1
|
Mate N, Satwani V, Pranav, Mobin SM. Blazing Carbon Dots: Unfolding its Luminescence Mechanism to Photoinduced Biomedical Applications. Chem Asian J 2025; 20:e202401098. [PMID: 39499673 DOI: 10.1002/asia.202401098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 11/07/2024]
Abstract
Carbon dots (CDs) are carbon-based nanomaterials that have garnered immense attention owing to their exceptional photophysical and optoelectronic properties. They have been employed extensively for biomedical imaging and phototherapy due to their superb water dispersibility, low toxicity, outstanding biocompatibility, and exceptional tissue permeability. This review summarizes the structural classification of CDs, the classification of CDs according to precursor sources, and the luminescence mechanism of CDs. The modification in CDs via various doping routes is comprehensively reviewed, and the effect of such alterations on their photophysical properties, such as absorbance, photoluminescence (PL), and reactive oxygen species generation ability, is also highlighted. This review strives to summarize the role of CDs in cellular imaging and fluorescence lifetime imaging for cellular metabolism. Subsequently, recent advancements and the future potential of CDs as nanotheranostic agents have been discussed. Herein, we have discussed the role of CDs in photothermal, photodynamic, and synergistic therapy of anticancer, antiviral, and antibacterial applications. The overall summary of the review highlights the prospects of CD-based research in bioimaging and biomedicine.
Collapse
Affiliation(s)
- Nirmiti Mate
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Vinita Satwani
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Pranav
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore Campus, Vellore, India, 632014
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
- Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| |
Collapse
|
2
|
Guo ZL, Niu KK, Lv YG, Xing LB. Carbon dot-based type I photosensitizers for photocatalytic oxidation reaction of arylboric acid and N-phenyl tetrahydroisoquinoline. MOLECULAR CATALYSIS 2024; 569:114625. [DOI: 10.1016/j.mcat.2024.114625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
3
|
Peng H, Zeng X, Li S, Wang X. A Novel Cortex Phellodendri Chinensis-Based Carbon Dots Platform for Remarkable Analgesia for Clinical Pain Management. Vet Med Sci 2024; 10:e70090. [PMID: 39494968 PMCID: PMC11533198 DOI: 10.1002/vms3.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/13/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
In this study, we explored the eco-friendly synthesis of photoluminescent CCDs employing a direct one-step pyrolysis process, utilizing natural Cortex Phellodendri Chinensis as the precursor material and studied their analgesic effect in mice. The synthesized carbon dots underwent comprehensive characterization through a range of spectroscopic and microscopic techniques. These included UV-Vis, FTIR, fluorescence spectroscopy and HR-TEM, DLS instruments. HR-TEM results exhibited the presence of homogenous spherical-shaped C-dots of about 3.3 nm without aggregates. Furthermore, the prepared CCDs were studied for their in vivo analgesic effect in mice by performing tail-immersion, hot plate and acetic acid writhing tests. Also, an MTT assay was performed to assess the in vitro cytotoxicity of CCDs against L929 cells. In vitro cytotoxicity studies revealed that L929 cells exhibited higher cell viability when treated with prepared CCDs. The cellular uptake studies revealed the phase contrast images of MG-63 cells at wavelength 488 nm clearly depicted the aggregation of green, fluorescent CCDs within the cells while leaving nuclei unobscured. In addition, to the best of our understanding, the results presented in this paper showed that CCDs exhibited an important analgesic effect and enhanced anti-nociceptive activity, which may be due to stimulation of the opioidergic system. Consequently, CCDs appear to be a viable analgesic alternative for traditional analgesic candidates in pain management.
Collapse
Affiliation(s)
- Huimin Peng
- Department of PainXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyanHubeiChina
| | - Xingxing Zeng
- Department of PainXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyanHubeiChina
| | - Songbai Li
- Department of PainXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyanHubeiChina
| | - Xin Wang
- Department of PainXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyanHubeiChina
| |
Collapse
|
4
|
Cosentino F, Michenzi C, Di Noi A, Salvitti C, Pepi F, de Petris G, Chiarotto I, Troiani A. Photo-activated Carbon dots (CDs) as Catalysts in the Knoevenagel Condensation: A Mechanistic Study by Dual-Mode Monitoring via ESI-MS. Chempluschem 2024; 89:e202400174. [PMID: 38771069 DOI: 10.1002/cplu.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Carbon dots (CDs) obtained from 5-(hydroxymethyl)furfural (5-HMF) were activated by a 365 nm-UV irradiation source and employed in the Knoevenagel condensation to investigate their photocatalytic mechanism. To this end, electrospray ionization mass spectrometry (ESI-MS) was used to monitor the time progress of the condensation and follow the formation of the final product in positive and negative ion modes at once. The intervention of the superoxide radical anion in the photocatalytic mechanism of CDs was highlighted.
Collapse
Affiliation(s)
- Francesca Cosentino
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome P.le Aldo, Moro 5, 00185, Roma, Italy
| | - Cinzia Michenzi
- Department of Basic and Applied Sciences for Engineering, "Sapienza" University of Rome, Via Castro Laurenziano 7, 00161, Roma, Italy
| | - Alessia Di Noi
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome P.le Aldo, Moro 5, 00185, Roma, Italy
| | - Chiara Salvitti
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome P.le Aldo, Moro 5, 00185, Roma, Italy
| | - Federico Pepi
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome P.le Aldo, Moro 5, 00185, Roma, Italy
| | - Giulia de Petris
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome P.le Aldo, Moro 5, 00185, Roma, Italy
| | - Isabella Chiarotto
- Department of Basic and Applied Sciences for Engineering, "Sapienza" University of Rome, Via Castro Laurenziano 7, 00161, Roma, Italy
| | - Anna Troiani
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome P.le Aldo, Moro 5, 00185, Roma, Italy
| |
Collapse
|
5
|
Chen YC, Chen HH, Lin HJ, Huang CC, Chen KF, Peng YP, Tsang YF, Chen YH, Lin KYA, Lin CH. Hepatotoxicity evaluations of different surface charged carbon quantum dots in vivo and in vitro. Colloids Surf B Biointerfaces 2024; 234:113760. [PMID: 38244484 DOI: 10.1016/j.colsurfb.2024.113760] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/28/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Recently, carbon quantum dots (CQDs) have become popular because of their simple synthesis and potential applications. Although CQDs have high biocompatibility, their biotoxicity must be verified to reduce the possible risks associated with large-scale application. In this study, the hepatotoxicity of three CQD types, namely diammonium citrate (AC)-based (CQDs-AC), spermidine trihydrochloride (Spd)-based (CQDs-Spd), and AC- and Spd-based CQDs (CQDs-AC/Spd), were evaluated in vivo and in vitro. It was observed in vivo that CQDs-Spd and CQDs-AC/Spd, but not CQDs-AC, caused histopathological damage, including liver steatosis and mild mixed inflammatory cell infiltration; however, reduced liver function was only observed in CQD-Spd-treated mice. The in vitro results revealed that only CQDs-Spd significantly decreased the number of viable HepG2 cells (NADH depletion) and induced oxidative stress (heme oxygenase-1 activation) after 24 h of exposure, which promoted inflammatory factor secretion (NF-κB activation). Additionally, decreasing zonula occludens-2 and α1-antitrypsin protein expression in HepG2 cells suggested that CQD-Spd exposure increases the risk of liver diseases. Our results revealed that CQDs-Spd had greater hepatotoxic potential than CQDs-AC and CQDs-AC/Spd, which might be attributable to their high positive surface charge. Overall, the risk of CQD-induced hepatotoxic risk must be considered when applying positively charged CQDs.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Civil Engineering, National Taipei University of Technology, Taipei City 106, Taiwan; Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan
| | - Hung-Hsiang Chen
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Ku-Fan Chen
- Department of Civil Engineering, National Chi Nan University, Nantou, Taiwan
| | - Yen-Ping Peng
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yiu Fai Tsang
- Department of Science and Environment Studies and State Key Laboratory in Marine Pollution, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong; Centre for Environment and Sustainable Development (CESD), The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Yan-Hua Chen
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung 40227, Taiwan; Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan.
| |
Collapse
|
6
|
Niu KK, Zhang RZ, Yang XZ, Ma CQ, Liu H, Yu S, Xing LB. Nitrogen-doped Carbon Dots as Efficient Photocatalysts for High Selectivity of Dehalogenative Oxyalkylation of Styrene. CHEMSUSCHEM 2023:e202301686. [PMID: 38135666 DOI: 10.1002/cssc.202301686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Carbon dots (CDs) are a type of carbon-based luminescent material with a zero-dimensional structure and a size of less than 10 nm, which are composed of sp2 /sp3 hybrid carbon nuclei and surface functional groups. Because CDs has strong photoluminescence and good light absorption in the ultraviolet and near visible regions, it is an excellent candidate for photocatalytic applications. However, the use of nonmetallic doped CDs as photosensitizers for direct photocatalytic organic reactions has been limited to several scattered reports. Herein, we present nitrogen-doped carbon dots (N-CDs) that has a capability for not only produce reactive oxygen species (ROS), including superoxide anion radical (O2 ⋅- ) and singlet oxygen (1 O2 ), but also provide an unprecedented high activity of dehalogenative oxyalkylation of styrene with a yield of 93 %. This work develops a novel opportunity to utilize cost-effective and easily accessible CDs for the advancement of photocatalysis.
Collapse
Affiliation(s)
- Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Rong-Zhen Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Xuan-Zong Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Chao-Qun Ma
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| |
Collapse
|
7
|
Sahana S, Gautam A, Singh R, Chandel S. A recent update on development, synthesis methods, properties and application of natural products derived carbon dots. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:51. [PMID: 37953431 PMCID: PMC10641086 DOI: 10.1007/s13659-023-00415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
Natural resources are practically infinitely abundant in nature, which stimulates scientists to create new materials with inventive uses and minimal environmental impact. Due to the various benefits of natural carbon dots (NCDs) from them has received a lot of attention recently. Natural products-derived carbon dots have recently emerged as a highly promising class of nanomaterials, showcasing exceptional properties and eco-friendly nature, which make them appealing for diverse applications in various fields such as biomedical, environmental sensing and monitoring, energy storage and conversion, optoelectronics and photonics, agriculture, quantum computing, nanomedicine and cancer therapy. Characterization techniques such as Photoinduced electron transfer, Aggregation-Induced-Emission (AIE), Absorbance, Fluorescence in UV-Vis and NIR Regions play crucial roles in understanding the structural and optical properties of Carbon dots (CDs). The exceptional photoluminescence properties exhibited by CDs derived from natural products have paved the way for applications in tissue engineering, cancer treatment, bioimaging, sensing, drug delivery, photocatalysis, and promising remarkable advancements in these fields. In this review, we summarized the various synthesis methods, physical and optical properties, applications, challenges, future prospects of natural products-derived carbon dots etc. In this expanding sector, the difficulties and prospects for NCD-based materials research will also be explored.
Collapse
Affiliation(s)
- Soumitra Sahana
- Department of Pharmacognosy, ISF College of Pharmacy, Ghal-Kalan, Moga, Punjab, 142001, India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
- International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Ghal-Kalan, Moga, Punjab, 142001, India.
| | - Shivani Chandel
- Department of Pharmacognosy, ISF College of Pharmacy, Ghal-Kalan, Moga, Punjab, 142001, India.
| |
Collapse
|
8
|
Guo L, Li L, Wang X, Zhang Y, Cui F. Synthesis of pH-Sensitive Nitrogen-Doped Carbon Dots with Biological Imaging Function and Their Application in Cu 2+ and Fe 2+ Determination by Ratiometric Fluorescent Probes. ACS OMEGA 2023; 8:37098-37107. [PMID: 37841116 PMCID: PMC10569000 DOI: 10.1021/acsomega.3c04596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
pH-sensitive nitrogen-doped carbon dots (N-CDs) were synthesized using immature seeds of elm trees as a carbon source and ethylenediamine as a coreactant through a facile one-step hydrothermal method. The N-CDs were characterized using fluorescence spectroscopy, fluorescence lifetime, ultraviolet-visible absorption, X-ray photoelectron spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy, as well as transmission electron microscopy. The N-CDs displayed excellent fluorescence properties and responded to pH changes. The N-CDs exhibited low toxicity and good biocompatibility and had the potential to be used for the biological imaging of HeLa cells and mung bean sprouts. Utilizing the mechanism of fluorescence resonance energy transfer, ratiometric fluorescent probes were prepared by simple mixing of N-CDs and fluorexon in a Britton-Robinson buffer solution. The ratiometric fluorescent probe was used to detect Cu2+ and Fe2+. The linear equations were RCu = -0.0591[Q] + 3.505 (R2 = 0.992) and RFe = -0.0874[Q] + 3.61 (R2 = 0.999). The corresponding limits of detection were 0.5 and 0.31 μM, respectively. The good results had been obtained in the actual samples detection.
Collapse
Affiliation(s)
- Liucheng Guo
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry
of Education, National Demonstration Center for Experimental Chemistry
Education, Henan Engineering Laboratory for Bioconversion Technology
of Functional Microbes, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
- Luohe
Medical College, Luohe 462000, P. R. China
| | - Luyao Li
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry
of Education, National Demonstration Center for Experimental Chemistry
Education, Henan Engineering Laboratory for Bioconversion Technology
of Functional Microbes, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
- College
of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Xingxian Wang
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry
of Education, National Demonstration Center for Experimental Chemistry
Education, Henan Engineering Laboratory for Bioconversion Technology
of Functional Microbes, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Yan Zhang
- College
of Food and Biological Engineering, Henan
University of Animal Husbandry and Economy, Zhengzhou, Henan 450000, P. R. China
| | - Fengling Cui
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry
of Education, National Demonstration Center for Experimental Chemistry
Education, Henan Engineering Laboratory for Bioconversion Technology
of Functional Microbes, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
9
|
Warjurkar K, Panda S, Sharma V. Red emissive carbon dots: a promising next-generation material with intracellular applicability. J Mater Chem B 2023; 11:8848-8865. [PMID: 37650569 DOI: 10.1039/d3tb01378b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The accidental discovery of carbon dots (CDs) back in 2004 has led to their widespread use in the biomedical field. CDs have demonstrated their effectiveness in reporting 3D structures of biological specimens, identifying normal and cancer cells, and even detecting analytes within cells. However, the limitations of blue-green emitting CDs, such as their shallow penetration, photodamage, and auto-fluorescence, have hindered their practical applications. To overcome these limitations, red emissive CDs (RCDs) have been developed, which have deep tissue penetration, minimal photo-damage, low auto-fluorescence, and high imaging contrast. In this article, we present a thorough review on the use of RCDs in biomedical applications, including in vivo and in vitro bioimaging, photoacoustic imaging, monitoring temperature and polarity changes in living cells, tumour therapy, and drug delivery. With the rapid progress being made in the development of RCDs for intracellular applications, their clinical application is expected to become a reality in the near future.
Collapse
Affiliation(s)
- Khushboo Warjurkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jagti, Jammu-180012, India.
| | - Satyajit Panda
- Department of Materials Engineering, National Institute of Technology Rourkela, Odisha-769008, India
| | - Vinay Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jagti, Jammu-180012, India.
| |
Collapse
|
10
|
Almahri A, Al-bonayan AM, Attar RMS, Karkashan A, Abbas B, Al-Qahtani SD, El-Metwaly NM. Multifunctional Lipophobic Polymer Dots from Cyclodextrin: Antimicrobial/Anticancer Laborers and Silver Ions Chemo-Sensor. ACS OMEGA 2023; 8:16956-16965. [PMID: 37214711 PMCID: PMC10193544 DOI: 10.1021/acsomega.3c00873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023]
Abstract
β-Cyclodextrin (CD) is currently exploited for the implantation of lipophobic polymer dots (PDs) for antimicrobial and anticancer laborers. Moreover, the PDs were investigated to act as a chemo-sensor for metal detection. The data revealed that under basic conditions, photoluminescent PDs (5.1 nm) were successively clustered with a controllable size at 190 °C, whereas under acidic conditions, smaller-sized non-photoluminescent carbon nanoparticles (2.9 nm) were obtained. The fluorescence intensity of synthesized PDs under basic conditions was affected by pH, and such an intensity was significantly higher compared to that prepared under acidic conditions. The PDs were exploited as florescent detectors in estimation of Ag+ ions in aquatic streams. Treatment of Ag+ ion colloids with PDs resulted in fluorescence quenching attributing to the production of AgNPs that approved by spectral studies. The cell viability percent was estimated for Escherichia coli, Staphylococcus aureus, and Candida albicans after incubation with PDs implanted under basic conditions for 24 h. The cell mortality percent was estimated for breast cancer (MCF-7) after incubation with different concentrations of PDs that were implanted under acidic versus basic conditions to show that treatment of the tested cells with 1000 μg/mL PDs prepared under basic (IC50 232.5 μg/mL) and acidic (IC50 88.6 μg/mL) conditions resulted in cell mortality percentages of 70 and 90%, respectively.
Collapse
Affiliation(s)
- Albandary Almahri
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ameena M. Al-bonayan
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21421, Saudi Arabia
| | - Roba M. S. Attar
- Department
of Biology, College of Sciences, University
of Jeddah, Jeddah 21959, Saudi Arabia
| | - Alaa Karkashan
- Department
of Biology, College of Sciences, University
of Jeddah, Jeddah 21959, Saudi Arabia
| | - Basma Abbas
- Department
of Biology, College of Sciences, University
of Jeddah, Jeddah 21959, Saudi Arabia
| | - Salhah D. Al-Qahtani
- Department
of Chemistry, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21421, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Mansoura
University, El-Gomhoria
Street Mansoura 35516, Egypt
| |
Collapse
|
11
|
Jovanović S, Marković Z, Budimir M, Prekodravac J, Zmejkoski D, Kepić D, Bonasera A, Marković BT. Lights and Dots toward Therapy-Carbon-Based Quantum Dots as New Agents for Photodynamic Therapy. Pharmaceutics 2023; 15:pharmaceutics15041170. [PMID: 37111655 PMCID: PMC10145889 DOI: 10.3390/pharmaceutics15041170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The large number of deaths induced by carcinoma and infections indicates that the need for new, better, targeted therapy is higher than ever. Apart from classical treatments and medication, photodynamic therapy (PDT) is one of the possible approaches to cure these clinical conditions. This strategy offers several advantages, such as lower toxicity, selective treatment, faster recovery time, avoidance of systemic toxic effects, and others. Unfortunately, there is a small number of agents that are approved for usage in clinical PDT. Novel, efficient, biocompatible PDT agents are, thus, highly desired. One of the most promising candidates is represented by the broad family of carbon-based quantum dots, such as graphene quantum dots (GQDs), carbon quantum dots (CQDs), carbon nanodots (CNDs), and carbonized polymer dots (CPDs). In this review paper, these new smart nanomaterials are discussed as potential PDT agents, detailing their toxicity in the dark, and when they are exposed to light, as well as their effects on carcinoma and bacterial cells. The photoinduced effects of carbon-based quantum dots on bacteria and viruses are particularly interesting, since dots usually generate several highly toxic reactive oxygen species under blue light. These species are acting as bombs on pathogen cells, causing various devastating and toxic effects on those targets.
Collapse
Affiliation(s)
- Svetlana Jovanović
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Zoran Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Milica Budimir
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Jovana Prekodravac
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Danica Zmejkoski
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Dejan Kepić
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Aurelio Bonasera
- Palermo Research Unit, Department of Physics and Chemistry-Emilio Segrè, University of Palermo and Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 90128 Palermo, Italy
| | - Biljana Todorović Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| |
Collapse
|
12
|
Wang ZX, Ding SN. Duplex-immunoassay of ovarian cancer biomarker CA125 and HE4 based carbon dot decorated dendritic mesoporous silica nanoparticles. Analyst 2023; 148:683-689. [PMID: 36629898 DOI: 10.1039/d2an01929a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fluorescent lateral flow immunoassay (FLFIA) is widely used mainly because of its low cost and instant detection. Its limit of detection (LOD) is closely related to fluorescence signals, and the development of fluorescence signals with fine performance remains a challenge. In this work, dendritic mesoporous silica nanoparticles (DMSNs) were used as fine carriers due to their large pore size and stable performance. We successfully synthesized carbon dots (CDs) with a 560 nm maximum emission wavelength (CD560) by the hydrothermal method. A new type of fluorescence signal for FLFIA was observed by loading CD560 on DMSNs through the Si-O bond which is denoted as DMSNs@CD560. Applying DMSNs@CD560 to the FLFIA can eliminate the influence of interfacial background blue fluorescence thus improving its detection sensitivity. The formed DMSNs@CD560-FLFIA achieved high sensitivity detection of ovarian cancer biomarkers carbohydrate antigen 125 (CA125) and human epididymal protein 4 (HE4). The LOD of CA125 is 0.5 U mL-1 and the correlation coefficient R2 = 0.985, and the LOD of HE4 reaches 0.05 ng mL-1 and the correlation coefficient R2 = 0.981. The DMSNs@CD560-FLFIA is sensitive and efficient providing a new method for the early diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
13
|
Xu KF, Jia HR, Wang Z, Feng HH, Li LY, Zhang R, Durrani S, Lin F, Wu FG. See the Unseen: Red-Emissive Carbon Dots for Visualizing the Nucleolar Structures in Two Model Animals and In Vivo Drug Toxicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2205890. [PMID: 36634974 DOI: 10.1002/smll.202205890] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Nucleolus, which participates in many crucial cellular activities, is an ideal target for evaluating the state of a cell or an organism. Here, bright red-emissive carbon dots (termed CPCDs) with excitation-independent/polarity-dependent fluorescence emission are synthesized by a one-step hydrothermal reaction between congo red and p-phenylenediamine. The CPCDs can achieve wash-free, real-time, long-term, and high-quality nucleolus imaging in live cells, as well as in vivo imaging of two common model animals-zebrafish and Caenorhabditis elegans (C. elegans). Strikingly, CPCDs realize the nucleolus imaging of organs/flowing blood cells in zebrafish at a cellular level for the first time, and the superb nucleolus imaging of C. elegans suggests that the germ cells in the spermatheca probably have no intact nuclei. These previously unachieved imaging results of the cells/tissues/organs may guide the zebrafish-related studies and benefit the research of C. elegans development. More importantly, a novel strategy based on CPCDs for in vivo toxicity evaluation of materials/drugs (e.g., Ag+ ), which can visualize the otherwise unseen injuries in zebrafish, is developed. In conclusion, the CPCDs represent a robust tool for visualizing the structures and dynamic behaviors of live zebrafish and C. elegans, and may find important applications in cell biology and toxicology.
Collapse
Affiliation(s)
- Ke-Fei Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Zihao Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Hui-Heng Feng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Ling-Yi Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Rufeng Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Samran Durrani
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
14
|
Chatzimitakos T, Vasilas A, Stalikas C. Layered Double Hydroxide/Graphene Quantum Dots as a New Sorbent for the Dispersive Solid-Phase Microextraction of Selected Benzophenones, Phenols, and Parabens. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238388. [PMID: 36500480 PMCID: PMC9738325 DOI: 10.3390/molecules27238388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022]
Abstract
In this study, the synthesis of a layered double hydroxide (LDH) composite with graphene quantum dots (GQDs) and its utilization for the development of a dispersive solid-phase extraction procedure are described. To this end, a carbonate-free Mg-Al LDH was synthesized. The development of the composite material made feasible the use of GQDs in a sample preparation procedure, while the incorporation of the GQDs in the LDH structure resulted in an 80% increase in extraction efficiency, compared to the bare LDH. As a proof of concept, the composite material was used for the development of an analytical method for the extraction, and preconcentration, of benzophenones, phenols, and parabens in lake water using high-performance liquid chromatography, coupled to a diode array detector. The analytical method exhibits low limits of quantification (0.10-1.33 μg L-1), good recoveries (92-100%), and satisfactory enrichment factors (169-186). Due to the abovementioned merits, the easy synthesis and simple extraction, the developed method can be used for the routine analysis of the target compounds.
Collapse
|
15
|
Bao K, Shi J, Liao F, Huang H, Liu Y, Kang Z. The Advance and Critical Functions of Energetic Carbon Dots in Carbon Dioxide Photo/Electroreduction Reactions. SMALL METHODS 2022; 6:e2200914. [PMID: 36287097 DOI: 10.1002/smtd.202200914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
As a unique carbon-based nano material, carbon dots (CDs) have attracted great attention because of their special structures and properties, and have been widely used in various fields, such as bio-imaging technology, catalyst design, pollutant degradation, chemical analysis, clean energy development and so on. CDs are used as catalysts or cocatalysts for multiple energy conversion reactions due to their advantages of valid visible light utilization, fast transmission of charge carriers, excellent catalytic activity, and good electrical conductivity. This review first summarizes the basic structure and properties of CDs. The advance and critical functions of energetic CDs in carbon dioxide photo/electroreduction reactions are discussed in detail. Due to the excellent optical absorption, electron transfer properties and good conductivity of CDs, they can enhance catalytic activity and stability effectively. In the end, the existing problems and future development opportunities of CDs-based catalysts in CO2 reduction reaction are proposed and outlined.
Collapse
Affiliation(s)
- Kaili Bao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jie Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Fan Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao, 999078, China
| |
Collapse
|
16
|
Zhao J, Li C, Du X, Zhu Y, Li S, Liu X, Liang C, Yu Q, Huang L, Yang K. Recent Progress of Carbon Dots for Air Pollutants Detection and Photocatalytic Removal: Synthesis, Modifications, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200744. [PMID: 36251773 DOI: 10.1002/smll.202200744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/07/2022] [Indexed: 06/16/2023]
Abstract
Rapid industrialization has inevitably led to serious air pollution problems, thus it is urgent to develop detection and treatment technologies for qualitative and quantitative analysis and efficient removal of harmful pollutants. Notably, the employment of functional nanomaterials, in sensing and photocatalytic technologies, is promising to achieve efficient in situ detection and removal of gaseous pollutants. Among them, carbon dots (CDs) have shown significant potential due to their superior properties, such as controllable structures, easy surface modification, adjustable energy band, and excellent electron-transfer capacities. Moreover, their environmentally friendly preparation and efficient capture of solar energy provide a green option for sustainably addressing environmental problems. Here, recent advances in the rational design of CDs-based sensors and photocatalysts are highlighted. An overview of their applications in air pollutants detection and photocatalytic removal is presented, especially the diverse sensing and photocatalytic mechanisms of CDs are discussed. Finally, the challenges and perspectives are also provided, emphasizing the importance of synthetic mechanism investigation and rational design of structures.
Collapse
Affiliation(s)
- Jungang Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Caiting Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Xueyu Du
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Youcai Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Shanhong Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Xuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Caixia Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Qi Yu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Le Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Kuang Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| |
Collapse
|
17
|
Gaurav A, Jain A, Tripathi SK. Review on Fluorescent Carbon/Graphene Quantum Dots: Promising Material for Energy Storage and Next-Generation Light-Emitting Diodes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7888. [PMID: 36431372 PMCID: PMC9695987 DOI: 10.3390/ma15227888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 05/10/2023]
Abstract
Carbon/graphene quantum dots are 0D fluorescent carbon materials with sizes ranging from 2 nm to around 50 nm, with some attractive properties and diverse applications. Different synthesis routes, bandgap variation, higher stability, low toxicity with tunable emission, and the variation of physical and chemical properties with change in size have drawn immense attention to its potential application in different optoelectronics-based materials, especially advanced light-emitting diodes and energy storage devices. WLEDs are a strong candidate for the future of solid-state lighting due to their higher luminance and luminous efficiency. High-performance batteries play an important part in terms of energy saving and storage. In this review article, the authors provide a comparative analysis of recent and ongoing advances in synthesis (top-down and bottom-up), properties, and wide applications in different kinds of next-generation light-emitting diodes such as WLEDs, and energy storage devices such as batteries (Li-B, Na-B) and supercapacitors. Furthermore, they discuss the potential applications and progress of carbon dots in battery applications such as electrode materials. The authors also summarise the developmental stages and challenges in the existing field, the state-of-the-art of carbon/graphene quantum dots, and the potential and possible solutions for the same.
Collapse
Affiliation(s)
- Ashish Gaurav
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Amrita Jain
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Santosh Kumar Tripathi
- Department of Physics, School of Physical Sciences, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| |
Collapse
|
18
|
Yang JC, Gao S, Zhang JH, Lv HT, Wu Q. Ionic liquid and octadecylamine co-derived carbon dots for multi-mode high performance liquid chromatography. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
19
|
Wei K, Nie H, Li Y, Wang X, Liu Y, Zhao Y, Shi H, Huang H, Liu Y, Kang Z. Carbon dots with different energy levels regulate the activity of metal-free catalyst for hydrogen peroxide photoproduction. J Colloid Interface Sci 2022; 616:769-780. [PMID: 35247814 DOI: 10.1016/j.jcis.2022.02.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 10/19/2022]
Abstract
Artificial photoproduction of hydrogen peroxide (H2O2) from H2O and O2 by metal-free catalysts (e.g., graphitic carbon nitride) is regarded as an ultra-clean approach. Metal-free catalysts are often hindered by unpropitious rapid charge recombination and unfavorable selectivity. Herein, three carbon dots (CDs1 to CDs3) decorated modified-carbon nitride (CDs1-NCN, CDs2-NCN and CDs3-NCN) were designed and fabricated, which show diverse activity of H2O2 photoproduction. Among them, CDs1-NCN, as a two-channel photocatalyst, achieves H2O2 production with high efficiency (1938 μmol h-1 g-1). This process is at normal pressure and without sacrificial agent under visible region (λ≥420nm), which is 27.5- times higher than that of pristine C3N4. The apparent quantum efficiency can be calculated to 7.03 % (λ=365nm). In this system, CDs with different energy levels dominate the activity of metal-free catalyst for hydrogen peroxide photoproduction. Combining with photoelectrochemical test and transient photovoltage analysis, the active site and the catalytic mechanism of these composite catalysts are also clarified. Our work provides a clearly insight for understanding of the regulation of interfacial electron transport in metal-free photocatalysts.
Collapse
Affiliation(s)
- Kaiqiang Wei
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Haodong Nie
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yi Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xiao Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yan Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yajie Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Hong Shi
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China; Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China.
| |
Collapse
|
20
|
Zhang Q, Tian F, Zhou Q, Zhang C, Tang S, Jiang L, Du S. Targeted ginkgo kernel biomass precursor using eco-friendly synthesis of efficient carbon quantum dots for detection of trace nitrite ions and cell imaging. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Cao X, Shao C, Zhang C, Liang M, Wang Y, Cheng J, Lu S. Yeast powder derived carbon quantum dots for dopamine detection and living cell imaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1342-1350. [PMID: 35297454 DOI: 10.1039/d2ay00231k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dopamine (DA) is an important neurotransmitter in the brain of mammals. There is a critical need for fast and sensitive determination approaches to monitor these potential diseases due to various weaknesses in clinical trials of the existing methods for DA detection. DA can effectively quench the fluorescence of carbon quantum dots (CDs) through the inner filter effect and static quenching. In this work, fluorescent yeast CDs (Y-CDs) were prepared via a simple hydrothermal approach of using yeast powder and regarded as the fluorescent nanoprobe to directly monitor the DA concentration. The as-prepared detection platform exhibited excellent sensitivity and selectivity toward DA with a low detection limit of 30 nM and a wide linear range of 0.05-150 μM. Benefiting from these outstanding features, the developed label-free method has been successfully applied for fast DA detection in human serum samples with satisfactory recoveries. Furthermore, it demonstrated that the Y-CDs were well suitable for live cell imaging and showed low toxicity toward MCF-7 cells. Consequently, this work will facilitate the great potential of the versatile Y-CDs in developing biosensors for clinical diagnosis and other biological applications.
Collapse
Affiliation(s)
- Xue Cao
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Congying Shao
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Cheng Zhang
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Mengna Liang
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Yongxiang Wang
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Jun Cheng
- School of Mechatronics & Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
22
|
Fluorescent Mechanism in Zero-Dimensional Carbon Nanomaterials: A Review. J Fluoresc 2022; 32:887-906. [PMID: 35303239 DOI: 10.1007/s10895-022-02915-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
Abstract
Fluorescent carbon dots (CDs) have acquired growing interest from different areas over decades. Their fascinating property of tunable fluorescence by changing the excitation wavelength has attracted researchers worldwide. Understanding the mechanisms behind fluorescence is of great importance, as they help with the synthesis and applications, significantly when narrowed down to applications with color-tunable mechanisms. But, due to a lack of practical and theoretical information, the fluorescence mechanisms of CDs remain unknown, preventing the production of CDs with desired optical qualities. This review focuses on the PL mechanisms of carbon dots. The quantum confinement effect determined the carbon core, the surface and edge states determined by various surface defects and the connected functional/chemical groups on the surface/edges, the molecular state solely determined the fluorophores in the interior or surface of the CDs, and the Crosslink Enhanced Emission Effect are the currently confirmed PL mechanisms.
Collapse
|
23
|
Zhao L, Zhang M, Mujumdar AS, Wang H. Application of carbon dots in food preservation: a critical review for packaging enhancers and food preservatives. Crit Rev Food Sci Nutr 2022; 63:6738-6756. [PMID: 35174744 DOI: 10.1080/10408398.2022.2039896] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carbon dots (CDs) have two unique advantages: one is ease of synthesis at low price, the other is desirable physical and chemical properties, such as ultra-small size, abundant surface functional groups, nontoxic/low-toxicity, good biocompatibility, excellent antibacterial and antioxidant activities etc. These advantages provide opportunities for the development of new food packaging enhancers and food preservatives. This paper systematically reviews the studies of CDs used to strengthen the physical properties of food packaging, including strengthen mechanical strength, ultraviolet (UV) barrier properties and water barrier properties. It also reviews the researches of CDs used to fabricate active packaging with antioxidant and/or antibacterial properties and intelligent packaging with the capacity of sensing the freshness of food. In addition, it analyzes the antioxidant and antibacterial properties of CDs as preservatives, and discusses the effect of CDs applied as coating agents and nano-level food additives for extension the shelf life of food samples. It also provides a brief review on the security and the release behavior of CDs.
Collapse
Affiliation(s)
- Linlin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd, Yangzhou, Jiangsu, China
| |
Collapse
|
24
|
Domingo-Tafalla B, Martínez-Ferrero E, Franco F, Palomares-Gil E. Applications of Carbon Dots for the Photocatalytic and Electrocatalytic Reduction of CO 2. Molecules 2022; 27:1081. [PMID: 35164346 PMCID: PMC8840083 DOI: 10.3390/molecules27031081] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
The photocatalytic and electrocatalytic conversion of CO2 has the potential to provide valuable products, such as chemicals or fuels of interest, at low cost while maintaining a circular carbon cycle. In this context, carbon dots possess optical and electrochemical properties that make them suitable candidates to participate in the reaction, either as a single component or forming part of more elaborate catalytic systems. In this review, we describe several strategies where the carbon dots participate, both with amorphous and graphitic structures, in the photocatalysis or electrochemical catalysis of CO2 to provide different carbon-containing products of interest. The role of the carbon dots is analyzed as a function of their redox and light absorption characteristics and their complementarity with other known catalytic systems. Moreover, detailed information about synthetic procedures is also reviewed.
Collapse
Affiliation(s)
- Beatriu Domingo-Tafalla
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology (ICIQ-BIST), Avda. Països Catalans, 16, E-43007 Tarragona, Spain; (B.D.-T.); (E.M.-F.)
- Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avda. Països Catalans, 26, E-43007 Tarragona, Spain
| | - Eugenia Martínez-Ferrero
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology (ICIQ-BIST), Avda. Països Catalans, 16, E-43007 Tarragona, Spain; (B.D.-T.); (E.M.-F.)
| | - Federico Franco
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology (ICIQ-BIST), Avda. Països Catalans, 16, E-43007 Tarragona, Spain; (B.D.-T.); (E.M.-F.)
| | - Emilio Palomares-Gil
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology (ICIQ-BIST), Avda. Països Catalans, 16, E-43007 Tarragona, Spain; (B.D.-T.); (E.M.-F.)
- ICREA, Passeig Lluís Companys 23, E08010 Barcelona, Spain
| |
Collapse
|
25
|
Guo Y, Yang C, Zhang Y, Tao T. Nanomaterials for fluorescent detection of curcumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120359. [PMID: 34530202 DOI: 10.1016/j.saa.2021.120359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/28/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Owing to the attractive biological and pharmacological activities, sensitive and selective detection of curcumin is of great significance. Nanomaterials possessing unique optical properties exhibit potential applications in the fluorescent detection of curcumin. This review first discussed the detection strategies of fluorescent nanosensors. In the subsequent section, we highlighted the recent advances of different nanomaterials for fluorescent detection of curcumin, including semiconductor QDs, lanthanide upconversion nanoparticles, fluorescent metal nanoclusters, and carbon quantum dots. And we further provided the merits of fluorescent nanosensors for curcumin. Lastly, the challenges and further directions were presented.
Collapse
Affiliation(s)
- Yongming Guo
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Chao Yang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yijia Zhang
- Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tao Tao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
26
|
Mahmud Z, Nasrin A, Hassan M, Gomes VG. 3D‐printed polymer
nanocomposites with carbon quantum dots for enhanced properties and in situ monitoring of cardiovascular stents. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zaheri Mahmud
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales Australia
| | - Aklima Nasrin
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales Australia
| | - Mahbub Hassan
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales Australia
| | - Vincent G. Gomes
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales Australia
- Nano Institute The University of Sydney Sydney New South Wales Australia
| |
Collapse
|
27
|
Zhang H, Wu S, Xing Z, Wang HB. Turning waste into treasure: chicken eggshell membrane derived fluorescent carbon nanodots for the rapid and sensitive detection of Hg 2+ and glutathione. Analyst 2021; 146:7250-7256. [PMID: 34730569 DOI: 10.1039/d1an01582f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a green, economical, and waste-utilization approach is reported for the synthesis of water-soluble carbon nanodots (C-Dots) with a high fluorescence quantum yield of 19.5%. As a common protein-rich waste, eggshell membrane was selected as a cost-effective and ideal precursor to prepare C-Dots using the microwave method. The as-prepared C-Dots showed a maximum emission at 375 nm with an excitation wavelength at 235 nm. The fluorescent C-Dots were adopted as a sensitive probe for the rapid detection of Hg2+ and glutathione (GSH) based on the fluorescence off and on (turn-off-on) strategy. This was ascribed to the fact that Hg2+ could effectively quench the fluorescence of the C-Dots and GSH was able to prevent fluorescence quenching owing to the specific binding between Hg2+ and GSH. The designed method exhibited a high sensitivity and selectivity towards the detection of Hg2+ and GSH. Under the optimized conditions, the method showed a good linear relationship with Hg2+ concentration in the range from 100 nM to 50 μM with a detection limit of 32.0 nM. For GSH detection, it displayed a linear range from 50 nM to 10 μM with a detection limit of 9.8 nM. Moreover, this method was successfully applied to detect GSH in human serum samples. The eggshell derived fluorescent C-Dots pave the way for economical environmental and biological analyses.
Collapse
Affiliation(s)
- Hongding Zhang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| | - Sifei Wu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| | - Zhenhua Xing
- Xinyang Branch, Henan Province Institute of Boiler and Pressure Vessel Safety Testing, Xingyang 464000, PR China
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| |
Collapse
|
28
|
Shi Y, Liu J, Zhang Y, Bao J, Cheng J, Yi C. Microwave-assisted synthesis of colorimetric and fluorometric dual-functional hybrid carbon nanodots for Fe3+ detection and bioimaging. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
29
|
Shan F, Xia H, Xie X, Fu L, Yang H, Zhou Q, Zhang Y, Wang Z, Yu X. Novel N-doped carbon dots prepared via citric acid and benzoylurea by green synthesis for high selectivity Fe(III) sensing and imaging in living cells. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106273] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
30
|
Bhuyan R, Bramhaiah K, Bhattacharyya S. Specific locations of blue and green-emitting units in dual emissive carbon dots and their reversible emitting properties due to switchable inter-chromophoric interactions. J Colloid Interface Sci 2021; 605:364-372. [PMID: 34332410 DOI: 10.1016/j.jcis.2021.07.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/03/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Carbon dots (CDs) are the unique class of luminescent nanomaterials consist of various chromophoric units heterogeneously distributed throughout the nanoparticle, resulting intriguing multistate emissive properties. Herein, we have critically investigated the specific locations of the blue and green-emitting centers inside dual emissive CDs by steady-state and time-resolved polarized emission study. It is further clarified by a temperature-dependent fluorescence study for both the emitting domains. Results suggest that the blue chromophoric units are located at the interior part of CDs, while green units are mostly at the exterior region. Furthermore, we have investigated the solvent-dependent inter-chromophoric interactions between the two emissive domains by the Time-Resolved Area Normalized Emission Spectroscopy (TRANES). Results suggest that at polar aprotic solvent acetone, time-dependent positive evolution of green-emitting states and negative evolution of blue emissive domains have been observed. This reversible emitting properties evolve due to the excited state energy migration from blue emissive domains to green emissive domains at polar aprotic medium, while in the case of polar protic solvent water, this phenomenon is missing. This switchable inter-chromophoric interaction are correlated further with the inter-particle interactions of CDs.
Collapse
Affiliation(s)
- Rahul Bhuyan
- Indian Institute of Science Education and Research, Govt. ITI Building (transit campus), Engg. School Road, Berhampur, Odisha 760010 India
| | - Kommula Bramhaiah
- Indian Institute of Science Education and Research, Govt. ITI Building (transit campus), Engg. School Road, Berhampur, Odisha 760010 India
| | - Santanu Bhattacharyya
- Indian Institute of Science Education and Research, Govt. ITI Building (transit campus), Engg. School Road, Berhampur, Odisha 760010 India.
| |
Collapse
|
31
|
Wang FT, Wang LN, Xu J, Huang KJ, Wu X. Synthesis and modification of carbon dots for advanced biosensing application. Analyst 2021; 146:4418-4435. [PMID: 34195700 DOI: 10.1039/d1an00466b] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been an explosion of interest in the use of nanomaterials for biosensing applications, and carbonaceous nanomaterials in particular are at the forefront of this explosion. Carbon dots (CDs), a new type of carbon material, have attracted extensive attention due to their fascinating properties, such as small particle size, tunable optical properties, good conductivity, low cytotoxicity, and good biocompatibility. These properties have enabled them to be highly promising candidates for the fabrication of various high-performance biosensors. In this review, we summarize the top-down and bottom-up synthesis routes of CDs, highlight their modification strategies, and discuss their applications in the fields of photoluminescence biosensors, electrochemiluminescence biosensors, chemiluminescence biosensors, electrochemical biosensors and fluorescence biosensors. In addition, the challenges and future prospects of the application of CDs for biosensors are also proposed.
Collapse
Affiliation(s)
- Fu-Ting Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Li-Na Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Xu Wu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
32
|
Ahmed HB, Abualnaja KM, Ghareeb RY, Ibrahim AA, Abdelsalam NR, Emam HE. Technical textiles modified with immobilized carbon dots synthesized with infrared assistance. J Colloid Interface Sci 2021; 604:15-29. [PMID: 34261016 DOI: 10.1016/j.jcis.2021.07.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022]
Abstract
Carbon quantum dots "CQDs" were investigated as photo-luminescent nanomaterials as it advantageous with nontoxicity to be alternative for metallic-nanomaterials in different purposes. Therefore, the presented report demonstrates an innovative strategy for industrialization of antimicrobial/fluorescent cotton textiles via exploitation of "CQDs". Unique/novel infrared-assisted technique was currently investigated for clustering "CQDs" form carboxymethyl cellulose. The successive nucleation of "CQDs" (8.0 nm) was affirmed via infra-red, Raman spectroscopy, NMR, TEM and Zeta-potential analysis. The clustered "CQDs" showed antimicrobial and fluorescent characters. The minimal inhibition concentration for "CQDs" (100 mg/mL) against E. coli and C. albicans showed pathogenic reduction of 96% and 82%, respectively. Fluorescent emission spectra for "CQDs" showed two intense peaks at 415-445 nm. "CQDs" were loaded upon pristine and cationized cotton to prepare CQDs@cotton and CQDs@cationized cotton. While, their physical/mechanical properties (air and water vapor permeabilities, tensile strength and elongation %) and thermal stability (TGA & DTG analysis) were studied. The CQDs@cationized cotton exhibited excellent antimicrobial activity with good durability as after ten repretitive washings, inhibition zone diameter against E. coli, was diminished from 21.0 mm to 14.0 mm. The fluorescent emmision intensity was diminished from 741 to 287 after 10 washing cycles. The produced cotton fabrics could be safely used in the medical and military textiles.
Collapse
Affiliation(s)
- Hanan B Ahmed
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo 11795, Egypt.
| | - Khamael M Abualnaja
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Rehab Y Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Air Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Amira A Ibrahim
- Plant Protection and Biomolecular Diagnosis Department, Air Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Nader R Abdelsalam
- Department of Agricultural Botany, Faculty of Agriculture, Saba Basha, Alexandria University, 21531, Egypt
| | - Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic Fibers, Textile Research Division, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| |
Collapse
|
33
|
Lei S, Chang N, Zhang J, Wang H. Dopamine Functionalized S,N Co-doped Carbon Dots as a Fluorescent Sensor for the Selective Detection of Fe 3+ and Fe 2+ in Water. ANAL SCI 2021; 37:851-857. [PMID: 33071264 DOI: 10.2116/analsci.20p294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In current work, novel functionalized carbon dots have been designed and synthesized by covalently linking dopamine to the surface of S,N co-doped carbon dots (DA-S,N-CDs) for the selective detection of Fe3+ and Fe2+ in water. The as-synthesized DA-S,N-CDs emit blue fluorescence peaked at 470 nm and exhibit excitation-dependent tunable emissions. The tolerance towards pH, salt, and UV irradiation of synthesized carbon dots reveals excellent stability. Upon exposure to Fe3+ or Fe2+, the fluorescence of DA-S,N-CDs was selectively quenched, while other competitive cations did not change significantly. Under the optimal experimental conditions, the fluorescence intensity of DA-S,N-CDs showed a good linear relationship with the concentrations of Fe3+ and Fe2+ (5 - 200 μM for Fe3+ and 5 - 300 μM for Fe2+), and the limit of detection was 2.86 and 2.06 μM, respectively. Furthermore, considering the excellent stability and anti-interference, DA-S,N-CDs have been successfully used for the detection of Fe3+ and Fe2+ in environmental water.
Collapse
Affiliation(s)
- Siyu Lei
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University.,School of Chemistry and Chemical Engineering, Tiangong University
| | - Na Chang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University.,School of Chemistry and Chemical Engineering, Tiangong University
| | - Jimei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University.,School of Chemistry and Chemical Engineering, Tiangong University
| | - Haitao Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University.,School of Environmental Science and Engineering, Tiangong University
| |
Collapse
|
34
|
Ray P, Moitra P, Pan D. Emerging theranostic applications of carbon dots and its variants. VIEW 2021. [DOI: 10.1002/viw.20200089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Priyanka Ray
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Diagnostic Radiology and Nuclear Medicine University of Maryland Baltimore Baltimore Maryland USA
| | - Parikshit Moitra
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Pediatrics Center for Blood Oxygen Transport and Hemostasis University of Maryland Baltimore School of Medicine Baltimore Maryland USA
| | - Dipanjan Pan
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Pediatrics Center for Blood Oxygen Transport and Hemostasis University of Maryland Baltimore School of Medicine Baltimore Maryland USA
- Department of Diagnostic Radiology and Nuclear Medicine University of Maryland Baltimore Baltimore Maryland USA
| |
Collapse
|
35
|
Carbon dots – Separative techniques: Tools-objective towards green analytical nanometrology focused on bioanalysis. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Rivadeneyra A, Salmeron JF, Murru F, Lapresta-Fernández A, Rodríguez N, Capitan-Vallvey LF, Morales DP, Salinas-Castillo A. Carbon Dots as Sensing Layer for Printed Humidity and Temperature Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2446. [PMID: 33297413 PMCID: PMC7762300 DOI: 10.3390/nano10122446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022]
Abstract
This work presents an innovative application of carbon dots (Cdots) nanoparticles as sensing layer for relative humidity detection. The developed sensor is based on interdigitated capacitive electrodes screen printed on a flexible transparent polyethylene terephthalate (PET) film. Cdots are deposited on top of these electrodes. An exhaustive characterization of the nanoparticles has been conducted along with the fabrication of the sensor structure. The accompanied experiments give all the sensibility to the Cdots, showing its dependence with temperature and exciting frequency. To the best of our knowledge, this work paves the path to the use of these kind of nanoparticles in printed flexible capacitive sensors aimed to be employed in the continuously expanding Internet of Things ecosystem.
Collapse
Affiliation(s)
- Almudena Rivadeneyra
- Department of Electronics and Computer Technology, University of Granada, 18010 Granada, Spain; (J.F.S.); (N.R.); (D.P.M.)
| | - José F. Salmeron
- Department of Electronics and Computer Technology, University of Granada, 18010 Granada, Spain; (J.F.S.); (N.R.); (D.P.M.)
| | - Fabio Murru
- Department of Analytical Chemistry, University of Granada, 18010 Granada, Spain; (F.M.); (A.L.-F.); (L.F.C.-V.); (A.S.-C.)
| | - Alejandro Lapresta-Fernández
- Department of Analytical Chemistry, University of Granada, 18010 Granada, Spain; (F.M.); (A.L.-F.); (L.F.C.-V.); (A.S.-C.)
| | - Noel Rodríguez
- Department of Electronics and Computer Technology, University of Granada, 18010 Granada, Spain; (J.F.S.); (N.R.); (D.P.M.)
| | - Luis Fermín Capitan-Vallvey
- Department of Analytical Chemistry, University of Granada, 18010 Granada, Spain; (F.M.); (A.L.-F.); (L.F.C.-V.); (A.S.-C.)
| | - Diego P. Morales
- Department of Electronics and Computer Technology, University of Granada, 18010 Granada, Spain; (J.F.S.); (N.R.); (D.P.M.)
| | - Alfonso Salinas-Castillo
- Department of Analytical Chemistry, University of Granada, 18010 Granada, Spain; (F.M.); (A.L.-F.); (L.F.C.-V.); (A.S.-C.)
| |
Collapse
|
37
|
Ahmed HB, Emam HE. Environmentally exploitable biocide/fluorescent metal marker carbon quantum dots. RSC Adv 2020; 10:42916-42929. [PMID: 35514886 PMCID: PMC9058413 DOI: 10.1039/d0ra06383e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/08/2020] [Indexed: 11/21/2022] Open
Abstract
Carbon quantum dots are currently investigated to act as safe/potent alternatives for metal-based nanostructures to play the role of probes for environmental applications owing to their low toxicity, low cost, chemical inertness, biocompatibility and outstanding optical properties. The synthesis of biocide/fluorescent metal marker carbon quantum dots with hydrophilic character was performed via a quite simple and green technique. The natural biopolymer that was used in this study for the synthesis of carbon quantum dots is fragmented under strong alkaline conditions. Afterwards, under hydrothermal conditions, re-polymerization, aromatization and subsequent oxidation, the carbonic nanostructures were grown and clustered. Dialysis of the so-produced carbonic nanostructures was carried out to obtain highly purified/mono-dispersed carbon quantum dots with a size distribution of 1.5-6.5 nm. The fluorescence intensity of the synthesized carbon quantum dots under hydrothermal conditions for 3 h was affected by dialysis, however, the fluorescence intensity was significantly increased ca. 20 times. The synthesized carbon quantum dots were exploited as fluorescent markers in the detection of Zn2+ and Hg2+. The prepared carbon quantum dots also exhibited excellent antimicrobial potency against Bacillus cereus, Escherichia coli and Candida albicans. The detected minimal inhibitory concentration for the dialyzed CQDs towards the tested pathogens was 350-450 μL mL-1. The presented approach is a simple and green technique for the scaled-up synthesis of biocide/fluorescent marker carbon quantum dots instead of metal-based nanostructures for environmental applications, without using toxic chemicals or organic solvents.
Collapse
Affiliation(s)
- Hanan B Ahmed
- Chemistry Department, Faculty of Science, Helwan University Ain-Helwan Cairo 11795 Egypt +201097411189
| | - Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Industries Research Division, National Research Centre, Scopus Affiliation ID 60014618 33 EL Buhouth St., Dokki Giza 12622 Egypt +201008002487
| |
Collapse
|
38
|
Nasrin A, Hassan M, Gomes VG. Two-photon active nucleus-targeting carbon dots: enhanced ROS generation and photodynamic therapy for oral cancer. NANOSCALE 2020; 12:20598-20603. [PMID: 33047748 DOI: 10.1039/d0nr05210h] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Novel conjugated carbon dots (CDs) were synthesized as two-photon active photosensitisers to unleash lethal reactive oxygen species (ROS) for nucleus-targeting photodynamic therapy (PDT). To enhance the therapeutic efficiency and preclude non-specific CD uptake, we employed a combination of folic acid and curcumin for two-photon NIR-triggered ROS generation and enhanced internalization in the nucleus. Consequently, enhanced destruction of cancer cells occurred by directly attacking the DNA. The intrinsic ROS generation and nucleus-targeting ability of CDs introduced multifunctional two-photon active nanoprobes within a single platform for enhanced PDT in oral cancer theranostics.
Collapse
Affiliation(s)
- Aklima Nasrin
- The University of Sydney, School of Chemical and Biomolecular Engineering, NSW 2006, Australia.
| | - Mahbub Hassan
- The University of Sydney, School of Chemical and Biomolecular Engineering, NSW 2006, Australia.
| | - Vincent G Gomes
- The University of Sydney, School of Chemical and Biomolecular Engineering, NSW 2006, Australia.
| |
Collapse
|
39
|
Li A, Zheng D, Zhang M, Wu B, Zhu L. Chirality Transfer in Carbon Dot-Composited Sol-Gel Systems for Excitation-Dependent Circularly Polarized Luminescence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8965-8970. [PMID: 32635736 DOI: 10.1021/acs.langmuir.0c01513] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In situ control of a circularly polarized luminescent (CPL) signal is desirable but rarely addressed. Even to compare with traditional chemical regulations, controlling the CPL signal at the material level using simple physical manipulation (such as photoexcitation) can be more convenient and preferable. In this work, we have constructed carbon dot-based composite luminescent materials with CPL activity. The materials can exist in the sol-gel state in a mixture solvent by chiral co-assembly, and chirality transfer occurred in the supramolecular assemblies and induced the CPL activity. Owing to the unique luminescent properties of the carbon dot component, the obtained CPL signal of the composite system is therefore excitation-dependent. The control ability of the CPL signal may allow the composite materials to find potential usage in advanced chirality-related fields.
Collapse
Affiliation(s)
- Anze Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Dongxiao Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Bin Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
40
|
Won HJ, Ryplida B, Kim SG, Lee G, Ryu JH, Park SY. Diselenide-Bridged Carbon-Dot-Mediated Self-Healing, Conductive, and Adhesive Wireless Hydrogel Sensors for Label-Free Breast Cancer Detection. ACS NANO 2020; 14:8409-8420. [PMID: 32520523 DOI: 10.1021/acsnano.0c02517] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, a great deal of research has focused on the study of self-healing hydrogels possessing electronic conductivity due to their wide applicability for use in biosensors, bioelectronics, and energy storage. The low solubility, poor biocompatibility, and lack of effective stimuli-responsive properties of their sp2 carbon-rich hybrid organic polymers, however, have proven challenging for their use in electroconductive self-healing hydrogel fabrication. In this study, we developed stimuli-responsive electrochemical wireless hydrogel biosensors using ureidopyriminone-conjugated gelatin (Gel-UPy) hydrogels that incorporate diselenide-containing carbon dots (dsCD) for cancer detection. The cleavage of diselenide groups of the dsCD within the hydrogels by glutathione (GSH) or reactive oxygen species (ROS) initiates the formation of hydrogen bonds that affect the self-healing ability, conductivity, and adhesiveness of the Gel-UPy/dsCD hydrogels. The Gel-UPy/dsCD hydrogels demonstrate more rapid healing under tumor conditions (MDA-MB-231) compared to that observed under physiological conditions (MDCK). Additionally, the cleavage of diselenide bonds affects the electrochemical signals due to the degradation of dsCD. The hydrogels also exhibit excellent adhesiveness and in vivo cancer detection ability after exposure to a high concentration of GSH or ROS, and this is comparable to results observed in a low concentration environment. Based on the combined self-healing, conductivity, and adhesiveness properties of the Gel-UPy/dsCD, this hydrogel exhibits promise for use in biomedical applications, particularly those that involve cancer detection, due to its selectivity and sensitivity under tumor conditions.
Collapse
Affiliation(s)
- Hyun Jeong Won
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Benny Ryplida
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Seul Gi Kim
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Gibaek Lee
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Ji Hyun Ryu
- Department of Carbon Convergence Engineering, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sung Young Park
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
- Department of IT Convergence Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| |
Collapse
|
41
|
Affiliation(s)
- Cristian Rosso
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia San Sebastián, Spain
- Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain
| |
Collapse
|
42
|
Yang S, Zhang Y, Xue Y, Lu S, Yang H, Yang L, Ding C, Yu S. Cross-Linked Polyamide Chains Enhanced the Fluorescence of Polymer Carbon Dots. ACS OMEGA 2020; 5:8219-8229. [PMID: 32309732 PMCID: PMC7161025 DOI: 10.1021/acsomega.0c00510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/17/2020] [Indexed: 05/15/2023]
Abstract
Carbon dots (CDs) have attracted tremendous attention for their outstanding advantages in luminescence. Here, α-amino-substituted lysine derivatives with the determined chemical structure were employed as precursors to obtain bright and highly stable fluorescent CDs through a facile hydrothermal route. The relationships among the chemical structure of precursors, CD fluorescence, and particle size were investigated. The results indicated that increased numbers of functional groups in precursors could promote the degree of cross-linking and lead to a smaller size, better fluorescent properties, and stronger stability of CDs. The C-CDs that were prepared from lysine derivatives with most functional groups showed excitation-dependent dual excitation and dual emission (DE2), high-stability luminescence, strong resistance to photobleaching, and high selectivity to Fe3+ and could be used as a sensitive probe for Fe3+ detection.
Collapse
Affiliation(s)
- Shouning Yang
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Henan Key Laboratory of Green Chemical Media and Reactions,
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yanmin Zhang
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Henan Key Laboratory of Green Chemical Media and Reactions,
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuyan Xue
- Institute
of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Sijia Lu
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Henan Key Laboratory of Green Chemical Media and Reactions,
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huayan Yang
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Henan Key Laboratory of Green Chemical Media and Reactions,
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lin Yang
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Henan Key Laboratory of Green Chemical Media and Reactions,
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chuanfan Ding
- Institute
of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shaoning Yu
- Institute
of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
43
|
Turn-On fluorescence sensor based detection of heavy metal ion using carbon dots@graphitic-carbon nitride nanocomposite probe. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112204] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
Yang P, Zhang ZW, Zou GD, Huang Y, Li N, Fan Y. Template Thermolysis to Create a Carbon Dots-Embedded Mesoporous Titanium-Oxo Sulfate Framework for Visible-Light Photocatalytic Applications. Inorg Chem 2020; 59:2062-2069. [DOI: 10.1021/acs.inorgchem.9b03493] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Pei Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Zong-Wen Zhang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Guo-Dong Zou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Yang Huang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Na Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Yang Fan
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
45
|
Fan H, Zhang M, Bhandari B, Yang CH. Food waste as a carbon source in carbon quantum dots technology and their applications in food safety detection. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
46
|
Rosso C, Filippini G, Prato M. Use of Nitrogen-Doped Carbon Nanodots for the Photocatalytic Fluoroalkylation of Organic Compounds. Chemistry 2019; 25:16032-16036. [PMID: 31529711 DOI: 10.1002/chem.201903433] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/16/2019] [Indexed: 01/24/2023]
Abstract
The use of amine-rich N-doped carbon nanodots (NCNDs) for the photochemical radical perfluoroalkylation of organic compounds is reported. This operationally simple approach occurs under mild conditions producing valuable new C-C bonds. The chemistry is driven by the ability of NCNDs to directly reach an electronically excited state upon light absorption, thereby successively triggering the formation of reactive radical species from simple perfluoroalkyl iodides. Preliminary mechanistic studies are also reported.
Collapse
Affiliation(s)
- Cristian Rosso
- CENMAT, Center of Excellence for Nanostructured Materials, Department of Chemical and Pharmaceutical Sciences, INSTM UdR, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
| | - Giacomo Filippini
- CENMAT, Center of Excellence for Nanostructured Materials, Department of Chemical and Pharmaceutical Sciences, INSTM UdR, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
| | - Maurizio Prato
- CENMAT, Center of Excellence for Nanostructured Materials, Department of Chemical and Pharmaceutical Sciences, INSTM UdR, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy.,Carbon Nanobiotechnology Laboratory, CIC BiomaGUNE, Paseo de Miramón 182, 20009, Donostia-San Sebastian, Spain.,Basque Fdn Sci, Ikerbasque, Bilbao, 48013, Spain
| |
Collapse
|
47
|
Hua XW, Bao YW, Zeng J, Wu FG. Nucleolus-Targeted Red Emissive Carbon Dots with Polarity-Sensitive and Excitation-Independent Fluorescence Emission: High-Resolution Cell Imaging and in Vivo Tracking. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32647-32658. [PMID: 31381288 DOI: 10.1021/acsami.9b09590] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Red-emitting carbon dots (CDs) have attracted tremendous attention due to their wide applications in areas including imaging, sensing, drug delivery, and cancer therapy. However, it is still highly challenging for red-emitting CDs to simultaneously achieve high quantum yields (QYs), nucleus targeting, and super-resolution fluorescence imaging (especially the stimulated emission depletion (STED) imaging). Here, it is found that the addition of varied metal ions during the hydrothermal treatment of p-phenylenediamine (pPDA) leads to the formation of fluorescent CDs with emission wavelengths up to 700 nm. Strikingly, although metal ions play a crucial role in the synthesis of CDs with varied QYs, they are absent in the formed CDs, that is, the obtained CDs are metal-free, and the metal ions play a role similar to a "catalyst" during the CD formation. Besides, using pPDA and nickel ions (Ni2+) as raw materials, we prepare Ni-pPCDs which have the highest QY and exhibit various excellent fluorescence properties including excitation-independent emission (at ∼605 nm), good photostability, polarity sensitivity, and ribonucleic acid responsiveness. In vitro and in vivo experiments demonstrate that Ni-pPCDs are highly biocompatible and can realize real-time, wash-free, and high-resolution imaging of cell nuclei and high-contrast imaging of tumor-bearing mice and zebrafish. In summary, the present work may hold great promise in the synthesis and applications of red emissive CDs.
Collapse
|
48
|
Gao N, Huang L, Li T, Song J, Hu H, Liu Y, Ramakrishna S. Application of carbon dots in dye‐sensitized solar cells: A review. J Appl Polym Sci 2019. [DOI: 10.1002/app.48443] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ningxiao Gao
- College of Mechanical and Electrical EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Libing Huang
- College of Mechanical and Electrical EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Tianya Li
- College of Mechanical and Electrical EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Jinghui Song
- College of Mechanical and Electrical EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Hengwei Hu
- College of Mechanical and Electrical EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Yong Liu
- College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Seeram Ramakrishna
- Nanoscience and Nanotechnology InitiativeNational University of Singapore Singapore 1157 Singapore
| |
Collapse
|
49
|
Zou WS, Kong WL, Zhao QC, Zhang J, Zhao X, Zhao D, Wang YQ. A composite consisting of bromine-doped carbon dots and ferric ions as a fluorescent probe for determination and intracellular imaging of phosphate. Mikrochim Acta 2019; 186:576. [DOI: 10.1007/s00604-019-3700-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/13/2019] [Indexed: 01/10/2023]
|
50
|
Wang D, Saleh NB, Sun W, Park CM, Shen C, Aich N, Peijnenburg WJGM, Zhang W, Jin Y, Su C. Next-Generation Multifunctional Carbon-Metal Nanohybrids for Energy and Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7265-7287. [PMID: 31199142 PMCID: PMC7388031 DOI: 10.1021/acs.est.9b01453] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nanotechnology has unprecedentedly revolutionized human societies over the past decades and will continue to advance our broad societal goals in the coming decades. The research, development, and particularly the application of engineered nanomaterials have shifted the focus from "less efficient" single-component nanomaterials toward "superior-performance", next-generation multifunctional nanohybrids. Carbon nanomaterials (e.g., carbon nanotubes, graphene family nanomaterials, carbon dots, and graphitic carbon nitride) and metal/metal oxide nanoparticles (e.g., Ag, Au, CdS, Cu2O, MoS2, TiO2, and ZnO) combinations are the most commonly pursued nanohybrids (carbon-metal nanohybrids; CMNHs), which exhibit appealing properties and promising multifunctionalities for addressing multiple complex challenges faced by humanity at the critical energy-water-environment (EWE) nexus. In this frontier review, we first highlight the altered and newly emerging properties (e.g., electronic and optical attributes, particle size, shape, morphology, crystallinity, dimensionality, carbon/metal ratio, and hybridization mode) of CMNHs that are distinct from those of their parent component materials. We then illustrate how these important newly emerging properties and functions of CMNHs direct their performances at the EWE nexus including energy harvesting (e.g., H2O splitting and CO2 conversion), water treatment (e.g., contaminant removal and membrane technology), and environmental sensing and in situ nanoremediation. This review concludes with identifications of critical knowledge gaps and future research directions for maximizing the benefits of next-generation multifunctional CMNHs at the EWE nexus and beyond.
Collapse
Affiliation(s)
- Dengjun Wang
- National Research Council Resident Research Associate at the United States Environmental Protection Agency , Ada , Oklahoma 74820 , United States
| | - Navid B Saleh
- Department of Civil, Architectural and Environmental Engineering , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Wenjie Sun
- Department of Civil and Environmental Engineering , Southern Methodist University , Dallas , Texas 75275 , United States
| | - Chang Min Park
- Department of Environmental Engineering , Kyungpook National University , Buk-gu , Daegu 41566 , South Korea
| | - Chongyang Shen
- Department of Soil and Water Sciences , China Agricultural University , Beijing 100193 , China
| | - Nirupam Aich
- Department of Civil, Structural and Environmental Engineering , University at Buffalo, The State University of New York , Buffalo , New York 14260 , United States
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML) , Leiden University , P.O. Box 9518, 2300 RA Leiden , The Netherlands
- Center for Safety of Substances and Products , National Institute for Public Health and the Environment , P.O. Box 1, 3720 BA Bilthoven , The Netherlands
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, and Environmental Science and Policy Program , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Yan Jin
- Department of Plant and Soil Sciences , University of Delaware , Newark , Delaware 19716 , United States
| | - Chunming Su
- Groundwater, Watershed, and Ecosystem Restoration Division, National Risk Management Research Laboratory, Office of Research and Development , United States Environmental Protection Agency , Ada , Oklahoma 74820 , United States
| |
Collapse
|