1
|
Yang X, Yu T, Shen Y, Liu H, Cheng Y, Dai R, Yan D, Gao J, Chen H, Wu Y. Irradiation alters the structure and reduces the sensitization of sesame proteins in the liquid state. Food Funct 2025; 16:2474-2486. [PMID: 40019315 DOI: 10.1039/d4fo05355a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Irradiation is extensively utilized in food processing as an effective and convenient method. At present, numerous studies have investigated the potential of irradiation to reduce food allergenicity. The objective of this study was to investigate the effects of irradiation treatment on the structure and allergenicity of liquid and solid sesame proteins. Sesame protein extracts and lyophilized powders were irradiated at doses of 0, 2.5, 5, 7.5, and 10 kGy, respectively. The effects of irradiation on sesame proteins were investigated by CD spectroscopy, fluorescence spectroscopy, indirect competitive ELISA, western blot and degranulation experiments on KU812 cells. The experimental results demonstrated that irradiation had a more pronounced effect on liquid sesame proteins. Irradiation altered the secondary structure and increased the surface hydrophobicity, with the α-helix content decreasing from 14.27% to 13.53% and the β-sheet content increasing from 33.91% to 39.53%. Additionally, protein aggregation resulted in a reduction of free sulfhydryl groups. Following irradiation, the IC50 value obtained by indirect competitive ELISA increased from 0.695 μg mL-1 to 18.546 μg mL-1, while the release of cellular β-Hex and IL-6 was reduced, indicating that irradiation diminished the IgE binding capacity of liquid sesame proteins and their ability to induce cell degranulation. Western blotting results corroborated the findings from the ELISA assay. In conclusion, irradiation modifies the structure and reduces the potential allergenicity of liquid sesame proteins.
Collapse
Affiliation(s)
- Xintong Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Tian Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yunpeng Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Hui Liu
- Biobank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Youdou Cheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Ruoyan Dai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Dongxia Yan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jinyan Gao
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
2
|
Meng X, Ouyang P, Li X, Wu Y, Tong P, Gao J, Zeng Z, Chen H. Dietary Linolenic Acid Enhances IgE Binding to Bovine α-Lactalbumin/β-Lactoglobulin and Promotes KU812 Basophil Degranulation via Upregulation of the Lyn/Syk Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2174-2185. [PMID: 39772611 DOI: 10.1021/acs.jafc.4c10482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Milk proteins possess an abundance of free amino groups and exhibit diverse spatial structures. During food processing, these properties facilitate their interaction with hydrophobic ligands, such as linolenic acid. Exploring the IgE and IgG binding ability of linolenic acid-milk protein complexes at different temperatures, times, and molar ratios is crucial for controlling the allergenicity of milk proteins in food processing. In this study, the results indicate that linolenic acid can enhance the allergenicity of milk proteins. Moreover, by studying Lyn, Syk, NF-κB, and MAPK family-related proteins in the IgE/FcεRI-mediated signaling pathway, it is found that linolenic acid enhances cow's milk protein sensitization through the Lyn/Syk pathway. Our findings provide a further understanding of the interaction between milk nutrients and milk protein allergenicity.
Collapse
Affiliation(s)
- Xuanyi Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Puyu Ouyang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- School of Food Science & Technology, Nanchang University, Nanchang 330031, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- School of Food Science & Technology, Nanchang University, Nanchang 330031, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- School of Food Science & Technology, Nanchang University, Nanchang 330031, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
3
|
ISHIDA Y, YONOICHI S, HARA Y, SHODA A, KIMURA M, MURATA M, ITO M, NUNOBIKI S, YOSHIMOTO A, MANTANI Y, YOKOYAMA T, HIRANO T, MATSUO E, IKENAKA Y, HOSHI N. Effect of clothianidin exposure at the no-observed-adverse-effect level (NOAEL) in a mouse model of atopic dermatitis. J Vet Med Sci 2024; 86:333-339. [PMID: 38311400 PMCID: PMC10963095 DOI: 10.1292/jvms.23-0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
The effects of exposure to clothianidin (CLO), a neonicotinoid pesticide (NN), on the thymus and intestinal microbiota were recently revealed. Immune cells express nicotinic acetylcholine receptors (nAChRs), an NN target, suggesting CLO may disrupt the immune system. However, the relationship between CLO and atopic dermatitis (AD) is unknown. We administered a no-adverse-effect-level (NOAEL) dose of CLO to male NC/Nga mice with induced AD and measured, at three time points, key AD symptom indicators: epidermal thickening, mast cell number, total plasma IgE, and histamine levels. CLO increased total plasma IgE levels but reduced epidermal thickening, mast cell number, and plasma histamine levels in the early stages of AD. This demonstrates for the first time that CLO exposure inhibits AD's early symptoms.
Collapse
Affiliation(s)
- Yuya ISHIDA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Sakura YONOICHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Yukako HARA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Asuka SHODA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Mako KIMURA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Midori MURATA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Makiko ITO
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Sarika NUNOBIKI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Ayano YOSHIMOTO
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Tetsushi HIRANO
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Eiko MATSUO
- Laboratory of Microbiology and Immunology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| |
Collapse
|
4
|
Ge X, Ju G, Lv X, Sui X, Zhang Y, Liang L, Yang Q, Wu W, Lv L. Reducing the allergenicity of tropomyosin in shrimp by covalent conjugation with quercetin and chlorogenic acid. Int J Biol Macromol 2024; 262:130099. [PMID: 38342255 DOI: 10.1016/j.ijbiomac.2024.130099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
The study aimed to assay the allergenicity of shrimp tropomyosin (TM) following covalent conjugation with quercetin (QR) and chlorogenic acid (CA). The structure of the TM-polyphenol covalent conjugates was examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), circular dichroism (CD), fluorescence, differential scanning calorimetry (DSC), and Fourier Transform infrared spectroscopy (FTIR). Potential allergenicity was evaluated using in vitro and in vivo methods. The results showed that QR and CA induced structural changes in TM through aggregation. RBL-2H3 cell results showed that TM-QR and TM-CA covalent conjugates reduced the release of β-hexosaminidase and histamine, respectively. In the mice model, TM-QR and TM-CA covalent conjugates reduced the level of IgE, IgG, IgG1, histamine, and mMCP-1 in sera. Furthermore, the allergenicity was reduced by suppressing Th2-related cytokines (IL-4, IL-5, IL-13) and promoting Th1-related cytokines (IFN-γ). These research findings demonstrate that the covalent binding of TM with QR and CA, modifies the allergenic epitopes of shrimp TM, thereby reducing its potential allergenicity. This approach holds practical applications in the production of low-allergenicity food within the food industry.
Collapse
Affiliation(s)
- Xinyu Ge
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Guangxiu Ju
- Qingdao Municipal Center For Disease Control & Prevention, 175 Shandong Road shibei District, Qingdao, Shandong Province 266033, China
| | - Xiaojing Lv
- Qingdao Municipal Center For Disease Control & Prevention, 175 Shandong Road shibei District, Qingdao, Shandong Province 266033, China
| | - Xiufen Sui
- Qingdao Municipal Center For Disease Control & Prevention, 175 Shandong Road shibei District, Qingdao, Shandong Province 266033, China
| | - Yalin Zhang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Lifan Liang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingli Yang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Wu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Liangtao Lv
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
5
|
Rivera-García LG, Francis-Malavé AM, Castillo ZW, Uong CD, Wilson TD, Ferchmin PA, Eterovic V, Burton MD, Carrasquillo Y. Anti-hyperalgesic and anti-inflammatory effects of 4R-tobacco cembranoid in a mouse model of inflammatory pain. J Inflamm (Lond) 2024; 21:2. [PMID: 38267952 PMCID: PMC10809744 DOI: 10.1186/s12950-023-00373-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
4R is a tobacco cembranoid that binds to and modulates cholinergic receptors and exhibits neuroprotective and anti-inflammatory activity. Given the established function of the cholinergic system in pain and inflammation, we propose that 4R is also analgesic. Here, we tested the hypothesis that systemic 4R treatment decreases pain-related behaviors and peripheral inflammation via modulation of the alpha 7 nicotinic acetylcholine receptors (α7 nAChRs) in a mouse model of inflammatory pain. We elicited inflammation by injecting Complete Freund's Adjuvant (CFA) into the hind paw of male and female mice. We then assessed inflammation-induced hypersensitivity to cold, heat, and tactile stimulation using the Acetone, Hargreaves, and von Frey tests, respectively, before and at different time points (2.5 h - 8d) after a single systemic 4R (or vehicle) administration. We evaluated the contribution of α7 nAChRs 4R-mediated analgesia by pre-treating mice with a selective antagonist of α7 nAChRs followed by 4R (or vehicle) administration prior to behavioral tests. We assessed CFA-induced paw edema and inflammation by measuring paw thickness and quantifying immune cell infiltration in the injected hind paw using hematoxylin and eosin staining. Lastly, we performed immunohistochemical and flow cytometric analyses of paw skin in α7 nAChR-cre::Ai9 mice to measure the expression of α7 nAChRs on immune subsets. Our experiments show that systemic administration of 4R decreases inflammation-induced peripheral hypersensitivity in male and female mice and inflammation-induced paw edema in male but not female mice. Notably, 4R-mediated analgesia and anti-inflammatory effects lasted up to 8d after a single systemic administration on day 1. Pretreatment with an α7 nAChR-selective antagonist prevented 4R-mediated analgesia and anti-inflammatory effects, demonstrating that 4R effects are via modulation of α7 nAChRs. We further show that a subset of immune cells in the hind paw expresses α7 nAChRs. However, the number of α7 nAChR-expressing immune cells is unaltered by CFA or 4R treatment, suggesting that 4R effects are independent of α7 nAChR-expressing immune cells. Together, our findings identify a novel function of the 4R tobacco cembranoid as an analgesic agent in both male and female mice that reduces peripheral inflammation in a sex-dependent manner, further supporting the pharmacological targeting of the cholinergic system for pain treatment.
Collapse
Affiliation(s)
- Luis G Rivera-García
- Division of Intramural Research National Center for Complementary and Integrative Health, 35 Convent Drive, Building 35A / Room 1E-410, Bethesda, MD, 20892, USA
- Department of Neuroscience, Universidad Central Del Caribe School of Medicine, Bayamon, Puerto Rico, USA
| | - Adela M Francis-Malavé
- Division of Intramural Research National Center for Complementary and Integrative Health, 35 Convent Drive, Building 35A / Room 1E-410, Bethesda, MD, 20892, USA
| | - Zachary W Castillo
- Neuroimmunology and Behavior Group, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas, Dallas, USA
| | - Calvin D Uong
- Neuroimmunology and Behavior Group, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas, Dallas, USA
| | - Torri D Wilson
- Division of Intramural Research National Center for Complementary and Integrative Health, 35 Convent Drive, Building 35A / Room 1E-410, Bethesda, MD, 20892, USA
| | - P A Ferchmin
- Department of Neuroscience, Universidad Central Del Caribe School of Medicine, Bayamon, Puerto Rico, USA
| | - Vesna Eterovic
- Department of Neuroscience, Universidad Central Del Caribe School of Medicine, Bayamon, Puerto Rico, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Group, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas, Dallas, USA
| | - Yarimar Carrasquillo
- Division of Intramural Research National Center for Complementary and Integrative Health, 35 Convent Drive, Building 35A / Room 1E-410, Bethesda, MD, 20892, USA.
- National Institute On Drug Abuse, National Institutes of Health, 35 Convent Drive, Building 35A / Room 1E-410, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Ye L, Lü L, Lin X, He K, Yang X, Wan Z, Liu L, Wu H, Xing S, Wu X. Effect of lipid peroxidation on the allergenicity and functional properties of soybean β-conglycinin (7S) and glycinin (11S). FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Lv L, Ye L, Lin X, Li L, Chen J, Yue W, Wu X. Functional and Allergenic Properties Assessment of Conalbumin (Ovotransferrin) after Oxidation. Foods 2022; 11:foods11152308. [PMID: 35954072 PMCID: PMC9367811 DOI: 10.3390/foods11152308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Conalbumin (CA) is an iron-binding egg protein that has various bioactivities and causes major allergenicity in humans. This study investigated how oxidation affects the multiple functional properties of CA. The lipid peroxidation method was used to prepare treated CA [2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH)-CA and acrolein-CA] complexes. CA induced structural changes through oxidation. These changes enhanced the digestibility, rate of endocytosis in dendritic cells, and emulsifying and foaming properties of CA. ELISA and immunoblot analysis showed that the complexes reduced the IgE-binding ability of CA through lipid oxidation. KU812 cell assays showed that modification by AAPH and acrolein caused the release of IL-4 and histamine to decline. In conclusion, oxidation treatment modified the functional and structural properties of CA, reducing allergenicity during processing and preservation.
Collapse
|
8
|
Sun F, Lv L, Huang C, Lin Q, He K, Ye L, Lin X, Wu X. Development of hypoallergenic ovalbumin with improving functional properties by AAPH and acrolein treatment. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Huang Y, Li Z, Wu Y, Guo Y, Pavase TR, Chen G, Zhang Z, Lin H. Comparison of immunological properties of recombinant and natural turbot (Scophthalmus maximus) parvalbumin. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03771-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Xu LL, Gasset M, Lin H, Yu C, Zhao JL, Dang XW, Li ZX. Identification of the Dominant T-Cell Epitopes of Lit v 1 Shrimp Major Allergen and Their Functional Overlap with Known B-Cell Epitopes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7420-7428. [PMID: 34170668 DOI: 10.1021/acs.jafc.1c02231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Development of efficient peptide-based immunotherapy for shrimp allergy relies on the identification of the dominant T-cell epitopes of its major allergen, tropomyosin. In this study, immunoinformatic tools, T-cell proliferation, cytokine release, IgG/IgE binding, and degranulation assays were used to identify and characterize the T-cell epitopes in Lit v 1 in comparison with previously validated B-cell epitopes. The results showed that of the six in silico predicted T-cell epitopes only one (T2: VQESLLKANIQLVEK, 60-74) promoted T-cell proliferation, the release of IL-2, and upregulated secretion of Th2-associated cytokines in the absence of IgG/IgE binding and degranulation activities. These findings support T2 as a candidate for the development of an efficient peptide-based vaccine for the immunotherapy for shrimp-allergic patients.
Collapse
Affiliation(s)
- Li Li Xu
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - María Gasset
- Institute of Physical Chemistry Rocasolano (IQFR), Spanish National Research Council (CSIC), 28006 Madrid, Spain
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Chuang Yu
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Jin Long Zhao
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Xue Wen Dang
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Zhen Xing Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| |
Collapse
|
11
|
Lv L, He K, Sun F, Lin X, Ye L, Lyu Y, Liu L, Wang L, Liu Z, Wu X. Reducing the Allergenicity of α-Lactalbumin after Lipid Peroxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5725-5733. [PMID: 33974424 DOI: 10.1021/acs.jafc.1c00559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study analyzed the effect of lipid peroxidation using 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH) and acrolein on the in vitro and in vivo allergenicity of α-lactalbumin (α-La). The structure of oxidized α-La was evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis, fluorescence spectroscopy, and circular dichroism, whereas the changes in the allergenic properties were evaluated. Lipid peroxidation induced changes to the structural properties that might destroy and/or mask α-La epitopes. In comparison to native α-La, oxidation complexes caused a decrease in the immunoglobulin E (IgE) binding capacity, as observed via immunoblotting. Moreover, the capacity to release mediators and cytokines from KU812 cells was also greatly reduced. In vivo, oxidation with AAPH and acrolein caused a significant reduction in IgE, IgG, IgG1, mast cell protease 1, and plasma histamine, along with the reduction of mast surface c-Kit+ and FcεRI+ expression. Therefore, these results indicate that oxidation via AAPH and acrolein can potentially reduce the allergenicity of α-La, which can help with the better understanding of the changes in allergenicity of milk allergen by lipid peroxidation.
Collapse
Affiliation(s)
- Liangtao Lv
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Department of Respiratory & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518020, People's Republic of China
| | - Kan He
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Fan Sun
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xiao Lin
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Liying Ye
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Yansi Lyu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Department of Obstetricians and Gynaecologists, Shenzhen University General Hospital, Shenzhen, Guangdong 518060, People's Republic of China
| | - Lizhong Liu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Linlin Wang
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Department of Digestion, Shenzhen University General Hospital, Shenzhen, Guangdong 518060, People's Republic of China
| | - Zhigang Liu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| |
Collapse
|
12
|
Meng X, Zeng Z, Gao J, Tong P, Wu Y, Li X, Chen H. Conformational changes in bovine α-lactalbumin and β-lactoglobulin evoked by interaction with C18 unsaturated fatty acids provide insights into increased allergic potential. Food Funct 2020; 11:9240-9251. [PMID: 33034612 DOI: 10.1039/d0fo02028a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bovine α-lactalbumin (BLA) and β-lactoglobulin (BLG) are the most common and severe food allergens in milk and they can bind C18 unsaturated fatty acids (UFAs) and their bioactivities were changed. This study aims to determine the effects of C18 UFAs on the structures of BLA and BLG and their allergic properties, such as antigenicity and allergenicity. We reveal that C18 UFAs can efficiently promote the gradual unfolding of the structures of BLA and BLG and increase their hydrophobicity. Moreover, the IgG binding ability and the expression of IgG-dependent activation marker CD200R3 on basophils were remarkably promoted after C18 UFA treatment. Finally, we also observed that C18 UFAs can enhance the IgE binding ability and the degranulation capacity of human basophil KU812 cells (intracellular Ca2+, histamine, β-Hex, and IL-6). Collectively, these results suggested that C18 UFAs changed the structures of BLA and BLG, which contributed to their increased allergic potential.
Collapse
Affiliation(s)
- Xuanyi Meng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China. and Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China. and Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China. and School of Food Science & Technology, Nanchang University, Nanchang 330031, China
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Yong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China. and Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China. and School of Food Science & Technology, Nanchang University, Nanchang 330031, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China. and Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
13
|
Ahmed I, Lin H, Li Z, Xu L, Qazi IM, Luo C, Gao X, Khan MU, Iqbal A, Guo Y, Pavase TR, Sun L. Tyrosinase/caffeic acid cross-linking alleviated shrimp (Metapenaeus ensis) tropomyosin-induced allergic responses by modulating the Th1/Th2 immunobalance. Food Chem 2020; 340:127948. [PMID: 32896779 DOI: 10.1016/j.foodchem.2020.127948] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/27/2020] [Accepted: 08/25/2020] [Indexed: 01/01/2023]
Abstract
In this study, the effect of enzymatic cross-linking of shrimp tropomyosin (TM) with tyrosinase and caffeic acid (TM-Tyr/CA) on the allergic response were assessed using in vitro and in vivo models. The RBL-2H3 and KU812 cell lines were employed to evaluate the changes in the stimulation abilities of TM-Tyr/CA that showed significant inhibition of mediators and cytokines. The digestibility of cross-linked TM was improved and the recognitions of IgG/IgE were markedly reduced, as revealed by western blotting. TM-Tyr/CA decreased anaphylactic symptoms, and hindered the levels of IgG1, IgE, histamine, tryptase and mouse mast-cell protease-1 (mMCP-1) in mice sera. Cross-linked TM downregulated the production of interleukin (IL)-4, IL-5, and IL-13 by 51.36, 12.24 and 20.55%, respectively, whereas, IL-10 and IFN-γ were upregulated by 20.71 and 19.0%. TM-Tyr/CA showed reduced allergenicity and may have preventive effect in relieving TM induced allergic response via immunosuppression and positive modulation of T-helper (Th)1/Th2 immunobalance.
Collapse
Affiliation(s)
- Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China.
| | - Lili Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Ihsan Mabood Qazi
- Department of Food Science and Technology, The University of Agriculture Peshawar-Pakistan, Peshawar, Pakistan
| | - Chen Luo
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Xiang Gao
- Department of Allergy, The Affiliated Hospital of Medical College of Qingdao University, Qingdao, Shandong Province 266003, PR China
| | - Mati Ullah Khan
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Amjad Iqbal
- Department of Agriculture, Garden Campus, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Yuman Guo
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Tushar Ramesh Pavase
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Lirui Sun
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| |
Collapse
|
14
|
Ahmed I, Lin H, Xu L, Li S, Costa J, Mafra I, Chen G, Gao X, Li Z. Immunomodulatory Effect of Laccase/Caffeic Acid and Transglutaminase in Alleviating Shrimp Tropomyosin (Met e 1) Allergenicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7765-7778. [PMID: 32609503 DOI: 10.1021/acs.jafc.0c02366] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work aimed to investigate the effect of enzymatic cross-linking on the allergenic potential of shrimp tropomyosin (TM), Met e 1. The cross-linked TM with laccase (CL), laccase/caffeic acid (CLC and CLC+), and transglutaminase (CTG and CTG+) formed macromolecules and altered the allergen conformation. The IgG/IgE-binding potentials of the cross-linked TM were reduced as confirmed by Western blotting and ELISA. Enzymatic cross-linking improved the gastrointestinal digestibility and induced a lower level of degranulation in RBL-2H3 and KU812 cells. Moreover, cross-linked TM decreased anaphylactic symptoms, as well as reduced the serum levels of IgG1, IgE, histamine, tryptase, and mMCP-1. In spleen cells, CLC+ and CTG+ downregulated the Th2-related cytokines and upregulated IFN-γ and IL-10. These findings revealed that CTG+ has shown more potential than CLC+ in mitigating the allergenicity of TM by influencing the conformational structure, enhancing the digestibility, decreasing the cellular degranulation process, and positively modulating the Th1/Th2 immunobalance.
Collapse
Affiliation(s)
- Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, People's Republic of China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, People's Republic of China
| | - Lili Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, People's Republic of China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science, Academy of Military Science, Tianjin 300050, People's Republic of China
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, Porto 4099-002, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, Porto 4099-002, Portugal
| | - Guanzhi Chen
- Department of Allergy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, People's Republic of China
| | - Xiang Gao
- Department of Allergy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, People's Republic of China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, People's Republic of China
| |
Collapse
|
15
|
Yang F, Zou L, Wu Y, Wu Z, Yang A, Chen H, Li X. Structure and allergenicity assessments of bovine β-lactoglobulin treated by sonication-assisted irradiation. J Dairy Sci 2020; 103:4109-4120. [DOI: 10.3168/jds.2019-17070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022]
|
16
|
Shi L, Xu H, Min F, Li X, Shi X, Gao J, Chen H. Imidacloprid exposure suppresses cytokine production and neutrophil infiltration in TLR2-dependent activation of RBL-2H3 cells and skin inflammation of BALB/c mice. NEW J CHEM 2020. [DOI: 10.1039/d0nj01945c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imidacloprid suppressed TNF-α and IL-6 production and neutrophil infiltration, without altering mast cell degranulation.
Collapse
Affiliation(s)
- Linbo Shi
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
- Department of Pathogen Biology and Immunology
| | - Huaping Xu
- Department of Rehabilitation
- The First Affiliated Hospital of Nanchang University
- Nanchang
- China
| | - Fangfang Min
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
- Sino-German Joint Research Institute
| | - Xin Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University
- Nanchang 330006
- China
| | - Xiaoyun Shi
- School of Food Science
- Nanchang University
- Nanchang
- China
| | - Jinyan Gao
- School of Food Science
- Nanchang University
- Nanchang
- China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
- Sino-German Joint Research Institute
| |
Collapse
|
17
|
Shi LB, Xu HP, Wu YJ, Li X, Gao JY, Chen HB. The effects of imidacloprid combined with endosulfan on IgE-mediated mouse bone marrow-derived mast cell degranulation and anaphylaxis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 148:159-165. [PMID: 29891367 DOI: 10.1016/j.pestbp.2018.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/14/2018] [Accepted: 04/23/2018] [Indexed: 05/07/2023]
Abstract
Low levels of endosulfan are known to stimulate mast cells to release allergic mediators, while imidacloprid can inhibit IgE-mediated mast cell degranulation. However, little information about the effects of both pesticides together on mast cell degranulation is available. To measure the effects, IgE-activated mouse bone marrow-derived mast cells (BMMCs) were treated with imidacloprid and endosulfan, individually, and simultaneously at equi-molar concentrations in tenfold steps ranging from 10-4 to 10-11 M, followed by measuring several allergy-related parameters expressed in BMMCs: the mediator production and influx of Ca2+, the phosphorylation content of NF-κB in the FcεRI signaling pathway. Then, the effects of the mixtures on IgE-induced passive systemic anaphylaxis (PSA) of BALB/c was detectded. This study clearly showed that the application of equi-molar mixtures of both pesticides with 10-4-10-5 M significantly inhibited the IgE-mediated mouse bone marrow-derived mast cells degranulation in vitro and 10-4 M of them decreased IgE-mediated PSA in vivo, as the application of imidacloprid at the same concentration alone did. Morever endosulfan alone had no remarkable stimulatory effects on any of the factors measured. In conclusion, simultaneous application of equi-molar concentrations of both pesticides generally showed highly similar responses compared to the responses to imidacloprid alone, suggesting that the effects of the mixture could be solely attributed to the effects of imidacloprid.
Collapse
Affiliation(s)
- Lin-Bo Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Hua-Ping Xu
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu-Jie Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China; School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jin-Yan Gao
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hong-Bing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, China.
| |
Collapse
|