1
|
Ma N, Wang X, Zhang M, Lu S, Hua Z, Wu Z, An R, Li L. Programmable Interactions of Cellulose Acetate with Octadecyltrichlorosilane-Functionalized SiO 2 Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5956-5969. [PMID: 37084536 DOI: 10.1021/acs.langmuir.2c03232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
It is significant to understand the interfacial interactions involved between the cellulose acetate (CA) and dispersed nanomaterials, in which the enhanced interaction improves the mechanical behavior of CA. In this work, the amendments of CA with SiO2 nanoparticles have been found to be endowed by grafting varying concentrations (0, 3, 5, and 6%) of octadecyltrichlorosilane (OTS). Aided by SiO2 colloid probe atomic force microscopy (AFM with a probe diameter of 20 μm), the adhesion force between CA and SiO2 is found to be programmable by tuning OTS concentrations functionalized onto SiO2 surfaces. The adhesion forces of 5% OTS-functionalized SiO2 with CA are the strongest, followed by the ones of 0, 3, and 6% OTS, resulting in a smoother and denser morphology on the film with 5% OTS. The AFM-measured approaching force-distance curves have been further compared to predictions by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, in which the XDLVO force is summed as the Liftshitz-van der Waals force (FLW), the electrostatic double-layer force (FEL), and the acid-base interaction force (FAB). FLW and FEL do not change significantly with OTS concentrations functionalized onto SiO2. However, FAB is sensitive to the functionalized OTS concentration onto SiO2 and significantly contributes to the interaction force of the composite films with 5% OTS, promoting the formation of a smooth and dense surface feature with a considerable mechanical performance demonstrated by load-displacement curves from a nanoindenter. This is highly encouraging and suggests that nanomaterials can be incorporated into CA to effectively improve their mechanical compatibility by programming the interaction between the CA matrix and nanomaterials.
Collapse
Affiliation(s)
- Na Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Wang
- School of Materials Science and Engineering/Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mengjie Zhang
- School of Materials Science and Engineering/Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shenjie Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zelin Hua
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenyu Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Rong An
- School of Materials Science and Engineering/Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Licheng Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
TiO2-Embedded Biocompatible Hydrogel Production Assisted with Alginate and Polyoxometalate Polyelectrolytes for Photocatalytic Application. INORGANICS 2023. [DOI: 10.3390/inorganics11030092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The hybrid hydrogel materials meet important social challenges, including the photocatalytic purification of water and bio-medical applications. Here, we demonstrate two scenarios of polyacrylamide-TiO2 (PAAm@TiO2) composite hydrogel design using calcium alginate (Alg-Ca) or Keplerate-type polyoxometalates (POMs) {Mo132} tuning the polymer network structure. Calcium alginate molding allowed us to produce polyacrylamide-based beads with an interpenetrating network filled with TiO2 nanoparticles Alg-Ca@PAAm@TiO2, demonstrating the photocatalytic activity towards the methyl orange dye bleaching. Contrastingly, in the presence of the POM, the biocompatible PAAm@TiO2@Mo132 composite hydrogel was produced through the photo-polymerization approach (under 365 nm UV light) using vitamin B2 as initiator. For both types of the synthesized hydrogels, the thermodynamic compatibility, swelling and photocatalytic behavior were studied. The influence of the hydrogel composition on its structure and the mesh size of its network were evaluated using the Flory–Rehner equation. The proposed synthetic strategies for the composite hydrogel production can be easily scaled up to the industrial manufacturing of the photocatalytic hydrogel beads suitable for the water treatment purposes or the biocompatible hydrogel patch for medical application.
Collapse
|
3
|
Mansurov RR, Pavlova IA, Safronov AP. Adhesion of Polymer to TiO
2
Particles Decreases Photocatalytic Activity of Polyelectrolyte Hydrogel Photocatalyst. ChemistrySelect 2022. [DOI: 10.1002/slct.202202775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Irina A. Pavlova
- Institute of Electrophysics 106 Amundsen Str. 620016 Yekaterinburg, RF
| | | |
Collapse
|
4
|
Murshid N, Mouhtady O, Abu-samha M, Obeid E, Kharboutly Y, Chaouk H, Halwani J, Younes K. Metal Oxide Hydrogel Composites for Remediation of Dye-Contaminated Wastewater: Principal Component Analysis. Gels 2022; 8:702. [PMID: 36354610 PMCID: PMC9689451 DOI: 10.3390/gels8110702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 10/28/2023] Open
Abstract
Water pollution is caused by multiple factors, such as industrial dye wastewater. Dye-contaminated water can be treated using hydrogels as adsorbent materials. Recently, composite hydrogels containing metal oxide nanoparticles (MONPs) have been used extensively in wastewater remediation. In this study, we use a statistical and artificial intelligence method, based on principal component analysis (PCA) with different applied parameters, to evaluate the adsorption efficiency of 27 different MONP composite hydrogels for wastewater dye treatment. PCA showed that the hydrogel composites CTS@Fe3O4, PAAm/TiO2, and PEGDMA-rGO/Fe3O4@cellulose should be used in situations involving high pH, time to reach equilibrium, and adsorption capacity. However, as the composites PAAm-co-AAc/TiO2, PVPA/Fe3O4@SiO2, PMOA/ATP/Fe3O4, and PVPA/Fe3O4@SiO2, are preferred when all physical and chemical properties investigated have low magnitudes. To conclude, PCA is a strong method for highlighting the essential factors affecting hydrogel composite selection for dye-contaminated water treatment.
Collapse
Affiliation(s)
- Nimer Murshid
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Omar Mouhtady
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Mahmoud Abu-samha
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Emil Obeid
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Yahya Kharboutly
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Hamdi Chaouk
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Jalal Halwani
- Water and Environment Sciences Lab, Lebanese University, Tripoli, Lebanon
| | - Khaled Younes
- College of Engineering and Technology, American University of the Middle East, Kuwait
| |
Collapse
|
5
|
Mechanical Force Acting on Ferrogel in a Non-Uniform Magnetic Field: Measurements and Modeling. MICROMACHINES 2022; 13:mi13081165. [PMID: 35893163 PMCID: PMC9394417 DOI: 10.3390/mi13081165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023]
Abstract
The development of magnetoactive microsystems for targeted drug delivery, magnetic biodetection, and replacement therapy is an important task of present day biomedical research. In this work, we experimentally studied the mechanical force acting in cylindrical ferrogel samples due to the application of a non-uniform magnetic field. A commercial microsystem is not available for this type of experimental study. Therefore, the original experimental setup for measuring the mechanical force on ferrogel in a non-uniform magnetic field was designed, calibrated, and tested. An external magnetic field was provided by an electromagnet. The maximum intensity at the surface of the electromagnet was 39.8 kA/m and it linearly decreased within 10 mm distance from the magnet. The Ferrogel samples were based on a double networking polymeric structure which included a chemical network of polyacrylamide and a physical network of natural polysaccharide guar. Magnetite particles, 0.25 micron in diameter, were embedded in the hydrogel structure, up to 24% by weight. The forces of attraction between an electromagnet and cylindrical ferrogel samples, 9 mm in height and 13 mm in diameter, increased with field intensity and the concentration of magnetic particles, and varied within 0.1–30 mN. The model provided a fair evaluation of the mechanical forces that emerged in ferrogel samples placed in a non-uniform magnetic field and proved to be useful for predicting the deformation of ferrogels in practical bioengineering applications.
Collapse
|
6
|
Zheng F, Zhang Y, Dong L, Zhao D, Feng R, Tao P, Shang W, Fu B, Song C, Deng T. The impact of surface chemistry on the interfacial evaporation-driven self-assembly of thermoplasmonic gold nanoparticles. NANOSCALE 2021; 13:20521-20530. [PMID: 34854858 DOI: 10.1039/d1nr05729d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper reports an interfacial evaporation-driven approach for self-assembly of a gold nanoparticle (AuNP) film at the interface of liquid/air. We have designed colloidal plasmonic AuNPs capped with different types and surface coverage densities of ligands (i.e. purified and unpurified oleylamine-capped or thiol-protected AuNPs) and studied the impact of surface chemistry on the self-assembly of AuNPs using the optically excited plasmonic heating effect. By employing the extended DerjaguinLandau-Verwey-Overbeek model, the calculated lowest potential energies of the assembled AuNPs capped with purified oleylamine or alkyl thiols are between -1 kBT and -2 kBT, which is close to the room temperature thermal energy and represents a meta-stable assembly, indicating the reversible self-assembly of the AuNP film observed from the experiment. Furthermore, we observed the superheating phenomenon in well-dispersed nanoparticle solution while normal boiling occurred in the solutions with AuNP assemblies. The SERS activity of the as-prepared AuNP film has also been studied using rhodamine 6G as a molecular probe. This work not only provides a new aspect of the boiling phenomena of optically heated colloidal plasmonic nanoparticle solutions, but also provides inspiration for a new approach in designing surface ligands on the nanoparticles to realize reversible self-assembly via interfacial evaporation.
Collapse
Affiliation(s)
- Feiyu Zheng
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Yingyue Zhang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Liuchang Dong
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Dengwu Zhao
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Rui Feng
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Peng Tao
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Wen Shang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Benwei Fu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Chengyi Song
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Tao Deng
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| |
Collapse
|
7
|
Terziyan TV, Safronov AP, Beketov IV, Medvedev AI, Armas SF, Kurlyandskaya GV. Adhesive and Magnetic Properties of Polyvinyl Butyral Composites with Embedded Metallic Nanoparticles. SENSORS 2021; 21:s21248311. [PMID: 34960405 PMCID: PMC8706494 DOI: 10.3390/s21248311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022]
Abstract
Magnetic metallic nanoparticles (MNPs) of Ni, Ni82Fe18, Ni50Fe50, Ni64Fe36, and Fe were prepared by the technique of the electrical explosion of metal wire. The average size of the MNPs of all types was in the interval of 50 to 100 nm. Magnetic polymeric composites based on polyvinyl butyral with embedded metal MNPs were synthesized and their structural, adhesive, and magnetic properties were comparatively analyzed. The interaction of polyvinyl butyral (supplied as commercial GE cryogenic varnish) with metal MNPs was studied by microcalorimetry. The enthalpy of adhesion was also evaluated. The positive values of the enthalpy of interaction with GE increase in the series Ni82Fe18, Ni64Fe36, Ni50Fe50, and Fe. Interaction of Ni MNPs with GE polymer showed the negative change in the enthalpy. No interfacial adhesion of GE polymer to the surface of Fe and permalloy MNPs in composites was observed. The enthalpy of interaction with GE polymer was close to zero for Ni95Fe5 composite. Structural characterization of the GE/Ni composites with the MNPs with the lowest saturation magnetization confirmed that they tended to be aggregated even for the materials with lowest MNPs concentrations due to magnetic interaction between permalloy MNPs. In the case of GE composites with Ni MNPs, a favorable adhesion of GE polymer to the surface of MNPs was observed.
Collapse
Affiliation(s)
- Tatyana V. Terziyan
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia; (T.V.T.); (A.P.S.); (I.V.B.)
| | - Alexander P. Safronov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia; (T.V.T.); (A.P.S.); (I.V.B.)
- Pulsed Processes Laboratory, Institute of Electrophysics UB RAS, 620016 Ekaterinburg, Russia;
| | - Igor V. Beketov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia; (T.V.T.); (A.P.S.); (I.V.B.)
- Pulsed Processes Laboratory, Institute of Electrophysics UB RAS, 620016 Ekaterinburg, Russia;
| | - Anatoly I. Medvedev
- Pulsed Processes Laboratory, Institute of Electrophysics UB RAS, 620016 Ekaterinburg, Russia;
| | | | - Galina V. Kurlyandskaya
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia; (T.V.T.); (A.P.S.); (I.V.B.)
- Department of Electricity and Electronics, Basque Country University UPV/EHU, 48940 Leioa, Spain
- Correspondence: or ; Tel.: +34-94-601-3237
| |
Collapse
|
8
|
Safronov AP, Zubarev AY, Mikhnevich EA, Rusinova EV. A kinetic model for magnetostriction of a ferrogel with physical networking. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200315. [PMID: 34275357 DOI: 10.1098/rsta.2020.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2020] [Indexed: 06/13/2023]
Abstract
Kinetics of magnetostriction of ferrogel with physical networking based on natural polysaccharide guar gum with embedded strontium hexaferrite magnetic particles were studied in the uniform magnetic field 420 mT. An ellipsoidal sample was elongated by 37% along the applied field and contracted by 15% in the transverse direction, while its volume was kept constant. The characteristic time of magnetostriction was 440 s. Dynamic mechanical analysis in an oscillatory mode showed that the deformation of ferrogel is mostly elastic rather than viscous. Its storage modulus was almost constant in a frequency range of 0.1-100 Hz and by at least an order of magnitude larger than the loss modulus. Meanwhile, a developed theoretical model based on the elasto-viscous behaviour of the ferrogel failed to estimate correctly the experimental value of its magnetostriction. Calculated values of the elongation of ferrogel in the field were several orders of magnitude lower than those observed in the experiment for the ferrogel with physical networking. Consistency between the experiment and the theory was achieved using the alternative consideration based on the deformation of a liquid droplet of ferrofluid. The applicability of such an approach was discussed concerning structural relaxation properties of the ferrogel with physical networking. This article is part of the theme issue 'Transport phenomena in complex systems (part 1)'.
Collapse
Affiliation(s)
- A P Safronov
- Institute of Natural Sciences and Mathematics, Ural Federal University, Lenin Ave, 51, Ekaterinburg, 620083, Russia
- Institute of Electrophysics UB RAS, Ekaterinburg, 620016, Russia
| | - A Yu Zubarev
- Institute of Natural Sciences and Mathematics, Ural Federal University, Lenin Ave, 51, Ekaterinburg, 620083, Russia
- M.N. Mikheev Institute of Metal Physics UB RAS, Ekaterinburg, Russia
| | - E A Mikhnevich
- Institute of Natural Sciences and Mathematics, Ural Federal University, Lenin Ave, 51, Ekaterinburg, 620083, Russia
| | - E V Rusinova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Lenin Ave, 51, Ekaterinburg, 620083, Russia
| |
Collapse
|
9
|
Elfimova EA, Ivanov AO, Camp PJ. Static magnetization of immobilized, weakly interacting, superparamagnetic nanoparticles. NANOSCALE 2019; 11:21834-21846. [PMID: 31696187 DOI: 10.1039/c9nr07425b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The magnetization curve and initial susceptibility of immobilized superparamagnetic nanoparticles are studied using statistical-mechanical theory and Monte Carlo computer simulations. The nanoparticles are considered to be distributed randomly within an implicit solid matrix, but with the easy axes distributed according to particular textures: these are aligned parallel or perpendicular to an external magnetic field, or randomly distributed. The magnetic properties are calculated as functions of the magnetic crystallographic anisotropy barrier (measured with respect to the thermal energy by a parameter σ), and the Langevin susceptibility (related to the dipolar coupling constant and the volume fraction). It is shown that the initial susceptibility χ is independent of σ in the random case, an increasing function of σ in the parallel case, and a decreasing function of σ in the perpendicular case. Including particle-particle interactions enhances χ, and especially so in the parallel case. A first-order modified mean-field (MMF1) theory is accurate as compared to the simulation results, except in the parallel case with a large value of σ. These observations can be explained in terms of the range and strength of the (effective) interactions and correlations between particles, and the effects of the orientational degrees of freedom. The full magnetization curves show that a parallel texture enhances the magnetization, while a perpendicular texture suppresses it, with the effects growing with increasing σ. In the random case, while the initial response is independent of σ, the high-field magnetization decreases with increasing σ. These trends can be explained by the energy required to rotate the magnetic moments with respect to the easy axes.
Collapse
Affiliation(s)
- Ekaterina A Elfimova
- Ural Federal University, 51 Lenin Avenue, 620000 Ekaterinburg, Russian Federation.
| | | | | |
Collapse
|
10
|
Safronov AP, Stadler BJH, Um J, Zamani Kouhpanji MR, Alonso Masa J, Galyas AG, Kurlyandskaya GV. Polyacrylamide Ferrogels with Ni Nanowires. MATERIALS 2019; 12:ma12162582. [PMID: 31412653 PMCID: PMC6721771 DOI: 10.3390/ma12162582] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022]
Abstract
Nickel magnetic nanowires (NWs) have attracted significant attention due to their unique properties, which are useful for basic studies and technological applications, for example in biomedicine. Their structure and magnetic properties were systematically studied in the recent years. In this work, Ni NWs with high aspect ratios (length/diameter ~250) were fabricated by electrodeposition into commercial anodic aluminum oxide templates. The templates were then etched and the NWs were suspended in water, where their hydrodynamic size was evaluated by dynamic light scattering. The magnetic response of these NWs as a function of an external magnetic field indicates a dominant shape anisotropy with propagation of the vortex domain wall as the main magnetization reversal process. The suspension of Ni NWs was used in the synthesis of two types of polyacrylamide ferrogels (FGs) by free radical polymerization, with weight fractions of Ni NWs in FGs of 0.036% and 0.169%. The FGs were reasonably homogeneous. The magnetic response of these FGs (hysteresis loops) indicated that the NWs are randomly oriented inside the FG, and their magnetic response remains stable after embedding.
Collapse
Affiliation(s)
- Alexander P Safronov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
- Institute of Electrophysics, Ural Division RAS, 620016 Ekaterinburg, Russia
| | - Bethanie J H Stadler
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph Um
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | - Andrey G Galyas
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
| | - Galina V Kurlyandskaya
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia.
- Departamento Electricidad y Electrónica, Universidad del País Vasco UPV-EHU, 48080 Bilbao, Spain.
| |
Collapse
|
11
|
Joisten H, Truong A, Ponomareva S, Naud C, Morel R, Hou Y, Joumard I, Auffret S, Sabon P, Dieny B. Optical response of magnetically actuated biocompatible membranes. NANOSCALE 2019; 11:10667-10683. [PMID: 31094399 DOI: 10.1039/c9nr00585d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biocompatible suspended magneto-elastic membranes were prepared. They consist of PDMS (polydimethylsiloxane) films, with embedded arrays of micrometric magnetic pillars made with lithography techniques. For visible light wavelengths, our membranes constitute magnetically tunable optical diffraction gratings, in transmission and reflection. The optical response has been quantitatively correlated with membrane structure and deformation, through optical and magneto-mechanical models. In contrast to the case of planar membranes, the diffraction patterns measured in reflection and transmission vary very differently upon magnetic field application. Indeed, the reflected beam is largely affected by the membrane bending, whereas the transmitted beam remains almost unchanged. In reflection, even weak membrane deformation can produce significant changes of the diffraction patterns. This field-controlled optical response may be used in adaptive optical applications, photonic devices, and for biological applications.
Collapse
Affiliation(s)
- H Joisten
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SPINTEC, 38000 Grenoble, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Blyakhman FA, Makarova EB, Fadeyev FA, Lugovets DV, Safronov AP, Shabadrov PA, Shklyar TF, Melnikov GY, Orue I, Kurlyandskaya GV. The Contribution of Magnetic Nanoparticles to Ferrogel Biophysical Properties. NANOMATERIALS 2019; 9:nano9020232. [PMID: 30744036 PMCID: PMC6410145 DOI: 10.3390/nano9020232] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Iron oxide γ-Fe2O3 magnetic nanoparticles (MNPs) were fabricated by laser target evaporation technique (LTE) and their structure and magnetic properties were studied. Polyacrylamide (PAAm) gels with different cross-linking density of the polymer network and polyacrylamide-based ferrogel with embedded LTE MNPs (0.34 wt.%) were synthesized. Their adhesive and proliferative potential with respect to human dermal fibroblasts were studied. At the same value of Young modulus, the adhesive and proliferative activities of the human dermal fibroblasts on the surface of ferrogel were unexpectedly much higher in comparison with the surface of PAAm gel. Properties of PAAm-100 + γ-Fe2O3 MNPs composites were discussed with focus on creation of a new generation of drug delivery systems combined in multifunctional devices, including magnetic field assisted delivery, positioning, and biosensing. Although exact applications are still under development, the obtained results show a high potential of LTE MNPs to be applied for cellular technologies and tissue engineering. PAAm-100 ferrogel with very low concentration of γ-Fe2O3 MNPs results in significant improvement of the cells’ compatibility to the gel-based scaffold.
Collapse
Affiliation(s)
- Felix A Blyakhman
- Ural State Medical University, 620028 Ekaterinburg, Russia.
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia.
| | - Emilia B Makarova
- Ural State Medical University, 620028 Ekaterinburg, Russia.
- Ural Scientific Institute of Traumatology and Orthopaedics, 620014 Ekaterinburg, Russia.
| | - Fedor A Fadeyev
- Ural State Medical University, 620028 Ekaterinburg, Russia.
- Center of Specialized Types of Medical Care Institute of Medical Cell Technologies, 620026 Ekaterinburg, Russia.
| | - Daiana V Lugovets
- Center of Specialized Types of Medical Care Institute of Medical Cell Technologies, 620026 Ekaterinburg, Russia.
| | - Alexander P Safronov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia.
- Institute of Electrophysics, Ural Division RAS, 620016 Yekaterinburg, Russia.
| | - Pavel A Shabadrov
- Ural State Medical University, 620028 Ekaterinburg, Russia.
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia.
| | - Tatyana F Shklyar
- Ural State Medical University, 620028 Ekaterinburg, Russia.
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia.
| | - Grigory Yu Melnikov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia.
| | - Iñaki Orue
- Advanced Research Facilities (SGIKER), Universidad del País Vasco UPV-EHU, 48080 Bilbao, Spain.
| | - Galina V Kurlyandskaya
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia.
- Universidad del País Vasco UPV/EHU, Departamento de Electricidad y Electrónica and BCMaterials, 48080 Bilbao, Spain.
| |
Collapse
|
13
|
Kennedy S, Roco C, Déléris A, Spoerri P, Cezar C, Weaver J, Vandenburgh H, Mooney D. Improved magnetic regulation of delivery profiles from ferrogels. Biomaterials 2018; 161:179-189. [PMID: 29421554 PMCID: PMC5849080 DOI: 10.1016/j.biomaterials.2018.01.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/16/2018] [Accepted: 01/27/2018] [Indexed: 01/01/2023]
Abstract
While providing the ability to magnetically enhance delivery rates, ferrogels have not been able to produce the various types of regulated delivery profiles likely needed to direct complex biological processes. For example, magnetically triggered release after prolonged periods of payload retention have not been demonstrated and little has been accomplished towards remotely controlling release rate through alterations in the magnetic signal. Also, strategies do not exist for magnetically coordinating multi-drug sequences. The purpose of this study was to develop these capabilities through improved ferrogel design and investigating how alterations in the magnetic signal impact release characteristics. Results show that delivery rate can be remotely regulated using the frequency of magnetic stimulation. When using an optimized biphasic ferrogel design, stimulation at optimized frequencies enabled magnetically triggered deliveries after a delay of 5 days that were 690- to 1950-fold higher than unstimulated baseline values. Also, a sequence of two payloads was produced by allowing one payload to initially diffuse out of the ferrogel, followed by magnetically triggered release of a different payload on day 5. Finally, it was demonstrated that two payloads could be sequentially triggered for release by first stimulating at a frequency tuned to preferentially release one payload (after 24 h), followed by stimulation at a different frequency tuned to preferentially release the other payload (After 4 days). The strategies developed here may expand the utility of ferrogels in clinical scenarios where the timing and sequence of biological events can be tuned to optimize therapeutic outcome.
Collapse
Affiliation(s)
- Stephen Kennedy
- Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA; Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Charles Roco
- Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Alizée Déléris
- Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Patrizia Spoerri
- Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Christine Cezar
- Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - James Weaver
- Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Herman Vandenburgh
- Department of Molecular Pharmacology, Physiology and Biotechnology, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - David Mooney
- Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|