1
|
Zhang C, Li JB, Zhang YW, Tang YS, Yu XF, Zhang QG, Jin Z, Hou SC, Shaw PC, Hu C. Novel benzamide derivatives with indole moiety as dual-target antiviral agents: Rational design, efficient synthesis, and potent anti-influenza activity through concurrent binding to PA C terminal domain and viral nucleoprotein. Eur J Med Chem 2025; 293:117681. [PMID: 40367674 DOI: 10.1016/j.ejmech.2025.117681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 04/08/2025] [Accepted: 04/23/2025] [Indexed: 05/16/2025]
Abstract
In this study, a series of benzamide derivatives with an indole moiety as dual-target inhibitors were designed, synthesized and evaluated against the RNA-dependent RNA polymerase (RdRp) complex of influenza viruses. The target compounds can simultaneously disrupt two key molecular interactions: the PAC terminal domain and the nucleoprotein (NP) oligomerization. Through efficient synthesis and structure-activity relationship (SAR) analysis, compounds 8e and 8f as highly potent inhibitors were identified. Both compounds (8e and 8f) exhibited submicromolar EC50 values (1.64 ± 0.05 μM and 1.41 ± 0.27 μM) against influenza A virus (H1N1, A/WSN/33) and broad-spectrum activity against other influenza strains, including influenza B virus and multiple subtypes of influenza A. Notably, their cytotoxicity was significantly reduced compared to previous benzofurazan derivatives, with CC50 values exceeding 100 μM. Surface plasmon resonance (SPR) experiments confirmed that 8e and 8f bound strongly to the PA C-terminal domain (KD = 8.90 μM and 4.82 μM) and NP (KD = 52.5 μM and 3.13 μM). Computational modeling approaches, including molecular docking, molecular dynamics (MD) simulations, and dynamical cross-correlation matrix (DCCM) analysis, principal component analysis (PCA) analysis and density functional theory (DFT) calculations, were employed to elucidate the putative binding modes and delineate critical interaction sites between the ligands and target proteins. These insights not only modulated subsequent structure-based lead optimization but also strengthened our understanding of the molecular determinants governing antiviral activity. This research provides a promising scaffold for developing dual-target antiviral agents with enhanced potency and safety, offering new strategies to combat influenza viruses.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jia-Bin Li
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yi-Wen Zhang
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yun-Sang Tang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Xiao-Fei Yu
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qing-Guang Zhang
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhe Jin
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shi-Cheng Hou
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China.
| | - Chun Hu
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
2
|
Bonomini A, Mercorelli B, Loregian A. Antiviral strategies against influenza virus: an update on approved and innovative therapeutic approaches. Cell Mol Life Sci 2025; 82:75. [PMID: 39945883 PMCID: PMC11825441 DOI: 10.1007/s00018-025-05611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/27/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025]
Abstract
Influenza viruses still represent a great concern for Public Health by causing yearly seasonal epidemics and occasionally worldwide pandemics. Moreover, spillover events at the animal-human interface are becoming more frequent nowadays, also involving animal species not previously found as reservoirs. To restrict the effects of influenza virus epidemics, especially in at-risk population, and to prepare a drug arsenal for possible future pandemics, researchers worldwide have been working on the development of antiviral strategies since the 80's of the last century. One of the main obstacles is the considerable genomic variability of influenza viruses, which constantly poses the issues of drug-resistance emergence and immune evasion. This review summarizes the approved therapeutics for clinical management of influenza, promising new anti-flu compounds and monoclonal antibodies currently undergoing clinical evaluation, and molecules with efficacy against influenza virus in preclinical studies. Moreover, we discuss some innovative anti-influenza therapeutic approaches such as combination therapies and targeted protein degradation. Given the limited number of drugs approved for influenza treatment, there is a still strong need for novel potent anti-influenza drugs endowed with a high barrier to drug resistance and broad-spectrum activity against influenza viruses of animal origin that may be responsible of future large outbreaks and pandemics.
Collapse
Affiliation(s)
- Anna Bonomini
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy.
- Microbiology and Virology Unit, Padua University Hospital, Padua, Italy.
| |
Collapse
|
3
|
Zhang J, Jia R, Jia H, Li P, Jiang Y, Bonomini A, Bertagnin C, Xu Q, Tan Z, Ma X, Loregian A, Huang B, Liu X, Zhan P. Elaborate Structural Modifications Yielding Novel Boron-Containing N-Substituted Oseltamivir Derivatives as Potent Neuraminidase Inhibitors with Significantly Improved Broad-Spectrum Antiresistance Profiles. J Med Chem 2024; 67:22191-22217. [PMID: 39644238 DOI: 10.1021/acs.jmedchem.4c02222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Inspired by our previous finding that targeting the 150-cavity with a multisite-binding strategy emerged as an effective approach to obtain more potent and selective neuraminidase (NA) inhibitors against influenza virus, we present here the design, synthesis, and optimization of novel boron-containing N-substituted oseltamivir (OSC) derivatives. Exploratory structure-activity relationship (SAR) studies led to the identification of compounds 27c and 33c as the most potent NA inhibitors, surpassing OSC in potency against both wild-type group-1 NAs and oseltamivir-resistant NAs. These compounds demonstrated significant antiviral activity against several wild-type strains and H1N1pdm09 strains (EC50 = 0.03 ± 0.005 and 0.03 ± 0.0008 μM, respectively). Additionally, these compounds did not exhibit significant toxicity (CC50 > 200 μM in CEF cells; CC50 > 250 μM in MDCK cells). These findings highlight 27c and 33c as promising next-generation anti-influenza agents.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| | - Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| | - Huinan Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| | - Ping Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| | - Yuanmin Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| | - Anna Bonomini
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, Padua 35121, Italy
| | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, Padua 35121, Italy
| | - Qiaojie Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| | - Zhou Tan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| | - Xiuli Ma
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 202 North Gongye Road, Jinan, Shandong 250100, China
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, Padua 35121, Italy
| | - Bing Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 202 North Gongye Road, Jinan, Shandong 250100, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
4
|
Bonomini A, Felicetti T, Pacetti M, Bertagnin C, Coletti A, Giammarino F, De Angelis M, Poggialini F, Macchiarulo A, Sabatini S, Mercorelli B, Nencioni L, Vicenti I, Dreassi E, Cecchetti V, Tabarrini O, Loregian A, Massari S. Optimization of potent, broad-spectrum, and specific anti-influenza compounds targeting RNA polymerase PA-PB1 heterodimerization. Eur J Med Chem 2024; 277:116737. [PMID: 39153334 DOI: 10.1016/j.ejmech.2024.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
Influenza viruses (IV) are single-stranded RNA viruses with a negative-sense genome and have the potential to cause pandemics. While vaccines exist for influenza, their protection is only partial. Additionally, there is only a limited number of approved anti-IV drugs, which are associated to emergence of drug resistance. To address these issues, for years we have focused on the development of small-molecules that can interfere with the heterodimerization of PA and PB1 subunits of the IV RNA-dependent RNA polymerase (RdRP). In this study, starting from a cycloheptathiophene-3-carboxamide compound that we recently identified, we performed iterative cycles of medicinal chemistry optimization that led to the identification of compounds 43 and 45 with activity in the nanomolar range against circulating A and B strains of IV. Mechanistic studies demonstrated the ability of 43 and 45 to interfere with viral RdRP activity by disrupting PA-PB1 subunits heterodimerization and to bind to the PA C-terminal domain through biophysical assays. Most important, ADME studies of 45 also showed an improvement in the pharmacokinetic profile with respect to the starting hit.
Collapse
Affiliation(s)
- Anna Bonomini
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Martina Pacetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Alice Coletti
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Federica Giammarino
- Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185, Rome, Italy
| | - Federica Poggialini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Stefano Sabatini
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | | | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185, Rome, Italy
| | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Elena Dreassi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy.
| | - Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy.
| |
Collapse
|
5
|
Bonomini A, Zhang J, Ju H, Zago A, Pacetti M, Tabarrini O, Massari S, Liu X, Mercorelli B, Zhan P, Loregian A. Synergistic activity of an RNA polymerase PA-PB1 interaction inhibitor with oseltamivir against human and avian influenza viruses in cell culture and in ovo. Antiviral Res 2024; 230:105980. [PMID: 39117284 DOI: 10.1016/j.antiviral.2024.105980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
In search of novel therapeutic options to treat influenza virus (IV) infections, we previously identified a series of inhibitors that act by disrupting the interactions between the PA and PB1 subunits of the viral RNA polymerase. These compounds showed broad-spectrum antiviral activity against human influenza A and B viruses and a high barrier to the induction of drug resistance in vitro. In this short communication, we investigated the effects of combinations of the PA-PB1 interaction inhibitor 54 with oseltamivir carboxylate (OSC), zanamivir (ZA), favipiravir (FPV), and baloxavir marboxil (BXM) on the inhibition of influenza A and B virus replication in vitro. We observed a synergistic effect of the 54/OSC and 54/ZA combinations and an antagonistic effect when 54 was combined with either FPV or BXM. Moreover, we demonstrated the efficacy of 54 against highly pathogenic avian influenza viruses (HPAIVs) both in cell culture and in the embryonated chicken eggs model. Finally, we observed that 54 enhances OSC protective effect against HPAIV replication in the embryonated eggs model. Our findings represent an advance in the development of alternative therapeutic strategies against both human and avian IV infections.
Collapse
Affiliation(s)
- Anna Bonomini
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 250012, Jinan, Shandong, PR China
| | - Han Ju
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 250012, Jinan, Shandong, PR China
| | - Alessia Zago
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Martina Pacetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 250012, Jinan, Shandong, PR China.
| | | | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 250012, Jinan, Shandong, PR China.
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
6
|
Giacchello I, Cianciusi A, Bertagnin C, Bonomini A, Francesconi V, Mori M, Carbone A, Musumeci F, Loregian A, Schenone S. Exploring a New Generation of Pyrimidine and Pyridine Derivatives as Anti-Influenza Agents Targeting the Polymerase PA-PB1 Subunits Interaction. Pharmaceutics 2024; 16:954. [PMID: 39065650 PMCID: PMC11279468 DOI: 10.3390/pharmaceutics16070954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The limited range of available flu treatments due to virus mutations and drug resistance have prompted the search for new therapies. RNA-dependent RNA polymerase (RdRp) is a heterotrimeric complex of three subunits, i.e., polymerase acidic protein (PA) and polymerase basic proteins 1 and 2 (PB1 and PB2). It is widely recognized as one of the most promising anti-flu targets because of its critical role in influenza infection and high amino acid conservation. In particular, the disruption of RdRp complex assembly through protein-protein interaction (PPI) inhibition has emerged as a valuable strategy for discovering a new therapy. Our group previously identified the 3-cyano-4,6-diphenyl-pyridine core as a privileged scaffold for developing PA-PB1 PPI inhibitors. Encouraged by these findings, we synthesized a small library of pyridine and pyrimidine derivatives decorated with a thio-N-(m-tolyl)acetamide side chain (compounds 2a-n) or several amino acid groups (compounds 3a-n) at the C2 position. Interestingly, derivative 2d, characterized by a pyrimidine core and a phenyl and 4-chloro phenyl ring at the C4 and C6 positions, respectively, showed an IC50 value of 90.1 μM in PA-PB1 ELISA, an EC50 value of 2.8 μM in PRA, and a favorable cytotoxic profile, emerging as a significant breakthrough in the pursuit of new PPI inhibitors. A molecular modeling study was also completed as part of this project, allowing us to clarify the biological profile of these compounds.
Collapse
Affiliation(s)
- Ilaria Giacchello
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (I.G.); (A.C.); (V.F.); (S.S.)
| | - Annarita Cianciusi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (I.G.); (A.C.); (V.F.); (S.S.)
| | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (C.B.); (A.B.); (A.L.)
| | - Anna Bonomini
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (C.B.); (A.B.); (A.L.)
| | - Valeria Francesconi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (I.G.); (A.C.); (V.F.); (S.S.)
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (I.G.); (A.C.); (V.F.); (S.S.)
| | - Francesca Musumeci
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (I.G.); (A.C.); (V.F.); (S.S.)
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (C.B.); (A.B.); (A.L.)
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (I.G.); (A.C.); (V.F.); (S.S.)
| |
Collapse
|
7
|
Pacetti M, Pismataro MC, Felicetti T, Giammarino F, Bonomini A, Tiecco M, Bertagnin C, Barreca ML, Germani R, Cecchetti V, Vicenti I, Tabarrini O, Zazzi M, Loregian A, Massari S. Switching the three-component Biginelli-like reaction conditions for the regioselective synthesis of new 2-amino[1,2,4]triazolo[1,5- a]pyrimidines. Org Biomol Chem 2024; 22:767-783. [PMID: 38167738 DOI: 10.1039/d3ob01861j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Among the eight different triazolopyrimidine isomers existing in nature, 1,2,4-triazolo[1,5-a]pyrimidine (TZP) is one of the most studied and used isomers in medicinal chemistry. For some years, our group has been involved in developing regioselective one-pot procedures for the synthesis of 2-amino-7-aryl-5-methyl- and 2-amino-5-aryl-7-methyl-TZPs of interest in the preparation of antiviral agents. In this work, taking advantage of a Biginelli-like multicomponent reaction (MCR), we report the identification of finely tunable conditions to regioselectively synthesize C-6 ester-substituted amino-TZP analogues, both in dihydro and oxidized forms. Indeed, the use of mild acidic conditions is strongly directed toward the regioselective synthesis of 5-aryl-7-methyl C-6-substituted TZP analogues, while the use of neutral ionic liquids shifted the regioselectivity towards 7-aryl-5-methyl derivatives. In addition, the novel synthesized scaffolds were functionalized at the C-2 position and evaluated for their antiviral activity against RNA viruses (influenza virus, flaviviruses, and SARS-CoV-2). Compounds 25 and 26 emerged as promising anti-flavivirus agents, showing activity in the low micromolar range.
Collapse
Affiliation(s)
- Martina Pacetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | | | - Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Federica Giammarino
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Anna Bonomini
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Matteo Tiecco
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy
| | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | | | - Raimondo Germani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| |
Collapse
|
8
|
Romeo R, Legnani L, Chiacchio MA, Giofrè SV, Iannazzo D. Antiviral Compounds to Address Influenza Pandemics: An Update from 2016-2022. Curr Med Chem 2024; 31:2507-2549. [PMID: 37691217 DOI: 10.2174/0929867331666230907093501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
In recent decades, the world has gained experience of the dangerous effects of pandemic events caused by emerging respiratory viruses. In particular, annual epidemics of influenza are responsible for severe illness and deaths. Even if conventional influenza vaccines represent the most effective tool for preventing virus infections, they are not completely effective in patients with severe chronic disease and immunocompromised and new small molecules have emerged to prevent and control the influenza viruses. Thus, the attention of chemists is continuously focused on the synthesis of new antiviral drugs able to interact with the different molecular targets involved in the virus replication cycle. To date, different classes of influenza viruses inhibitors able to target neuraminidase enzyme, hemagglutinin protein, Matrix-2 (M2) protein ion channel, nucleoprotein or RNAdependent RNA polymerase have been synthesized using several synthetic strategies comprising the chemical modification of currently used drugs. The best results, in terms of inhibitory activity, are in the nanomolar range and have been obtained from the chemical modification of clinically used drugs such as Peramivir, Zanamivir, Oseltamir, Rimantadine, as well as sialylated molecules, and hydroxypyridinone derivatives. The aim of this review is to report, covering the period 2016-2022, the most recent routes related to the synthesis of effective influenza virus inhibitors.
Collapse
Affiliation(s)
- Roberto Romeo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D'Alcontres, Messina, 98166, Italy
| | - Laura Legnani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| | - Maria Assunta Chiacchio
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale A. Doria 6, Catania, 95125, Italy
| | - Salvatore V Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D'Alcontres, Messina, 98166, Italy
| | - Daniela Iannazzo
- Dipartimento di Ingegneria, Università di Messina, Contrada di Dio, Messina, 98166, Italy
| |
Collapse
|
9
|
Discovery of N-substituted oseltamivir derivatives as novel neuraminidase inhibitors with improved drug resistance profiles and favorable drug-like properties. Eur J Med Chem 2023; 252:115275. [PMID: 36931117 DOI: 10.1016/j.ejmech.2023.115275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
To yield potent neuraminidase inhibitors with improved drug resistance and favorable drug-like properties, two series of novel oseltamivir derivatives targeting the 150-cavity of neuraminidase were designed, synthesized, and biologically evaluated. Among the synthesized compounds, the most potent compound 43b bearing 3-floro-4-cyclopentenylphenzyl moiety exhibited weaker or slightly improved inhibitory activity against wild-type neuraminidases (NAs) of H1N1, H5N1, and H5N8 compared to oseltamivir carboxylate (OSC). Encouragingly, 43b displayed 62.70- and 5.03-fold more potent activity than OSC against mutant NAs of H5N1-H274Y and H1N1-H274Y, respectively. In cellular antiviral assays, 43b exerted equivalent or more potent activities against H1N1, H5N1, and H5N8 compared to OSC with no significant cytotoxicity up to 200 μM. Notably, 43b displayed potent antiviral efficacy in the embryonated egg model, in which achieved a protective effect against H5N1 and H5N8 similar to OSC. Molecular docking studies were implemented to reveal the binding mode of 43b in the binding pocket. Moreover, 43b possessed improved physicochemical properties and ADMET properties compared to OSC by in silico prediction. Taken together, 43b appeared to be a promising lead compound for further investigation.
Collapse
|
10
|
Bivacqua R, Barreca M, Spanò V, Raimondi MV, Romeo I, Alcaro S, Andrei G, Barraja P, Montalbano A. Insight into non-nucleoside triazole-based systems as viral polymerases inhibitors. Eur J Med Chem 2023; 249:115136. [PMID: 36708678 DOI: 10.1016/j.ejmech.2023.115136] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Viruses have been recognized as the etiological agents responsible for many pathological conditions ranging from asymptomatic infections to serious diseases, even leading to death. For this reason, many efforts have been made to identify selective viral targets with the aim of developing efficient therapeutic strategies, devoid of drug-resistance issues. Considering their crucial role in the viral life cycle, polymerases are very attractive targets. Among the classes of compounds explored as viral polymerases inhibitors, here we present an overview of non-nucleoside triazole-based compounds identified in the last fifteen years. Furthermore, the structure-activity relationships (SAR) of the different chemical entities are described in order to highlight the key chemical features required for the development of effective antiviral agents.
Collapse
Affiliation(s)
- Roberta Bivacqua
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Marilia Barreca
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Virginia Spanò
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Maria Valeria Raimondi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| | - Isabella Romeo
- Dipartimento di Scienze della Salute, Università Magna Græcia, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Università Magna Græcia, Viale Europa, 88100, Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università Magna Græcia, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Università Magna Græcia, Viale Europa, 88100, Catanzaro, Italy
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000, Belgium
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| |
Collapse
|
11
|
M M, Gadre S, Chhatar S, Chakraborty G, Ahmed N, Patra C, Patra M. Potent Ruthenium-Ferrocene Bimetallic Antitumor Antiangiogenic Agent That Circumvents Platinum Resistance: From Synthesis and Mechanistic Studies to In Vivo Evaluation in Zebrafish. J Med Chem 2022; 65:16353-16371. [PMID: 36459415 PMCID: PMC7616001 DOI: 10.1021/acs.jmedchem.2c01174] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Emergence of resistance in cancer cells and dose-limiting side effects severely limit the widespread use of platinum (Pt) anticancer drugs. Multi-action hybrid anticancer agents that are constructed by merging two or more pharmacophores offer the prospect of circumventing issues of Pt drugs. Herein, we report the design, synthesis, and in-depth biological evaluation of a ruthenium-ferrocene (Ru-Fc) bimetallic agent [(η6-p-cymene)Ru(1,1,1-trifluoro-4-oxo-4-ferrocenyl-but-2-en-2-olate)Cl] and its five analogues. Along with aquation/anation chemistry, we evaluated the in vitro antitumor potency, Pt cross-resistance profile, and in vivo antiangiogenic properties. A structure activity analysis was performed to understand the impact of Fc, CF3, and p-cymene groups on the anticancer potency of the Ru-Fc hybrid. Finally, in addition to assessing cellular uptake and intracellular distribution, we demonstrated that the Ru-Fc hybrid binds to nucleophilic biomolecules and produces reactive oxygen species, which causes mitochondrial dysfunction and induces ER stress, leading to poly(ADP-ribose) polymerase-mediated necroptotic cell death.
Collapse
Affiliation(s)
- Manikandan M
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Shubhankar Gadre
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Sushanta Chhatar
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Gourav Chakraborty
- Department of Developmental Biology, Agharkar Research Institute, G G Agarkar Road, Pune, Maharashtra 411004, India
| | - Naushad Ahmed
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502085, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, G G Agarkar Road, Pune, Maharashtra 411004, India
| | - Malay Patra
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| |
Collapse
|
12
|
Turanlı S, Nalbat E, Lengerli D, İbiş K, Güntekin Ergün S, Akhan Güzelcan E, Muyan M, Cetin-Atalay R, Çalışkan B, Banoglu E. Vicinal Diaryl-Substituted Isoxazole and Pyrazole Derivatives with In Vitro Growth Inhibitory and In Vivo Antitumor Activity. ACS OMEGA 2022; 7:36206-36226. [PMID: 36278052 PMCID: PMC9583322 DOI: 10.1021/acsomega.2c03405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The vicinal diaryl heterocyclic framework has been widely used for the development of compounds with significant bioactivities. In this study, a series of diaryl heterocycles were designed and synthesized based on an in-house diaryl isoxazole derivative (9), and most of the newly synthesized derivatives demonstrated moderate to good antiproliferative activities against a panel of hepatocellular carcinoma and breast cancer cells, exemplified with the diaryl isoxazole 11 and the diaryl pyrazole 85 with IC50 values in the range of 0.7-9.5 μM. Treatments with both 11 and 85 induced apoptosis in these tumor cells, and they displayed antitumor activity in vivo in the Mahlavu hepatocellular carcinoma and the MDA-MB-231 breast cancer xenograft models, indicating that these compounds could be considered as leads for further development of antitumor agents. Important structural features of this compound class for the antitumor activity have also been proposed, which warrant further exploration to guide the design of new and more potent diaryl heterocycles.
Collapse
Affiliation(s)
- Sümeyye Turanlı
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, Ankara 06560, Turkey
| | - Esra Nalbat
- Cancer
Systems Biology Laboratory, Graduate School
of Informatics, Middle East Technical University, Ankara 06800, Turkey
| | - Deniz Lengerli
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, Ankara 06560, Turkey
| | - Kübra İbiş
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, Ankara 06560, Turkey
| | - Sezen Güntekin Ergün
- Cancer
Systems Biology Laboratory, Graduate School
of Informatics, Middle East Technical University, Ankara 06800, Turkey
| | - Ece Akhan Güzelcan
- Cancer
Systems Biology Laboratory, Graduate School
of Informatics, Middle East Technical University, Ankara 06800, Turkey
| | - Mesut Muyan
- Department
of Biological Sciences, Middle East Technical
University, Ankara 06800, Turkey
| | - Rengul Cetin-Atalay
- Cancer
Systems Biology Laboratory, Graduate School
of Informatics, Middle East Technical University, Ankara 06800, Turkey
| | - Burcu Çalışkan
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, Ankara 06560, Turkey
| | - Erden Banoglu
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, Ankara 06560, Turkey
| |
Collapse
|
13
|
Merugu SR, Cherukupalli S, Karpoormath R. An Overview on Synthetic and Medicinal Perspectives of [1,2,4]Triazolo[1,5-a]pyrimidine Scaffold. Chem Biodivers 2022; 19:e202200291. [PMID: 35946991 DOI: 10.1002/cbdv.202200291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/02/2022] [Indexed: 11/08/2022]
Abstract
[1,2,4]Triazolo[1,5-a]pyrimidine is an important heterocyclic scaffold known to have a wide range of pharmacological activities such as anticancer, antimicrobial, anti-tubercular, CB2 cannabinoid agonists, feticide, and adenosine antagonists. Several clinical trials and marketed drugs such as Trapidil, Essramycin, Pyroxsulam, DSM-265, Flumetsulam, GNF-6702, and Cevipabulin indicate the potential of [1,2,4]triazolo[1,5-a]pyrimidine moiety with various functional groups in medicinal chemistry. Herein, we represent a concise report focusing on the synthetic strategies used for diversely substituted [1,2,4]triazolo[1,5-a]pyrimidine analogs and their pharmacological applications. To the best of our knowledge, since 1980, we are the first to write a review on this emerging scaffold, which reveals the synthetic strategies, and pharmacological activities of differently substituted [1,2,4]triazolo[1,5-a]pyrimidine with special emphasis on structure-activity relationship studies.
Collapse
Affiliation(s)
- Srinivas Reddy Merugu
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Srinivasulu Cherukupalli
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| |
Collapse
|
14
|
Martins LMOS, Wang X, Silva GTM, Junqueira HC, Fornaciari B, Lopes LF, Silva CP, Zhou P, Cavalcante VF, Baptista MS, Quina FH. Red Wine Inspired Chromophores as Photodynamic Therapy Sensitizers. Photochem Photobiol 2022; 99:732-741. [PMID: 35944220 DOI: 10.1111/php.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Hydroxypyranoflavylium (HPF) cations are synthetic analogs possessing the same basic chromophore as the pyranoanthocyanins that form during the maturation of red wine. HPF cations absorb strongly in the visible spectral region, and most are fluorescent, triplet-sensitize singlet oxygen formation in solution and are strong photooxidants, properties that are desirable in a sensitizer for photodynamic therapy (PDT). The results of this study demonstrate that several simple HPF dyes can indeed function as PDT sensitizers. Of the eight HPF cations investigated in this work, four were phototoxic to a human cervical adenocarcinoma cell line (HeLa) at the 1-10 μmol dm-3 level, while only one of the eight compounds showed noticeable cytotoxicity in the dark. Neither a Type I nor a Type II mechanism can adequately rationalize the differences in phototoxicity of the compounds. Colocalization experiments with the most phototoxic compound demonstrated the affinity of the dye for both the mitochondria and lysosomes of HeLa cells. The fact that relatively modest structural differences, e.g., the exchange of an electron-donating substituent for an electron-withdrawing substituent, can cause profound differences in the phototoxicity, together with the relatively facile synthesis of substituted HPF cations, makes them interesting candidates for further evaluation as PDT sensitizers.
Collapse
Affiliation(s)
- Lucas M. O. S. Martins
- Instituto de Química, Universidade de São Paulo Av. Lineu Prestes 748 São Paulo 05508‐900 Brazil
| | - Xuhui Wang
- Instituto de Química, Universidade de São Paulo Av. Lineu Prestes 748 São Paulo 05508‐900 Brazil
- School of Pharmaceutical Science and Technology Tianjin University Tianjin China
- National University of Singapore
| | - Gustavo T. M. Silva
- Instituto de Química, Universidade de São Paulo Av. Lineu Prestes 748 São Paulo 05508‐900 Brazil
| | - Helena C. Junqueira
- Instituto de Química, Universidade de São Paulo Av. Lineu Prestes 748 São Paulo 05508‐900 Brazil
| | - Bárbara Fornaciari
- Instituto de Química, Universidade de São Paulo Av. Lineu Prestes 748 São Paulo 05508‐900 Brazil
| | - Lohanna F. Lopes
- Instituto de Química, Universidade de São Paulo Av. Lineu Prestes 748 São Paulo 05508‐900 Brazil
| | - Cassio P. Silva
- Instituto de Química, Universidade de São Paulo Av. Lineu Prestes 748 São Paulo 05508‐900 Brazil
| | - Peng Zhou
- Instituto de Química, Universidade de São Paulo Av. Lineu Prestes 748 São Paulo 05508‐900 Brazil
- School of Pharmaceutical Science and Technology Tianjin University Tianjin China
- Tsinghua University Beijing China
| | - Victor F. Cavalcante
- Instituto de Química, Universidade de São Paulo Av. Lineu Prestes 748 São Paulo 05508‐900 Brazil
| | - Mauricio S. Baptista
- Instituto de Química, Universidade de São Paulo Av. Lineu Prestes 748 São Paulo 05508‐900 Brazil
| | - Frank H. Quina
- Instituto de Química, Universidade de São Paulo Av. Lineu Prestes 748 São Paulo 05508‐900 Brazil
| |
Collapse
|
15
|
Zhang C, Tang YS, Meng CR, Xu J, Zhang DL, Wang J, Huang EF, Shaw PC, Hu C. Design, Synthesis, Molecular Docking Analysis and Biological Evaluations of 4-[(Quinolin-4-yl)amino]benzamide Derivatives as Novel Anti-Influenza Virus Agents. Int J Mol Sci 2022; 23:ijms23116307. [PMID: 35682986 PMCID: PMC9181126 DOI: 10.3390/ijms23116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, a series of 4-[(quinolin-4-yl)amino]benzamide derivatives as the novel anti-influenza agents were designed and synthesized. Cytotoxicity assay, cytopathic effect assay and plaque inhibition assay were performed to evaluate the anti-influenza virus A/WSN/33 (H1N1) activity of the target compounds. The target compound G07 demonstrated significant anti-influenza virus A/WSN/33 (H1N1) activity both in cytopathic effect assay (EC50 = 11.38 ± 1.89 µM) and plaque inhibition assay (IC50 = 0.23 ± 0.15 µM). G07 also exhibited significant anti-influenza virus activities against other three different influenza virus strains A/PR/8 (H1N1), A/HK/68 (H3N2) and influenza B virus. According to the result of ribonucleoprotein reconstitution assay, G07 could interact well with ribonucleoprotein with an inhibition rate of 80.65% at 100 µM. Furthermore, G07 exhibited significant activity target PA−PB1 subunit of RNA polymerase according to the PA−PB1 inhibitory activity prediction by the best pharmacophore Hypo1. In addition, G07 was well drug-likeness based on the results of Lipinski’s rule and ADMET prediction. All the results proved that 4-[(quinolin-4-yl)amino]benzamide derivatives could generate potential candidates in discovery of anti-influenza virus agents.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.Z.); (C.-R.M.); (J.X.); (D.-L.Z.); (J.W.); (E.-F.H.)
| | - Yun-Sang Tang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China;
| | - Chu-Ren Meng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.Z.); (C.-R.M.); (J.X.); (D.-L.Z.); (J.W.); (E.-F.H.)
| | - Jing Xu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.Z.); (C.-R.M.); (J.X.); (D.-L.Z.); (J.W.); (E.-F.H.)
| | - De-Liang Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.Z.); (C.-R.M.); (J.X.); (D.-L.Z.); (J.W.); (E.-F.H.)
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.Z.); (C.-R.M.); (J.X.); (D.-L.Z.); (J.W.); (E.-F.H.)
| | - Er-Fang Huang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.Z.); (C.-R.M.); (J.X.); (D.-L.Z.); (J.W.); (E.-F.H.)
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China;
- Correspondence: (P.-C.S.); (C.H.); Tel.: +86-24-43520246 (C.H.)
| | - Chun Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.Z.); (C.-R.M.); (J.X.); (D.-L.Z.); (J.W.); (E.-F.H.)
- Correspondence: (P.-C.S.); (C.H.); Tel.: +86-24-43520246 (C.H.)
| |
Collapse
|
16
|
Zhao L, Qu Y, Zhang F, Ma D, Gao H, Gan L, Zhang H, Zhang S, Fang J. Baylis–Hillman Adducts as a Versatile Module for Constructing Fluorogenic Release System. J Med Chem 2022; 65:6056-6069. [DOI: 10.1021/acs.jmedchem.1c01940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lanning Zhao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yuan Qu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fang Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Di Ma
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hao Gao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lu Gan
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hong Zhang
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
17
|
Massari S, Desantis J, Nizi MG, Cecchetti V, Tabarrini O. Inhibition of Influenza Virus Polymerase by Interfering with Its Protein-Protein Interactions. ACS Infect Dis 2021; 7:1332-1350. [PMID: 33044059 PMCID: PMC8204303 DOI: 10.1021/acsinfecdis.0c00552] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Influenza (flu) virus is a serious threat to global health with the potential to generate devastating pandemics. The availability of broad spectrum antiviral drugs is an unequaled weapon during pandemic events, especially when a vaccine is still not available. One of the most promising targets for the development of new antiflu therapeutics is the viral RNA-dependent RNA polymerase (RdRP). The assembly of the flu RdRP heterotrimeric complex from the individual polymerase acidic protein (PA), polymerase basic protein 1 (PB1), and polymerase basic protein 2 (PB2) subunits is a prerequisite for RdRP functions, such as mRNA synthesis and genome replication. In this Review, we report the known protein-protein interactions (PPIs) occurring by RdRP that could be disrupted by small molecules and analyze their benefits and drawbacks as drug targets. An overview of small molecules able to interfere with flu RdRP functions exploiting the PPI inhibition approach is described. In particular, an update on the most recent inhibitors targeting the well-consolidated RdRP PA-PB1 subunit heterodimerization is mainly reported, together with pioneer inhibitors targeting other virus-virus or virus-host interactions involving RdRP subunits. As demonstrated by the PA-PB1 interaction inhibitors discussed herein, the inhibition of flu RdRP functions by PPI disrupters clearly represents a valid means to identify compounds endowed with a broad spectrum of action and a reduced propensity to develop drug resistance, which are the main issues of antiviral drugs.
Collapse
Affiliation(s)
- Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Jenny Desantis
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Maria Giulia Nizi
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
18
|
Pismataro MC, Felicetti T, Bertagnin C, Nizi MG, Bonomini A, Barreca ML, Cecchetti V, Jochmans D, De Jonghe S, Neyts J, Loregian A, Tabarrini O, Massari S. 1,2,4-Triazolo[1,5-a]pyrimidines: Efficient one-step synthesis and functionalization as influenza polymerase PA-PB1 interaction disruptors. Eur J Med Chem 2021; 221:113494. [PMID: 33962311 DOI: 10.1016/j.ejmech.2021.113494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/30/2021] [Accepted: 04/18/2021] [Indexed: 11/18/2022]
Abstract
In the search for new anti-influenza virus (IV) compounds, we have identified the 1,2,4-triazolo[1,5-a]pyrimidine (TZP) as a very suitable scaffold to obtain compounds able to disrupt IV RNA-dependent RNA polymerase (RdRP) PA-PB1 subunits heterodimerization. In this work, in order to acquire further SAR insights for this class of compounds and identify more potent derivatives, we designed and synthesized additional series of analogues to investigate the role of the substituents around the TZP core. To this aim, we developed four facile and efficient one-step procedures for the synthesis of 5-phenyl-, 6-phenyl- and 7-phenyl-2-amino-[1,2,4]triazolo[1,5-a]pyrimidines, and 2-amino-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol. Two analogues having the ethyl carboxylate moiety at the C-2 position of the TZP were also prepared in good yields. Then, the scaffolds herein synthesized and two previous scaffolds were functionalized and evaluated for their anti-IAV activity, leading to the identification of compound 22 that showed both anti-PA-PB1 (IC50 = 19.5 μM) and anti-IAV activity (EC50 = 16 μM) at non-toxic concentrations, thus resulting among the most active TZP derivatives reported to date by us. A selection of the synthesized compounds, along with a set of in-house available analogues, was also tested against SARS-CoV-2. The most promising compound 49 from this series displayed an EC50 value of 34.47 μM, highlighting the potential of the TPZ scaffold in the search for anti-CoV agents.
Collapse
Affiliation(s)
- Maria Chiara Pismataro
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123, Perugia, Italy
| | - Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123, Perugia, Italy
| | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121, Padua, Italy
| | - Maria Giulia Nizi
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123, Perugia, Italy
| | - Anna Bonomini
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121, Padua, Italy
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123, Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123, Perugia, Italy
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Box 1043, 3000, Leuven, Belgium
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Box 1043, 3000, Leuven, Belgium
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Box 1043, 3000, Leuven, Belgium
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121, Padua, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123, Perugia, Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123, Perugia, Italy.
| |
Collapse
|
19
|
Gao Q, Sun Z, Xia Q, Li R, Wang W, Ma S, Chai Y, Wu M, Hu W, Ábrányi-Balogh P, Keserű GM, Han X. Vinylation of α-Aminoazoles with Triethylamine: A General Strategy to Construct Azolo[1,5- a]pyrimidines with a Nonsubstituted Ethylidene Fragment. Org Lett 2021; 23:2664-2669. [PMID: 33733786 DOI: 10.1021/acs.orglett.1c00571] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A new general synthesis of pharmaceutically important azolo[1,5-a]pyrimidines starting from widely available 3(5)-aminoazoles, aldehydes, and triethylamine is developed. The key is to enable the vinylation reaction that allows the in situ generation of elusive acyclic enamines and the subsequent annulation reaction to occur. This direct and practical strategy is capable of constructing a range of 5,6-unsubstituted pyrazolo[1,5-a]pyrimidines and [1,2,4]triazolo[1,5-a]pyrimidines. More importantly, this protocol provides a concise synthetic route to prepare the clinically used zaleplon.
Collapse
Affiliation(s)
- Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Zhenhua Sun
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Qinfei Xia
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, P. R. China
| | - Ruonan Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Wenlong Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Siwei Ma
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Yixin Chai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Manman Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Wei Hu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, P. R. China
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest 1117, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest 1117, Hungary
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, P. R. China
| |
Collapse
|
20
|
Massari S, Bertagnin C, Pismataro MC, Donnadio A, Nannetti G, Felicetti T, Di Bona S, Nizi MG, Tensi L, Manfroni G, Loza MI, Sabatini S, Cecchetti V, Brea J, Goracci L, Loregian A, Tabarrini O. Synthesis and characterization of 1,2,4-triazolo[1,5-a]pyrimidine-2-carboxamide-based compounds targeting the PA-PB1 interface of influenza A virus polymerase. Eur J Med Chem 2020; 209:112944. [PMID: 33328103 PMCID: PMC7561591 DOI: 10.1016/j.ejmech.2020.112944] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 01/06/2023]
Abstract
Influenza viruses (Flu) are responsible for seasonal epidemics causing high rates of morbidity, which can dramatically increase during severe pandemic outbreaks. Antiviral drugs are an indispensable weapon to treat infected people and reduce the impact on human health, nevertheless anti-Flu armamentarium still remains inadequate. In search for new anti-Flu drugs, our group has focused on viral RNA-dependent RNA polymerase (RdRP) developing disruptors of PA-PB1 subunits interface with the best compounds characterized by cycloheptathiophene-3-carboxamide and 1,2,4-triazolo[1,5-a]pyrimidine-2-carboxamide scaffolds. By merging these moieties, two very interesting hybrid compounds were recently identified, starting from which, in this paper, a series of analogues were designed and synthesized. In particular, a thorough exploration of the cycloheptathiophene-3-carboxamide moiety led to acquire important SAR insight and identify new active compounds showing both the ability to inhibit PA-PB1 interaction and viral replication in the micromolar range and at non-toxic concentrations. For few compounds, the ability to efficiently inhibit PA-PB1 subunits interaction did not translate into anti-Flu activity. Chemical/physical properties were investigated for a couple of compounds suggesting that the low solubility of compound 14, due to a strong crystal lattice, may have impaired its antiviral activity. Finally, computational studies performed on compound 23, in which the phenyl ring suitably replaced the cycloheptathiophene, suggested that, in addition to hydrophobic interactions, H-bonds enhanced its binding within the PAC cavity.
Collapse
Affiliation(s)
- Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy.
| | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | | | - Anna Donnadio
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Giulio Nannetti
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Stefano Di Bona
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Maria Giulia Nizi
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Leonardo Tensi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Maria Isabel Loza
- CIMUS Research Center, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Stefano Sabatini
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Jose Brea
- CIMUS Research Center, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| |
Collapse
|
21
|
Xian L, Ma C, Ouyang Y, Di J, Zhang Z. Synthesis of pyrimidine derivatives via multicomponent reaction catalyzed by ferric chloride. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Liang Xian
- Department of Radiochemistry China Institute of Atomic Energy Beijing 102413 China
| | - Cui‐Ting Ma
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science Hebei Normal University Shijiazhuang 050024 China
| | - Ying‐Gen Ouyang
- Department of Radiochemistry China Institute of Atomic Energy Beijing 102413 China
| | - Jia‐Qi Di
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science Hebei Normal University Shijiazhuang 050024 China
| | - Zhan‐Hui Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science Hebei Normal University Shijiazhuang 050024 China
| |
Collapse
|
22
|
1,2,4-Triazolo[1,5- a]pyrimidines as a Novel Class of Inhibitors of the HIV-1 Reverse Transcriptase-Associated Ribonuclease H Activity. Molecules 2020; 25:molecules25051183. [PMID: 32151066 PMCID: PMC7179434 DOI: 10.3390/molecules25051183] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/27/2022] Open
Abstract
Despite great efforts have been made in the prevention and therapy of human immunodeficiency virus (HIV-1) infection, however the difficulty to eradicate latent viral reservoirs together with the emergence of multi-drug-resistant strains require the search for innovative agents, possibly exploiting novel mechanisms of action. In this context, the HIV-1 reverse transcriptase (RT)-associated ribonuclease H (RNase H), which is one of the few HIV-1 encoded enzymatic function still not targeted by any current drug, can be considered as an appealing target. In this work, we repurposed in-house anti-influenza derivatives based on the 1,2,4-triazolo[1,5-a]-pyrimidine (TZP) scaffold for their ability to inhibit HIV-1 RNase H function. Based on the results, a successive multi-step structural exploration around the TZP core was performed leading to identify catechol derivatives that inhibited RNase H in the low micromolar range without showing RT-associated polymerase inhibitory activity. The antiviral evaluation of the compounds in the MT4 cells showed any activity against HIV-1 (IIIB strain). Molecular modelling and mutagenesis analysis suggested key interactions with an unexplored allosteric site providing insights for the future optimization of this class of RNase H inhibitors.
Collapse
|
23
|
Yuan S, Wang S, Zhao M, Zhang D, Chen J, Li JX, Zhang J, Song Y, Wang J, Yu B, Liu H. Brønsted acid-promoted ‘on–water’ C(sp3)-H functionalization for the synthesis of isoindolinone/[1,2,4]triazolo[1,5-a]pyrimidine derivatives targeting the SKP2-CKS1 interaction. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Arai R, Hirashima SI, Nakano T, Kawada M, Akutsu H, Nakashima K, Miura T. Asymmetric Conjugate Addition of Phosphonates to Enones Using Cinchona–Diaminomethylenemalononitrile Organocatalysts. J Org Chem 2020; 85:3872-3878. [PMID: 31986038 DOI: 10.1021/acs.joc.9b02553] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ryoga Arai
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Shin-ichi Hirashima
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tatsuki Nakano
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Masahiro Kawada
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hiroshi Akutsu
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kosuke Nakashima
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tsuyoshi Miura
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
25
|
Nannetti G, Massari S, Mercorelli B, Bertagnin C, Desantis J, Palù G, Tabarrini O, Loregian A. Potent and broad-spectrum cycloheptathiophene-3-carboxamide compounds that target the PA-PB1 interaction of influenza virus RNA polymerase and possess a high barrier to drug resistance. Antiviral Res 2019; 165:55-64. [PMID: 30885750 DOI: 10.1016/j.antiviral.2019.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 12/17/2022]
Abstract
Influenza viruses are major respiratory pathogens responsible for both seasonal epidemics and occasional pandemics worldwide. The current available treatment options have limited efficacy and thus the development of new antivirals is highly needed. We previously reported the identification of a series of cycloheptathiophene-3-carboxamide compounds as influenza A virus inhibitors that act by targeting the protein-protein interactions between the PA-PB1 subunits of the viral polymerase. In this study, we characterized the antiviral properties of the most promising compounds as well as investigated their propensity to induce drug resistance. Our results show that some of the selected compounds possess potent, broad-spectrum anti-influenza activity as they efficiently inhibited the replication of several strains of influenza A and B viruses, including an oseltamivir-resistant clinical isolate, with nanomolar or low-micromolar potency. The most promising compounds specifically inhibited the PA-PB1 binding in vitro and interfered with the influenza A virus polymerase activity in a cellular context, without showing cytotoxicity. The most active PA-PB1 inhibitors showed to possess a drug resistance barrier higher than that of oseltamivir. Indeed, no viral variants with reduced susceptibility to the selected compounds emerged after serial passages of influenza A virus under drug selective pressure. Overall, our studies identified potent PA-PB1 inhibitors as promising candidates for the development of new anti-influenza drugs.
Collapse
Affiliation(s)
- Giulio Nannetti
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Jenny Desantis
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
26
|
Fischer G. Recent advances in 1,2,4-triazolo[1,5-a]pyrimidine chemistry. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019. [DOI: 10.1016/bs.aihch.2018.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Ribeiro CJA, Kankanala J, Xie J, Williams J, Aihara H, Wang Z. Triazolopyrimidine and triazolopyridine scaffolds as TDP2 inhibitors. Bioorg Med Chem Lett 2018; 29:257-261. [PMID: 30522956 DOI: 10.1016/j.bmcl.2018.11.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/12/2018] [Accepted: 11/21/2018] [Indexed: 01/09/2023]
Abstract
Tyrosyl-DNA phosphodiesterase 2 (TDP2) repairs topoisomerase II (TOP2) mediated DNA damages and causes cellular resistance to clinically used TOP2 poisons. Inhibiting TDP2 can potentially sensitize cancer cells toward TOP2 poisons. Commercial compound P10A10, to which the structure was assigned as 7-phenyl triazolopyrimidine analogue 6a, was previously identified as a TDP2 inhibitor hit in our virtual and fluorescence-based biochemical screening campaign. We report herein that the hit validation through resynthesis and structure elucidation revealed the correct structure of P10A10 (Chembridge ID 7236827) to be the 5-phenyl triazolopyrimidine regioisomer 7a. Subsequent structure-activity relationship (SAR) via the synthesis of a total of 47 analogues of both the 5-phenyl triazolopyrimidine scaffold (7) and its bioisosteric triazolopyridine scaffold (17) identified four derivatives (7a, 17a, 17e, and 17z) with significant TDP2 inhibition (IC50 < 50 µM), with 17z showing excellent cell permeability and no cytotoxicity.
Collapse
Affiliation(s)
- Carlos J A Ribeiro
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jayakanth Kankanala
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jessica Williams
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
28
|
Synthesis and biological evaluation of a library of hybrid derivatives as inhibitors of influenza virus PA-PB1 interaction. Eur J Med Chem 2018; 157:743-758. [PMID: 30142611 DOI: 10.1016/j.ejmech.2018.08.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/03/2018] [Accepted: 08/11/2018] [Indexed: 11/21/2022]
Abstract
The limited treatment options against influenza virus along with the growing public health concerns regarding the continuous emergence of drug-resistant viruses make essential the development of new anti-flu agents with novel mechanisms of action. One of the most attractive targets is the interaction between two subunits of the RNA-dependent RNA polymerase, PA and PB1. Herein we report the rational design of hybrid compounds starting from a 3-cyano-4,6-diphenylpyridine scaffold recently identified as disruptor of PA-PB1 interactions. Guided by the previously reported SAR data, a library of amino acid derivatives was synthesized. The biological evaluation led to the identification of new PA-PB1 inhibitors, that do not show appreciable toxicity. Molecular modeling shed further lights on the inhibition mechanism of these compounds.
Collapse
|
29
|
Astakhov AV, Suponitsky KY, Chernyshev VM. Chlorotrimethylsilane-promoted synthesis of 1,2,4-triazolopyrimidines from 3,5-diamino-1,2,4-triazoles and pentane-2,4-diones. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.07.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Pd-catalyzed Suzuki/Sonogashira cross-coupling reaction and the direct sp3 arylation of 7-chloro-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidine. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Lim FPL, Tan LY, Tiekink ERT, Dolzhenko A. Synthesis of 3-(5-amino-1H-1,2,4-triazol-3-yl)propanamides and their tautomerism. RSC Adv 2018; 8:22351-22360. [PMID: 35539716 PMCID: PMC9081160 DOI: 10.1039/c8ra04576c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
Two complementary pathways for the preparation of N-substituted 3-(5-amino-1H-1,2,4-triazol-3-yl)propanamides (5) were proposed and successfully realized in the synthesis of 20 representative examples. These methods use the same types of starting materials viz. succinic anhydride, aminoguanidine hydrochloride, and a variety of amines. The choice of the pathway and sequence of the introduction of reagents to the reaction depended on the amine nucleophilicity. The first pathway started with the preparation of N-guanidinosuccinimide, which then reacted with amines under microwave irradiation to afford 5. The desired products were successfully obtained in the reaction with aliphatic amines (primary and secondary) via a nucleophilic opening of the succinimide ring and the subsequent recyclization of the 1,2,4-triazole ring. This approach however failed when less nucleophilic aromatic amines were used. Therefore, an alternative pathway, with the initial preparation of N-arylsuccinimides and their subsequent reaction with aminoguanidine hydrochloride under microwave irradiation, was applied. The annular prototropic tautomerism in the prepared 1,2,4-triazoles 5 was studied using NMR spectroscopy and X-ray crystallography. Two complementary pathways for the preparation of N-substituted 3-(5-amino-1H-1,2,4-triazol-3-yl)propanamides were proposed and successfully realized in the synthesis of 20 representative examples.![]()
Collapse
Affiliation(s)
| | - Lin Yuing Tan
- School of Pharmacy
- Monash University Malaysia
- Selangor Darul Ehsan 47500
- Malaysia
| | - Edward R. T. Tiekink
- Research Centre for Crystalline Materials
- School of Science and Technology
- Sunway University
- Selangor Darul Ehsan 47500
- Malaysia
| | - Anton V. Dolzhenko
- School of Pharmacy
- Monash University Malaysia
- Selangor Darul Ehsan 47500
- Malaysia
- School of Pharmacy and Biomedical Sciences
| |
Collapse
|