1
|
Kordbacheh H, Katbab AA, Aghvami-Panah M, Haghighipour N. Piezoelectric scaffold based on polycaprolactone/thermoplastic polyurethane/barium titanate/cellulose nanocrystal for bone tissue engineering. Int J Biol Macromol 2025; 288:138681. [PMID: 39672423 DOI: 10.1016/j.ijbiomac.2024.138681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
This study presents the development of a novel piezoelectric scaffold for bone tissue engineering composed of poly(ε-caprolactone) (PCL), thermoplastic polyurethane (TPU), barium titanate (BT), and cellulose nanocrystals (CNC). PCL and TPU are considered advantageous materials because of their ease of processing, versatility in design, and ability to degrade over time; however, their inherent immiscibility poses challenges to achieving optimal porous structures. In this study, porous scaffolds were produced using gas foaming and salt leaching techniques, resulting in highly porous interconnected scaffolds exhibiting considerable elasticity that is suitable for dynamic cell culture while avoiding the use of toxic solvents. Given the piezoelectric nature of bone tissue, incorporating electric biosignals into scaffolds is essential to enhance bone regeneration. Therefore, BT was incorporated as a piezoelectric material. CNC, derived from cotton, assisted in BT distribution and acted as a reinforcing agent, imparting mechanoelectrical signaling properties to the scaffolds. The optimized scaffolds PCL/TPU (75/25) featuring 100 μm pores were integrated with varying BT and CNC ratios and were subjected to multiple analyses. The results showed a measurable electrical output of 1.2 mV and enhanced cell adhesion, viability, and proliferation under dynamic culture conditions, underscoring their potential for bone tissue regeneration.
Collapse
Affiliation(s)
- Hamta Kordbacheh
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Ali Asghar Katbab
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, Iran.
| | - Mohammad Aghvami-Panah
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|
2
|
Pitts J, Hänsch R, Roger Y, Hoffmann A, Menzel H. 3D Porous Polycaprolactone with Chitosan-Graft-PCL Modified Surface for In Situ Tissue Engineering. Polymers (Basel) 2025; 17:383. [PMID: 39940585 PMCID: PMC11820431 DOI: 10.3390/polym17030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Tissue engineering has emerged as a promising approach for improved regeneration of native tissue and could increase the quality of life of many patients. However, the treatment of injured tissue transitions is still in its early stages, relying primarily on a purely physical approach in medical surgery. A biodegradable implant with a modified surface that is capable of biological active protein delivery via a nanoparticulate release system could advance the field of musculoskeletal disorder treatments enormously. In this study, interconnected 3D macroporous scaffolds based on Polycaprolactone (PCL) were fabricated in a successive process of blending, annealing and leaching. Blending with varying parts of Polyethylene oxide (PEO), NaCl and (powdered) sucrose and altering processing conditions yielded scaffolds with a huge variety of morphologies. The resulting unmodified hydrophobic scaffolds were modified using two graft polymers (CS-g-PCLx) with x = 29 and 56 (x = PCL units per chitosan unit). Due to the chitosan backbone hydrophilicity was increased and a platform for a versatile nanoparticulate release system was introduced. The graft polymers were synthesized via ring opening polymerization (ROP) of ε-Caprolactone using hydroxy groups of the chitosan backbone as initiators (grafting from). The suspected impact on biocompatibility of the modification was investigated by in vitro cell testing. In addition, the CS-g-PCL modification opened up the possibility of Layer by Layer (LbL) coating with alginate (ALG) and TGF-β3-loaded chitosan tripolyphosphate (CS-TGF-β3-TPP) nanoparticles. The subsequent release study showed promising amounts of growth factor released regarding successful in vitro cell differentiation and therefore could have a possible therapeutic impact.
Collapse
Affiliation(s)
- Johannes Pitts
- Institute for Technical Chemistry, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Robert Hänsch
- Institute of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Yvonne Roger
- Hannover Medical School, Department of Orthopaedic Surgery, Biological Basics for Biohybrid Implants, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| | - Andrea Hoffmann
- Hannover Medical School, Department of Orthopaedic Surgery, Biological Basics for Biohybrid Implants, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| | - Henning Menzel
- Institute for Technical Chemistry, Braunschweig University of Technology, 38106 Braunschweig, Germany
| |
Collapse
|
3
|
Malkani S, Prado O, Stevens KR. Sacrificial Templating for Accelerating Clinical Translation of Engineered Organs. ACS Biomater Sci Eng 2025; 11:1-12. [PMID: 39701582 PMCID: PMC11733865 DOI: 10.1021/acsbiomaterials.4c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Transplantable engineered organs could one day be used to treat patients suffering from end-stage organ failure. Yet, producing hierarchical vascular networks that sustain the viability and function of cells within human-scale organs remains a major challenge. Sacrificial templating has emerged as a promising biofabrication method that could overcome this challenge. Here, we explore and evaluate various strategies and materials that have been used for sacrificial templating. First, we emphasize fabrication approaches that use highly biocompatible sacrificial reagents and minimize the duration that cells spend in fabrication conditions without oxygen and nutrients. We then discuss strategies to create continuous, hierarchical vascular networks, both using biofabrication alone and using hybrid methods that integrate biologically driven vascular self-assembly into sacrificial templating workflows. Finally, we address the importance of structurally reinforcing engineered vessel walls to achieve stable blood flow in vivo, so that engineered organs remain perfused and functional long after implantation. Together, these sacrificial templating strategies have the potential to overcome many current limitations in biofabrication and accelerate clinical translation of transplantable, fully functional engineered organs to rescue patients from organ failure.
Collapse
Affiliation(s)
- Sherina Malkani
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
- Institute
for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Olivia Prado
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Kelly R. Stevens
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195, United States
- Department
of Laboratory Medicine and Pathology, University
of Washington, Seattle, Washington 98195, United States
- Brotman
Baty Institute for Precision Medicine, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Miranda CS, Marinho E, Seabra CL, Evenou C, Lamartine J, Fromy B, Costa SPG, Homem NC, Felgueiras HP. Antimicrobial, antioxidant and cytocompatible coaxial wet-spun fibers made of polycaprolactone and cellulose acetate loaded with essential oils for wound care. Int J Biol Macromol 2024; 277:134565. [PMID: 39116984 DOI: 10.1016/j.ijbiomac.2024.134565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Chronic wounds represent a serious worldwide concern, being often associated with bacterial infections. As the prevalence of bacterial infections increase, it is crucial to search for alternatives. Essential oils (EOs) constitute a promising option to antibiotics due to their strong anti-inflammatory, analgesic, antioxidant and antibacterial properties. However, such compounds present high volatility. To address this issue, a drug delivery system composed of coaxial wet-spun fibers was engineered and different EOs, namely clove oil (CO), cinnamon leaf oil (CLO) and tea tree oil (TTO), were loaded. Briefly, a coaxial system composed of two syringe pumps, a coagulation bath of deionized water, a cylindrical-shaped collector and a coaxial spinneret was used. A 10 % w/v polycaprolactone (PCL) solution was combined with the different EOs at 2 × minimum bactericidal concentration (MBC) and loaded to a syringe connected to the inner port, whereas a 10 % w/v cellulose acetate (CA) solution mixed with 10 % w/v polyethylene glycol (PEG) at a ratio of 90:10 % v/v (to increase the fibers' elasticity) was loaded to the syringe connected to the outer port. This layer was used as a barrier to pace the release of the entrapped EO. The CA's inherent porosity in water coagulation baths allowed access to the fiber's core. CA was also mixed with 10 % w/v polyethylene glycol (PEG) at a ratio of 90:10 % v/v (CA:PEG), to increase the fibers' elasticity. Microfibers maintained their structural integrity during 28 days of incubation in physiological-like environments. They also showed high elasticities (maximum elongations at break >300 %) and resistance to rupture in mechanical assessments, reaching mass losses of only ≈ 2.29 % - 57.19 %. The EOs were released from the fibers in a prolonged and sustained fashion, in which ≈ 30 % of EO was released during the 24 h of incubation in physiological-like media, demonstrating great antibacterial effectiveness against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa, the most prevalent bacteria in chronic wounds. Moreover, microfibers showed effective antioxidant effects, presenting up to 59 % of reduction of 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity. Furthermore, the coaxial system was deemed safe for contact with fibroblasts and human keratinocytes, reaching metabolic activities higher than 80 % after 48 h of incubation. Data confirmed the suitability of the engineered system for potential therapeutics of chronic wounds.
Collapse
Affiliation(s)
- Catarina S Miranda
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal.
| | - Elina Marinho
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal.
| | - Catarina Leal Seabra
- Associate Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Camille Evenou
- Équipe Intégrité fonctionnelle du tissu cutané (SKIN). Laboratoire de biologie tissulaire et d'ingénierie thérapeutique (LBTI), CNRS UMR5305, Université Lyon I, 7 passage du Vercors, 69367 Lyon Cedex 07, France.
| | - Jérôme Lamartine
- Équipe Intégrité fonctionnelle du tissu cutané (SKIN). Laboratoire de biologie tissulaire et d'ingénierie thérapeutique (LBTI), CNRS UMR5305, Université Lyon I, 7 passage du Vercors, 69367 Lyon Cedex 07, France.
| | - Berengere Fromy
- Équipe Intégrité fonctionnelle du tissu cutané (SKIN). Laboratoire de biologie tissulaire et d'ingénierie thérapeutique (LBTI), CNRS UMR5305, Université Lyon I, 7 passage du Vercors, 69367 Lyon Cedex 07, France.
| | - Susana P G Costa
- Centre of Chemistry (CQ), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| | - Natália C Homem
- Simoldes Plastics S.A., Rua Comendador António da Silva Rodrigues, 165, 3720-193 Oliveira de Azeméis, Portugal.
| | - Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal.
| |
Collapse
|
5
|
Podgórski R, Wojasiński M, Małolepszy A, Jaroszewicz J, Ciach T. Fabrication of 3D-Printed Scaffolds with Multiscale Porosity. ACS OMEGA 2024; 9:29186-29204. [PMID: 39005818 PMCID: PMC11238315 DOI: 10.1021/acsomega.3c09035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/09/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
3D printing is a promising technique for producing bone implants, but there is still a need to adjust efficiency, facilitate production, and improve biocompatibility. Porous materials have a proven positive effect on the regeneration of bone tissue, but their production is associated with numerous limitations. In this work, we described a simple method of producing polymer or polymer-ceramic filaments for 3D-printing scaffolds by adding micrometer-scale porous structures on scaffold surfaces. Scaffolds included polycaprolactone (PCL) as the primary polymer, β-tricalcium phosphate (β-TCP) as the ceramic filler, and poly(ethylene glycol) (PEG) as a porogen. The pressurized filament extrusion gave flexible filaments composed of PCL, β-TCP, and PEG, which are ready to use in fused filament fabrication (FFF) 3D printers. Washing of 3D-printed scaffolds in ethanol solution removed PEG and revealed a microporous structure and ceramic particles on the scaffold's surfaces. Furthermore, 3D-printed materials exhibit good printing precision, no cytotoxic properties, and highly impact MG63 cell alignment. Although combining PCL, PEG, and β-TCP is quite popular, the presented method allows the production of porous scaffolds with a well-organized structure without advanced equipment, and the produced filaments can be used to 3D print scaffolds on a simple commercially available 3D printer.
Collapse
Affiliation(s)
- Rafał Podgórski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Michał Wojasiński
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Artur Małolepszy
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Jakub Jaroszewicz
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
- Centre for Advanced Materials and Technologies, CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
6
|
Gonçalves LFFF, Reis RL, Fernandes EM. Forefront Research of Foaming Strategies on Biodegradable Polymers and Their Composites by Thermal or Melt-Based Processing Technologies: Advances and Perspectives. Polymers (Basel) 2024; 16:1286. [PMID: 38732755 PMCID: PMC11085284 DOI: 10.3390/polym16091286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/13/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The last few decades have witnessed significant advances in the development of polymeric-based foam materials. These materials find several practical applications in our daily lives due to their characteristic properties such as low density, thermal insulation, and porosity, which are important in packaging, in building construction, and in biomedical applications, respectively. The first foams with practical applications used polymeric materials of petrochemical origin. However, due to growing environmental concerns, considerable efforts have been made to replace some of these materials with biodegradable polymers. Foam processing has evolved greatly in recent years due to improvements in existing techniques, such as the use of supercritical fluids in extrusion foaming and foam injection moulding, as well as the advent or adaptation of existing techniques to produce foams, as in the case of the combination between additive manufacturing and foam technology. The use of supercritical CO2 is especially advantageous in the production of porous structures for biomedical applications, as CO2 is chemically inert and non-toxic; in addition, it allows for an easy tailoring of the pore structure through processing conditions. Biodegradable polymeric materials, despite their enormous advantages over petroleum-based materials, present some difficulties regarding their potential use in foaming, such as poor melt strength, slow crystallization rate, poor processability, low service temperature, low toughness, and high brittleness, which limits their field of application. Several strategies were developed to improve the melt strength, including the change in monomer composition and the use of chemical modifiers and chain extenders to extend the chain length or create a branched molecular structure, to increase the molecular weight and the viscosity of the polymer. The use of additives or fillers is also commonly used, as fillers can improve crystallization kinetics by acting as crystal-nucleating agents. Alternatively, biodegradable polymers can be blended with other biodegradable polymers to combine certain properties and to counteract certain limitations. This work therefore aims to provide the latest advances regarding the foaming of biodegradable polymers. It covers the main foaming techniques and their advances and reviews the uses of biodegradable polymers in foaming, focusing on the chemical changes of polymers that improve their foaming ability. Finally, the challenges as well as the main opportunities presented reinforce the market potential of the biodegradable polymer foam materials.
Collapse
Affiliation(s)
- Luis F. F. F. Gonçalves
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal
| | - Emanuel M. Fernandes
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
7
|
Kim MJ, Park JH, Seok JM, Jung J, Hwang TS, Lee HC, Lee JH, Park SA, Byun JH, Oh SH. BMP-2-immobilized PCL 3D printing scaffold with a leaf-stacked structure as a physically and biologically activated bone graft. Biofabrication 2024; 16:025014. [PMID: 38306679 DOI: 10.1088/1758-5090/ad2537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
Although three-dimensional (3D) printing techniques are used to mimic macro- and micro-structures as well as multi-structural human tissues in tissue engineering, efficient target tissue regeneration requires bioactive 3D printing scaffolds. In this study, we developed a bone morphogenetic protein-2 (BMP-2)-immobilized polycaprolactone (PCL) 3D printing scaffold with leaf-stacked structure (LSS) (3D-PLSS-BMP) as a bioactive patient-tailored bone graft. The unique LSS was introduced on the strand surface of the scaffold via heating/cooling in tetraglycol without significant deterioration in physical properties. The BMP-2 adsorbed on3D-PLSS-BMPwas continuously released from LSS over a period of 32 d. The LSS can be a microtopographical cue for improved focal cell adhesion, proliferation, and osteogenic differentiation.In vitrocell culture andin vivoanimal studies demonstrated the biological (bioactive BMP-2) and physical (microrough structure) mechanisms of3D-PLSS-BMPfor accelerated bone regeneration. Thus, bioactive molecule-immobilized 3D printing scaffold with LSS represents a promising physically and biologically activated bone graft as well as an advanced tool for widespread application in clinical and research fields.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Ho Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ji Min Seok
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea
| | - Jiwoon Jung
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Tae Sung Hwang
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hee-Chun Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials, Hannam University, Daejeon 34054, Republic of Korea
| | - Su A Park
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
8
|
Wang C, Zhou Y. Sacrificial biomaterials in 3D fabrication of scaffolds for tissue engineering applications. J Biomed Mater Res B Appl Biomater 2024; 112:e35312. [PMID: 37572033 DOI: 10.1002/jbm.b.35312] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/05/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Three-dimensional (3D) printing technology has progressed exceedingly in the area of tissue engineering. Despite the tremendous potential of 3D printing, building scaffolds with complex 3D structure, especially with soft materials, still exist as a challenge due to the low mechanical strength of the materials. Recently, sacrificial materials have emerged as a possible solution to address this issue, as they could serve as temporary support or templates to fabricate scaffolds with intricate geometries, porous structures, and interconnected channels without deformation or collapse. Here, we outline the various types of scaffold biomaterials with sacrificial materials, their pros and cons, and mechanisms behind the sacrificial material removal, compare the manufacturing methods such as salt leaching, electrospinning, injection-molding, bioprinting with advantages and disadvantages, and discuss how sacrificial materials could be applied in tissue-specific applications to achieve desired structures. We finally conclude with future challenges and potential research directions.
Collapse
Affiliation(s)
- Chi Wang
- Systems Science and Industrial Engineering, Binghamton University, Binghamton, New York, USA
| | - Yingge Zhou
- Systems Science and Industrial Engineering, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
9
|
Radu (Dusman) RD, Voicu ME, Prodana M, Demetrescu I, Anuta V, Draganescu D. Electrospun PCL Wires Loaded with Vancomycin on Zirconium Substrate. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7237. [PMID: 38005168 PMCID: PMC10672849 DOI: 10.3390/ma16227237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
The current study presents research about electrodeposition in relation to electrospinning PCL wires on a Zr substrate and loading the coating with vancomycin. The structural composition of the coatings was investigated via FT-IR analysis. The morphology evaluated using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, for the composition (SEM-EDS), evidenced the presence of the polymer wires, with and without drug vancomycin loading. The wettability of the coatings was evaluated from the hydrophobic-hydrophilic point of view, and the characterization was completed with mechanical and electrochemical tests. All the electrochemical tests performed in simulated body fluid highlighted that PCL represents a barrier against corrosion processes. The quantitative method to evaluate the loading efficiency shows that almost 80% of the total loaded vancomycin is released within 144 h; after the initial burst at 24 h, a steady release of vancomycin is observed over 7 days. A kinetic model of the drug release was also constructed.
Collapse
Affiliation(s)
- Ramona-Daniela Radu (Dusman)
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (R.-D.R.); (M.E.V.); (I.D.)
| | - Manuela Elena Voicu
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (R.-D.R.); (M.E.V.); (I.D.)
| | - Mariana Prodana
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (R.-D.R.); (M.E.V.); (I.D.)
| | - Ioana Demetrescu
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (R.-D.R.); (M.E.V.); (I.D.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Valentina Anuta
- Department of Physical and Colloidal Chemistry, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| | - Doina Draganescu
- Department of Pharmaceutical Physics and Informatics, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| |
Collapse
|
10
|
Guillén-Carvajal K, Valdez-Salas B, Beltrán-Partida E, Salomón-Carlos J, Cheng N. Chitosan, Gelatin, and Collagen Hydrogels for Bone Regeneration. Polymers (Basel) 2023; 15:2762. [PMID: 37447408 DOI: 10.3390/polym15132762] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Hydrogels are versatile biomaterials characterized by three-dimensional, cross-linked, highly hydrated polymeric networks. These polymers exhibit a great variety of biochemical and biophysical properties, which allow for the diffusion of diverse molecules, such as drugs, active ingredients, growth factors, and nanoparticles. Meanwhile, these polymers can control chemical and molecular interactions at the cellular level. The polymeric network can be molded into different structures, imitating the structural characteristics of surrounding tissues and bone defects. Interestingly, the application of hydrogels in bone tissue engineering (BTE) has been gathering significant attention due to the beneficial bone improvement results that have been achieved. Moreover, essential clinical and osteoblastic fate-controlling advances have been achieved with the use of synthetic polymers in the production of hydrogels. However, current trends look towards fabricating hydrogels from biological precursors, such as biopolymers, due to the high biocompatibility, degradability, and mechanical control that can be regulated. Therefore, this review analyzes the concept of hydrogels and the characteristics of chitosan, collagen, and gelatin as excellent candidates for fabricating BTE scaffolds. The changes and opportunities brought on by these biopolymers in bone regeneration are discussed, considering the integration, synergy, and biocompatibility features.
Collapse
Affiliation(s)
- Karen Guillén-Carvajal
- Departamento de Corrosión y Materiales, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez and Normal s/n, Mexicali 21280, Baja California, Mexico
| | - Benjamín Valdez-Salas
- Departamento de Corrosión y Materiales, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez and Normal s/n, Mexicali 21280, Baja California, Mexico
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle Normal s/n, Mexicali 21280, Baja California, Mexico
| | - Ernesto Beltrán-Partida
- Departamento de Corrosión y Materiales, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez and Normal s/n, Mexicali 21280, Baja California, Mexico
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle Normal s/n, Mexicali 21280, Baja California, Mexico
| | - Jorge Salomón-Carlos
- Departamento de Corrosión y Materiales, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez and Normal s/n, Mexicali 21280, Baja California, Mexico
| | - Nelson Cheng
- Magna International Pte Ltd., 10 H Enterprise Road, Singapore 629834, Singapore
| |
Collapse
|
11
|
Miranda CS, Silva AFG, Seabra CL, Reis S, Silva MMP, Pereira-Lima SMMA, Costa SPG, Homem NC, Felgueiras HP. Sodium alginate/polycaprolactone co-axial wet-spun microfibers modified with N-carboxymethyl chitosan and the peptide AAPV for Staphylococcus aureus and human neutrophil elastase inhibition in potential chronic wound scenarios. BIOMATERIALS ADVANCES 2023; 151:213488. [PMID: 37285725 DOI: 10.1016/j.bioadv.2023.213488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/02/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
In chronic wound (CW) scenarios, Staphylococcus aureus-induced infections are very prevalent. This leads to abnormal inflammatory processes, in which proteolytic enzymes, such as human neutrophil elastase (HNE), become highly expressed. Alanine-Alanine-Proline-Valine (AAPV) is an antimicrobial tetrapeptide capable of suppressing the HNE activity, restoring its expression to standard rates. Here, we proposed the incorporation of the peptide AAPV within an innovative co-axial drug delivery system, in which the peptide liberation was controlled by N-carboxymethyl chitosan (NCMC) solubilization, a pH-sensitive antimicrobial polymer effective against Staphylococcus aureus. The microfibers' core was composed of polycaprolactone (PCL), a mechanically resilient polymer, and AAPV, while the shell was made of the highly hydrated and absorbent sodium alginate (SA) and NCMC, responsive to neutral-basic pH (characteristic of CW). NCMC was loaded at twice its minimum bactericidal concentration (6.144 mg/mL) against S. aureus, while AAPV was loaded at its maximum inhibitory concentration against HNE (50 μg/mL), and the production of fibers with a core-shell structure, in which all components could be detected (directly or indirectly), was confirmed. Core-shell fibers were characterized as flexible and mechanically resilient, and structurally stable after 28-days of immersion in physiological-like environments. Time-kill kinetics evaluations revealed the effective action of NCMC against S. aureus, while elastase inhibitory activity examinations proved the ability of AAPV to reduce HNE levels. Cell biology testing confirmed the safety of the engineered fiber system for human tissue contact, with fibroblast-like cells and human keratinocytes maintaining their morphology while in contact with the produced fibers. Data confirmed the engineered drug delivery platform as potentially effective for applications in CW care.
Collapse
Affiliation(s)
- Catarina S Miranda
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal.
| | - A Francisca G Silva
- Centre of Chemistry (CQ), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| | - Catarina L Seabra
- Associate Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Salette Reis
- Associate Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - M Manuela P Silva
- Centre of Chemistry (CQ), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| | | | - Susana P G Costa
- Centre of Chemistry (CQ), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| | - Natália C Homem
- Digital Transformation CoLab (DTx), Building 1, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal.
| | - Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal.
| |
Collapse
|
12
|
Tommasino C, Auriemma G, Sardo C, Alvarez-Lorenzo C, Garofalo E, Morello S, Falcone G, Aquino RP. 3D printed macroporous scaffolds of PCL and inulin-g-P(D,L)LA for bone tissue engineering applications. Int J Pharm 2023:123093. [PMID: 37268029 DOI: 10.1016/j.ijpharm.2023.123093] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
Bone repair and tissue-engineering (BTE) approaches require novel biomaterials to produce scaffolds with required structural and biological characteristics and enhanced performances with respect to those currently available. In this study, PCL/INU-PLA hybrid biomaterial was prepared by blending of the aliphatic polyester poly(ε-caprolactone) (PCL) with the amphiphilic graft copolymer Inulin-g-poly(D,L)lactide (INU-PLA) synthetized from biodegradable inulin (INU) and poly(lactic acid) (PLA). The hybrid material was suitable to be processed using fused filament fabrication 3D printing (FFF-3DP) technique rendering macroporous scaffolds. PCL and INU-PLA were firstly blended as thin films through solvent-casting method, and then extruded by hot melt extrusion (HME) in form of filaments processable by FFF-3DP. The physicochemical characterization of the hybrid new material showed high homogeneity, improved surface wettability/hydrophilicity as compared to PCL alone, and right thermal properties for FFF process. The 3D printed scaffolds exhibited dimensional and structural parameters very close to those of the digital model, and mechanical performances compatible with the human trabecular bone. In addition, in comparison to PCL, hybrid scaffolds showed an enhancement of surface properties, swelling ability, and in vitro biodegradation rate. In vitro biocompatibility screening through hemolysis assay, LDH cytotoxicity test on human fibroblasts, CCK-8 cell viability, and osteogenic activity (ALP evaluation) assays on human mesenchymal stem cells showed favorable results.
Collapse
Affiliation(s)
- Carmela Tommasino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (SA), Italy; PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
| | - Giulia Auriemma
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (SA), Italy. gauriemma%
| | - Carla Sardo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (SA), Italy
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (IMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Emilia Garofalo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (SA), Italy
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (SA), Italy
| | - Giovanni Falcone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (SA), Italy
| | - Rita P Aquino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (SA), Italy
| |
Collapse
|
13
|
Indra A, Razi R, Jasmayeti R, Fauzan A, Wahyudi D, Handra N, Subardi A, Susanto I, Purnomo MJ. The practical process of manufacturing poly(methyl methacrylate)-based scaffolds having high porosity and high strength. J Mech Behav Biomed Mater 2023; 142:105862. [PMID: 37086523 DOI: 10.1016/j.jmbbm.2023.105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023]
Abstract
Poly(methyl methacrylate) (PMMA)-based scaffolds have been produced using the granule casting method with grain sizes M80-100 and M100-140. The novelty of this study was the application of the cold-cutting method (CCm) to reduce the PMMA granule size. PMMA granule shape, granule size (mesh), and sintering temperature were the primary variables in manufacturing PMMA scaffolds. CCm was applied to reduce the granule size of commercial PMMA, which was originally solid cylindrical, by lowering the temperature to 3.5 °C, 0 °C, and-8.3 °C. PMMA granules that had been reduced were sieved with mesh sizes M80-100 and M100-140. Green bodies were made by the granule casting method using an aluminum mold measuring 8 × 8 × 8 mm3. The sintering process was carried out at temperatures varying from 115 °C to 140 °C, a heating rate of 5 °C/min, and a holding time of 2 h, the cooling process was carried out in a furnace. The characterization of the PMMA-based scaffolds' properties was carried out by observing the microstructure with SEM, analyzing the distribution of pore sizes with ImageJ software, and testing the porosity, the phase, with XRD, and the compressive strength. The best results from the overall analysis were the M80-100 PMMA scaffold treated at a sintering temperature of 130 °C with compressive strength, porosity, and pore size distribution values of 8.2 MPa, 62.0%, and 121-399 μm, respectively, and the M100-140 one treated at a sintering temperature of 135 °C with compressive strength, porosity, and pore size distribution values of 12.1 MPa, 61.2%, and 140-366 μm, respectively. There were interconnected pores in the PMMA scaffolds, as evidenced by the SEM images. There was no PMMA phase change between before and after the sintering process.
Collapse
Affiliation(s)
- Ade Indra
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia.
| | - Rivaldo Razi
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Riri Jasmayeti
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Alfi Fauzan
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Didi Wahyudi
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Nofriady Handra
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Adi Subardi
- Department of Mechanical Engineering, Institut Teknologi Nasional Yogyakarta, Sleman, 55281, Daerah Istimewa Yogyakarta, Indonesia
| | - Iwan Susanto
- Department of Mechanical Engineering, Politeknik Negeri Jakarta, West Java, 16425, Indonesia
| | - M Jalu Purnomo
- Department of Aeronautics, Institut Teknologi Dirgantara Adisutjipto, Yogyakarta, 55198, Indonesia
| |
Collapse
|
14
|
Snyder Y, Jana S. Elastomeric Trilayer Substrates with Native-like Mechanical Properties for Heart Valve Leaflet Tissue Engineering. ACS Biomater Sci Eng 2023; 9:1570-1584. [PMID: 36802499 DOI: 10.1021/acsbiomaterials.2c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Heart valve leaflets have a complex trilayered structure with layer-specific orientations, anisotropic tensile properties, and elastomeric characteristics that are difficult to mimic collectively. Previously, trilayer leaflet substrates intended for heart valve tissue engineering were developed with nonelastomeric biomaterials that cannot deliver native-like mechanical properties. In this study, by electrospinning polycaprolactone (PCL) polymer and poly(l-lactide-co-ε-caprolactone) (PLCL) copolymer, we created elastomeric trilayer PCL/PLCL leaflet substrates with native-like tensile, flexural, and anisotropic properties and compared them with trilayer PCL leaflet substrates (as control) to find their effectiveness in heart valve leaflet tissue engineering. These substrates were seeded with porcine valvular interstitial cells (PVICs) and cultured for 1 month in static conditions to produce cell-cultured constructs. The PCL/PLCL substrates had lower crystallinity and hydrophobicity but higher anisotropy and flexibility than PCL leaflet substrates. These attributes contributed to more significant cell proliferation, infiltration, extracellular matrix production, and superior gene expression in the PCL/PLCL cell-cultured constructs than in the PCL cell-cultured constructs. Further, the PCL/PLCL constructs showed better resistance to calcification than PCL constructs. Trilayer PCL/PLCL leaflet substrates with native-like mechanical and flexural properties could significantly improve heart valve tissue engineering.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
15
|
Bezerra GSN, De Lima GG, Colbert DM, Halligan E, Geever J, Geever L. Micro-Injection Moulding of PEO/PCL Blend–Based Matrices for Extended Oral Delivery of Fenbendazole. Pharmaceutics 2023; 15:pharmaceutics15030900. [PMID: 36986761 PMCID: PMC10051197 DOI: 10.3390/pharmaceutics15030900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Fenbendazole (FBZ) is a broad-spectrum anthelmintic administered orally to ruminants; nevertheless, its poor water solubility has been the main limitation to reaching satisfactory and sustained levels at the site of the target parasites. Hence, the exploitation of hot-melt extrusion (HME) and micro-injection moulding (µIM) for the manufacturing of extended-release tablets of plasticised solid dispersions of poly(ethylene oxide) (PEO)/polycaprolactone (PCL) and FBZ was investigated due to their unique suitability for semi-continuous manufacturing of pharmaceutical oral solid dosage forms. High-performance liquid chromatography (HPLC) analysis demonstrated a consistent and uniform drug content in the tablets. Thermal analysis using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) suggested the amorphous state of the active ingredient, which was endorsed by powder X-ray diffraction spectroscopy (pXRD). Fourier transform infrared spectroscopy (FTIR) analysis did not display any new peak indicative of either a chemical interaction or degradation. Scanning electron microscopy (SEM) images showed smoother surfaces and broader pores as we increased the PCL content. Electron-dispersive X-ray spectroscopy (EDX) revealed that the drug was homogeneously distributed within the polymeric matrices. Drug release studies attested that all moulded tablets of amorphous solid dispersions improved the drug solubility, with the PEO/PCL blend–based matrices showing drug release by Korsmeyer–Peppas kinetics. Thus, HME coupled with µIM proved to be a promising approach towards a continuous automated manufacturing process for the production of oral solid dispersions of benzimidazole anthelmintics to grazing cattle.
Collapse
Affiliation(s)
- Gilberto S. N. Bezerra
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, N37HD68 Athlone, Ireland
- Correspondence: (G.S.N.B.); (L.G.)
| | - Gabriel G. De Lima
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, N37HD68 Athlone, Ireland
- Programa de Pós-Graduação em Engenharia e Ciência dos Materiais—PIPE, Universidade Federal do Paraná, Curitiba 81531-980, Brazil
| | - Declan M. Colbert
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, N37HD68 Athlone, Ireland
| | - Elaine Halligan
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, N37HD68 Athlone, Ireland
| | - Joseph Geever
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, N37HD68 Athlone, Ireland
| | - Luke Geever
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, N37HD68 Athlone, Ireland
- Correspondence: (G.S.N.B.); (L.G.)
| |
Collapse
|
16
|
Cazaudehore G, Monlau F, Gassie C, Lallement A, Guyoneaud R. Active microbial communities during biodegradation of biodegradable plastics by mesophilic and thermophilic anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130208. [PMID: 36308937 DOI: 10.1016/j.jhazmat.2022.130208] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Biodegradable plastics, if they are not properly managed at their end-of-life, can have the same hazardous environmental consequences as conventional plastics. This study investigates the treatment of the main biodegradable plastics under mesophilic and thermophilic anaerobic digestion using biochemical methane potential test and the microorganisms involved in the process using amplicon sequencing of the 16 S rRNA. Here we showed that, only PHB and TPS undergone important and rapid biodegradation under mesophilic condition (38 °C). By contrast, PCL and PLA exhibited very low biodegradation rate as 500 days were required to reach the ultimate methane yield. Little or no degradation occurred for PBAT and PBS at 38 °C. Under thermophilic conditions (58 °C), TPS, PHB, and PLA reached high levels of biodegradation in a relatively short period (< 100 d). While PBS, PBAT, and PCL could not be converted into methane at 58 °C. PHB degraders (Enterobacter and Cupriavidus) and lactate-utilizing bacteria (Moorella and Tepidimicrobium) appeared to play an important role in the PHB and PLA degradation, respectively. This work not only provides crucial data on the anaerobic digestion of the main biodegradable plastics but also enriches the understanding of the microorganisms involved in this process, which are of great importance for future development of the treatment of biodegradable plastics in anaerobic digestion systems.
Collapse
Affiliation(s)
- G Cazaudehore
- APESA, Pôle Valorisation, 64121 Montardon, France; Université de Pau et des Pays de l'Adour / E2S UPPA / CNRS, IPREM UMR5254, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, Chimie et Microbiologie de l'Environnement, 64000, Pau, France.
| | - F Monlau
- APESA, Pôle Valorisation, 64121 Montardon, France
| | - C Gassie
- Université de Pau et des Pays de l'Adour / E2S UPPA / CNRS, IPREM UMR5254, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, Chimie et Microbiologie de l'Environnement, 64000, Pau, France
| | - A Lallement
- APESA, Pôle Valorisation, 64121 Montardon, France
| | - R Guyoneaud
- Université de Pau et des Pays de l'Adour / E2S UPPA / CNRS, IPREM UMR5254, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, Chimie et Microbiologie de l'Environnement, 64000, Pau, France
| |
Collapse
|
17
|
DİKİCİ S. Ascorbic Acid Enhances the Metabolic Activity, Growth and Collagen Production of Human Dermal Fibroblasts Growing in Three-dimensional (3D) Culture. GAZI UNIVERSITY JOURNAL OF SCIENCE 2022. [DOI: 10.35378/gujs.1040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Tissue engineering (TE) enables developing functional synthetic substitutes to be replaced with damaged tissues and organs instead of the use of auto or allografts. A wide range of biomaterials is currently in use as TE scaffolds. Among these materials, naturally-sourced ones are favourable due to being highly biocompatible and supporting cell growth and function whereas synthetic ones are advantageous because of the high tunability on mechanical and physical properties as well as being easy to process. Alongside the advantages of synthetic polymers, they mostly show hydrophobic behaviour that limits biomaterial-cell interaction and consequently the functioning of the developed TE constructs. In this study, we assessed the impact of L-Ascorbic acid 2-phosphate (AA2P) on improving the culture of human dermal fibroblasts (HDFs) growing on a three-dimensional (3D) scaffold made of polycaprolactone by emulsion templating technique. Our results demonstrated that AA2P enhances the metabolic activity, growth, and collagen production of HDFs when supplemented to their growth medium at 50 µg/mL concentration. It showed a great potential to be used as a growth medium supplement to circumvent the disadvantages of culturing human cells on a synthetic biomaterial that is not favoured in default. AA2P's potential to improve cell growth and collagen deposition may prove an effective way to culture human cells on 3D PCL PolyHIPE scaffolds for various TE applications.
Collapse
|
18
|
Utomo E, Domínguez-Robles J, Moreno-Castellanos N, Stewart SA, Picco CJ, Anjani QK, Simón JA, Peñuelas I, Donnelly RF, Larrañeta E. Development of intranasal implantable devices for schizophrenia treatment. Int J Pharm 2022; 624:122061. [PMID: 35908633 DOI: 10.1016/j.ijpharm.2022.122061] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 12/23/2022]
Abstract
In this work the preparation and characterisation of intranasal implants for the delivery of risperidone (RIS) is described. The aim of this work is to develop better therapies to treat chronic conditions affecting the brain such as schizophrenia. This type of systems combines the advantages of intranasal drug delivery with sustained drug release. The resulting implants were prepared using biodegradable materials, including poly(caprolactone) (PCL) and poly(lactic-co-glycolic acid) (PLGA). These polymers were combined with water-soluble compounds, such as poly(ethylene glycol) (PEG) 600, PEG 3000, and Tween® 80 using a solvent-casting method. The resulting implants contained RIS loadings ranging between 25 and 50%. The obtained implants were characterised using a range of techniques including thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM). Moreover, in vitro RIS release was evaluated showing that the addition of water-soluble compounds exhibited significant faster release profiles compared to pristine PCL and PLGA-based implants. Interestingly, PCL-based implants containing 25% of RIS and PLGA-based implants loaded with 50% of RIS showed sustained drug release profiles up to 90 days. The former showed faster release rates over the first 28 days but after this period PLGA implants presented higher release rates. The permeability of RIS released from the implants through a model membrane simulating nasal mucosa was subsequently evaluated showing desirable permeation rate of around 2 mg/day. Finally, following in vitro biocompatibility studies, PCL and PLGA-based implants showed acceptable biocompatibility. These results suggested that the resulting implants displayed potential of providing prolonged drug release for brain-targeting drugs.
Collapse
Affiliation(s)
- Emilia Utomo
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Natalia Moreno-Castellanos
- CICTA, Department of Basic Sciences, Medicine School, Health Faculty, Universidad Industrial de Santander, Cra 27 calle 9, Bucaramanga 680002, Colombia
| | - Sarah A Stewart
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya, No. 43, Makassar 90234, Indonesia
| | - Jon Ander Simón
- Radiopharmacy Unit, Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, IdiSNA, 31008 Pamplona, Spain
| | - Iván Peñuelas
- Radiopharmacy Unit, Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, IdiSNA, 31008 Pamplona, Spain
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
19
|
Osteogenic differentiation of pulp stem cells from human permanent teeth on an oxygen-releasing electrospun scaffold. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Hasanzadeh R, Azdast T, Mojaver M, Darvishi MM, Park CB. Cost-effective and reproducible technologies for fabrication of tissue engineered scaffolds: The state-of-the-art and future perspectives. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Dong X, Premaratne ID, Bernstein JL, Samadi A, Lin AJ, Toyoda Y, Kim J, Bonassar LJ, Spector JA. Three-Dimensional-Printed External Scaffolds Mitigate Loss of Volume and Topography in Engineered Elastic Cartilage Constructs. Cartilage 2021; 13:1780S-1789S. [PMID: 34636646 PMCID: PMC8804786 DOI: 10.1177/19476035211049556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE A major obstacle in the clinical translation of engineered auricular scaffolds is the significant contraction and loss of topography that occur during maturation of the soft collagen-chondrocyte matrix into elastic cartilage. We hypothesized that 3-dimensional-printed, biocompatible scaffolds would "protect" maturing hydrogel constructs from contraction and loss of topography. DESIGN External disc-shaped and "ridged" scaffolds were designed and 3D-printed using polylactic acid (PLA). Acellular type I collagen constructs were cultured in vitro for up to 3 months. Collagen constructs seeded with bovine auricular chondrocytes (BAuCs) were prepared in 3 groups and implanted subcutaneously in vivo for 3 months: preformed discs with ("Scaffolded/S") or without ("Naked/N") an external scaffold and discs that were formed within an external scaffold via injection molding ("Injection Molded/SInj"). RESULTS The presence of an external scaffold or use of injection molding methodology did not affect the acellular construct volume or base area loss. In vivo, the presence of an external scaffold significantly improved preservation of volume and base area at 3 months compared to the naked group (P < 0.05). Construct contraction was mitigated even further in the injection molded group, and topography of the ridged constructs was maintained with greater fidelity (P < 0.05). Histology verified the development of mature auricular cartilage in the constructs within external scaffolds after 3 months. CONCLUSION Custom-designed, 3D-printed, biocompatible external scaffolds significantly mitigate BAuC-seeded construct contraction and maintain complex topography. Further refinement and scaling of this approach in conjunction with construct fabrication utilizing injection molding may aid in the development of full-scale auricular scaffolds.
Collapse
Affiliation(s)
- Xue Dong
- Laboratory of Bioregenerative Medicine
& Surgery, Department of Surgery, Division of Plastic Surgery, Weill Cornell
Medical College, New York, NY, USA
- Department of Breast Surgery, Xiangya
Hospital, Central South University, Changsha, Hunan, China
| | - Ishani D. Premaratne
- Laboratory of Bioregenerative Medicine
& Surgery, Department of Surgery, Division of Plastic Surgery, Weill Cornell
Medical College, New York, NY, USA
| | - Jaime L. Bernstein
- Laboratory of Bioregenerative Medicine
& Surgery, Department of Surgery, Division of Plastic Surgery, Weill Cornell
Medical College, New York, NY, USA
| | - Arash Samadi
- Laboratory of Bioregenerative Medicine
& Surgery, Department of Surgery, Division of Plastic Surgery, Weill Cornell
Medical College, New York, NY, USA
| | - Alexandra J. Lin
- Laboratory of Bioregenerative Medicine
& Surgery, Department of Surgery, Division of Plastic Surgery, Weill Cornell
Medical College, New York, NY, USA
| | - Yoshiko Toyoda
- Laboratory of Bioregenerative Medicine
& Surgery, Department of Surgery, Division of Plastic Surgery, Weill Cornell
Medical College, New York, NY, USA
| | - Jongkil Kim
- Nancy E. and Peter C. Meinig School of
Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Lawrence J. Bonassar
- Nancy E. and Peter C. Meinig School of
Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and
Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Jason A. Spector
- Laboratory of Bioregenerative Medicine
& Surgery, Department of Surgery, Division of Plastic Surgery, Weill Cornell
Medical College, New York, NY, USA
- Nancy E. and Peter C. Meinig School of
Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
22
|
Wang L, Wang C, Zhou L, Bi Z, Shi M, Wang D, Li Q. Fabrication of a novel Three-Dimensional porous PCL/PLA tissue engineering scaffold with high connectivity for endothelial cell migration. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Design and Development of Enhanced Antimicrobial Breathable Biodegradable Polymeric Films for Food Packaging Applications. Polymers (Basel) 2021; 13:polym13203527. [PMID: 34685286 PMCID: PMC8541126 DOI: 10.3390/polym13203527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
The principle of breathable food packaging is to provide the optimal number of pores to transfer a sufficient amount of fresh air into the packaging headspace. In this work, antimicrobial microporous eco-friendly polymeric membranes were developed for food packaging. Polylactic acid (PLA) and polycaprolactone (PCL) were chosen as the main packaging polymers for their biodegradability. To develop the microporous films, sodium chloride (NaCl) and polyethylene oxide (PEO) were used as porogenic agents and the membranes were prepared using solvent-casting techniques. The results showed that films with of 50% NaCl and 10% PEO by mass achieved the highest air permeability and oxygen transmission rate (O2TR) with PLA. Meanwhile, blends of 20% PLA and 80% PCL by mass showed the highest air permeability and O2TR at 100% NaCl composition. The microporous membranes were also coated with cinnamaldehyde, a natural antimicrobial ingredient, to avoid the transportation of pathogens through the membranes into the packaged foods. In vitro analysis showed that the biodegradable membranes were not only environmentally friendly but also allowed for maximum food protection through the transportation of sterile fresh air, making them ideal for food packaging applications.
Collapse
|
24
|
Ruiz-Aguilar C, Olivares-Pinto U, Drew R, Aguilar-Reyes E, Alfonso I. Porogen Effect on Structural and Physical Properties of β-TCP Scaffolds for Bone Tissue Regeneration. Ing Rech Biomed 2021. [DOI: 10.1016/j.irbm.2020.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Birer M, Acartürk F. Telmisartan loaded polycaprolactone/gelatin-based electrospun vascular scaffolds. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1915785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Mehmet Birer
- Department of Pharmaceutical Technology, Gazi University Faculty of Pharmacy, Ankara, Turkey
| | - Füsun Acartürk
- Department of Pharmaceutical Technology, Gazi University Faculty of Pharmacy, Ankara, Turkey
| |
Collapse
|
26
|
Kirillova A, Yeazel TR, Asheghali D, Petersen SR, Dort S, Gall K, Becker ML. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chem Rev 2021; 121:11238-11304. [PMID: 33856196 DOI: 10.1021/acs.chemrev.0c01200] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Degradable polymers are used widely in tissue engineering and regenerative medicine. Maturing capabilities in additive manufacturing coupled with advances in orthogonal chemical functionalization methodologies have enabled a rapid evolution of defect-specific form factors and strategies for designing and creating bioactive scaffolds. However, these defect-specific scaffolds, especially when utilizing degradable polymers as the base material, present processing challenges that are distinct and unique from other classes of materials. The goal of this review is to provide a guide for the fabrication of biodegradable polymer-based scaffolds that includes the complete pathway starting from selecting materials, choosing the correct fabrication method, and considering the requirements for tissue specific applications of the scaffold.
Collapse
Affiliation(s)
- Alina Kirillova
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Taylor R Yeazel
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Darya Asheghali
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shannon R Petersen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sophia Dort
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ken Gall
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
27
|
The effect of polytetrafluoroethylene particle size on the properties of biodegradable poly(butylene succinate)-based composites. Sci Rep 2021; 11:6802. [PMID: 33762666 PMCID: PMC7991650 DOI: 10.1038/s41598-021-86307-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/09/2021] [Indexed: 11/09/2022] Open
Abstract
Poly(butylene succinate) (PBS)/polytetrafluoroethylene (PTFE) composites, including three types of PTFE powders, were prepared by melt blending using a HAAKE torque rheometer. Microcellular foams were successfully fabricated by batch foaming with supercritical fluids (scCO2). The effects of PTFE powder type on crystallization, rheological properties and foaming behavior were studied. PTFE L-5 and PTFE JH-220 powders showed good dispersion in the PBS matrix, and PTFE FA-500 powder underwent fibrillation during the melt blending process. All three PTFE powders gradually increased the crystallization temperature of PBS from 78.2 to 91.8 ℃ and the crystallinity from 45.6 to 61.7% without apparent changes in the crystal structure. Rheological results revealed that PBS/PTFE composites had a higher storage modulus, loss modulus, and complex viscosity than those of pure PBS. In particular, the complex viscosity of the PBS/P500 composite increased by an order of magnitude in the low-frequency region. The foamed structure of PBS was obviously improved by adding PTFE powder, and the effect of fibrillated PTFE FA-500 was the most remarkable, with a pore mean diameter of 5.46 μm and a pore density of 1.86 × 109 cells/cm3 (neat PBS foam: 32.49 μm and 1.95 × 107 cells/cm3). Moreover, PBS/P500 foam always guarantees hydrophobicity.
Collapse
|
28
|
Alonzo M, Primo FA, Kumar SA, Mudloff JA, Dominguez E, Fregoso G, Ortiz N, Weiss WM, Joddar B. Bone tissue engineering techniques, advances and scaffolds for treatment of bone defects. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 17:100248. [PMID: 33718692 PMCID: PMC7948130 DOI: 10.1016/j.cobme.2020.100248] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone tissue engineering (BTE) aims to develop strategies to regenerate damaged or diseased bone using a combination of cells, growth factors, and biomaterials. This article highlights recent advances in BTE, with particular emphasis on the role of the biomaterials as scaffolding material to heal bone defects. Studies encompass the utilization of bioceramics, composites, and myriad hydrogels that have been fashioned by injection molding, electrospinning, and 3D bioprinting over recent years, with the aim to provide an insight into the progress of BTE along with a commentary on their scope and possibilities to aid future research. The biocompatibility and structural efficacy of some of these biomaterials are also discussed.
Collapse
Affiliation(s)
- Matthew Alonzo
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, Texas, 79968, USA
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas, 79968, USA
| | - Fabian Alvarez Primo
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, Texas, 79968, USA
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas, 79968, USA
| | - Shweta Anil Kumar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, Texas, 79968, USA
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas, 79968, USA
| | - Joel A. Mudloff
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, Texas, 79968, USA
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas, 79968, USA
| | - Erick Dominguez
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, Texas, 79968, USA
- Mechanical Engineering Department, Rm. A-126 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas, 79968, USA
| | - Gisel Fregoso
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, Texas, 79968, USA
- Department of Electrical & Computer Engineering, Rm. A-325 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas, 79968, USA
| | - Nick Ortiz
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, Texas, 79968, USA
- Department of Biological Sciences, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas, 79968, USA
| | - William M. Weiss
- Orthopaedic Surgery and Rehabilitation, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, Texas, 79968, USA
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas, 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas, 79968, USA
| |
Collapse
|
29
|
Zhu Y, Goh C, Shrestha A. Biomaterial Properties Modulating Bone Regeneration. Macromol Biosci 2021; 21:e2000365. [PMID: 33615702 DOI: 10.1002/mabi.202000365] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/17/2021] [Indexed: 12/19/2022]
Abstract
Biomaterial scaffolds have been gaining momentum in the past several decades for their potential applications in the area of tissue engineering. They function as three-dimensional porous constructs to temporarily support the attachment of cells, subsequently influencing cell behaviors such as proliferation and differentiation to repair or regenerate defective tissues. In addition, scaffolds can also serve as delivery vehicles to achieve sustained release of encapsulated growth factors or therapeutic agents to further modulate the regeneration process. Given the limitations of current bone grafts used clinically in bone repair, alternatives such as biomaterial scaffolds have emerged as potential bone graft substitutes. This review summarizes how physicochemical properties of biomaterial scaffolds can influence cell behavior and its downstream effect, particularly in its application to bone regeneration.
Collapse
Affiliation(s)
- Yi Zhu
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario, M5G 1G6, Canada
| | - Cynthia Goh
- Department of Chemistry, University of Toronto, 80 George Street, Toronto, Ontario, M5S 3H6, Canada.,Department of Materials Science and Engineering, University of Toronto, 84 College Street, Suite 140, Toronto, Ontario, M5S 3E4, Canada
| | - Annie Shrestha
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario, M5G 1G6, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
30
|
Houshyar S, Bhattacharyya A, Khalid A, Rifai A, Dekiwadia C, Kumar GS, Tran PA, Fox K. Multifunctional Sutures with Temperature Sensing and Infection Control. Macromol Biosci 2021; 21:e2000364. [PMID: 33433960 DOI: 10.1002/mabi.202000364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/03/2020] [Indexed: 12/15/2022]
Abstract
The next-generation sutures should provide in situ monitoring of wound condition such as temperature while reducing surgical site infection during wound closure. In this study, functionalized nanodiamond (FND) and reduced graphene oxide (rGO) into biodegradable polycaprolactone (PCL) are incorporated to develop a new multifunctional suture with such capabilities. Incorporation of FND and rGO into PCL enhances its tensile strength by about 43% and toughness by 35%. The sutures show temperature sensing capability in the range of 25-40 °C based on the shift in zero-splitting frequency of the nitrogen-vacancy (NV- ) centers in FND via optically detected magnetic resonance, paving the way for potential detection of infection or excessive inflammation in healing wounds. The suture surface readily coats with antibiotics to reduce bacterial infection risk to the wounds. The new suture thus is promising in monitoring and supporting wound closure.
Collapse
Affiliation(s)
- Shadi Houshyar
- College of Science, Engineering and Health, School of Engineering, RMIT University, Melbourne, 3001, Australia
| | - Amitava Bhattacharyya
- Functional, Innovative and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore, 641004, India
| | - Asma Khalid
- College of Science, Engineering and Health, School of Applied Sciences, RMIT University, Melbourne, 3000, Australia
| | - Aaqil Rifai
- College of Science, Engineering and Health, School of Engineering, RMIT University, Melbourne, 3001, Australia.,Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, Vic, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy & Microanalysis Facility, College of Science, Engineering and Health, RMIT University, Melbourne, 3000, Australia
| | - G Sathish Kumar
- Functional, Innovative and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore, 641004, India
| | - Phong A Tran
- Centre for Biomedical Technologies, 2 George Street, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.,Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, QUT, 2 George Street, Brisbane, Queensland, 4000, Australia
| | - Kate Fox
- College of Science, Engineering and Health, School of Engineering, RMIT University, Melbourne, 3001, Australia
| |
Collapse
|
31
|
Poly(ε-Caprolactone)/Brewers’ Spent Grain Composites—The Impact of Filler Treatment on the Mechanical Performance. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4040167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Waste lignocellulose materials, such as brewers’ spent grain, can be considered very promising sources of fillers for the manufacturing of natural fiber composites. Nevertheless, due to the chemical structure differences between polymer matrices and brewers’ spent grain, filler treatment should be included. The presented work aimed to investigate the impact of fillers’ reactive extrusion on the chemical structure and the poly(ε-caprolactone)/brewers’ spent grain composites’ mechanical performance. The chemical structure was analyzed by Fourier-transform infrared spectroscopy, while the mechanical performance of composites was assessed by static tensile tests and dynamic mechanical analysis. Depending on the filler pretreatment, composites with different mechanical properties were obtained. Nevertheless, the increase in pretreatment temperature resulted in the increased interface surface area of filler, which enhanced composites’ toughness. As a result, composites were able to withstand a higher amount of stress before failure. The mechanical tests also indicated a drop in the adhesion factor, pointing to enhanced interfacial interactions for higher pretreatment temperatures. The presented work showed that reactive extrusion could be considered an auspicious method for lignocellulose filler modification, which could be tailored to obtain composites with desired properties.
Collapse
|
32
|
El-Shishtawy RM, Aldhahri M, Almulaiky YQ. Dual immobilization of α-amylase and horseradish peroxidase via electrospinning: A proof of concept study. Int J Biol Macromol 2020; 163:1353-1360. [DOI: 10.1016/j.ijbiomac.2020.07.278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 11/25/2022]
|
33
|
Nasrollah SAS, Najmoddin N, Mohammadi M, Fayyaz A, Nyström B. Three dimensional polyurethane/ hydroxyapatite bioactive scaffolds: The role of hydroxyapatite on pore generation. J Appl Polym Sci 2020. [DOI: 10.1002/app.50017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Seyyed Ahmad Seyyed Nasrollah
- Department of Biomedical Engineering, Science and research branch Islamic Azad University Tehran Iran
- Department of Biomedical Engineering Amirkabir University of Technology Tehran Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and research branch Islamic Azad University Tehran Iran
| | - Mohsen Mohammadi
- Department of Polymer Engineering, Faculty of Engineering Qom University of Technology Qom Iran
| | - Abdolali Fayyaz
- Department of Materials Engineering, Science and research branch Islamic Azad University Tehran Iran
| | - Bo Nyström
- Department of Chemistry University of Oslo Oslo Norway
| |
Collapse
|
34
|
Lüchow M, Fortuin L, Malkoch M. Modular, synthetic, thiol‐ene mediated hydrogel networks as potential scaffolds for
3D
cell cultures and tissue regeneration. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mads Lüchow
- Division of Coating Technology, Department of Fibre and Polymer Technology KTH Stockholm Sweden
| | - Lisa Fortuin
- Division of Coating Technology, Department of Fibre and Polymer Technology KTH Stockholm Sweden
| | - Michael Malkoch
- Division of Coating Technology, Department of Fibre and Polymer Technology KTH Stockholm Sweden
| |
Collapse
|
35
|
Khalil HPSA, Jummaat F, Yahya EB, Olaiya NG, Adnan AS, Abdat M, N. A. M. N, Halim AS, Kumar USU, Bairwan R, Suriani AB. A Review on Micro- to Nanocellulose Biopolymer Scaffold Forming for Tissue Engineering Applications. Polymers (Basel) 2020; 12:E2043. [PMID: 32911705 PMCID: PMC7565330 DOI: 10.3390/polym12092043] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022] Open
Abstract
Biopolymers have been used as a replacement material for synthetic polymers in scaffold forming due to its biocompatibility and nontoxic properties. Production of scaffold for tissue repair is a major part of tissue engineering. Tissue engineering techniques for scaffold forming with cellulose-based material is at the forefront of present-day research. Micro- and nanocellulose-based materials are at the forefront of scientific development in the areas of biomedical engineering. Cellulose in scaffold forming has attracted a lot of attention because of its availability and toxicity properties. The discovery of nanocellulose has further improved the usability of cellulose as a reinforcement in biopolymers intended for scaffold fabrication. Its unique physical, chemical, mechanical, and biological properties offer some important advantages over synthetic polymer materials. This review presents a critical overview of micro- and nanoscale cellulose-based materials used for scaffold preparation. It also analyses the relationship between the method of fabrication and properties of the fabricated scaffold. The review concludes with future potential research on cellulose micro- and nano-based scaffolds. The review provides an up-to-date summary of the status and future prospective applications of micro- and nanocellulose-based scaffolds for tissue engineering.
Collapse
Affiliation(s)
- H. P. S. Abdul Khalil
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (N.G.O.); (U.S.U.K.)
| | - Fauziah Jummaat
- Management Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Selangor, Malaysia;
| | - Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (N.G.O.); (U.S.U.K.)
| | - N. G. Olaiya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (N.G.O.); (U.S.U.K.)
| | - A. S. Adnan
- Management Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Selangor, Malaysia;
- CKD Resource Centre, School of Medical Sciences, Health Campus, USM, Kubang Kerian 16150, Kelantan, Malaysia
| | - Munifah Abdat
- Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh 23311, Indonesia;
| | - Nasir N. A. M.
- Reconstructive Sciences Unit, School of Medical Sciences, Health Campus USM, Kubang Kerian 16150, Kelantan, Malaysia; (N.N.A.M.); (A.S.H.)
| | - Ahmad Sukari Halim
- Reconstructive Sciences Unit, School of Medical Sciences, Health Campus USM, Kubang Kerian 16150, Kelantan, Malaysia; (N.N.A.M.); (A.S.H.)
| | - U. Seeta Uthaya Kumar
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (N.G.O.); (U.S.U.K.)
| | - Rahul Bairwan
- Department of Aeronautical engineering, School of Aeronautics, Neemrana 301705, Rajasthan, India;
| | - A. B. Suriani
- Nanotechnology Research Centre, Faculty of Science and Mathematics, UPSI, Tanjung Malim 35900, Perak, Malaysia;
| |
Collapse
|
36
|
The 3D-Printed Bilayer's Bioactive-Biomaterials Scaffold for Full-Thickness Articular Cartilage Defects Treatment. MATERIALS 2020; 13:ma13153417. [PMID: 32756370 PMCID: PMC7436011 DOI: 10.3390/ma13153417] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 11/22/2022]
Abstract
The full-thickness articular cartilage defect (FTAC) is an abnormally severe grade of articular cartilage (AC) injury. An osteochondral autograft transfer (OAT) is the recommended treatment, but the increasing morbidity rate from osteochondral plug harvesting is a limitation. Thus, the 3D-printed bilayer’s bioactive-biomaterials scaffold is of major interest. Polylactic acid (PLA) and polycaprolactone (PCL) were blended with hydroxyapatite (HA) for the 3D-printed bone layer of the bilayer’s bioactive-biomaterials scaffold (B-BBBS). Meanwhile, the blended PLA/PCL filament was 3D printed and combined with a chitosan (CS)/silk firoin (SF) using a lyophilization technique to fabricate the AC layer of the bilayer’s bioactive-biomaterials scaffold (AC-BBBS). Material characterization and mechanical and biological tests were performed. The fabrication process consists of combining the 3D-printed structure (AC-BBBS and B-BBBS) and a lyophilized porous AC-BBBS. The morphology and printing abilities were investigated, and biological tests were performed. Finite element analysis (FEA) was performed to predict the maximum load that the bilayer’s bioactive-biomaterials scaffold (BBBS) could carry. The presence of HA and CS/SF in the PLA/PCL structure increased cell proliferation. The FEA predicted the load carrying capacity to be up to 663.2 N. All tests indicated that it is possible for BBBS to be used in tissue engineering for AC and bone regeneration in FTAC treatment.
Collapse
|
37
|
Shams M, Karimi M, Heydari M, Salimi A. Nanocomposite scaffolds composed of Apacite (apatite-calcite) nanostructures, poly (ε-caprolactone) and poly (2-hydroxyethylmethacrylate): The effect of nanostructures on physico-mechanical properties and osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111271. [PMID: 32919635 DOI: 10.1016/j.msec.2020.111271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 01/05/2023]
Abstract
Nanocomposite scaffolds were fabricated from poly (ε-caprolactone) (PCL), Poly (2-hydroxyethylmethacrylate) (PHEMA), and Apacite (Apatite-calcite) nanostructures (15 and 25 wt%). The nanoscale structure, physical and chemical properties, mechanical properties, hydrophilic behavior, degradability and osteogenic properties of the fabricated scaffolds were evaluated. The results showed that the mechanical strength, degradation, wetting ability, and mechanical strength of PCL-PHEMA scaffolds significantly increases upon inclusion of Apacite nanoparticles up to 25 wt%. Accordingly, the best mechanical values (E ~ 7.109 MPa and σ ~ 0.414 MPa) and highest degradability (32% within 96 h) were recorded for PCL-PHEMA scaffolds containing 25 wt% of Apacite. Furthermore, highest porosity and roughness were observed in the PCL-PHEMA/25% Apacite as a result of the Apacite nanoparticles inclusion. There was no cytotoxicity recorded for the fabricated scaffolds based on the results obtained from MTT assay and acridine orange staining. Alkaline phosphatase activity, calcium content quantification, Van Kossa staining, FESEM and real time PCR tests confirmed the biomineralization, and the differentiation potential of the nanocomposite scaffolds. Overall, the 3D structure, optimum porosity and balanced dissolution rate of PCL-PHEMA/25% Apacite providing a balanced microenvironment resulted in improved cell adhesion, cell behavior, and replication, as well as osteogenic induction of human bone-marrow-derived mesenchymal stem cells (hBM-MSCs).
Collapse
Affiliation(s)
- Mehdi Shams
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Mohammad Karimi
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Masoomeh Heydari
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Shapourzadeh A, Atyabi SM, Irani S, Bakhshi H. Enhanced Adipose Mesenchymal Stem Cells Proliferation by Carboxymethyl-Chitosan Functionalized Polycaprolactone Nanofiber. IRANIAN BIOMEDICAL JOURNAL 2020; 24:236-42. [PMID: 32306721 PMCID: PMC7275816 DOI: 10.29252/ibj.24.4.236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/24/2019] [Indexed: 12/01/2022]
Abstract
Background Through combining two synthetic and natural polymers, scaffolds can be developed for tissue engineering and regenerative medicine purposes. Methods In this work, carboxymethyl chitosan (CMC; 20%) was grafted to Polycaprolactone (PCL) nanofibers using the cold atmospheric plasma of helium. The PCL scaffolds were exposed to CAP, and functional groups were developed on the PCL surface. Results The results of Fourier Transform Infrared Spectroscopy confirmed CMC (20%) graft on PCL scaffold. The Thiazolyl blue tetrazolium bromide assay showed a significant enhancement (p < 0.05) in the cell affinity and proliferation of adipose-derived stem cells (ADSCs) to CMC20%-graft-PCL scaffolds. After 14 days, bone differentiation was affirmed through alizarin red and calcium depositions. Conclusion Based on the results, the CMC20%-graft-PCL can support the proliferation of ADSCs and induce the differentiation into bone with longer culture time.
Collapse
Affiliation(s)
- Atena Shapourzadeh
- Department of Biochemistry, Faculty of Basic Science, Islamic Azad University Damghan Branch, Damghan, Iran
| | - Seyed Mohammad Atyabi
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran 13164, Iran
| | - Shiva Irani
- Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hadi Bakhshi
- Universitatsstraße Bayreuth, Germany-Universitatsstraße Bayreuth, Germany
| |
Collapse
|
39
|
Dugad R, Radhakrishna G, Gandhi A. Recent advancements in manufacturing technologies of microcellular polymers: a review. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02157-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Chuaponpat N, Ueda T, Ishigami A, Kurose T, Ito H. Morphology, Thermal and Mechanical Properties of Co-Continuous Porous Structure of PLA/PVA Blends by Phase Separation. Polymers (Basel) 2020; 12:E1083. [PMID: 32397439 PMCID: PMC7284429 DOI: 10.3390/polym12051083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Poly (lactic acid) (PLA) was blended with poly (vinyl alcohol) (PVA) in the composition of 70/30 (L7V3), 60/40 (L6V4), and 50/50 (L5V5) wt.%. L7V3 exhibits a sea-island morphology, while L6V4 and L5V5 show co-continuous phase morphologies. These polymers exhibited a solitary glass transition temperature, which obeyed the Fox equation. Thereafter, the blends were made porous by an etching process in hot water (35 °C) for 0-7 days, to remove PVA. The maximum etched PVA content of L7V3, L6V4, and L5V5 was 0.5%, 13.4%, and 36.1%, respectively; hence, L5V5 exhibited a co-continuous porous morphology with the porosity of 43.4%, the degree of swelling of 47.5%, and the pore size of 2 µm. The degree of crystallinity of PLA, exposed PLA, and L7V3 showed an insignificant change. L5V5, having the highest porosity, demonstrated the highest increase in the degree of crystallinity of approximately two times, because water induced the crystallization of PLA. The high porosity of L5V5 exhibited an excellent absorption property by increasing absorption energy more than two times, as obtained by micro indention. It had the maximum indentation depth more than 250 µm. Flexural and tensile properties considerably decreased with an increase in the porosity.
Collapse
Affiliation(s)
| | | | | | | | - Hiroshi Ito
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; (N.C.); (T.U.); (A.I.); (T.K.)
| |
Collapse
|
41
|
Shapourzadeh A, Atyabi SM, Irani S, Bakhshi H. Osteoinductivity of polycaprolactone nanofibers grafted functionalized with carboxymethyl chitosan: Synergic effect of β-carotene and electromagnetic field. Int J Biol Macromol 2020; 150:152-160. [DOI: 10.1016/j.ijbiomac.2020.02.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/21/2020] [Accepted: 02/05/2020] [Indexed: 01/24/2023]
|
42
|
Santos-Rosales V, Iglesias-Mejuto A, García-González CA. Solvent-Free Approaches for the Processing of Scaffolds in Regenerative Medicine. Polymers (Basel) 2020; 12:E533. [PMID: 32131405 PMCID: PMC7182956 DOI: 10.3390/polym12030533] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 01/12/2023] Open
Abstract
The regenerative medicine field is seeking novel strategies for the production of synthetic scaffolds that are able to promote the in vivo regeneration of a fully functional tissue. The choices of the scaffold formulation and the manufacturing method are crucial to determine the rate of success of the graft for the intended tissue regeneration process. On one hand, the incorporation of bioactive compounds such as growth factors and drugs in the scaffolds can efficiently guide and promote the spreading, differentiation, growth, and proliferation of cells as well as alleviate post-surgical complications such as foreign body responses and infections. On the other hand, the manufacturing method will determine the feasible morphological properties of the scaffolds and, in certain cases, it can compromise their biocompatibility. In the case of medicated scaffolds, the manufacturing method has also a key effect in the incorporation yield and retained activity of the loaded bioactive agents. In this work, solvent-free methods for scaffolds production, i.e., technological approaches leading to the processing of the porous material with no use of solvents, are presented as advantageous solutions for the processing of medicated scaffolds in terms of efficiency and versatility. The principles of these solvent-free technologies (melt molding, 3D printing by fused deposition modeling, sintering of solid microspheres, gas foaming, and compressed CO2 and supercritical CO2-assisted foaming), a critical discussion of advantages and limitations, as well as selected examples for regenerative medicine purposes are herein presented.
Collapse
Affiliation(s)
| | | | - Carlos A. García-González
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy, Health Research Institute of Santiago de Compostela (IDIS), Agrupación Estratégica de Materiales (AeMAT), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; (V.S.-R.); (A.I.-M.)
| |
Collapse
|
43
|
Hou J, Jiang J, Guo H, Guo X, Wang X, Shen Y, Li Q. Fabrication of fibrillated and interconnected porous poly(ε-caprolactone) vascular tissue engineering scaffolds by microcellular foaming and polymer leaching. RSC Adv 2020; 10:10055-10066. [PMID: 35498611 PMCID: PMC9050225 DOI: 10.1039/d0ra00956c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/01/2020] [Indexed: 11/21/2022] Open
Abstract
This paper provides a method combining eco-friendly supercritical CO2 microcellular foaming and polymer leaching to fabricate small-diameter vascular tissue engineering scaffolds.
Collapse
Affiliation(s)
- Jianhua Hou
- School of Mechanics & Engineering Science
- Zhengzhou University
- National Center for International Joint Research of Micro-Nano Molding Technology
- Zhengzhou
- PR China
| | - Jing Jiang
- School of Mechanics & Engineering Science
- Zhengzhou University
- National Center for International Joint Research of Micro-Nano Molding Technology
- Zhengzhou
- PR China
| | - Haiyang Guo
- School of Mechanics & Engineering Science
- Zhengzhou University
- National Center for International Joint Research of Micro-Nano Molding Technology
- Zhengzhou
- PR China
| | - Xin Guo
- School of Mechanics & Engineering Science
- Zhengzhou University
- National Center for International Joint Research of Micro-Nano Molding Technology
- Zhengzhou
- PR China
| | - Xiaofeng Wang
- School of Mechanics & Engineering Science
- Zhengzhou University
- National Center for International Joint Research of Micro-Nano Molding Technology
- Zhengzhou
- PR China
| | - Yaqiang Shen
- Shenzhen ZhaoWei Machinery & Electronics Co.,Ltd
- Shenzhen
- PR China
| | - Qian Li
- School of Mechanics & Engineering Science
- Zhengzhou University
- National Center for International Joint Research of Micro-Nano Molding Technology
- Zhengzhou
- PR China
| |
Collapse
|
44
|
Wang L, Wang D, Zhou Y, Zhang Y, Li Q, Shen C. Fabrication of open‐porous PCL/PLA tissue engineering scaffolds and the relationship of foaming process, morphology, and mechanical behavior. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4701] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lixia Wang
- School of Mechanics and Engineering ScienceZhengzhou University Zhengzhou 450001 China
- National Center for International Research of Micro‐Nano Molding TechnologyZhengzhou University Zhengzhou 450001 China
| | - Dongfang Wang
- School of Mechanics and Engineering ScienceZhengzhou University Zhengzhou 450001 China
- National Center for International Research of Micro‐Nano Molding TechnologyZhengzhou University Zhengzhou 450001 China
| | - Yiping Zhou
- School of Mechanics and Engineering ScienceZhengzhou University Zhengzhou 450001 China
- National Center for International Research of Micro‐Nano Molding TechnologyZhengzhou University Zhengzhou 450001 China
| | - Yantao Zhang
- School of Mechanics and Engineering ScienceZhengzhou University Zhengzhou 450001 China
- National Center for International Research of Micro‐Nano Molding TechnologyZhengzhou University Zhengzhou 450001 China
| | - Qian Li
- School of Mechanics and Engineering ScienceZhengzhou University Zhengzhou 450001 China
- National Center for International Research of Micro‐Nano Molding TechnologyZhengzhou University Zhengzhou 450001 China
| | - Changyu Shen
- National Center for International Research of Micro‐Nano Molding TechnologyZhengzhou University Zhengzhou 450001 China
| |
Collapse
|
45
|
Cheng CH, Chen YW, Kai-Xing Lee A, Yao CH, Shie MY. Development of mussel-inspired 3D-printed poly (lactic acid) scaffold grafted with bone morphogenetic protein-2 for stimulating osteogenesis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:78. [PMID: 31222566 DOI: 10.1007/s10856-019-6279-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
3D printing is a versatile technique widely applied in tissue engineering due to its ability to manufacture large quantities of scaffolds or constructs with various desired architectures. In this study, we demonstrated that poly (lactic acid) (PLA) scaffolds fabricated via fused deposition not only retained the original interconnected microporous architectures, the scaffolds also exhibited lower lactic acid dissolution as compared to the freeze-PLA scaffold. The 3D-printed scaffolds were then grafted with human bone morphogenetic protein-2 (BMP-2) via the actions of polydopamine (PDA) coatings. The loading and release rate of BMP-2 were monitored for a period of 35 days. Cellular behaviors and osteogenic activities of co-cultured human mesenchymal stem cells (hMSCs) were assessed to determine for efficacies of scaffolds. In addition, we demonstrated that our fabricated scaffolds were homogenously coated with PDA and well grafted with BMP-2 (219.1 ± 20.4 ng) when treated with 250 ng/mL of BMP-2 and 741.4 ± 127.3 ng when treated with 1000 ng/mL of BMP-2. This grafting enables BMP-2 to be released in a sustained profile. From the osteogenic assay, it was shown that the ALP activity and osteocalcin of hMSCs cultured on BMP-2/PDA/PLA were significantly higher when compared with PLA and PDA/PLA scaffolds. The methodology of PDA coating employed in this study can be used as a simple model to immobilize multiple growth factors onto different 3D-printed scaffold substrates. Therefore, there is potential for generation of scaffolds with different unique modifications with different capabilities in regulating physiochemical and biological properties for future applications in bone tissue engineering.
Collapse
Affiliation(s)
- Cheng-Hsin Cheng
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Neurosurgery, Tainan Municipal An-Nan Hospital-China Medical University, Tainan, Taiwan
- Department of Neurosurgery, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- 3D Printing Medical Research Institute, Asia University, Taichung, Taiwan
| | - Alvin Kai-Xing Lee
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Hsu Yao
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan.
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
| | - Ming-You Shie
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
- School of Dentistry, China Medical University, Taichung, Taiwan.
| |
Collapse
|
46
|
Chondroitin sulfate immobilized PCL nanofibers enhance chondrogenic differentiation of mesenchymal stem cells. Int J Biol Macromol 2019; 136:616-624. [PMID: 31207331 DOI: 10.1016/j.ijbiomac.2019.06.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022]
Abstract
Cold Atmospheric Plasma (CAP) is used as a promising method in surface modification for immobilization of chondroitin sulfate functional biomacromolecules on PCL nanofibrous substrates for cartilage tissue engineering. The GAG-grafted scaffolds are able to successfully support the attachment and proliferation of mesenchymal stem cells (MSCs). The seeded scaffolds show the chondro-differentiation of MSCs during a 21-days cell culture in a non-differential medium. Expression of SOX9, Collagen10 and Collagen2 proved the chondro-inductive effect of GAG-grafted scaffolds. Besides, no external chondro-genic differential agent was used in the differentiation of MSCs to chondrocyte. The cells passed the last phase of chondrogenesis after 14 days of incubation. Thus, the GAG-fabricated fibrous scaffolds using CAP are potential candidates for cartilage tissue engineering.
Collapse
|
47
|
Allaf RM, Albarahmieh E, AlHamarneh BM. Solid-state compounding of immiscible PCL-PEO blend powders for molding processes. J Mech Behav Biomed Mater 2019; 97:198-211. [PMID: 31125892 DOI: 10.1016/j.jmbbm.2019.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 02/05/2023]
Abstract
Solid-state milling is a promising ecologically friendly method for fabricating polymeric blend and composite powder raw materials for several subsequent manufacturing processes. Biodegradable polymers, blends, and composites are expected to find extensive use by industry due to their environmental friendliness and acceptable mechanical and thermal properties for several applications. Poly-ε-caprolactone (PCL), poly-ethylene-oxide (PEO), and their blends have attracted so much attention to replace commodity polymers in future applications. Therefore, in the current research, bulk compounding of PCL-PEO blends with various compositions using solid-state cryomilling was investigated. Structural, mechanical, thermal, and hydrophilicity properties were examined on samples obtained by compression molding to explore the capabilities of the milling process for various applications. Morphology of the blends was explored by scanning electron microscopy (SEM), which showed a clear phase separation in blends after heating. Dispersed as well as co-continuous morphologies were achieved by varying composition. Differential scanning calorimetry (DSC) and x-ray diffraction (XRD) of the blends indicated insignificant amorphization by milling. Tensile strength, modulus, and percentage elongation at break of the blends demonstrated significant variations due to processing parameters.
Collapse
Affiliation(s)
- Rula M Allaf
- Industrial Engineering Department, School of Applied Technical Sciences, German-Jordanian University, Amman, 11180, Jordan.
| | - Esra'a Albarahmieh
- Pharmaceutical-Chemical Engineering Department, School of Applied Medical Sciences, German-Jordanian University, Amman, 11180, Jordan.
| | - Baider M AlHamarneh
- Mechanical and Maintenance Engineering Department, School of Applied Technical Sciences, German-Jordanian University, Amman, 11180, Jordan.
| |
Collapse
|
48
|
Liu Q, Yuan S, Guo Y, Narayanan A, Peng C, Wang S, Miyoshi T, Joy A. Modulating the crystallinity, mechanical properties, and degradability of poly(ε-caprolactone) derived polyesters by statistical and alternating copolymerization. Polym Chem 2019. [DOI: 10.1039/c9py00274j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Functionalization of PCL analogues in statistical and alternating manner modulates the thermal, physical and mechanical properties.
Collapse
Affiliation(s)
- Qianhui Liu
- Department of Polymer Science
- The University of Akron
- Akron
- USA
| | - Shichen Yuan
- Department of Polymer Science
- The University of Akron
- Akron
- USA
| | - Yuanhao Guo
- Department of Polymer Engineering
- The University of Akron
- Akron
- USA
| | - Amal Narayanan
- Department of Polymer Science
- The University of Akron
- Akron
- USA
| | - Chao Peng
- Department of Polymer Science
- The University of Akron
- Akron
- USA
| | - Shijun Wang
- Department of Polymer Science
- The University of Akron
- Akron
- USA
| | | | - Abraham Joy
- Department of Polymer Science
- The University of Akron
- Akron
- USA
| |
Collapse
|
49
|
Singh R, Ahmed F, Polley P, Giri J. Fabrication and Characterization of Core-Shell Nanofibers Using a Next-Generation Airbrush for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41924-41934. [PMID: 30433758 DOI: 10.1021/acsami.8b13809] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The core-shell polymeric nanofiber, owing to its better controlled release of embedded or encapsulated drugs in contrast with the single-compartment nanofibers, has been extensively studied for biomedical applications such as tissue engineering and wound healing. Electrospinning with co-axial needles is the dominant technique to fabricate nanofiber mat, however, associated with potential limitations such as high voltage requirement, costly equipment, slow deposition rate, required trained personal, not suitable in situ fabrication, and direct deposition of core-shell nanofibers on the wound at patient bedside. To address the above limitations, the work aims to introduce a novel co-axial airbrushing method to fabricate core-shell nanofibers using a simple setup and low-cost equipment, yet having a unique ability for fabrication at patient bedside and direct deposition on wound bed. Air-brush with a coaxial needle is designed to flow two different polymers solution with model biomolecules through core [PEO (polyethylene oxide)/poly-dl-lactide/PCL (polycaprolactone)] and shell (PCL/PEO) needle for the fabrication of the model core-shell nanofiber. Various processing parameters such as flow rate, air pressure, working distance, and concentration of polymer solution which affect the morphology of core-shell nanofibers were studied and found to have a prominent effect. The PCL-PEO nanofiber possesses a defined shell and core structure, tunable sustained release behavior of model proteins (bovine serum albumin and basic fibroblast growth factor; bFGF), and improved mechanical strength. In vitro interaction of human bone marrow-derived mesenchymal stem cells with core-shell fibers demonstrated the cytocompatibility and proliferative and differentiative (for bFGF loaded) properties of the core-shell nanofiber mat. Co-axial airbrushing can be used as a superior less-expensive technique for the fabrication of biomolecules/drug encapsulated core-shell fibers scaffold at patient bedside, which can mimic complex in vivo environment and could modulate cells behavior close to their in vivo condition for tissue regeneration and wound healing.
Collapse
Affiliation(s)
- Ruby Singh
- Department of Biomedical Engineering , Indian Institute of Technology Hyderabad , Kandi , Telangana 502285 , India
| | - Farhan Ahmed
- Department of Biomedical Engineering , Indian Institute of Technology Hyderabad , Kandi , Telangana 502285 , India
| | - Poulomi Polley
- Department of Biomedical Engineering , Indian Institute of Technology Hyderabad , Kandi , Telangana 502285 , India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering , Indian Institute of Technology Hyderabad , Kandi , Telangana 502285 , India
| |
Collapse
|
50
|
Sempertegui ND, Narkhede AA, Thomas V, Rao SS. A combined compression molding, heating, and leaching process for fabrication of micro-porous poly(ε-caprolactone) scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1978-1993. [DOI: 10.1080/09205063.2018.1498719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Nicole D. Sempertegui
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Akshay A. Narkhede
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Vinoy Thomas
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shreyas S. Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|