzymes positioned closer to the surface arguably experience a higher degree of molecular organization ("rigidification") that must relax for catalysis through the additional uptake of heat, compensated by a gain in entropy. Increased thermostability of these enzymes (up to 2.8-fold) is consistent with the proposed rigidification effect. Collectively, our study reveals surface effects on the activation parameters of sucrose phosphorylase catalysis and shows their consistent dependence on the length of the surface-tethering linker. The fundamental insight here obtained, together with the successful extension of the principle to a different enzyme (nigerose phosphorylase), suggests that rigid linker-based control of the protein-surface distance can be used as an engineering strategy to optimize the activity characteristics of immobilized enzymes.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz 8010, Austria
| | - Anisha Vyas
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz 8010, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Krenngasse 37, Graz 8010, Austria
| | - Jakob D H Liu
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz 8010, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Krenngasse 37, Graz 8010, Austria
| |
Collapse
|
7
|
Sik Choi Y, Won Jeon H, Taek Hwang E. In-situ stabilized lipase in calcium carbonate microparticles for activation in solvent-free transesterification for biodiesel production. BIORESOURCE TECHNOLOGY 2024; 412:131394. [PMID: 39218365 DOI: 10.1016/j.biortech.2024.131394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/30/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Biodiesel serves as a crucial biofuel alternative to petroleum-based diesel fuels, achieved through enzymatic transesterification of oil substrates. This study aims to investigate stabilized lipase (LP) within calcium carbonate (CaCO3) microparticles as a catalyst for solvent-free transesterification in biodiesel synthesis. The specific hydrolysis activity of the in-situ immobilized LP was 66% of that of free LP. However, the specific transesterification activity of immobilized LP in the solvent-free phase for biodiesel production was 2.29 times higher than that of free LP. These results suggest that the interfacial activation of LP molecules is facilitated by the inorganic CaCO3 environment. The immobilized LP demonstrated higher biodiesel production levels with superior stability compared to free LP, particularly regarding methanol molar ratio and temperature. To the best of our knowledge, there are no previous reports on the in-situ immobilization of LP in a CaCO3 carrier without any crosslinker as an interfacial-activated biocatalyst for biodiesel production.
Collapse
Affiliation(s)
- Young Sik Choi
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea
| | - Hyo Won Jeon
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea
| | - Ee Taek Hwang
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
8
|
Liu G, Yuan H, Chen Y, Mao L, Yang C, Zhang R, Zhang G. Magnetic silica-coated cutinase immobilized via ELPs biomimetic mineralization for efficient nano-PET degradation. Int J Biol Macromol 2024; 279:135414. [PMID: 39245124 DOI: 10.1016/j.ijbiomac.2024.135414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The proliferation of nano-plastic particles (NPs) poses severe environmental hazards, urgently requiring effective biodegradation methods. Herein, a novel method was developed for degrading nano-PET (polyethylene terephthalate) using immobilized cutinases. Nano-PET particles were prepared using a straightforward method, and biocompatible elastin-like polypeptide-magnetic nanoparticles (ELPs-MNPs) were obtained as magnetic cores via biomimetic mineralization. Using one-pot synthesis with the cost-effective precursor tetraethoxysilane (TEOS), silica-coated magnetically immobilized ELPs-tagged cutinase (ET-C@SiO2@MNPs) were produced. ET-C@SiO2@MNPs showed rapid magnetic separation within 30 s, simplifying recovery and reuse. ET-C@SiO2@MNPs retained 86 % of their initial activity after 11 cycles and exhibited superior hydrolytic capabilities for nano-PET, producing 0.515 mM TPA after 2 h of hydrolysis, which was 96.6 % that of free enzymes. Leveraging ELPs biomimetic mineralization, this approach offers a sustainable and eco-friendly solution for PET-nanoplastic degradation, highlighting the potential of ET-C@SiO2@MNPs in effective nanoplastic waste management and contributing to environmental protection and sustainable development.
Collapse
Affiliation(s)
- Guanzhang Liu
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Hang Yuan
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Yaxin Chen
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China; School of Chemistry and Molecular Biology, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Lei Mao
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Chun Yang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Ruifang Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| |
Collapse
|
9
|
Prakash O, Verma D, Singh PC. Exploring enzyme-immobilized MOFs and their application potential: biosensing, biocatalysis, targeted drug delivery and cancer therapy. J Mater Chem B 2024; 12:10198-10214. [PMID: 39283204 DOI: 10.1039/d4tb01556h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Enzymes are indispensable in several applications including biosensing and degradation of pollutants and in the drug industry. However, adverse conditions restrict enzymes' utility in biocatalysis due to their inherent limitations. Metal-organic frameworks (MOFs), with their robust structure, offer an innovative avenue for enzyme immobilization, enhancing their resilience against harsh solvents and temperatures. This advancement is pivotal for application in bio-sensing, bio-catalysis, and specifically, targeted drug delivery in cancer therapy, where enzyme-MOF composites enable precise therapeutic localization, minimizing the side effects of traditional treatment. The adaptable nature of MOFs enhances drug biocompatibility and availability, significantly improving therapeutic outcomes. Moreover, the integration of enzyme-immobilized MOFs into bio-sensing represents a leap forward in the rapid and accurate identification of biomarkers, facilitating early diagnosis and disease monitoring. In bio-catalysis, this synergy promotes efficient and environmentally safe chemical synthesis, enhancing reaction rates and yields and broadening the scope of enzyme application in pharmaceutical and bio-fuel production. This review article explores the immobilization techniques and their biomedical applications, specifically focusing on drug delivery in cancer therapy and bio-sensing. Additionally, it addresses the challenges faced in this expanding field.
Collapse
Affiliation(s)
- Om Prakash
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Deepika Verma
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Poonam C Singh
- Division of Microbial Technology, CSIR-NBRI, Lucknow 226001, India
| |
Collapse
|
10
|
Kanzaki Y, Minami R, Ota K, Adachi J, Hori Y, Ohtani R, Le Ouay B, Ohba M. Enhancing Performances of Enzyme/Metal-Organic Polyhedra Composites by Mixed-Protein Co-Immobilization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54423-54434. [PMID: 39315760 DOI: 10.1021/acsami.4c10146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Protein immobilization using water-soluble ionic metal-organic polyhedra (MOPs) acting as porous spacers has recently been demonstrated as a potent strategy for the preparation of biocatalysts. In this article, we describe a mixed-protein approach to achieve biocomposites with adjustable enzyme contents and excellent immobilization efficiencies, in a systematic and well-controlled manner. Self-assembly of either cationic or anionic MOPs with bovine serum albumin or egg white lysozyme combined with enzymes (alkaline phosphatase, laccase or cytochrome c) led to solid-state catalysts with a high retention of enzyme activity. Furthermore, for all these systems, the dilution of enzymes within the solid-state composite led to noticeably improved catalytic performances, with both higher specific activity and affinity for substrate.
Collapse
Affiliation(s)
- Yuri Kanzaki
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Ryosuke Minami
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Koshiro Ota
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Junya Adachi
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuichiro Hori
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Ryo Ohtani
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Benjamin Le Ouay
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Masaaki Ohba
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
Huang X, Li J, Araki Y, Wada T, Xu Y, Takai M. Enzyme stability in polymer hydrogel-enzyme hybrid nanocarrier containing phosphorylcholine group. RSC Adv 2024; 14:18807-18814. [PMID: 38863819 PMCID: PMC11166189 DOI: 10.1039/d4ra02436b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Enzymes are biological catalysts with good biocompatibility and high efficiency and have been widely used in many fields, such as wastewater treatment, biosensors, and the medical industry. However, their inherently low stability under conditions of practical use limits further applications. Zwitterionic polymers possessing a pair of oppositely charged groups in their repeating units can increase protein stability because of their good biocompatibility and high water content. In this study, zwitterionic copolymer nanogels comprising poly(2-methacryloyloxyethyl phosphorylcholine (MPC)-co-methacrylic acid-N-hydroxy succinimide ester (MNHS)) (PMS) were synthesized via reversible addition-fragmentation chain-transfer polymerization (RAFT). β-Galactosidase (β-gal) was post-modified within zwitterionic polymer nanogels with a covalently-bound spacer and the activity was compared with that of directly immobilized β-gal and free β-gal. Compared with direct immobilization, covalent immobilization with a spacer could reduce the structural change of β-gal, as confirmed by the circular dichroism spectra. Although the activity of β-gal decreased after immobilization, the hybrids of the β-gal immobilized nanogels, termed hybrid nanogel-enzymes, demonstrated superior stability compared to the free enzymes. The hybrid nanogel-enzymes maintained their function against inactivation by organic solvents and proteinases owing to their high water content, anti-biofouling properties, and limited mass transfer. They can also withstand protein aggregation at high temperatures and maintain their activity. Compared to direct immobilization, immobilization with a spacer resulted in a dramatic increase in the enzyme activity and a slight decrease in the stability. These results indicate that polymer nanogels containing phosphorylcholine units are promising materials for enzyme immobilization, expanding the scope of enzyme applications.
Collapse
Affiliation(s)
- Xuejin Huang
- Department of Bioengineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku 113-8656 Tokyo Japan
| | - Jincai Li
- Department of Bioengineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku 113-8656 Tokyo Japan
| | - Yasuyuki Araki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University Sendai Japan
| | - Takehiko Wada
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University Sendai Japan
| | - Yan Xu
- Department of Chemical Engineering, Graduate School of Engineering, Osaka Metropolitan University Sakai Osaka Japan
| | - Madoka Takai
- Department of Bioengineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku 113-8656 Tokyo Japan
| |
Collapse
|
12
|
Armstrong Z, Jordahl D, MacRae A, Li Q, Lenertz M, Shen P, Botserovska A, Feng L, Ugrinov A, Yang Z. A Protocol for Custom Biomineralization of Enzymes in Metal-Organic Frameworks (MOFs). Bio Protoc 2024; 14:e4930. [PMID: 38379827 PMCID: PMC10875352 DOI: 10.21769/bioprotoc.4930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/16/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024] Open
Abstract
Enzyme immobilization offers a number of advantages that improve biocatalysis; however, finding a proper way to immobilize enzymes is often a challenging task. Implanting enzymes in metal-organic frameworks (MOFs) via co-crystallization, also known as biomineralization, provides enhanced reusability and stability with minimal perturbation and substrate selectivity to the enzyme. Currently, there are limited metal-ligand combinations with a proper protocol guiding the experimental procedures. We have recently explored 10 combinations that allow custom immobilization of enzymes according to enzyme stability and activity in different metals/ligands. Here, as a follow-up of that work, we present a protocol for how to carry out custom immobilization of enzymes using the available combinations of metal ions and ligands. Detailed procedures to prepare metal ions, ligands, and enzymes for their co-crystallization, together with characterization and assessment, are discussed. Precautions for each experimental step and result analysis are highlighted as well. This protocol is important for enzyme immobilization in various research and industrial fields. Key features • A wide selection of metal ions and ligands allows for the immobilization of enzymes in metal-organic frameworks (MOFs) via co-crystallization. • Step-by-step enzyme immobilization procedure via co-crystallization of metal ions, organic linkers, and enzymes. • Practical considerations and experimental conditions to synthesize the enzyme@MOF biocomposites are discussed. • The demonstrated method can be generalized to immobilize other enzymes and find other metal ion/ligand combinations to form MOFs in water and host enzymes.
Collapse
Affiliation(s)
- Zoe Armstrong
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| | - Drew Jordahl
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| | - Austin MacRae
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| | - Qiaobin Li
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| | - Mary Lenertz
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| | | | | | - Li Feng
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| | - Angel Ugrinov
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| |
Collapse
|
13
|
Baluchi A, Homaei A. Immobilization of l-asparaginase on chitosan nanoparticles for the purpose of long-term application. Int J Biol Macromol 2024; 257:128655. [PMID: 38065449 DOI: 10.1016/j.ijbiomac.2023.128655] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Asparaginase holds significant commercial value as an enzyme in the food and pharmaceutical industries. This study examined the optimum and practical use of the l-asparaginase derived from Pseudomonas aeruginosa HR03. Specifically, the study focused on the effectiveness of the stabilized enzyme when applied to chitosan nanoparticles. The structure, size, and morphology of chitosan nanoparticles were evaluated in relation to the immobilization procedure. This assessment involved the use of several analytical techniques, including FT-IR, DLS, SEM, TEM, and EDS analysis. Subsequently, the durability of the enzyme that has been stabilized was assessed by evaluating its effectiveness under extreme temperatures of 60 and 70 °C, as well as at pH values of 3 and 12. The findings indicate that incorporating chitosan nanoparticles led to enhanced immobilization of the l-asparaginase enzyme. This improvement was observed in terms of long-term stability, stability under crucial temperature and pH conditions, as well as thermal stability. In addition, the optimum temperature increased from 40 to 50 °C, and the optimum pH increased from 8 to 9. Enzyme immobilization led to an increase in Km and a decrease in kcat compared to its free counterpart. Because of its enhanced long-term stability, l-asparaginase immobilization on chitosan nanoparticles may be a potential choice for use in industries that rely on l-asparaginase enzymes, particularly the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Ayeshe Baluchi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandarabbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandarabbas, Iran.
| |
Collapse
|
14
|
Yin Q, Batbatan CG, Li Y, Zhang Y, Yang Q, Xiao A. Preparation and Characterization of Carrageenase Immobilized onto Polyethyleneimine-Modified Pomelo Peel. J Microbiol Biotechnol 2024; 34:132-140. [PMID: 37957113 PMCID: PMC10840462 DOI: 10.4014/jmb.2304.04029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 11/15/2023]
Abstract
In this study, carrageenase immobilization was evaluated with a concise and efficient strategy. Pomelo peel cellulose (PPC) modified by polyethyleneimine (PEI) using the physical absorption method was used as a carrier to immobilize carrageenase and achieved repeated batch catalysis. In addition, various immobilization and reaction parameters were scrutinized to enhance the immobilization efficiency. Under the optimized conditions, the enzyme activity recovery rate was more than 50% and 4.1 times higher than immobilization with non-modified pomelo peels. The optimum temperature and pH of carrageenase after immobilization by PEI-modified pomelo peel, at 60°C and 7.5 respectively, were in line with the free enzyme. The temperature resistance was reduced, inconsistent with free enzyme, and pH resistance was increased. A significant loss of activity (46.8%) was observed after reusing it thrice under optimal reaction conditions. In terms of stability, the immobilized enzyme conserved 76.0% of the initial enzyme activity after 98 days of storage. Furthermore, a modest decrease in the kinetic constant (Km) value was observed, indicating the improved substrate affinity of the immobilized enzyme. Therefore, modified pomelo peel is a verified and promising enzyme immobilization system for the synthesis of inorganic solvents.
Collapse
Affiliation(s)
- Qin Yin
- College of Biological and Food Engineering, Suzhou University, Suzhou, Anhui, 234000, P.R. China
- Department of Biology, Central Mindanao University, Maramag, Bukidnon, 8710, Philippines
| | | | - Yongxing Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P.R. China
| | - Yonghui Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P.R. China
| | - Qiuming Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P.R. China
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P.R. China
| |
Collapse
|
15
|
Patil PD, Salokhe S, Karvekar A, Suryavanshi P, Phirke AN, Tiwari MS, Nadar SS. Microfluidic based continuous enzyme immobilization: A comprehensive review. Int J Biol Macromol 2023; 253:127358. [PMID: 37827414 DOI: 10.1016/j.ijbiomac.2023.127358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Conventional techniques for enzyme immobilization suffer from suboptimal activity recovery due to insufficient enzyme loading and inadequate stability. Furthermore, these techniques are time-consuming and involve multiple steps which limit the applicability of immobilized enzymes. In contrast, the use of microfluidic devices for enzyme immobilization has garnered significant attention due to its ability to precisely control immobilization parameters, resulting in highly active immobilized enzymes. This approach offers several advantages, including reduced time and energy consumption, enhanced mass-heat transfer, and improved control over the mixing process. It maintains the superior structural configuration in immobilized form which ultimately affects the overall efficiency. The present review article comprehensively explains the design, construction, and various methods employed for enzyme immobilization using microfluidic devices. The immobilized enzymes prepared using these techniques demonstrated excellent catalytic activity, remarkable stability, and outstanding recyclability. Moreover, they have found applications in diverse areas such as biosensors, biotransformation, and bioremediation. The review article also discusses potential future developments and foresees significant challenges associated with enzyme immobilization using microfluidics, along with potential remedies. The development of this advanced technology not only paves the way for novel and innovative approaches to enzyme immobilization but also allows for the straightforward scalability of microfluidic-based techniques from an industrial standpoint.
Collapse
Affiliation(s)
- Pravin D Patil
- Department of Basic Science & Humanities, SVKM'S NMIMS Mukesh Patel School of Technology Management & Engineering, Mumbai, Maharashtra 400056, India
| | - Sakshi Salokhe
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Aparna Karvekar
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Prabhavati Suryavanshi
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Ajay N Phirke
- Department of Basic Science & Humanities, SVKM'S NMIMS Mukesh Patel School of Technology Management & Engineering, Mumbai, Maharashtra 400056, India
| | - Manishkumar S Tiwari
- Department of Data Science, SVKM'S NMIMS Mukesh Patel School of Technology Management & Engineering, Mumbai, Maharashtra 400056, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India.
| |
Collapse
|
16
|
Morales AH, Hero JS, Ledesma AE, Martínez MA, Navarro MC, Gómez MI, Romero CM. Tuning surface interactions on MgFe 2O 4 nanoparticles to induce interfacial hyperactivation in Candida rugosa lipase immobilization. Int J Biol Macromol 2023; 253:126615. [PMID: 37652323 DOI: 10.1016/j.ijbiomac.2023.126615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Lipase adsorption on solid supports can be mediated by a precise balance of electrostatic and hydrophobic interactions. A suitable fine-tuning could allow the immobilized enzyme to display high catalytic activity. The objective of this work was to investigate how pH and ionic strength fluctuations affected protein-support interactions during immobilization via physical adsorption of a Candida rugosa lipase (CRL) on MgFe2O5. The highest amount of immobilized protein (IP) was measured at pH 4, and an ionic strength of 90 mM. However, these immobilization conditions did not register the highest hydrolytic activity (HA) in the biocatalyst (CRLa@MgFe2O4), finding the best values also at acidic pH but with a slight shift towards higher values of ionic strength around 110 mM. These findings were confirmed when the adsorption isotherms were examined under different immobilization conditions so that the maximum measurements of IP did not coincide with that of HA. Furthermore, when the recovered activity was examined, a strong interfacial hyperactivation of the lipase was detected towards acidic pH and highly charged surrounding environments. Spectroscopic studies, as well as in silico molecular docking analyses, revealed a considerable involvement of surface hydrophobic protein-carrier interactions, with aromatic aminoacids, especially phenylalanine residues, playing an important role. In light of these findings, this study significantly contributes to the body of knowledge and a better understanding of the factors that influence the lipase immobilization process on magnetic inorganic oxide nanoparticle surfaces.
Collapse
Affiliation(s)
- Andrés H Morales
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB Tucumán, Argentina.
| | - Johan S Hero
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB Tucumán, Argentina
| | - Ana E Ledesma
- Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL-UNSE- CONICET), Universidad Nacional de Santiago del Estero, RN 9, km 1125, (4206) Santiago del Estero, Argentina; Universidad Nacional de Santiago del Estero, Facultad de Ciencias Exactas y Tecnologías, Departamento Académico de Química, Av. Belgrano Sur 1912, 4200, Santiago del Estero, Argentina
| | - M Alejandra Martínez
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB Tucumán, Argentina; Facultad de Ciencias Exactas yTecnología, UNT. Av. Independencia 1800, San Miguel de Tucumán 4000, Argentina
| | - María C Navarro
- Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000IL, San Miguel de Tucumán, Argentina
| | - María I Gómez
- Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000IL, San Miguel de Tucumán, Argentina
| | - Cintia M Romero
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000IL, San Miguel de Tucumán, Argentina.
| |
Collapse
|
17
|
Xu C, Tong S, Sun L, Gu X. Cellulase immobilization to enhance enzymatic hydrolysis of lignocellulosic biomass: An all-inclusive review. Carbohydr Polym 2023; 321:121319. [PMID: 37739542 DOI: 10.1016/j.carbpol.2023.121319] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 09/24/2023]
Abstract
Cellulase-mediated lignocellulosic biorefinery plays a crucial role in the production of high-value biofuels and chemicals, with enzymatic hydrolysis being an essential component. The advent of cellulase immobilization has revolutionized this process, significantly enhancing the efficiency, stability, and reusability of cellulase enzymes. This review offers a thorough analysis of the fundamental principles underlying immobilization, encompassing various immobilization approaches such as physical adsorption, covalent binding, entrapment, and cross-linking. Furthermore, it explores a diverse range of carrier materials, including inorganic, organic, and hybrid/composite materials. The review also focuses on emerging approaches like multi-enzyme co-immobilization, oriented immobilization, immobilized enzyme microreactors, and enzyme engineering for immobilization. Additionally, it delves into novel carrier technologies like 3D printing carriers, stimuli-responsive carriers, artificial cellulosomes, and biomimetic carriers. Moreover, the review addresses recent obstacles in cellulase immobilization, including molecular-level immobilization mechanism, diffusion limitations, loss of cellulase activity, cellulase leaching, and considerations of cost-effectiveness and scalability. The knowledge derived from this review is anticipated to catalyze the evolution of more efficient and sustainable biocatalytic systems for lignocellulosic biomass conversion, representing the current state-of-the-art in cellulase immobilization techniques.
Collapse
Affiliation(s)
- Chaozhong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Shanshan Tong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Liqun Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
18
|
Chatzigeorgiou S, Jílková J, Korecká L, Janyšková R, Hermannová M, Šimek M, Čožíková D, Slováková M, Bílková Z, Bobek J, Černý Z, Čihák M, Velebný V. Preparation of hyaluronan oligosaccharides by a prokaryotic beta-glucuronidase: Characterization of free and immobilized forms of the enzyme. Carbohydr Polym 2023; 317:121078. [PMID: 37364952 DOI: 10.1016/j.carbpol.2023.121078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Popularity of hyaluronan (HA) in the cosmetics and pharmaceutical industries, led to the investigation and development of new HA-based materials, with enzymes playing a key role. Beta-D-glucuronidases catalyze the hydrolysis of a beta-D-glucuronic acid residue from the non-reducing end of various substrates. However, lack of specificity towards HA for most beta-D-glucuronidases, in addition to the high cost and low purity of those active on HA, have prevented their widespread application. In this study, we investigated a recombinant beta-glucuronidase from Bacteroides fragilis (rBfGUS). We demonstrated the rBfGUS's activity on native, modified, and derivatized HA oligosaccharides (oHAs). Using chromogenic beta-glucuronidase substrate and oHAs, we characterized the enzyme's optimal conditions and kinetic parameters. Additionally, we evaluated rBfGUS's activity towards oHAs of various sizes and types. To increase reusability and ensure the preparation of enzyme-free oHA products, rBfGUS was immobilized on two types of magnetic macroporous bead cellulose particles. Both immobilized forms of rBfGUS demonstrated suitable operational and storage stabilities, and their activity parameters were comparable to the free form. Our findings suggest that native and derivatized oHAs can be prepared using this bacterial beta-glucuronidase, and a novel biocatalyst with enhanced operational parameters has been developed with a potential for industrial use.
Collapse
Affiliation(s)
- Sofia Chatzigeorgiou
- Contipro a.s., Dolní Dobrouč 401, 56102 Dolní Dobrouč, Czech Republic; Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Jílková
- Contipro a.s., Dolní Dobrouč 401, 56102 Dolní Dobrouč, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| | - Lucie Korecká
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic.
| | - Radka Janyšková
- Contipro a.s., Dolní Dobrouč 401, 56102 Dolní Dobrouč, Czech Republic
| | | | - Matej Šimek
- Contipro a.s., Dolní Dobrouč 401, 56102 Dolní Dobrouč, Czech Republic
| | - Dagmar Čožíková
- Contipro a.s., Dolní Dobrouč 401, 56102 Dolní Dobrouč, Czech Republic
| | - Marcela Slováková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Zuzana Bílková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Jan Bobek
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic; Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, České mládeže 8, 400 96 Ústí nad Labem, Czech Republic; Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítná sq. 3105, 272 01 Kladno, Czech Republic
| | - Zbyněk Černý
- Contipro a.s., Dolní Dobrouč 401, 56102 Dolní Dobrouč, Czech Republic
| | - Matouš Čihák
- Contipro a.s., Dolní Dobrouč 401, 56102 Dolní Dobrouč, Czech Republic; Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vladimír Velebný
- Contipro a.s., Dolní Dobrouč 401, 56102 Dolní Dobrouč, Czech Republic
| |
Collapse
|
19
|
Morales AH, Hero JS, Ledesma AE, Perez HA, Navarro MC, Gómez MI, Romero CM. Interfacial Hyperactivation of Candida rugosa Lipase onto Ca 2Fe 2O 5 Nanoparticles: pH and Ionic Strength Fine-Tuning to Modulate Protein-Support Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12004-12019. [PMID: 37585874 DOI: 10.1021/acs.langmuir.3c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The current study provides a comprehensive look of the adsorption process of Candida rugosa lipase (CRL) on Ca2Fe2O5 iron oxide nanoparticles (NPs). Protein-support interactions were identified across a broad range of pH and ionic strengths (mM) through a response surface methodology, surface charge determination, and spectroscopic and in silico analyses. The maximum quantity of immobilized protein was achieved at an ionic strength of 50 mM and pH 4. However, this condition did not allow for the greatest hydrolytic activity to be obtained. Indeed, it was recorded at acidic pH, but at 150 mM, where evaluation of the recovered activity revealed hyperactivation of the enzyme. These findings were supported by adsorption isotherms performed under different conditions. Based on zeta potential measurements, electrostatic interactions contributed differently to protein-support binding under the conditions tested, showing a strong correlation with experimentally determined immobilization parameters. Raman spectra revealed an increase in hydrophobicity around tryptophan residues, whereas the enzyme immobilization significantly reduced the phenylalanine signal in CRL. This suggests that this residue was involved in the interaction with Ca2Fe2O2 and molecular docking analysis confirmed these findings. Fluorescence spectroscopy showed distinct behaviors in the CRL emission patterns with the addition of Ca2Fe2O5 at pH 4 and 7. The calculated thermodynamic parameters indicated that the contact would be mediated by hydrophobic interactions at both pHs, as well as by ionic ones at pH 4. In this approach, this work adds to our understanding of the design of biocatalysts immobilized in iron oxide NPs.
Collapse
Affiliation(s)
- Andrés H Morales
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, Tucumán T4001 MVB, Argentina
| | - Johan S Hero
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, Tucumán T4001 MVB, Argentina
| | - Ana E Ledesma
- Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL-UNSE-CONICET), Departamento Académico de Química, Facultad de Ciuencias Exactas y Tecnológicas, Universidad Nacional de Santiago del Estero, Av. Belgrano Sur 1912, Santiago del Estero 4200, Argentina
| | - Hugo A Perez
- Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL-UNSE-CONICET), Departamento Académico de Química, Facultad de Ciuencias Exactas y Tecnológicas, Universidad Nacional de Santiago del Estero, Av. Belgrano Sur 1912, Santiago del Estero 4200, Argentina
| | - María C Navarro
- Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, San Miguel de Tucumán T4000IL, Argentina
| | - María I Gómez
- Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, San Miguel de Tucumán T4000IL, Argentina
| | - Cintia M Romero
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, Tucumán T4001 MVB, Argentina
- Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, San Miguel de Tucumán T4000IL, Argentina
| |
Collapse
|
20
|
Svirelis J, Adali Z, Emilsson G, Medin J, Andersson J, Vattikunta R, Hulander M, Järlebark J, Kolman K, Olsson O, Sakiyama Y, Lim RYH, Dahlin A. Stable trapping of multiple proteins at physiological conditions using nanoscale chambers with macromolecular gates. Nat Commun 2023; 14:5131. [PMID: 37612271 PMCID: PMC10447545 DOI: 10.1038/s41467-023-40889-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
The possibility to detect and analyze single or few biological molecules is very important for understanding interactions and reaction mechanisms. Ideally, the molecules should be confined to a nanoscale volume so that the observation time by optical methods can be extended. However, it has proven difficult to develop reliable, non-invasive trapping techniques for biomolecules under physiological conditions. Here we present a platform for long-term tether-free (solution phase) trapping of proteins without exposing them to any field gradient forces. We show that a responsive polymer brush can make solid state nanopores switch between a fully open and a fully closed state with respect to proteins, while always allowing the passage of solvent, ions and small molecules. This makes it possible to trap a very high number of proteins (500-1000) inside nanoscale chambers as small as one attoliter, reaching concentrations up to 60 gL-1. Our method is fully compatible with parallelization by imaging arrays of nanochambers. Additionally, we show that enzymatic cascade reactions can be performed with multiple native enzymes under full nanoscale confinement and steady supply of reactants. This platform will greatly extend the possibilities to optically analyze interactions involving multiple proteins, such as the dynamics of oligomerization events.
Collapse
Affiliation(s)
- Justas Svirelis
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Zeynep Adali
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Gustav Emilsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Jesper Medin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - John Andersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Radhika Vattikunta
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Mats Hulander
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Julia Järlebark
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Krzysztof Kolman
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Oliver Olsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Yusuke Sakiyama
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, 4056, Basel, Switzerland
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, 4056, Basel, Switzerland
| | - Andreas Dahlin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden.
| |
Collapse
|
21
|
Mendes GR, Modenez IDA, Cagnani GR, Colombo RNP, Crespilho FN. Exploring Enzymatic Conformational Dynamics at Surfaces through μ-FTIR Spectromicroscopy. Anal Chem 2023; 95:11254-11262. [PMID: 37459476 DOI: 10.1021/acs.analchem.3c00872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Immobilization of proteins onto solid supports has critical industrial, technological, and medical applications, and is a daily task in chemical research. Significant conformational rearrangements often occur due to enzyme-surface interactions, and it is of broad interest to develop methods to probe and better understand these molecular-level changes that contribute to the enzyme's catalytic activity and stability. While circular dichroism is a common method for solution-phase conformational study, the application to surface-supported proteins is not trivial and spatial mapping is not viable. On the other hand, a nonlinear laser spectroscopy technique used to analyze surfaces and interfaces is not often found in most laboratories, therefore requiring an alternative and reliable method. Here, we employed high-dimensional data spectromicroscopy analysis in the infrared region (μ-FTIR) to investigate the enzyme's conformational change when adsorbed onto solid matrices, across a ca. 20 mm2 area. Alcohol dehydrogenase (ADH) enzyme was adopted as a model enzyme to interact with CaF2, Au, and Au-thiol model substrates, strategically chosen for mapping the enzyme dynamics on solid surfaces with different polarity/hydrophobicity properties and extendable to other materials. Two-dimensional chemical maps indicate that the enzyme adsorbs with different patterns in which secondary structures dynamically adjust to optimize interprotein and enzyme-surface interactions. The results suggest an experimental approach to identify and map enzyme conformational dynamics onto different solid surfaces across space and provide insights into immobilized protein structure investigations for areas such as biosensing and bioenergy.
Collapse
Affiliation(s)
- Giovana Rossi Mendes
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil
| | - Iago de Assis Modenez
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil
| | - Giovana Rosso Cagnani
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil
| | - Rafael N P Colombo
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil
| | - Frank Nelson Crespilho
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil
| |
Collapse
|
22
|
Kumar N, He J, Rusling JF. Electrochemical transformations catalyzed by cytochrome P450s and peroxidases. Chem Soc Rev 2023; 52:5135-5171. [PMID: 37458261 DOI: 10.1039/d3cs00461a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cytochrome P450s (Cyt P450s) and peroxidases are enzymes featuring iron heme cofactors that have wide applicability as biocatalysts in chemical syntheses. Cyt P450s are a family of monooxygenases that oxidize fatty acids, steroids, and xenobiotics, synthesize hormones, and convert drugs and other chemicals to metabolites. Peroxidases are involved in breaking down hydrogen peroxide and can oxidize organic compounds during this process. Both heme-containing enzymes utilize active FeIVO intermediates to oxidize reactants. By incorporating these enzymes in stable thin films on electrodes, Cyt P450s and peroxidases can accept electrons from an electrode, albeit by different mechanisms, and catalyze organic transformations in a feasible and cost-effective way. This is an advantageous approach, often called bioelectrocatalysis, compared to their biological pathways in solution that require expensive biochemical reductants such as NADPH or additional enzymes to recycle NADPH for Cyt P450s. Bioelectrocatalysis also serves as an ex situ platform to investigate metabolism of drugs and bio-relevant chemicals. In this paper we review biocatalytic electrochemical reactions using Cyt P450s including C-H activation, S-oxidation, epoxidation, N-hydroxylation, and oxidative N-, and O-dealkylation; as well as reactions catalyzed by peroxidases including synthetically important oxidations of organic compounds. Design aspects of these bioelectrocatalytic reactions are presented and discussed, including enzyme film formation on electrodes, temperature, pH, solvents, and activation of the enzymes. Finally, we discuss challenges and future perspective of these two important bioelectrocatalytic systems.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
- Department of Surgery and Neag Cancer Center, Uconn Health, Farmington, CT 06030, USA
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| |
Collapse
|
23
|
Pinheiro BB, Saibi S, Haroune L, Rios NS, Gonçalves LRB, Cabana H. Genipin and glutaraldehyde based laccase two-layers immobilization with improved properties: New biocatalysts with high potential for enzymatic removal of trace organic contaminants. Enzyme Microb Technol 2023; 169:110261. [PMID: 37269616 DOI: 10.1016/j.enzmictec.2023.110261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
This research proposes the preparation of a two-layer laccase biocatalyst using genipin or/and glutaraldehyde as cross-linking agents. The multilayer biocatalysts were prepared using different combinations of genipin and glutaraldehyde in the individual preparation of the first and second laccase layers. First, chitosan was treated with genipin or glutaraldehyde, followed by the immobilization of the first laccase layer to form a single-layer biocatalyst. Then, the immobilized laccases were coated once again with genipin or glutaraldehyde, and a new laccase layer was immobilized onto the system, resulting in the final two-layer biocatalyst. Compared to the single-layer biocatalysts, catalytic activity increased 1.7- and 3.4-fold when glutaraldehyde coating was used to prepare the second laccase layer. However, adding a second layer did not always produce more active biocatalysts, since the two-layer biocatalysts prepared with genipin (GenLacGenLac and GluLacGenLac) presented a decrease in activity of 65% and 28%, respectively. However, these two-layer biocatalysts prepared with genipin maintained 100% of their initial activity after 5 cycles of ABTS oxidation. Nevertheless, the two-layer, genipin-coated biocatalyst resulted in a higher removal of trace organic contaminants, since it removed 100% of mefenamic acid and 66% of acetaminophen, compared with the glutaraldehyde-coated biocatalyst, which removed 20% of mefenamic acid, and 18% of acetaminophen.
Collapse
Affiliation(s)
- Bruna B Pinheiro
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, CEP 60455-760 Fortaleza, CE, Brazil; Université de Sherbrooke Water Research Group, Environmental Engineering Laboratory, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Sabrina Saibi
- Université de Sherbrooke Water Research Group, Environmental Engineering Laboratory, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Lounès Haroune
- Department of Chemistry, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, Quebec J1K 2R1, Canada
| | - Nathália Saraiva Rios
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Luciana R B Gonçalves
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, CEP 60455-760 Fortaleza, CE, Brazil
| | - Hubert Cabana
- Université de Sherbrooke Water Research Group, Environmental Engineering Laboratory, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada.
| |
Collapse
|
24
|
Yuan Y, Shen J, Salmon S. Developing Enzyme Immobilization with Fibrous Membranes: Longevity and Characterization Considerations. MEMBRANES 2023; 13:membranes13050532. [PMID: 37233593 DOI: 10.3390/membranes13050532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Fibrous membranes offer broad opportunities to deploy immobilized enzymes in new reactor and application designs, including multiphase continuous flow-through reactions. Enzyme immobilization is a technology strategy that simplifies the separation of otherwise soluble catalytic proteins from liquid reaction media and imparts stabilization and performance enhancement. Flexible immobilization matrices made from fibers have versatile physical attributes, such as high surface area, light weight, and controllable porosity, which give them membrane-like characteristics, while simultaneously providing good mechanical properties for creating functional filters, sensors, scaffolds, and other interface-active biocatalytic materials. This review examines immobilization strategies for enzymes on fibrous membrane-like polymeric supports involving all three fundamental mechanisms of post-immobilization, incorporation, and coating. Post-immobilization offers an infinite selection of matrix materials, but may encounter loading and durability issues, while incorporation offers longevity but has more limited material options and may present mass transfer obstacles. Coating techniques on fibrous materials at different geometric scales are a growing trend in making membranes that integrate biocatalytic functionality with versatile physical supports. Biocatalytic performance parameters and characterization techniques for immobilized enzymes are described, including several emerging techniques of special relevance for fibrous immobilized enzymes. Diverse application examples from the literature, focusing on fibrous matrices, are summarized, and biocatalyst longevity is emphasized as a critical performance parameter that needs increased attention to advance concepts from lab scale to broader utilization. This consolidation of fabrication, performance measurement, and characterization techniques, with guiding examples highlighted, is intended to inspire future innovations in enzyme immobilization with fibrous membranes and expand their uses in novel reactors and processes.
Collapse
Affiliation(s)
- Yue Yuan
- Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Fiber and Polymer Science Program, Department of Textile Engineering Chemistry & Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Jialong Shen
- Fiber and Polymer Science Program, Department of Textile Engineering Chemistry & Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sonja Salmon
- Fiber and Polymer Science Program, Department of Textile Engineering Chemistry & Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
25
|
Dean SN, Thakur M, Spangler JR, Smith AD, Garin SP, Walper SA, Ellis GA. Different Strategies Affect Enzyme Packaging into Bacterial Outer Membrane Vesicles. Bioengineering (Basel) 2023; 10:bioengineering10050583. [PMID: 37237653 DOI: 10.3390/bioengineering10050583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
All Gram-negative bacteria are believed to produce outer membrane vesicles (OMVs), proteoliposomes shed from the outermost membrane. We previously separately engineered E. coli to produce and package two organophosphate (OP) hydrolyzing enzymes, phosphotriesterase (PTE) and diisopropylfluorophosphatase (DFPase), into secreted OMVs. From this work, we realized a need to thoroughly compare multiple packaging strategies to elicit design rules for this process, focused on (1) membrane anchors or periplasm-directing proteins (herein "anchors/directors") and (2) the linkers connecting these to the cargo enzyme; both may affect enzyme cargo activity. Herein, we assessed six anchors/directors to load PTE and DFPase into OMVs: four membrane anchors, namely, lipopeptide Lpp', SlyB, SLP, and OmpA, and two periplasm-directing proteins, namely, maltose-binding protein (MBP) and BtuF. To test the effect of linker length and rigidity, four different linkers were compared using the anchor Lpp'. Our results showed that PTE and DFPase were packaged with most anchors/directors to different degrees. For the Lpp' anchor, increased packaging and activity corresponded to increased linker length. Our findings demonstrate that the selection of anchors/directors and linkers can greatly influence the packaging and bioactivity of enzymes loaded into OMVs, and these findings have the potential to be utilized for packaging other enzymes into OMVs.
Collapse
Affiliation(s)
- Scott N Dean
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Meghna Thakur
- College of Science, George Mason University, Fairfax, VA 22030, USA
| | - Joseph R Spangler
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Aaron D Smith
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Sean P Garin
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Scott A Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Gregory A Ellis
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| |
Collapse
|
26
|
Larkin JO, Jayanthi B, Segatori L, Ball ZT. Boronic Acid Resin for Selective Immobilization of Canonically Encoded Proteins. Biomacromolecules 2023; 24:2196-2202. [PMID: 37084390 DOI: 10.1021/acs.biomac.3c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
The use of transition-metal-mediated boronic acid chemistry presents a novel method of protein immobilization on a solid support. This is a one-step method that site-selectively immobilizes pyroglutamate-histidine (pGH)-tagged proteins. Herein, we describe the synthesis of alkenylboronic acid-functionalized poly(ethylene glycol) acrylamide (PEGA) resin and its subsequent reactions with pGH-tagged proteins to produce covalent linkages. The selectivity of immobilization is demonstrated within fluorescent studies, model mixtures, and lysates.
Collapse
Affiliation(s)
- James O Larkin
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Brianna Jayanthi
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Laura Segatori
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Zachary T Ball
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
27
|
Falina S, Anuar K, Shafiee SA, Juan JC, Manaf AA, Kawarada H, Syamsul M. Two-Dimensional Non-Carbon Materials-Based Electrochemical Printed Sensors: An Updated Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239358. [PMID: 36502059 PMCID: PMC9735910 DOI: 10.3390/s22239358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 05/28/2023]
Abstract
Recently, there has been increasing interest in electrochemical printed sensors for a wide range of applications such as biomedical, pharmaceutical, food safety, and environmental fields. A major challenge is to obtain selective, sensitive, and reliable sensing platforms that can meet the stringent performance requirements of these application areas. Two-dimensional (2D) nanomaterials advances have accelerated the performance of electrochemical sensors towards more practical approaches. This review discusses the recent development of electrochemical printed sensors, with emphasis on the integration of non-carbon 2D materials as sensing platforms. A brief introduction to printed electrochemical sensors and electrochemical technique analysis are presented in the first section of this review. Subsequently, sensor surface functionalization and modification techniques including drop-casting, electrodeposition, and printing of functional ink are discussed. In the next section, we review recent insights into novel fabrication methodologies, electrochemical techniques, and sensors' performances of the most used transition metal dichalcogenides materials (such as MoS2, MoSe2, and WS2), MXenes, and hexagonal boron-nitride (hBN). Finally, the challenges that are faced by electrochemical printed sensors are highlighted in the conclusion. This review is not only useful to provide insights for researchers that are currently working in the related area, but also instructive to the ones new to this field.
Collapse
Affiliation(s)
- Shaili Falina
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Khairu Anuar
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
| | - Saiful Arifin Shafiee
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Joon Ching Juan
- Nanotechnology & Catalyst Research Centre (NANOCAT), Institute of Postgraduate Studies, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
| | - Hiroshi Kawarada
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- The Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051, Japan
| | - Mohd Syamsul
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Institute of Nano Optoelectronics Research and Technology (INOR), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
| |
Collapse
|
28
|
Holyavka MG, Goncharova SS, Sorokin AV, Lavlinskaya MS, Redko YA, Faizullin DA, Baidamshina DR, Zuev YF, Kondratyev MS, Kayumov AR, Artyukhov VG. Novel Biocatalysts Based on Bromelain Immobilized on Functionalized Chitosans and Research on Their Structural Features. Polymers (Basel) 2022; 14:5110. [PMID: 36501516 PMCID: PMC9739615 DOI: 10.3390/polym14235110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Enzyme immobilization on various carriers represents an effective approach to improve their stability, reusability, and even change their catalytic properties. Here, we show the mechanism of interaction of cysteine protease bromelain with the water-soluble derivatives of chitosan-carboxymethylchitosan, N-(2-hydroxypropyl)-3-trimethylammonium chitosan, chitosan sulfate, and chitosan acetate-during immobilization and characterize the structural features and catalytic properties of obtained complexes. Chitosan sulfate and carboxymethylchitosan form the highest number of hydrogen bonds with bromelain in comparison with chitosan acetate and N-(2-hydroxypropyl)-3-trimethylammonium chitosan, leading to a higher yield of protein immobilization on chitosan sulfate and carboxymethylchitosan (up to 58 and 65%, respectively). In addition, all derivatives of chitosan studied in this work form hydrogen bonds with His158 located in the active site of bromelain (except N-(2-hydroxypropyl)-3-trimethylammonium chitosan), apparently explaining a significant decrease in the activity of biocatalysts. The N-(2-hydroxypropyl)-3-trimethylammonium chitosan displays only physical interactions with His158, thus possibly modulating the structure of the bromelain active site and leading to the hyperactivation of the enzyme, up to 208% of the total activity and 158% of the specific activity. The FTIR analysis revealed that interaction between N-(2-hydroxypropyl)-3-trimethylammonium chitosan and bromelain did not significantly change the enzyme structure. Perhaps this is due to the slowing down of aggregation and the autolysis processes during the complex formation of bromelain with a carrier, with a minimal modification of enzyme structure and its active site orientation.
Collapse
Affiliation(s)
- Marina G. Holyavka
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
- Laboratory of Bioresource Potential of Coastal Area, Institute for Advanced Studies, Sevastopol State University, 33 Studencheskaya Street, 299053 Sevastopol, Russia
| | - Svetlana S. Goncharova
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
| | - Andrey V. Sorokin
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
- Laboratory of Bioresource Potential of Coastal Area, Institute for Advanced Studies, Sevastopol State University, 33 Studencheskaya Street, 299053 Sevastopol, Russia
- Metagenomics and Food Biotechnologies Laboratory, Voronezh State University of Engineering Technologies, 19 Revolutsii Avenue, 394036 Voronezh, Russia
| | - Maria S. Lavlinskaya
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
- Laboratory of Bioresource Potential of Coastal Area, Institute for Advanced Studies, Sevastopol State University, 33 Studencheskaya Street, 299053 Sevastopol, Russia
- Metagenomics and Food Biotechnologies Laboratory, Voronezh State University of Engineering Technologies, 19 Revolutsii Avenue, 394036 Voronezh, Russia
| | - Yulia A. Redko
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
| | - Dzhigangir A. Faizullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of the RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia
| | - Diana R. Baidamshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Yuriy F. Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of the RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia
| | - Maxim S. Kondratyev
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
- Laboratory of Structure and Dynamics of Biomolecular Systems, Institute of Cell Biophysics of the RAS, 3 Institutskaya Street, 142290 Pushchino, Russia
| | - Airat R. Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Valeriy G. Artyukhov
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
| |
Collapse
|
29
|
Liu D, Yang X, Zhang L, Tang Y, He H, Liang M, Tu Z, Zhu H. Immobilization of Biomass Materials for Removal of Refractory Organic Pollutants from Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13830. [PMID: 36360710 PMCID: PMC9657116 DOI: 10.3390/ijerph192113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
In the field of environmental science and engineering, microorganisms, enzymes and algae are promising biomass materials that can effectively degrade pollutants. However, problems such as poor environmental adaptability, recycling difficulties, and secondary pollution exist in the practical application of non-immobilized biomass materials. Biomass immobilization is a novel environmental remediation technology that can effectively solve these problems. Compared with non-immobilized biomass, immobilized biomass materials have the advantages of reusability and stability in terms of pH, temperature, handling, and storage. Many researchers have studied immobilization technology (i.e., methods, carriers, and biomass types) and its applications for removing refractory organic pollutants. Based on this, this paper reviews biomass immobilization technology, outlines the mechanisms and factors affecting the removal of refractory organic pollutants, and introduces the application of immobilized biomass materials as fillers for reactors in water purification. This review provides some practical references for the preparation and application of immobilized biomass materials and promotes further research and development to expand the application range of this material for water purification.
Collapse
Affiliation(s)
- Danxia Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xiaolong Yang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Lin Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yiyan Tang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Huijun He
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin University of Technology, Guilin 541004, China
| | - Meina Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin University of Technology, Guilin 541004, China
| | - Zhihong Tu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin University of Technology, Guilin 541004, China
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hongxiang Zhu
- Guangxi Modern Industry College of Ecology and Environmental Protection, Guilin 541006, China
| |
Collapse
|
30
|
Prüfer M, Wenger C, Bier FF, Laux EM, Hölzel R. Activity of AC electrokinetically immobilized horseradish peroxidase. Electrophoresis 2022; 43:1920-1933. [PMID: 35904497 DOI: 10.1002/elps.202200073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/22/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022]
Abstract
Dielectrophoresis (DEP) is an AC electrokinetic effect mainly used to manipulate cells. Smaller particles, like virions, antibodies, enzymes, and even dye molecules can be immobilized by DEP as well. In principle, it was shown that enzymes are active after immobilization by DEP, but no quantification of the retained activity was reported so far. In this study, the activity of the enzyme horseradish peroxidase (HRP) is quantified after immobilization by DEP. For this, HRP is immobilized on regular arrays of titanium nitride ring electrodes of 500 nm diameter and 20 nm widths. The activity of HRP on the electrode chip is measured with a limit of detection of 60 fg HRP by observing the enzymatic turnover of Amplex Red and H2 O2 to fluorescent resorufin by fluorescence microscopy. The initial activity of the permanently immobilized HRP equals up to 45% of the activity that can be expected for an ideal monolayer of HRP molecules on all electrodes of the array. Localization of the immobilizate on the electrodes is accomplished by staining with the fluorescent product of the enzyme reaction. The high residual activity of enzymes after AC field induced immobilization shows the method's suitability for biosensing and research applications.
Collapse
Affiliation(s)
- Mareike Prüfer
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam-Golm, Germany
| | - Christian Wenger
- IHP GmbH - Leibniz Institute for Innovative Microelectronics, Frankfurt/Oder, Germany
| | - Frank F Bier
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Eva-Maria Laux
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam-Golm, Germany
| | - Ralph Hölzel
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam-Golm, Germany
| |
Collapse
|
31
|
Xu Z, Yang S, Xie Y, Yu H, Zhou J. Modulating the adsorption orientation of methionine-rich laccase by tailoring the surface chemistry of single-walled carbon nanotubes. Colloids Surf B Biointerfaces 2022; 217:112660. [PMID: 35777167 DOI: 10.1016/j.colsurfb.2022.112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022]
Abstract
Achieving fast electron transfer process between oxidoreductase and electrodes is pivotal for the biocathode of enzymatic biofuel cells (EBFCs). However, in-depth understanding of the interplay mechanism between enzymes and electrode materials remains challenging when designing and constructing EBFCs. Herein, atomic-scale insight into the direct electron transfer (DET) behavior of Thermus thermophilus laccase (TtLac) with a special methionine-rich β-hairpin motif adsorbed on the carboxyl-functionalized carbon nanotube (COOH-CNT) and amino-functionalized carbon nanotube (NH2-CNT) surfaces were disclosed by multi-scale molecular simulations. Simulation results reveal that electrostatic modification is an effective way to tune the DET behavior for TtLac on the modified-CNTs electrode surface. Surprisingly, the positively charged TtLac can be attracted by both negatively charged COOH-CNT and positively charged NH2-CNT surfaces, yet only the latter is capable to trigger the DET process due to the 'lying-on' adsorption orientation. Specifically, the T1 copper site is near the methionine-rich β-hairpin motif, which is the key binding site for TtLac binding onto the NH2-CNT surface via electrostatic interaction, π-π stacking and cation-π interaction. Moreover, TtLac on the NH2-CNT surface undergoes less conformational changes than those on the COOH-CNT surface, which allows the laccase stability and catalytic efficiency to be well preserved. These findings provide a fundamental guidance for future design and fabrication of methionine-rich laccase-based EBFCs with high power output and long lifespan.
Collapse
Affiliation(s)
- Zhiyong Xu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Shengjiang Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Yun Xie
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou, PR China
| | - Hai Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
32
|
Fryer T, Rogers JD, Mellor C, Kohler TN, Minter R, Hollfelder F. Gigavalent Display of Proteins on Monodisperse Polyacrylamide Hydrogels as a Versatile Modular Platform for Functional Assays and Protein Engineering. ACS CENTRAL SCIENCE 2022; 8:1182-1195. [PMID: 36032770 PMCID: PMC9413441 DOI: 10.1021/acscentsci.2c00576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The assembly of robust, modular biological components into complex functional systems is central to synthetic biology. Here, we apply modular "plug and play" design principles to a solid-phase protein display system that facilitates protein purification and functional assays. Specifically, we capture proteins on polyacrylamide hydrogel display beads (PHD beads) made in microfluidic droplet generators. These monodisperse PHD beads are decorated with predefined amounts of anchors, methacrylate-PEG-benzylguanine (BG) and methacrylate-PEG-chloroalkane (CA), that react covalently with SNAP-/Halo-tag fusion proteins, respectively, in a specific, orthogonal, and stable fashion. Anchors, and thus proteins, are distributed throughout the entire bead volume, allowing attachment of ∼109 protein molecules per bead (⌀ 20 μm) -a higher density than achievable with commercial surface-modified beads. We showcase a diverse array of protein modules that enable the secondary capture of proteins, either noncovalently (IgG and SUMO-tag) or covalently (SpyCatcher, SpyTag, SnpCatcher, and SnpTag), in mono- and multivalent display formats. Solid-phase protein binding and enzymatic assays are carried out, and incorporating the photocleavable protein PhoCl enables the controlled release of modules via visible-light irradiation for functional assays in solution. We utilize photocleavage for valency engineering of an anti-TRAIL-R1 scFv, enhancing its apoptosis-inducing potency ∼50-fold through pentamerization.
Collapse
Affiliation(s)
- Thomas Fryer
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
- Antibody
Discovery and Protein Engineering, R&D, AstraZeneca, Milstein
Building, Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Joel David Rogers
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
- Antibody
Discovery and Protein Engineering, R&D, AstraZeneca, Milstein
Building, Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Christopher Mellor
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Timo N. Kohler
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Ralph Minter
- Antibody
Discovery and Protein Engineering, R&D, AstraZeneca, Milstein
Building, Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Florian Hollfelder
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
33
|
Kanubaddi KR, Yang CL, Huang PY, Lin CY, Tai DF, Lee CH. Peptide conformational imprints enhanced the catalytic activity of papain for esterification. Front Bioeng Biotechnol 2022; 10:943751. [PMID: 36051592 PMCID: PMC9424681 DOI: 10.3389/fbioe.2022.943751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Peptide conformational imprints (PCIs) offer a promising perspective to directly generate binding sites for preserving enzymes with high catalytic activity and stability. In this study, we synthesized a new chiral cross-linker cost-effectively for controlling the matrix morphology of PCIs on magnetic particles (PCIMPs) to stabilize their recognition capability. Meanwhile, based on the flank part of the sequences on papain (PAP), three epitope peptides were selected and synthesized. Molecularly imprinted polymers (MIPs) were then fabricated in the presence of the epitope peptide using our new cross-linker on magnetic particles (MPs) to generate PCIMPs. PCIMPs were formed with helical cavities that complement the PAP structure to adsorb specifically at the targeted position of PAP. PCIMPs65–79 were found to have the best binding parameters to the PAP with Kd = 0.087 μM and Bmax = 4.56 μM. Upon esterification of N-Boc-His-OH, proton nuclear magnetic resonance (1H-NMR) was used to monitor the yield of the reaction and evaluate the activity of PAP/PCIMPs. The kinetic parameters of PAP/PCIMPs65–79 were calculated as Vmax = 3.0 μM s−1, Km = 5 × 10−2 M, kcat = 1.1 × 10–1 s−1, and kcat/Km = 2.2 M−1 s−1. In addition, PAP is bound tightly to PCIMPs to sustain its activity after four consecutive cycles.
Collapse
Affiliation(s)
- Kiran Reddy Kanubaddi
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Ching-Lun Yang
- Department of Chemistry, National Dong Hwa University, Hualien, Taiwan
| | - Pei-Yu Huang
- Department of Chemistry, National Dong Hwa University, Hualien, Taiwan
| | - Chung-Yin Lin
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- *Correspondence: Chung-Yin Lin, ; Dar-Fu Tai,
| | - Dar-Fu Tai
- Department of Chemistry, National Dong Hwa University, Hualien, Taiwan
- *Correspondence: Chung-Yin Lin, ; Dar-Fu Tai,
| | - Chia-Hung Lee
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
34
|
Correira JM, Handali PR, Webb LJ. Characterizing Protein-Surface and Protein-Nanoparticle Conjugates: Activity, Binding, and Structure. J Chem Phys 2022; 157:090902. [DOI: 10.1063/5.0101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many sensors and catalysts composed of proteins immobilized on inorganic materials have been reported over the past few decades. Despite some examples of functional protein-surface and protein-nanoparticle conjugates, thorough characterization of the biological-abiological interface at the heart of these materials and devices is often overlooked in lieu of demonstrating acceptable system performance. This has resulted in a focus on generating functioning protein-based devices without a concerted effort to develop reliable tools necessary to measure the fundamental properties of the bio-abio interface such as surface concentration, biomolecular structure, and activity. In this Perspective we discuss current methods used to characterize these critical properties of devices that operate by integrating a protein into both flat surfaces and nanoparticle materials. We highlight the advantages and drawbacks of each method as they relate to understanding the function of the protein-surface interface, and explore the manner in which an informed understanding of this complex interaction leads directly to the advancement of protein-based materials and technology.
Collapse
Affiliation(s)
| | - Paul R Handali
- The University of Texas at Austin, United States of America
| | - Lauren J. Webb
- Chemistry, The University of Texas at Austin Department of Chemistry, United States of America
| |
Collapse
|
35
|
Effect of anions, urea and aggregation state on the thermal behavior of PDMAEMA-based polymers. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Liao Q, Liu W, Meng Z. Strategies for overcoming the limitations of enzymatic carbon dioxide reduction. Biotechnol Adv 2022; 60:108024. [PMID: 35907470 DOI: 10.1016/j.biotechadv.2022.108024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022]
Abstract
The overexploitation of fossil fuels has led to a significant increase in atmospheric carbon dioxide (CO2) concentrations, thereby causing problems, such as the greenhouse effect. Rapid global climate change has caused researchers to focus on utilizing CO2 in a green and efficient manner. One of the ways to achieve this is by converting CO2 into valuable chemicals via chemical, photochemical, electrochemical, or enzymatic methods. Among these, the enzymatic method is advantageous because of its high specificity and selectivity as well as the mild reaction conditions required. The reduction of CO2 to formate, formaldehyde, and methanol using formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH), and alcohol dehydrogenase (ADH) are attractive routes, respectively. In this review, strategies for overcoming the common limitations of enzymatic CO2 reduction are discussed. First, we present a brief background on the importance of minimizing of CO2 emissions and introduce the three bottlenecks limiting enzymatic CO2 reduction. Thereafter, we explore the different strategies for enzyme immobilization on various support materials. To solve the problem of cofactor consumption, different state-of-the-art cofactor regeneration strategies as well as research on the development of cofactor substitutes and cofactor-free systems are extensively discussed. Moreover, aiming at improving CO2 solubility, biological, physical, and engineering measures are reviewed. Finally, conclusions and future perspectives are presented.
Collapse
Affiliation(s)
- Qiyong Liao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Higher Education Park, Fangshan District, Beijing 102488, PR China
| | - Wenfang Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Higher Education Park, Fangshan District, Beijing 102488, PR China.
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Higher Education Park, Fangshan District, Beijing 102488, PR China
| |
Collapse
|
37
|
Shrivastava S, Ifra, Saha S, Singh A. Dissipative particle dynamics simulation study on ATRP-brush modification of variably shaped surfaces and biopolymer adsorption. Phys Chem Chem Phys 2022; 24:17986-18003. [PMID: 35856807 DOI: 10.1039/d2cp01749k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a dissipative particle dynamics (DPD) simulation study on the surface modification of initiator embedded microparticles (MPs) of different shapes via atom transfer radical polymerization (ATRP) brush growth. The surface-initiated ATRP-brush growth leads to the formation of a more globular MP shape. We perform the comparative analysis of ATRP-brush growth on three different forms of particle surfaces: cup surface, spherical surface, and flat surface (rectangular/disk-shaped). First, we establish the chemical kinetics of the brush growth: the monomer conversion and the reaction rates. Next, we discuss the structural changes (shape-modification) of brush-modified surfaces by computing the radial distribution function, spatial density distribution, radius of gyration, hydrodynamic radius, and shape factor. The polymer brush-modified particles are well known as the carrier materials for enzyme immobilization. Finally, we study the biopolymer adsorption on ATRP-brush modified particles in a compatible solution. In particular, we explore the effect of ATRP-brush length, biopolymer chain length, and concentration on the adsorption process. Our results illustrate the enhanced biopolymer adsorption with increased brush length, initiator concentration, and biopolymer concentration. Most importantly, when adsorption reaches saturation, the flat surface loads more biopolymers than the other two surfaces. The experimental results verified the same, considering the disk-shaped flat surface particles, cup-shaped particles, and spherical particles.
Collapse
Affiliation(s)
- Samiksha Shrivastava
- Department of Physics, Indian Institute of Technology (BHU), Varanasi-221005, Uttar Pradesh, India.
| | - Ifra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Awaneesh Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi-221005, Uttar Pradesh, India.
| |
Collapse
|
38
|
Xing C, Mei P, Mu Z, Li B, Feng X, Zhang Y, Wang B. Enhancing Enzyme Activity by the Modulation of Covalent Interactions in the Confined Channels of Covalent Organic Frameworks. Angew Chem Int Ed Engl 2022; 61:e202201378. [PMID: 35267241 DOI: 10.1002/anie.202201378] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 01/03/2023]
Abstract
Controllable regulations on the enzyme conformation to optimize catalytic performance are highly desired for the immobilized biocatalysts yet remain challenging. Covalent organic frameworks (COFs) possess confined channels with finely tunable pore environment, offering a promising platform for enzyme encapsulation. Herein, we covalently immobilized the cytochrome c (Cyt c) in the size-matched channels of COFs with different contents of anchoring site, and significant enhancement of the stability and activity (≈600 % relative activity compared with free enzyme) can be realized by optimizing the covalent interactions. Structural analyses on the immobilized Cyt c suggest that covalent bonding could induce conformational perturbation resulting in more accessible active sites. The effectiveness of the covalent interaction modulation together with the tailorable confined channels of COFs offers promise to develop high-performance biocatalysts.
Collapse
Affiliation(s)
- Chunyan Xing
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Pei Mei
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhenjie Mu
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Bixiao Li
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiao Feng
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuanyuan Zhang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Bo Wang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
39
|
Martí D, Martín-Martínez E, Torras J, Betran O, Turon P, Alemán C. In silico study of substrate chemistry effect on the tethering of engineered antibodies for SARS-CoV-2 detection: Amorphous silica vs gold. Colloids Surf B Biointerfaces 2022; 213:112400. [PMID: 35158221 PMCID: PMC8820101 DOI: 10.1016/j.colsurfb.2022.112400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 11/26/2022]
Abstract
The influence of the properties of different solid substrates on the tethering of two antibodies, IgG1-CR3022 and IgG1-S309, which were specifically engineered for the detection of SARS-CoV-2, has been examined at the molecular level using conventional and accelerated Molecular Dynamics (cMD and aMD, respectively). Two surfaces with very different properties and widely used in immunosensors for diagnosis, amorphous silica and the most stable facet of the face-centered cubic gold structure, have been considered. The effects of such surfaces on the structure and orientation of the immobilized antibodies have been determined by quantifying the tilt and hinge angles that describe the orientation and shape of the antibody, respectively, and the dihedrals that measure the relative position of the antibody arms with respect to the surface. Results show that the interactions with amorphous silica, which are mainly electrostatic due to the charged nature of the surface, help to preserve the orientation and structure of the antibodies, especially of the IgG1-CR3022, indicating that the primary sequence of those antibodies also plays some role. Instead, short-range van der Waals interactions with the inert gold surface cause a higher degree tilting and fraying of the antibodies with respect to amorphous silica. The interactions between the antibodies and the surface also affect the correlation among the different angles and dihedrals, which increases with their strength. Overall, results explain why amorphous silica substrates are frequently used to immobilize antibodies in immunosensors.
Collapse
Affiliation(s)
- Didac Martí
- Departament d'Enginyeria Química (DEQ), EEBE, Universitat Politècnica de Catalunya (UPC), C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Eduard Martín-Martínez
- Departament d'Enginyeria Química (DEQ), EEBE, Universitat Politècnica de Catalunya (UPC), C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
| | - Juan Torras
- Departament d'Enginyeria Química (DEQ), EEBE, Universitat Politècnica de Catalunya (UPC), C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain.
| | - Oscar Betran
- Departament de Física, EETAC, Universitat Politècnica de Catalunya (UPC), c/ Esteve Terrades, 7, 08860 Castelldefels, Spain
| | - Pau Turon
- B. Braun Surgical, S.A.U. Carretera de Terrasa 121, Rubí, 08191 Barcelona, Spain.
| | - Carlos Alemán
- Departament d'Enginyeria Química (DEQ), EEBE, Universitat Politècnica de Catalunya (UPC), C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
40
|
Arteaga-Castrejón AA, Trejo-Hernández MR, Mekmouche Y, Amouric A, Rousselot-Pailley P, Robert V, Tron T, Martínez-Morales F. Relevance of Surface-Exposed Lysine Residues Designed for Functionalization of Laccase. Mol Biol 2022. [DOI: 10.1134/s0026893322040021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Correira JM, Webb LJ. Formation and Characterization of a Stable Monolayer of Active Acetylcholinesterase on Planar Gold. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3501-3513. [PMID: 35276042 DOI: 10.1021/acs.langmuir.1c03399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Enzyme activity is the basis for many biosensors where a catalytic event is used to detect the presence and amount of a biomolecule of interest. To create a practical point-of-care biosensor, these enzymes need to be removed from their native cellular environments and immobilized on an abiological surface to rapidly transduce a biochemical signal into an interpretable readout. This immobilization often leads to loss of activity due to unfolded, aggregated, or improperly oriented enzymes when compared to the native state. In this work, we characterize the formation and surface packing density of a stable monolayer of acetylcholinesterase (AChE) immobilized on a planar gold surface and quantify the extent of activity loss following immobilization. Using spectroscopic ellipsometry, we determined that the surface concentration of AChE on a saturated Au surface in a buffered solution was 2.77 ± 0.21 pmol cm-2. By calculating the molecular volume of hydrated AChE, corresponding to a sphere of 6.19 nm diameter, divided by the total volume at the AChE-Au interface, we obtain a surface packing density of 33.4 ± 2.5% by volume. This corresponds to 45.1 ± 3.4% of the theoretical maximum monolayer coverage, assuming hexagonal packing. The true value, however, may be larger due to unfolding of enzymes to occupy a larger volume. The enzyme activity and kinetic measurements showed a 90.6 ± 1.4% decrease in specific activity following immobilization. Finally, following storage in a buffered solution for over 100 days at both room temperature and 4 °C, approximately 80% of this enzyme activity was retained. This contrasts with the native aqueous enzyme, which loses approximately 75% of its activity within 1 day and becomes entirely inactive within 6 days.
Collapse
Affiliation(s)
- Joshua M Correira
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Program, The University of Texas at Austin, 105 E 24th St. STOP A5300, Austin, Texas 78712-1224, United States
| | - Lauren J Webb
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Program, The University of Texas at Austin, 105 E 24th St. STOP A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
42
|
Xing C, Mei P, Mu Z, Li B, Feng X, Zhang Y, Wang B. Enhancing Enzyme Activity by the Modulation of Covalent Interactions in the Confined Channels of Covalent Organic Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chunyan Xing
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Pei Mei
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Zhenjie Mu
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Bixiao Li
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Xiao Feng
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Yuanyuan Zhang
- Beijing Institute of Technology Advanced Research Institute of Multidisciplinary Science CHINA
| | - Bo Wang
- Beijing Institute of Technology Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials 5 S. Zhongguancun Ave,Central Building Rm. 108 100081 Beijing CHINA
| |
Collapse
|
43
|
Abstract
Printing technology promises a viable solution for the low-cost, rapid, flexible, and mass fabrication of biosensors. Among the vast number of printing techniques, screen printing and inkjet printing have been widely adopted for the fabrication of biosensors. Screen printing provides ease of operation and rapid processing; however, it is bound by the effects of viscous inks, high material waste, and the requirement for masks, to name a few. Inkjet printing, on the other hand, is well suited for mass fabrication that takes advantage of computer-aided design software for pattern modifications. Furthermore, being drop-on-demand, it prevents precious material waste and offers high-resolution patterning. To exploit the features of inkjet printing technology, scientists have been keen to use it for the development of biosensors since 1988. A vast number of fully and partially inkjet-printed biosensors have been developed ever since. This study presents a short introduction on the printing technology used for biosensor fabrication in general, and a brief review of the recent reports related to virus, enzymatic, and non-enzymatic biosensor fabrication, via inkjet printing technology in particular.
Collapse
|
44
|
Sarder R, Piner E, Rios DC, Chacon L, Artner MA, Barrios N, Argyropoulos D. Copolymers of starch, a sustainable template for biomedical applications: A review. Carbohydr Polym 2022; 278:118973. [PMID: 34973787 DOI: 10.1016/j.carbpol.2021.118973] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
The outstanding versatility of starch offers a source of inspiration for the development of high-performance-value-added biomaterials for the biomedical field, including drug delivery, tissue engineering and diagnostic imaging. This is because starch-based materials can be tailored to specific applications via facile grafting or other chemistries, introducing specific substituents, with starch being effectively the "template" used in all the chemical transformations discussed in this review. A considerable effort has been carried out to obtain specific tailored starch-based grafted polymers, taking advantage of its biocompatibility and biodegradability with appealing sustainability considerations. The aim of this review is to critically explore the latest research that use grafting chemistries on starch for the synthesis of products for biomedical applications. An effort is made in reviewing the literature that proposes synthetic "greener" approaches, the use of enzymes and their immobilized analogues and alternative solvent systems, including water emulsions, ionic liquids and supercritical CO2.
Collapse
Affiliation(s)
- Roman Sarder
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - Emily Piner
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - David Cruz Rios
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - Lisandra Chacon
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - Mirela Angelita Artner
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - Nelson Barrios
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | | |
Collapse
|
45
|
Dong W, Wang K, Zhao L, Li T, Wang Q, Ding Z. Selective immobilization of his-tagged phosphomannose isomerase on Ni chelated nanoparticles with good reusability and activity. Chembiochem 2021; 23:e202100497. [PMID: 34958513 DOI: 10.1002/cbic.202100497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/02/2021] [Indexed: 11/06/2022]
Abstract
In this paper, self-stable precipitation polymerization was used to prepare the enzyme-immobilized microsphere composite. Phosphomannose isomerase (PMI) with His-tag was successfully immobilized on Ni 2+ charged pyridine-derived particles. The maximum amount of PMI immobilized on such particles was ~ 184 mg/g. Compared with the free enzymes, the activity of the immobilized enzymes has been significantly improved. In addition, the immoblized enzymes showed a much better thermostability than free enzymes. At the same time, the immobilized enzymes can be reused for multiple reaction cycles. We have observed that the enzyme activity did not decrease significantly after 6 cycles of repeating usages. We conclude that the pyridine-derived particles can be used to selectively immobilize His-tagged enzymes, which can couple the enzyme purification and catalysis steps and improve the efficiency of enzyme-catalyzed industrial processes.
Collapse
Affiliation(s)
- Weifu Dong
- Jiangnan University, School of Chemical and Material Engineering, Lihu Road 1800, 214122, Wuxi, CHINA
| | - Kangjing Wang
- Jiangnan University, school of chemical and material engineering, CHINA
| | - Liting Zhao
- Jiangnan University, School of Biotechnology, CHINA
| | - Ting Li
- Jiangnan University, school of chemical and material engineering, CHINA
| | - Qian Wang
- University of South Carolina, Chemistry and Biochemistry, UNITED STATES
| | | |
Collapse
|
46
|
Enzymatic Approach in Calcium Phosphate Biomineralization: A Contribution to Reconcile the Physicochemical with the Physiological View. Int J Mol Sci 2021; 22:ijms222312957. [PMID: 34884758 PMCID: PMC8657759 DOI: 10.3390/ijms222312957] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 01/22/2023] Open
Abstract
Biomineralization is the process by which organisms produce hard inorganic matter from soft tissues with outstanding control of mineral deposition in time and space. For this purpose, organisms deploy a sophisticated "toolkit" that has resulted in significant evolutionary innovations, for which calcium phosphate (CaP) is the biomineral selected for the skeleton of vertebrates. While CaP mineral formation in aqueous media can be investigated by studying thermodynamics and kinetics of phase transitions in supersaturated solutions, biogenic mineralization requires coping with the inherent complexity of biological systems. This mainly includes compartmentalization and homeostatic processes used by organisms to regulate key physiological factors, including temperature, pH and ion concentration. A detailed analysis of the literature shows the emergence of two main views describing the mechanism of CaP biomineralization. The first one, more dedicated to the study of in vivo systems and supported by researchers in physiology, often involves matrix vesicles (MVs). The second one, more investigated by the physicochemistry community, involves collagen intrafibrillar mineralization particularly through in vitro acellular models. Herein, we show that there is an obvious need in the biological systems to control both where and when the mineral forms through an in-depth survey of the mechanism of CaP mineralization. This necessity could gather both communities of physiologists and physicochemists under a common interest for an enzymatic approach to better describe CaP biomineralization. Both homogeneous and heterogeneous enzymatic catalyses are conceivable for these systems, and a few preliminary promising results on CaP mineralization for both types of enzymatic catalysis are reported in this work. Through them, we aim to describe the relevance of our point of view and the likely findings that could be obtained when adding an enzymatic approach to the already rich and creative research field dealing with CaP mineralization. This complementary approach could lead to a better understanding of the biomineralization mechanism and inspire the biomimetic design of new materials.
Collapse
|
47
|
Wang Y, Milewska M, Foster H, Chapman R, Stenzel MH. The Core-Shell Structure, Not Sugar, Drives the Thermal Stabilization of Single-Enzyme Nanoparticles. Biomacromolecules 2021; 22:4569-4581. [PMID: 34617439 DOI: 10.1021/acs.biomac.1c00871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trehalose is widely assumed to be the most effective sugar for protein stabilization, but exactly how unique the structure is and the mechanism by which it works are still debated. Herein, we use a polyion complex micelle approach to control the position of trehalose relative to the surface of glucose oxidase within cross-linked and non-cross-linked single-enzyme nanoparticles (SENs). The distribution and density of trehalose molecules in the shell can be tuned by changing the structure of the underlying polymer, poly(N-[3-(dimethylamino)propyl] acrylamide (PDMAPA). SENs in which the trehalose is replaced with sucrose and acrylamide are prepared as well for comparison. Isothermal titration calorimetry, dynamic light scattering, and asymmetric flow field-flow fraction in combination with multiangle light scattering reveal that two to six polymers bind to the enzyme. Binding either trehalose or sucrose close to the enzyme surface has very little effect on the thermal stability of the enzyme. By contrast, encapsulation of the enzyme within a cross-linked polymer shell significantly enhances its thermal stability and increases the unfolding temperature from 70.3 °C to 84.8 °C. Further improvements (up to 92.8 °C) can be seen when trehalose is built into this shell. Our data indicate that the structural confinement of the enzyme is a far more important driver in its thermal stability than the location of any sugar.
Collapse
Affiliation(s)
- Yiping Wang
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Malgorzata Milewska
- Department of Organic Chemistry, Bioorganic Chemistry, and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice 44 100, Poland
| | - Henry Foster
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Robert Chapman
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia.,School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| |
Collapse
|
48
|
Ifra, Singh A, Saha S. High Adsorption of α-Glucosidase on Polymer Brush-Modified Anisotropic Particles Acquired by Electrospraying-A Combined Experimental and Simulation Study. ACS APPLIED BIO MATERIALS 2021; 4:7431-7444. [PMID: 35006717 DOI: 10.1021/acsabm.1c00682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this particular contribution, we aim to immobilize a model enzyme such as α-glucosidase onto poly(DMAEMA) [poly(2-dimethyl amino ethyl methacrylate)] brush-modified anisotropic (cup- and disc-shaped) biocompatible polymeric particles. The anisotropic particles comprising a blend of PLA [poly(lactide)] and poly(MMA-co-BEMA) [poly((methyl methacrylate)-co-(2-(2-bromopropionyloxy) ethyl methacrylate)] were acquired by electrospraying, a scalable and convenient technique. We have also demonstrated the role of a swollen polymer brush grafted on the surface of cup-/disc-shaped particles via surface-initiated atom transfer radical polymerization in immobilizing an unprecedentedly high loading of enzyme [441 mg/g (cup)-589 mg/g (disc) of particles, 15-20 times higher than that of the literature-reported system] as compared to non-brush-modified particles. Circular dichroism spectroscopy was used to predict the structural changes of the enzyme upon immobilization onto the carrier particles. An enormously high amount of enzymes with preserved activity (∼85 ± 13% for cups and ∼78 ± 15% for discs) was found to adhere onto brush-modified particles at pH 7 via electrostatic adsorption. These findings were further explored at the atomistic level using a coarse-grained dissipative particle dynamics simulation approach, which exhibited excellent correlation with experimental results. In addition, accelerated particle separation was also achieved via magnetic force-induced aggregation within 20 min (without a centrifuge) by incorporating magnetic nanoparticles into disc-shaped particles while electrojetting. This further strengthens the technical feasibility of the process, which holds immense potential to be applied for various enzymes intended for several applications.
Collapse
Affiliation(s)
- Ifra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Awaneesh Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
49
|
Yang F, Backov R, Blin JL, Fáklya B, Tron T, Mekmouche Y. Site directed confinement of laccases in a porous scaffold towards robustness and selectivity. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 31:e00645. [PMID: 34189063 PMCID: PMC8219655 DOI: 10.1016/j.btre.2021.e00645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 10/31/2022]
Abstract
We immobilized a fungal laccase with only two spatially close lysines available for functionalization into macrocellular Si(HIPE) monoliths for the purpose of continuous flow catalysis. Immobilization (30-45 % protein immobilization yields) was obtained using a covalent bond forming reaction between the enzyme and low glutaraldehyde (0.625 % (w/w)) functionalized foams. Testing primarily HBT-mediated RB5 dye decolorization in continuous flow reactors, we show that the activity of the heterogeneous catalyst is comparable to its homogeneous counterpart. More, its operational activity remains as high as 60 % after twelve consecutive decolorization cycles as well as after one-year storage, performances remarkable for such a material. We further immobilized two variants of the laccase containing a unique lysine: one located in the vicinity of the substrate oxidation site (K157) and one at the opposite side of this oxidation site (K71) to study the effect of the proximity of the Si(HIPE) surface on enzyme activity. Comparing activities on different substrates for monoliths with differentially oriented catalysts, we show a twofold discrimination for ABTS relative to ascorbate. This study provides ground for the development of neo-functionalized materials that beyond allowing stability and reusability will become synergic partners in the catalytic process.
Collapse
Key Words
- ABTS, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid
- APTES, (3-Aminopropyl)triethoxysilane
- Asc, ascorbic acid
- BET, Brunauer, Emmett et Teller
- DPBS, Dulbecco's Phosphate-Buffered Saline, pH 7.0
- Enz., enzyme
- HBT, N-Hydroxy benzotriazole
- HIPE, High Internal Phase Emulsion
- Heterogeneous catalysis
- Laccase
- Orientation
- RB5, Reactive black 5
- RBBR, Remazol Brilliant Blue B
- S.A., specific activity
- Site-directed immobilization
- TEOS, Tetraethyl-orthosilane
- TNC, TriNuclear Cluster
- TTAB, tetradecyltrimethylammonium bromide
Collapse
Affiliation(s)
- Fangfang Yang
- Aix Marseille Univ, Centrale Marseille, CNRS, iSm2, Marseille, France
| | - Rénal Backov
- Université de Bordeaux, CNRS, CRPP, UMR5031, 115 Avenue Albert Schweitzer, F-33600, Pessac, France
| | - Jean-Luc Blin
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Bernadett Fáklya
- Aix Marseille Univ, Centrale Marseille, CNRS, iSm2, Marseille, France
| | - Thierry Tron
- Aix Marseille Univ, Centrale Marseille, CNRS, iSm2, Marseille, France
| | - Yasmina Mekmouche
- Aix Marseille Univ, Centrale Marseille, CNRS, iSm2, Marseille, France
| |
Collapse
|
50
|
Morshed MN, Behary N, Bouazizi N, Guan J, Nierstrasz VA. An overview on biocatalysts immobilization on textiles: Preparation, progress and application in wastewater treatment. CHEMOSPHERE 2021; 279:130481. [PMID: 33894516 DOI: 10.1016/j.chemosphere.2021.130481] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
The immobilization of biocatalysts or other bioactive components often means their transformation from a soluble to an insoluble state by attaching them to a solid support material. Various types of fibrous textiles from both natural and synthetic sources have been studied as suitable support material for biocatalysts immobilization. Strength, inexpensiveness, high surface area, high porosity, pore size, availability in various forms, and simple preparation/functionalization techniques have made textiles a primary choice for various applications. This led to the concept of a new domain called-biocatalysts immobilization on textiles. By addressing the growing advancement in biocatalysts immobilization on textile, this study provides the first detailed overview on this topic based on the terms of preparation, progress, and application in wastewater treatment. The fundamental reason behind the necessity of biocatalysts immobilized textile as well as the potential preparation methods has been identified and discussed. The overall progress and performances of biocatalysts immobilized textile have been scrutinized and summarized based on the form of textile, catalytic activity, and various influencing factors. This review also highlighted the potential challenges and future considerations that can enhance the pervasive use of such immobilized biocatalysts in various sustainable and green chemistry applications.
Collapse
Affiliation(s)
- Mohammad Neaz Morshed
- Department of Textile Technology, The Swedish School of Textiles, Faculty of Textiles, Engineering and Business, University of Borås, SE-50190, Borås, Sweden; Ecole Nationale Supérieure des Arts et Industries Textiles (ENSAIT), GEMTEX Laboratory, 2 allée Louise et Victor Champier BP 30329, 59056, Roubaix, France; Université de Lille, Nord de France, F-59000, Lille, France; College of Textile and Clothing Engineering, Soochow University, 215006, Suzhou, China.
| | - Nemeshwaree Behary
- Ecole Nationale Supérieure des Arts et Industries Textiles (ENSAIT), GEMTEX Laboratory, 2 allée Louise et Victor Champier BP 30329, 59056, Roubaix, France; Université de Lille, Nord de France, F-59000, Lille, France.
| | - Nabil Bouazizi
- Ecole Nationale Supérieure des Arts et Industries Textiles (ENSAIT), GEMTEX Laboratory, 2 allée Louise et Victor Champier BP 30329, 59056, Roubaix, France; Université de Lille, Nord de France, F-59000, Lille, France.
| | - Jinping Guan
- College of Textile and Clothing Engineering, Soochow University, 215006, Suzhou, China.
| | - Vincent A Nierstrasz
- Department of Textile Technology, The Swedish School of Textiles, Faculty of Textiles, Engineering and Business, University of Borås, SE-50190, Borås, Sweden.
| |
Collapse
|