1
|
Huang M, Sun L, Song Z, Chen H, Gao P, Hou G, Stoychev GL, Wang B, Yang D, Qu J, Ye S. Electronic Structure Origins of Distinct Hydrogenation Activities Observed for Linear and Bent Bimetallic μ-Nitrides. Angew Chem Int Ed Engl 2025:e202424571. [PMID: 40329848 DOI: 10.1002/anie.202424571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/08/2025]
Abstract
Hydrogenation of metal nitrides is of particular interest due to the direct relevance to Haber-Bosch ammonia synthesis. Notably, for all bi- and multi-nuclear bridging nitrides reported thus far, only those featuring bent M─N─M cores can react with dihydrogen (H2) and related H2-derived species, while the vast majority of linear M─N─M congeners cannot. Herein, we present a detailed electronic-structure study of prototypical bimetallic bent μ-nitrides [Cp*FeIV(μ-SEt)2(μ-N)FeIVCp*][PF6] (1, Cp* = η5-C5Me5) and [Cp*CoIII(μ-SAd)(μ-N)CoIIICp*] (3, Ad = adamantyl) and linear μ-nitride [(TPP)FeIV(μ-N)FeIV(TPP)][PF6] (2, TPP2- = 5,10,15,20-tetraphenylporphinato), as well as μ-imide [Cp*CoIII(μ-SAd)(μ-NH)CoIIICp*][BPh4] (4), using various spectroscopic techniques, in particular, 15N solid-state nuclear magnetic resonance, coupled with density functional theory calculations. An in-depth analysis of their distinct 15N shielding tensors revealed that bent μ-nitrides invariably possess a high-lying proton-accepting molecular orbital (MO) and a low-lying electron-accepting MO. These electronic-structure features are key to the bent μ-nitrides affecting hydrogenolysis via either two-electron oxidation of H2 or H2 heterolysis. However, because of symmetry, linear μ-nitrides lack potent proton-accepting MOs, which rationalizes their disparate hydrogenation activities.
Collapse
Affiliation(s)
- Mengdi Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Luyang Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Zihe Song
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Haowei Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Pan Gao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Georgi L Stoychev
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelmplatz 1, D-45470, Mülheim an der Ruhr, Germany
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, P.R. China
- State Key Laboratory of Bioreactor Engineering, Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, P.R. China
| |
Collapse
|
2
|
Ye JY, Gerard TJ, Lee WT. [2Fe-2S] model compounds. Chem Commun (Camb) 2025; 61:2926-2940. [PMID: 39846454 DOI: 10.1039/d4cc04794j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
This feature article reviews the synthesis, structural comparison, and physical properties of [2Fe-2S] model compounds, which serve as vital tools for understanding the structure and function of Fe-S clusters in biological systems. We explore various synthetic methods for constructing [2Fe-2S] cores, offering insights into their biomimetic relevance. A comprehensive analysis and comparison of Mössbauer spectroscopy data between model compounds and natural protein systems are provided, highlighting the structural and electronic parallels. Additionally, we discuss the redox potentials of synthetic [2Fe-2S] compounds, their deviation from biological systems, and potential strategies to align them with natural counterparts. The review concludes with a discussion of future research directions, particularly the development of models capable of mimicking biological processes such as catalysis and electron transfer reactions. This article serves as a valuable resource for researchers in inorganic chemistry, bioinorganic chemistry, biochemistry, and related fields, offering both fundamental insights and potential applications of [2Fe-2S] clusters.
Collapse
Affiliation(s)
- Jun-Yang Ye
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan.
| | - Theodore J Gerard
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Wei-Tsung Lee
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
3
|
Hertler PR, Sauza-de la Vega A, Darù A, Sarkar A, Lewis RA, Wu G, Gagliardi L, Hayton TW. A homoleptic Fe(iv) ketimide complex with a low-lying excited state. Chem Sci 2024; 15:d4sc04880f. [PMID: 39309088 PMCID: PMC11411412 DOI: 10.1039/d4sc04880f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
The reaction of 4 equiv. of Li(N[double bond, length as m-dash]C( t Bu)Ph) with FeIICl2 results in isolation of [Li(Et2O)]2[FeII(N[double bond, length as m-dash]C( t Bu)Ph)4] (1), in good yields. The reaction of 1 with 1 equiv. of I2 leads to formation of [FeIV(N[double bond, length as m-dash]C( t Bu)Ph)4] (2), in moderate yields. 57Fe Mössbauer spectroscopy confirms the Fe(iv) oxidation state of 2, and X-ray crystallography reveals that 2 has a square planar coordination geometry along with several intramolecular H⋯C interactions. Furthermore, SQUID magnetometry indicates a small magnetic moment at room temperature, suggestive of an accessible S = 1 state. Both density functional theory and multiconfigurational calculations were done to elucidate the nature of the ground state. Consistent with the experimental results, the ground state was found to be an S = 0 state with an S = 1 excited state close in energy.
Collapse
Affiliation(s)
- Phoebe R Hertler
- Department of Chemistry and Biochemistry, University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Arturo Sauza-de la Vega
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago Chicago IL 60637 USA
| | - Andrea Darù
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago Chicago IL 60637 USA
| | - Arup Sarkar
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago Chicago IL 60637 USA
| | - Richard A Lewis
- Department of Chemistry and Biochemistry, University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago Chicago IL 60637 USA
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara Santa Barbara CA 93106 USA
| |
Collapse
|
4
|
Mei T, Zhang P, Song Z, Wang B, Qu J, Ye S, Yang D. Unusual Hydrogenation Reactivities of a Thiolate-Bridged Dicobalt μ-Nitride Featuring a Bent {Co III-N-Co III} Core. J Am Chem Soc 2023; 145:20578-20587. [PMID: 37674257 DOI: 10.1021/jacs.3c07254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Transition metal nitrides have received considerable attention owing to their crucial roles in nitrogen fixation and nitrogen atom transfer reactions. Compared to the early and middle transition metals, it is much more challenging to access late transition metal nitrides, especially cobalt in group 9. So far, only a handful of cobalt nitrides have been reported; consequently, their hydrogenation reactivity is largely unexplored. Herein, we present a structurally and spectroscopically well-characterized thiolate-bridged dicobalt μ-nitride [Cp*CoIII(μ-SAd)(μ-N)CoIIICp*] (2) featuring a bent {CoIII(μ-N)CoIII} core. Remarkably, complex 2 can realize not only direct hydrogenation of nitride to amide but also stepwise N-H bond formation from nitride to ammonia. Specifically, 2 can facilely activate dihydrogen (H2) at mild conditions to generate a dicobalt μ-amide [Cp*CoII(μ-SAd)(μ-NH2)CoIICp*] (4) via an unusual mechanism of two-electron oxidation of H2 as proposed by computational studies; in the presence of protons (H+) and electrons, nitride 2 can convert to dicobalt μ-imide [Cp*CoIII(μ-SAd)(μ-NH)CoIIICp*][BPh4] (3[BPh4]) and to CoIICoII μ-amide 4, and finally release ammonia. In contrast to 2, the only other structurally characterized dicobalt μ-nitride Na(THF)4{[(ketguan)CoIII(N3)]2(μ-N)} (ketguan = [(tBu2CN)C(NDipp)2]-, Dipp = 2,6-diisopropylphenyl) (e) that possesses a linear {CoIII(μ-N)CoIII} moiety cannot directly react with H2 or H+. Further in-depth electronic structure analyses shed light on how the varying geometries of the {CoIII(μ-N)CoIII} moieties in 2 and e, bent vs linear, impart their disparate reactivities.
Collapse
Affiliation(s)
- Tao Mei
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Peng Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zihe Song
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Bioreactor Engineering, Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
5
|
Zars E, Gravogl L, Gau MR, Carroll PJ, Meyer K, Mindiola DJ. Isostructural bridging diferrous chalcogenide cores [Fe II(μ-E)Fe II] (E = O, S, Se, Te) with decreasing antiferromagnetic coupling down the chalcogenide series. Chem Sci 2023; 14:6770-6779. [PMID: 37350823 PMCID: PMC10283490 DOI: 10.1039/d3sc01094e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
Iron compounds containing a bridging oxo or sulfido moiety are ubiquitous in biological systems, but substitution with the heavier chalcogenides selenium and tellurium, however, is much rarer, with only a few examples reported to date. Here we show that treatment of the ferrous starting material [(tBupyrpyrr2)Fe(OEt2)] (1-OEt2) (tBupyrpyrr2 = 3,5-tBu2-bis(pyrrolyl)pyridine) with phosphine chalcogenide reagents E = PR3 results in the neutral phosphine chalcogenide adduct series [(tBupyrpyrr2)Fe(EPR3)] (E = O, S, Se; R = Ph; E = Te; R = tBu) (1-E) without any electron transfer, whereas treatment of the anionic starting material [K]2[(tBupyrpyrr2)Fe2(μ-N2)] (2-N2) with the appropriate chalcogenide transfer source yields cleanly the isostructural ferrous bridging mono-chalcogenide ate complexes [K]2[(tBupyrpyrr2)Fe2(μ-E)] (2-E) (E = O, S, Se, and Te) having significant deviation in the Fe-E-Fe bridge from linear in the case of E = O to more acute for the heaviest chalcogenide. All bridging chalcogenide complexes were analyzed using a variety of spectroscopic techniques, including 1H NMR, UV-Vis electronic absorbtion, and 57Fe Mössbauer. The spin-state and degree of communication between the two ferrous ions were probed via SQUID magnetometry, where it was found that all iron centers were high-spin (S = 2) FeII, with magnetic exchange coupling between the FeII ions. Magnetic studies established that antiferromagnetic coupling between the ferrous ions decreases as the identity of the chalcogen is tuned from O to the heaviest congener Te.
Collapse
Affiliation(s)
- Ethan Zars
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| | - Lisa Gravogl
- Department of Chemistry & Pharmacy, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU) Egerlandstr. 1 91058 Erlangen Bavaria Germany
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| | - Karsten Meyer
- Department of Chemistry & Pharmacy, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU) Egerlandstr. 1 91058 Erlangen Bavaria Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| |
Collapse
|
6
|
Bresciani G, Zacchini S, Pampaloni G, Bortoluzzi M, Marchetti F. Diiron Aminocarbyne Complexes with NCE− Ligands (E = O, S, Se). Molecules 2023; 28:molecules28073251. [PMID: 37050013 PMCID: PMC10096932 DOI: 10.3390/molecules28073251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023] Open
Abstract
Diiron μ-aminocarbyne complexes [Fe2Cp2(NCMe)(CO)(μ-CO){μ-CN(Me)(R)}]CF3SO3 (R = Xyl, [1aNCMe]CF3SO3; R = Me, [1bNCMe]CF3SO3; R = Cy, [1cNCMe]CF3SO3; R = CH2Ph, [1dNCMe]CF3SO3), freshly prepared from tricarbonyl precursors [1a–d]CF3SO3, reacted with NaOCN (in acetone) and NBu4SCN (in dichloromethane) to give [Fe2Cp2(kN-NCO)(CO)(μ-CO){μ-CN(Me)(R)}] (R = Xyl, 2a; Me, 2b; Cy, 2c) and [Fe2Cp2(kN-NCS)(CO)(μ-CO){μ-CN(Me)(CH2Ph)}], 3 in 67–81% yields via substitution of the acetonitrile ligand. The reaction of [1aNCMe–1cNCMe]CF3SO3 with KSeCN in THF at reflux temperature led to the cyanide complexes [Fe2Cp2(CN)(CO)(μ-CO){μ-CNMe(R)}], 6a–c (45–67%). When the reaction of [1aNCMe]CF3SO3 with KSeCN was performed in acetone at room temperature, subsequent careful chromatography allowed the separation of moderate amounts of [Fe2Cp2(kSe-SeCN)(CO)(μ-CO){μ-CN(Me)(Xyl)}], 4a, and [Fe2Cp2(kN-NCSe)(CO)(μ-CO){μ-CN(Me)(Xyl)}], 5a. All products were fully characterized by elemental analysis, IR, and multinuclear NMR spectroscopy; moreover, the molecular structure of trans-6b was ascertained by single crystal X-ray diffraction. DFT calculations were carried out to shed light on the coordination mode and stability of the {NCSe-} fragment.
Collapse
Affiliation(s)
- Giulio Bresciani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Stefano Zacchini
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Guido Pampaloni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Marco Bortoluzzi
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
- Department of Molecular Science and Nanosystems, University of Venezia “Ca’ Foscari”, Via Torino 155, I-30170 Mestre, Italy
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| |
Collapse
|
7
|
Münster K, Baabe D, Kintzel B, Böhme M, Plass W, Raeder J, Walter MD. Low-Coordinate Iron(II) Amido Half-Sandwich Complexes with Large Internal Magnetic Hyperfine Fields. Inorg Chem 2022; 61:18883-18898. [DOI: 10.1021/acs.inorgchem.2c02768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Katharina Münster
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig38106, Germany
| | - Dirk Baabe
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig38106, Germany
| | - Benjamin Kintzel
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, Jena07743, Germany
| | - Michael Böhme
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, Jena07743, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, Jena07743, Germany
| | - Jan Raeder
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig38106, Germany
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig38106, Germany
| |
Collapse
|
8
|
Su L, Yang D, Jiang Y, Li Y, Di K, Wang B, Ye S, Qu J. A Bioinspired Iron‐Molybdenum μ‐Nitrido Complex and Its Reactivity toward Ammonia Formation. Angew Chem Int Ed Engl 2022; 61:e202203121. [DOI: 10.1002/anie.202203121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Linan Su
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Yang Jiang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116024 China
| | - Yahui Li
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Kai Di
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Shengfa Ye
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116024 China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
- State Key Laboratory of Bioreactor Engineering Shanghai Collaborative Innovation Centre for Biomanufacturing Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
9
|
Su L, Yang D, Jiang Y, Li Y, Di K, Wang B, Ye S, Qu J. A Bioinspired Iron‐Molybdenum μ‐Nitrido Complex and Its Reactivity toward Ammonia Formation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Linan Su
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Yang Jiang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116024 China
| | - Yahui Li
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Kai Di
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Shengfa Ye
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116024 China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
- State Key Laboratory of Bioreactor Engineering Shanghai Collaborative Innovation Centre for Biomanufacturing Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
10
|
Mei T, Yang D, Di K, Zhang Y, Zhao J, Wang B, Qu J. Synthesis, Characterization, and Catalytic Reactivity of Dithiolate-Bridged Diiron Complexes Supported by Bulky Cyclopentadienyl Ligands. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tao Mei
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Kai Di
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yanpeng Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jinfeng Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai,200231, P. R. China
| |
Collapse
|
11
|
Bootsma J, Browne WR, Flapper J, de Bruin B. Photoactive Fe Catalyst for Light-Triggered Alkyd Paint Curing. JACS AU 2022; 2:531-540. [PMID: 35253002 PMCID: PMC8889616 DOI: 10.1021/jacsau.1c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Herein, we show that the photoactive complexes [(Cp)Fe(arene)]+ (Cp = cyclopentadienyl; arene = C6H6, C6H5Me) act as latent catalysts that allow for photochemical control over the onset of alkyd paint curing, without the need for antiskinning agents such as the volatile 2-butanone oxime normally used to prevent curing during paint storage. The highly soluble neutral complexes [(Cp)Fe(Ch)] and [(Cp)Fe(Ch')] (Ch = cyclohexadienyl, Ch' = methylcyclohexadienyl) readily convert to the photoactive complexes [(Cp)Fe(arene)]+ upon oxidation in alkyd, allowing the latter to be dosed in a wide range of concentrations. Infrared and Raman studies show similar spectral changes of the alkyd paint matrix as have been observed in alkyd curing mediated by well-known, industrially applied cobalt- and manganese-based catalyst Co(neodecanoate)2 and [(Me3TACN)2Mn2(μ-OOCR)3](OOCR). The [(Cp)Fe(Ch)]/[(Cp)Fe(arene)]+ system performs equally well as these cobalt- and manganese-based catalysts in terms of drying time and outperform the manganese catalyst by showing a hardness development (increase) similar to that of the cobalt-based catalyst. Based on electron paramagnetic resonance and light-activity studies, we propose that photolysis of [(Cp)Fe(arene)]+ generates short-lived active FeII species, explaining the desired latency. The [(Cp)Fe(Ch)]/[(Cp)Fe(arene)]+ alkyd curing systems presented herein are unique examples of intrinsically latent paint curing catalysts that (1) are based on an abundant and harmless transition metal (Fe), (2) do not require any antiskinning agents, and (3) show favorable performance in terms of drying times and hardness development.
Collapse
Affiliation(s)
- Johan Bootsma
- Homogeneous,
Supramolecular and Bio-Inspired Catalysis Group, Van ’t Hoff
Institute for Molecular Sciences, University
of Amsterdam, Science
Park 904, 1098 XH Amsterdam, The Netherlands
| | - Wesley R. Browne
- Molecular
Inorganic Chemistry group, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Jitte Flapper
- Akzo
Nobel Decorative Coatings B.V., Rijksstraatweg 31, 2171 AJ Sassenheim, The Netherlands
| | - Bas de Bruin
- Homogeneous,
Supramolecular and Bio-Inspired Catalysis Group, Van ’t Hoff
Institute for Molecular Sciences, University
of Amsterdam, Science
Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
12
|
Zhang Y, Zhao J, Yang D, Wang B, Zhou Y, Wang J, Chen H, Mei T, Ye S, Qu J. A thiolate-bridged Fe IVFe IV μ-nitrido complex and its hydrogenation reactivity toward ammonia formation. Nat Chem 2022; 14:46-52. [PMID: 34949791 DOI: 10.1038/s41557-021-00852-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 11/02/2021] [Indexed: 11/09/2022]
Abstract
Iron nitrides are key intermediates in biological nitrogen fixation and the industrial Haber-Bosch process, used to form ammonia from dinitrogen. However, the proposed successive conversion of nitride to ammonia remains elusive. In this regard, the search for well-described multi-iron nitrido model complexes and investigations on controlling their reactivity towards ammonia formation have long been of great challenge and importance. Here we report a well-defined thiolate-bridged FeIVFeIV μ-nitrido complex featuring an uncommon bent Fe-N-Fe moiety. Remarkably, this complex shows excellent reactivity toward hydrogenation with H2 at ambient conditions, forming ammonia in high yield. Combined experimental and computational studies demonstrate that a thiolate-bridged FeIIIFeIII μ-amido complex is a key intermediate, which is generated through an unusual two-electron oxidation of H2. Moreover, ammonia production was also realized by treating this diiron μ-nitride with electrons and water as a proton source.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People's Republic of China
| | - Jinfeng Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People's Republic of China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People's Republic of China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People's Republic of China
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People's Republic of China
| | - Junhu Wang
- Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| | - Hui Chen
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Tao Mei
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People's Republic of China
| | - Shengfa Ye
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany. .,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People's Republic of China. .,State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China.
| |
Collapse
|
13
|
Aguirre Quintana LM, Yang Y, Ramanathan A, Jiang N, Bacsa J, Maron L, La Pierre HS. Chalcogen-atom abstraction reactions of a Di-iron imidophosphorane complex. Chem Commun (Camb) 2021; 57:6664-6667. [PMID: 34128515 DOI: 10.1039/d1cc02195h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reaction of the complexes [Fe2(μ2-NP(pip)3)2(NP(pip)3)2] (1-Fe) and [Co2(μ2-NP(pip)3)2(NP(pip)3)2] (1-Co), where [NP(pip)3]1- is tris(piperidinyl)imidophosphorane, with nitrous oxide, S8, or Se0 results in divergent reactivity. With nitrous oxide, 1-Fe forms [Fe2(μ2-O)(μ2-NP(pip)3)2(NP(pip)3)2] (2-Fe), with a very short Fe3+-Fe3+ distance. Reactions of 1-Fe with S8 or Se0 result in the bridging, side-on coordination (μ-κ1:κ1-E22-) of the heavy chalcogens in complexes [Fe2(μ-κ1:κ1-E2)(μ2-NP(pip)3)2(NP(pip)3)2] (E = S, 3-Fe, or Se, 4-Fe). In all cases, the complex 1-Co is inert.
Collapse
Affiliation(s)
- Luis M Aguirre Quintana
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
| | - Yan Yang
- Laboratorie de Physique et Chimie des Nano-objects, Institute National Des Sciences Appliquees, Toulouse 31077, Cedex 4, France
| | - Arun Ramanathan
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
| | - Ningxin Jiang
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
| | - John Bacsa
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
| | - Laurent Maron
- Laboratorie de Physique et Chimie des Nano-objects, Institute National Des Sciences Appliquees, Toulouse 31077, Cedex 4, France
| | - Henry S La Pierre
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA. and Nuclear and Radiological Engineering Program, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
14
|
Forrest SJK, Schluschaß B, Yuzik-Klimova EY, Schneider S. Nitrogen Fixation via Splitting into Nitrido Complexes. Chem Rev 2021; 121:6522-6587. [DOI: 10.1021/acs.chemrev.0c00958] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sebastian J. K. Forrest
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Bastian Schluschaß
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | | | - Sven Schneider
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| |
Collapse
|
15
|
Bai X, Mei T, Yang D, Su L, Wang B, Qu J. Synthesis, characterization and reactivity toward small molecules of a diiron tetrahydrido bridged complex. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Zhang S, Cui P, Liu T, Wang Q, Longo TJ, Thierer LM, Manor BC, Gau MR, Carroll PJ, Papaefthymiou GC, Tomson NC. N-H Bond Formation at a Diiron Bridging Nitride. Angew Chem Int Ed Engl 2020; 59:15215-15219. [PMID: 32441448 PMCID: PMC7680347 DOI: 10.1002/anie.202006391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Indexed: 01/07/2023]
Abstract
Despite their connection to ammonia synthesis, little is known about the ability of iron-bound, bridging nitrides to form N-H bonds. Herein we report a linear diiron bridging nitride complex supported by a redox-active macrocycle. The unique ability of the ligand scaffold to adapt to the geometric preference of the bridging species was found to facilitate the formation of N-H bonds via proton-coupled electron transfer to generate a μ-amide product. The structurally analogous μ-silyl- and μ-borylamide complexes were shown to form from the net insertion of the nitride into the E-H bonds (E=B, Si). Protonation of the parent bridging amide produced ammonia in high yield, and treatment of the nitride with PhSH was found to liberate NH3 in high yield through a reaction that engages the redox-activity of the ligand during PCET.
Collapse
Affiliation(s)
- Shaoguang Zhang
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Peng Cui
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Tianchang Liu
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Qiuran Wang
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Thomas J Longo
- Department of Physics, Villanova University, Villanova, PA, 19085, USA
| | - Laura M Thierer
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Brian C Manor
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Michael R Gau
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Patrick J Carroll
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | | | - Neil C Tomson
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
17
|
Zhang S, Cui P, Liu T, Wang Q, Longo TJ, Thierer LM, Manor BC, Gau MR, Carroll PJ, Papaefthymiou GC, Tomson NC. N−H Bond Formation at a Diiron Bridging Nitride. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shaoguang Zhang
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Peng Cui
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Tianchang Liu
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Qiuran Wang
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Thomas J. Longo
- Department of Physics Villanova University Villanova PA 19085 USA
| | - Laura M. Thierer
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Brian C. Manor
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Michael R. Gau
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Patrick J. Carroll
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | | | - Neil C. Tomson
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| |
Collapse
|
18
|
Reiners M, Baabe D, Münster K, Zaretzke MK, Freytag M, Jones PG, Coppel Y, Bontemps S, Rosal ID, Maron L, Walter MD. NH 3 formation from N 2 and H 2 mediated by molecular tri-iron complexes. Nat Chem 2020; 12:740-746. [PMID: 32601410 DOI: 10.1038/s41557-020-0483-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/05/2020] [Indexed: 01/27/2023]
Abstract
Living systems carry out the reduction of N2 to ammonia (NH3) through a series of protonation and electron transfer steps under ambient conditions using the enzyme nitrogenase. In the chemical industry, the Haber-Bosch process hydrogenates N2 but requires high temperatures and pressures. Both processes rely on iron-based catalysts, but molecular iron complexes that promote the formation of NH3 on addition of H2 to N2 have remained difficult to devise. Here, we isolate the tri(iron)bis(nitrido) complex [(Cp'Fe)3(μ3-N)2] (in which Cp' = η5-1,2,4-(Me3C)3C5H2), which is prepared by reduction of [Cp'Fe(μ-I)]2 under an N2 atmosphere and comprises three iron centres bridged by two μ3-nitrido ligands. In solution, this complex reacts with H2 at ambient temperature (22 °C) and low pressure (1 or 4 bar) to form NH3. In the solid state, it is converted into the tri(iron)bis(imido) species, [(Cp'Fe)3(μ3-NH)2], by addition of H2 (10 bar) through an unusual solid-gas, single-crystal-to-single-crystal transformation. In solution, [(Cp'Fe)3(μ3-NH)2] further reacts with H2 or H+ to form NH3.
Collapse
Affiliation(s)
- Matthias Reiners
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Dirk Baabe
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Katharina Münster
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Marc-Kevin Zaretzke
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Matthias Freytag
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Peter G Jones
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Yannick Coppel
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Toulouse, France
| | - Sébastien Bontemps
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Toulouse, France
| | - Iker Del Rosal
- Université de Toulouse, INSA-UPS-LPCNO and CNRS-LPCNO, Toulouse, France
| | - Laurent Maron
- Université de Toulouse, INSA-UPS-LPCNO and CNRS-LPCNO, Toulouse, France
| | - Marc D Walter
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany.
| |
Collapse
|
19
|
Peters M, Baabe D, Maekawa M, Bockfeld D, Zaretzke MK, Tamm M, Walter MD. Pogo-Stick Iron and Cobalt Complexes: Synthesis, Structures, and Magnetic Properties. Inorg Chem 2019; 58:16475-16486. [PMID: 31769666 DOI: 10.1021/acs.inorgchem.9b02411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis, structures, and magnetic properties of monomeric half-sandwich iron and cobalt imidazolin-2-iminato complexes have been comprehensively investigated. Salt metathesis reactions of [Cp'M(μ-I)]2 (1-M, M = Fe, Co; Cp' = η5-1,2,4-tri-tert-butylcyclopentadienyl) with [ImDippNLi]2 (ImDippN = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-iminato) furnishes the terminal half-sandwich compounds [Cp'M(NImDipp)] (2-M, M = Fe, Co), which can be regarded as models for elusive half-sandwich iron and cobalt imido complexes. X-ray diffraction analysis confirmed the structure motif of a one-legged piano stool. Complex 2-Co can also be prepared by an acid-base reaction between [Cp'Co{N(SiMe3)2}] (3-Co) and ImDippNH. The electronic and magnetic properties of 2-M and 3-Co were probed by 57Fe Mössbauer spectroscopy (M = Fe), X-band EPR spectroscopy (M = Co), and solid-state magnetic susceptibility measurements. In particular, the central metal atom adopts a high-spin (S = 2) state in 2-Fe, while the cobalt complex 2-Co represents a rare example of a Co(II) species with a coordination number different from six displaying a low-spin to high-spin spin-crossover (SCO) behavior. The experimental observations are complemented by DFT calculations.
Collapse
Affiliation(s)
- Marius Peters
- Institut für Anorganische und Analytische Chemie , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| | - Dirk Baabe
- Institut für Anorganische und Analytische Chemie , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| | - Miyuki Maekawa
- Institut für Anorganische und Analytische Chemie , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| | - Dirk Bockfeld
- Institut für Anorganische und Analytische Chemie , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| | - Marc-Kevin Zaretzke
- Institut für Anorganische und Analytische Chemie , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| |
Collapse
|
20
|
Su L, Yang D, Zhang Y, Wang B, Qu J. Methylene insertion into an Fe 2S 2 cluster: formation of a thiolate-bridged diiron complex containing an Fe-CH 2-S moiety. Chem Commun (Camb) 2018; 54:13119-13122. [PMID: 30398494 DOI: 10.1039/c8cc07418f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Reduction of a thiolate-bridged FeIIFeIII complex leads to the cleavage of an Fe-S bond by the insertion of the methylene unit from CH2Cl2 to give a neutral FeIIFeIII complex with a novel Fe-CH2-S fragment. The structural and electrochemical differences of the alkylated and the non-alkylated Fe2S2 complexes are also examined.
Collapse
Affiliation(s)
- Linan Su
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China.
| | | | | | | | | |
Collapse
|
21
|
Reiners M, Maekawa M, Baabe D, Zaretzke MK, Schweyen P, Daniliuc CG, Freytag M, Raeder J, Hohenberger J, Sutter J, Meyer K, Walter MD. Monomeric Fe(iii) half-sandwich complexes [Cp'FeX 2] - synthesis, properties and electronic structure. Dalton Trans 2018; 47:10517-10526. [PMID: 29924109 DOI: 10.1039/c8dt01570h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The half-sandwich complex [Cp'Fe(μ-I)]2 (1; Cp' = η5-1,2,4-(Me3C)3C5H2) is cleaved when heated in toluene to form a cation-anion pair [{Cp'Fe(η6-toluene)}+{Cp'FeI2}-] (2), in which the two Fe(ii) atoms adopt different spin states, i.e., a low-spin (S = 0) and a high-spin (S = 2) configuration. Upon oxidation of 1 with C2H4I2, the thermally stable 15VE species [Cp'FeI2] (3) can be isolated, in which the Fe(iii) atom adopts an intermediate spin (S = 3/2) configuration. Complex 3 is an excellent starting material for further functionalizations and it reacts with Mg(CH2SiMe3)2 to form the unprecedented Fe(iii) (S = 3/2) bis(alkyl) complex [Cp'Fe(CH2SiMe3)2] (4). The respective spin states of complexes 2-4 are confirmed by single-crystal X-ray crystallography, zero-field 57Fe Mössbauer spectroscopy, and solid-state magnetic susceptibility measurements. In contrast to the related 14VE high-spin (S = 2) Fe(ii) alkyl species [Cp'FeCH(SiMe3)2], which resists the reaction with H2 as a consequence of a spin-induced reaction barrier, complex 4 reacts cleanly with H2 (8 bar) in cyclohexane to yield iron hydrides [{Cp'Fe}2(μ-H)3] (5) and [Cp'Fe(μ-H)2]2 (6) in a 1 : 4 ratio. However, when the hydrogenation of 4 is carried out in benzene, a green 19VE [Cp'Fe(η6-C6H6)] (A) intermediate is formed, which dimerizes to the bis(cyclohexadienyl)-bridged product [(Cp'Fe)2(μ2-η5:η5-C12H12)] (7). Further evidence for the intermediacy of [Cp'Fe(η6-C6H6)] (A) was gathered by X-band EPR and UV/vis spectroscopy. Interestingly, attempts to oxidize 7 with AgSbF6 proceeded via C-C bond cleavage instead of metal oxidation to form [Cp'Fe(C6H6)][SbF6] (8).
Collapse
Affiliation(s)
- Matthias Reiners
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany.
| | - Miyuki Maekawa
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany.
| | - Dirk Baabe
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany.
| | - Marc-Kevin Zaretzke
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany.
| | - Peter Schweyen
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany.
| | - Constantin G Daniliuc
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany.
| | - Matthias Freytag
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany.
| | - Jan Raeder
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany.
| | - Johannes Hohenberger
- Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Department of Chemistry & Pharmacy, Inorganic Chemistry, Egerlandstr. 1, 91058 Erlangen, Germany
| | - Jörg Sutter
- Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Department of Chemistry & Pharmacy, Inorganic Chemistry, Egerlandstr. 1, 91058 Erlangen, Germany
| | - Karsten Meyer
- Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Department of Chemistry & Pharmacy, Inorganic Chemistry, Egerlandstr. 1, 91058 Erlangen, Germany
| | - Marc D Walter
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany.
| |
Collapse
|
22
|
Raeder J, Reiners M, Baumgarten R, Münster K, Baabe D, Freytag M, Jones PG, Walter MD. Synthesis and molecular structure of pentadienyl complexes of the rare-earth metals. Dalton Trans 2018; 47:14468-14482. [DOI: 10.1039/c8dt03123a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In combination with small and difficult to reduce rare-earth metals pdl′ undergoes CH-bond activations instead of sterically induced reductions to form dimeric complexes with a unique bridging six-membered metallacycle as the central structural motif.
Collapse
Affiliation(s)
- Jan Raeder
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| | - Matthias Reiners
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| | - Robert Baumgarten
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| | - Katharina Münster
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| | - Dirk Baabe
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| | - Matthias Freytag
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| | - Peter G. Jones
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| | - Marc D. Walter
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| |
Collapse
|
23
|
Cui P, Wang Q, McCollom SP, Manor BC, Carroll PJ, Tomson NC. Ring-Size-Modulated Reactivity of Putative Dicobalt-Bridging Nitrides: C−H Activation versus Phosphinimide Formation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng Cui
- P. Roy and Diana T. Vagelos Laboratories; Department of Chemistry; University of Pennsylvania; 231 South 34th Street Philadelphia PA 19104 USA
| | - Qiuran Wang
- P. Roy and Diana T. Vagelos Laboratories; Department of Chemistry; University of Pennsylvania; 231 South 34th Street Philadelphia PA 19104 USA
| | - Samuel P. McCollom
- P. Roy and Diana T. Vagelos Laboratories; Department of Chemistry; University of Pennsylvania; 231 South 34th Street Philadelphia PA 19104 USA
| | - Brian C. Manor
- P. Roy and Diana T. Vagelos Laboratories; Department of Chemistry; University of Pennsylvania; 231 South 34th Street Philadelphia PA 19104 USA
| | - Patrick J. Carroll
- P. Roy and Diana T. Vagelos Laboratories; Department of Chemistry; University of Pennsylvania; 231 South 34th Street Philadelphia PA 19104 USA
| | - Neil C. Tomson
- P. Roy and Diana T. Vagelos Laboratories; Department of Chemistry; University of Pennsylvania; 231 South 34th Street Philadelphia PA 19104 USA
| |
Collapse
|
24
|
Cui P, Wang Q, McCollom SP, Manor BC, Carroll PJ, Tomson NC. Ring-Size-Modulated Reactivity of Putative Dicobalt-Bridging Nitrides: C-H Activation versus Phosphinimide Formation. Angew Chem Int Ed Engl 2017; 56:15979-15983. [PMID: 29086476 DOI: 10.1002/anie.201708966] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/19/2017] [Indexed: 11/10/2022]
Abstract
Dicobalt complexes supported by flexible macrocyclic ligands were used to target the generation of the bridging nitrido species [(n PDI2 )Co2 (μ-N)(PMe3 )2 ]3+ (PDI=2,6-pyridyldiimine; n=2, 3, corresponding to the number of catenated methylene units between imino nitrogen atoms). Depending on the size of the macrocycle and the reaction conditions (solution versus solid-state), the thermolysis of azide precursors yielded bridging phosphinimido [(2 PDI2 )Co2 (μ-NPMe3 )(PMe3 )2 ]3+ , amido [(n PDI2 )Co2 (μ-NH2 )(PMe3 )2 ]3+ (n=2, 3), and C-H amination [(3 PDI2 *-μ-NH)Co2 (PMe3 )2 ]3+ products. All results are consistent with the initial formation of [(n PDI2 )Co2 (μ-N)(PMe3 )2 ]3+ , followed by 1) PMe3 attack on the nitride, 2) net hydrogen-atom transfer to form N-H bonds, or 3) C-H amination of the alkyl linker of the n PDI2 ligand.
Collapse
Affiliation(s)
- Peng Cui
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Qiuran Wang
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Samuel P McCollom
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Brian C Manor
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Patrick J Carroll
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Neil C Tomson
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
25
|
Reiners M, Baabe D, Zaretzke MK, Freytag M, Walter MD. Reversible dinitrogen binding to [Cp′Fe(NHC)] associated with an N2-induced spin state change. Chem Commun (Camb) 2017; 53:7274-7277. [DOI: 10.1039/c7cc01535f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible N2 coordination to [Cp′Fe(IiPr2Me2)] induces a spin-state change.
Collapse
Affiliation(s)
- Matthias Reiners
- Institut für Anorganische und Analytische Chemie, Technische Universität
- 38106 Braunschweig
- Germany
| | - Dirk Baabe
- Institut für Anorganische und Analytische Chemie, Technische Universität
- 38106 Braunschweig
- Germany
| | - Marc-Kevin Zaretzke
- Institut für Anorganische und Analytische Chemie, Technische Universität
- 38106 Braunschweig
- Germany
| | - Matthias Freytag
- Institut für Anorganische und Analytische Chemie, Technische Universität
- 38106 Braunschweig
- Germany
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität
- 38106 Braunschweig
- Germany
| |
Collapse
|