1
|
Cui Y, Zhang X, Chen G, Liu K, Meng H, Shen J, Wang J, Feng X. Microfibrillated cellulose reinforced polyethyleneimine cryogels fabricated via cryo-induced chemical crosslinking for enhanced removal of albumin-bound bilirubin. Int J Biol Macromol 2025; 306:141595. [PMID: 40024415 DOI: 10.1016/j.ijbiomac.2025.141595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Bilirubin exists as albumin-bound complexes in the bloodstream of patients with hyperbilirubinemia. Developing adsorbents with high removal efficiency for albumin-bound bilirubin and excellent hemocompatibility is essential for effective hemoperfusion therapy. Herein, microfibrillated cellulose-reinforced polyethyleneimine cryogels (PEI/MFC) with robust mechanical properties were fabricated through cryo-induced chemical crosslinking, using bis(vinylsulphonyl)methane (BVSM) as chemical cross-linker. The cryogel showed excellent fatigue resistance, retaining its shape after 100 underwater compression-decompression cycles at 80 % strain. The inherent properties of raw materials confer the PEI/MFC cryogel with exceptional blood compatibility in hemolysis, coagulation, and blood cell adhesion. Compared with conventional materials modified with PEI, our innovative PEI/MFC cryogel presents a higher density of amino groups, resulting in superior removal efficacy for bilirubin. The PEI/MFC cryogel achieved a remarkable removal efficiency of 99.6 % for free bilirubin and 64.3 % for albumin-bound bilirubin, at bilirubin concentrations of 200 mg/L and cryogel dosages of 2 mg/mL. The maximum adsorption capacity for albumin-bound bilirubin was determined to be 210.5 mg/g, representing a notable achievement. Furthermore, fixed-bed column adsorptions exhibit a 50 % breakthrough volume of 760.9 mL/g for free bilirubin and 334.6 mL/g for albumin-bound bilirubin. The successful simulation of hemoperfusion using the PEI/MFC cryogel indicates its potential for the treatment of hyperbilirubinemia.
Collapse
Affiliation(s)
- Yuchen Cui
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Xufeng Zhang
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Gang Chen
- The affiliated Ganmei Hospital, Kunming Medical University, Kunming 650000, China.
| | - Kaimin Liu
- The affiliated Ganmei Hospital, Kunming Medical University, Kunming 650000, China
| | - He Meng
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Jing Shen
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Jun Wang
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Xiyun Feng
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
2
|
Ferreira NS, Moreno TDJC, Duarte CEDS, Moreira MG, Ucella-Filho JGM, Ferreira IM, Severi JA, Ignacchiti MDC, Villanova JCO, Resende JA. Exploring the antifungal potential and action mechanism of pomegranate peel extract against Candida species in planktonic and biofilm conditions. Microb Pathog 2025; 204:107596. [PMID: 40246159 DOI: 10.1016/j.micpath.2025.107596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
Candidiasis, a fungal infection caused by Candida spp., poses a growing clinical challenge due to the development of antifungal resistance. This study assessed the efficacy of dry crude pomegranate peel extract (DCPPE) as an antifungal agent against Candida infections (C. albicans, C. parapsilosis, C. krusei and C. glabrata) by investigating its effects on fungal growth, biofilm disruption, and fungal cell membrane integrity, as well as evaluating its safety regarding hemolysis at different concentrations. The DCPPE exhibited inhibitory activity against all tested Candida strains, with MIC of 1 % (10 mg/mL). These results may be associated with the phenolic composition of the peel extract, which includes compounds like gallic acid, punicalagin A, punicalagin B, and ellagic acid. Furthermore, the DCPPE disrupted Candida biofilms and demonstrated safety with respect to hemolysis at concentrations up to 60 mg/mL. However, no evidence of a direct interaction with the fungal cell wall or ergosterol in the fungal membrane was found. Thus, our results highlight the potential of DCPPE as a promising alternative for the treatment of candidiasis. Nevertheless, further research is needed to fully clarify the underlying mechanisms and optimize its clinical efficacy.
Collapse
Affiliation(s)
- Nicolly Soares Ferreira
- Graduate Program in Veterinary Sciences, Center for Agricultural Sciences and Engineering - CCAE, Federal University of Espírito Santo - UFES, Alto Universitário, No Number, Guararema, 29500-000, Alegre, ES, Brazil; Department of Pharmacy and Nutrition, Center of Exact, Natural and Health Sciences - CCENS, Federal University of Espírito Santo - UFES, Alto Universitário, No Number, Guararema, 29500-000, Alegre, ES, Brazil.
| | - Talita de Jesus Catten Moreno
- Department of Pharmacy and Nutrition, Center of Exact, Natural and Health Sciences - CCENS, Federal University of Espírito Santo - UFES, Alto Universitário, No Number, Guararema, 29500-000, Alegre, ES, Brazil
| | - Carlos Eduardo de Souza Duarte
- Department of Pharmacy and Nutrition, Center of Exact, Natural and Health Sciences - CCENS, Federal University of Espírito Santo - UFES, Alto Universitário, No Number, Guararema, 29500-000, Alegre, ES, Brazil
| | - Myleny Goularte Moreira
- Department of Pharmacy and Nutrition, Center of Exact, Natural and Health Sciences - CCENS, Federal University of Espírito Santo - UFES, Alto Universitário, No Number, Guararema, 29500-000, Alegre, ES, Brazil
| | - João Gilberto Meza Ucella-Filho
- Department of Forestry Engineering, Center for Agricultural Sciences - CCA, Federal University of Viçosa - UFV, Viçosa, MG, 36570-900, Brazil
| | - Irlon Maciel Ferreira
- Laboratory of Biocatalysis and Applied Organic Synthesis, Department of Exact and Technological Sciences, Federal University of Amapá, Rod. JK, Km 02, Macapá, 68903-419, Brazil
| | - Juliana Aparecida Severi
- Department of Pharmacy and Nutrition, Center of Exact, Natural and Health Sciences - CCENS, Federal University of Espírito Santo - UFES, Alto Universitário, No Number, Guararema, 29500-000, Alegre, ES, Brazil
| | - Mariana Drummond Costa Ignacchiti
- Department of Pharmacy and Nutrition, Center of Exact, Natural and Health Sciences - CCENS, Federal University of Espírito Santo - UFES, Alto Universitário, No Number, Guararema, 29500-000, Alegre, ES, Brazil
| | - Janaina Cecília Oliveira Villanova
- Graduate Program in Veterinary Sciences, Center for Agricultural Sciences and Engineering - CCAE, Federal University of Espírito Santo - UFES, Alto Universitário, No Number, Guararema, 29500-000, Alegre, ES, Brazil; Department of Pharmacy and Nutrition, Center of Exact, Natural and Health Sciences - CCENS, Federal University of Espírito Santo - UFES, Alto Universitário, No Number, Guararema, 29500-000, Alegre, ES, Brazil
| | - Juliana Alves Resende
- Graduate Program in Veterinary Sciences, Center for Agricultural Sciences and Engineering - CCAE, Federal University of Espírito Santo - UFES, Alto Universitário, No Number, Guararema, 29500-000, Alegre, ES, Brazil; Department of Pharmacy and Nutrition, Center of Exact, Natural and Health Sciences - CCENS, Federal University of Espírito Santo - UFES, Alto Universitário, No Number, Guararema, 29500-000, Alegre, ES, Brazil
| |
Collapse
|
3
|
Wei X, Zhu H, Hong D, Li X, Shi Z, Yang Q. Nanocellulose/Graphene Oxide Composite Beads as a Novel Hemoperfusion Adsorbent for Efficient Removal of Bilirubin Plasma. Biomacromolecules 2025; 26:2458-2466. [PMID: 40036674 DOI: 10.1021/acs.biomac.4c01838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Conventional hemoperfusion adsorbents suffer from inefficiency and poor biocompatibility. Cellulose, a natural polysaccharide with biocompatible, biodegradable, and nontoxic properties, was combined with graphene oxide (GO) to fabricate composite beads (TGO) for blood purification. GO synthesized via a modified Hummers method was complexed with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (TOCNs). Increasing GO content (2-20 wt %) enhanced TGO's specific surface area (256.4-289.0 m2 g-1) while retaining an ∼10 nm pore size. TGO demonstrated exceptional adsorption capacities: bilirubin (418.4 mg g-1), creatinine (23.5 mg g-1), uric acid (146.6 mg g-1), and Cu2+ (171.9 mg g-1). The beads exhibited excellent hemocompatibility (hemolysis rate <5%) and prolonged recalcification time (585 ± 5.2 s). Notably, TGO restored blood bilirubin levels to normal within 30 min, highlighting its potential for blood purification.
Collapse
Affiliation(s)
- Xuanru Wei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Hengfeng Zhu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Dichan Hong
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Xiangxian Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zhuqun Shi
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Quanling Yang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
4
|
Zhang Z, Wang L, Yu Q, Li J, Li P, Luan S, Shi H. Bacterial Specific Recognition of Sulfonium Poly(Amino Acid) Adsorbents for Ultrafast MRSA Capture Against Bloodstream Infection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501298. [PMID: 40223366 DOI: 10.1002/smll.202501298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections pose significant health risks, potentially leading to severe conditions such as bacteremia. Developing effective treatments to eliminate resistant bacteria from the bloodstream, simultaneously mitigate infection-related complications, and reduce mortality remains challenging. Herein, microspheres are synthesized with bacterial elimination and inflammation prevention by crosslinked sulfonium poly(amino acids). As-synthesized microsphere, PM1 0.6B MS, exhibits an ultrafast adsorption efficiency of 0.41 × 108 CFU mg-1 min-1 for MRSA, which positions the highest index among the reported resin and inorganic adsorptions. This bacterial-specific and efficient capture of PM1 0.6B MS is attributed to its strong interactions with teichoic acids in MRSA (Ka: 1.8 × 105 M-1) rather than acting with phospholipids of mammalian cells. Unlike the present resin-based adsorbent, for example, heparin-modified polyethylene in the only commercial Seraph® 100, PM1 0.6B MS kills adsorbed bacteria within 1 h and can be reused by simple treatment. Meanwhile, PM1 0.6B MS also shows good hemocompatibility and longer thrombin activation time to reduce the risk of thrombosis and hemolysis. In vivo experiments further confirm the abilities of PM1 0.6B MS to prevent inflammation by removing bacteria. This adsorbent is a promising candidate for early treating life-threatening bloodstream infections, potentially preventing bacteremia and subsequent organ damage.
Collapse
Affiliation(s)
- Zhenyan Zhang
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Flexible Electronics (IFE), Shaanxi Key Laboratory of Flexible Electronics and MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Qing Yu
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Changchun, 130022, P. R. China
| | - Peng Li
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Flexible Electronics (IFE), Shaanxi Key Laboratory of Flexible Electronics and MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Shifang Luan
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
5
|
Li X, Zhu H, Wei X, Yang Q, Xiong C, Shi Z. Nanocellulose/activated carbon composite aerogel beads with high adsorption capacity for toxins in blood. Int J Biol Macromol 2025; 300:140279. [PMID: 39863232 DOI: 10.1016/j.ijbiomac.2025.140279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Activated carbon is extensively utilized in blood purification applications. However, its performance has been significantly limited by their poor blood compatibility. In this work, 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-oxidized cellulose nanofibers (TOCN) and activated carbon (AC) were used to form composite beads by the drop curing method to improve hemocompatibility. The TOCN/AC composite beads had porous surface and exhibited extraordinary adsorption properties. The beads had a high adsorption capacity for creatinine with the optimal adsorption capacity of 83.33 mg g-1. And the equilibrium adsorption of bilirubin, uric acid and Cu2+ by TOCN/AC beads was as high as 159.80 mg g-1, 114.61 mg g-1 and 154.0 mg g-1, respectively, with a mass ratio of TOCN to AC of 1:4. It is also observed that the adsorption behavior of TOCN/AC beads on creatinine was consistent with the second-order kinetics and Langmuir isothermal model. The hemolysis rate of TOCN/AC was 1.21 %, indicating that TOCN/AC beads had good blood compatibility. The clearance of creatinine toxin in blood by TOCN/AC beads was as high as 87 % within 90 min. Overall, our produced composite beads had great potential for application in the field of blood purification.
Collapse
Affiliation(s)
- Xiangxian Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Hengfeng Zhu
- School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Xuanru Wei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Quanling Yang
- School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanxi Xiong
- School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Zhuqun Shi
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China.
| |
Collapse
|
6
|
Mu L, Wu L, Wu S, Ye Q, Zhong Z. Progress in chitin/chitosan and their derivatives for biomedical applications: Where we stand. Carbohydr Polym 2024; 343:122233. [PMID: 39174074 DOI: 10.1016/j.carbpol.2024.122233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 08/24/2024]
Abstract
Chitin and its deacetylated form, chitosan, have demonstrated remarkable versatility in the realm of biomaterials. Their exceptional biocompatibility, antibacterial properties, pro- and anticoagulant characteristics, robust antioxidant capacity, and anti-inflammatory potential make them highly sought-after in various applications. This review delves into the mechanisms underlying chitin/chitosan's biological activity and provides a comprehensive overview of their derivatives in fields such as tissue engineering, hemostasis, wound healing, drug delivery, and hemoperfusion. However, despite the wealth of studies on chitin/chitosan, there exists a notable trend of homogeneity in research, which could hinder the comprehensive development of these biomaterials. This review, taking a clinician's perspective, identifies current research gaps and medical challenges yet to be addressed, aiming to pave the way for a more sustainable future in chitin/chitosan research and application.
Collapse
Affiliation(s)
- Lanxin Mu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China; Southwest Hospital of Third Military Medical University (Army Medical University), Department of Plastic Surgery, Chongqing 400038, China
| | - Liqin Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China.
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China.
| |
Collapse
|
7
|
Wang S, Yang Y, Chen H, Wang Q, Xie J, Du K. Preparing high-performance microspheres based on the chitosan-assisted dispersion of reduced graphene oxide in aqueous solution for bilirubin removal. J Chromatogr A 2024; 1722:464884. [PMID: 38615558 DOI: 10.1016/j.chroma.2024.464884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
The removal of excess bilirubin from blood is of great clinical importance. Reduced graphene oxide (rGO) is often used to efficiently remove bilirubin. However, thin rGO pieces tend to aggregate in the aqueous phase because they are hydrophobic. In this context, we propose an effective strategy based on the chitosan-assisted (CS-assisted) dispersion of rGO to produce high-performance bilirubin-adsorbing microspheres. CS possesses a hydrophobic CH structure, which offers strong hydrophobic interactions with rGO that assist its dispersion, and the large number of hydrophilic sites of CS increases the hydrophilicity of rGO. CS serves as a dispersant in a surfactant-like manner to achieve a homogeneous and stable CS/rGO dispersion by simply and gently stirring CS and rGO in a LiOH/KOH/urea/H2O system. Subsequently, CS/rGO hybrid microspheres were prepared by emulsification. CS ensures blood compatibility as a base material, and the entrapped rGO contributes to mechanical strength and a high adsorption capacity. The CS/rGO microspheres exhibited a high bilirubin adsorption capacity (215.56 mg/g), which is significantly higher than those of the rGO and CS microspheres. The determined mass-transfer factors revealed that the rich pores of the CS/rGO microspheres promote mass transfer during bilirubin adsorption (equilibrium is almost achieved within 30 min). The CS/rGO microspheres are promising candidates for bilirubin removal owing to a combination of high strength, blood compatibility, and high adsorption capacity.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yilin Yang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Haoqiu Chen
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Qin Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jiao Xie
- Cheng Du Best Graphite Tech Co., Ltd, No.8, Xinxian Industrial Park No.66, Antai 7th Road, West hi tech Zone, Chengdu 610065, PR China.
| | - Kaifeng Du
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
8
|
Liao J, Zhou Y, Zhao X, Hou B, Zhang J, Huang H. Chitin microspheres: From fabrication to applications. Carbohydr Polym 2024; 329:121773. [PMID: 38286547 DOI: 10.1016/j.carbpol.2023.121773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024]
Abstract
Chitin microspheres (CMs) have attracted increasing attention due to their biocompatibility, uniform size and shape, large surface area, and porous structure. Considerable research efforts have been focused on developing CMs and promoting their applications in various areas. In this context, this review aims to describe the most recent progress in the fabrication and application of CMs. Different routes that can be used to prepare CMs, such as the drip method and the emulsion method, are emphatically introduced. Moreover, the applications of CMs as drug delivery systems, wound dressings, three-dimensional (3D) scaffolds, water purification, and functional supporting materials in the fields of biomedicine, tissue engineering, environmental protection, and energy storage are also highlighted. We hope this review can provide a comprehensive and useful database for further innovation of CMs.
Collapse
Affiliation(s)
- Jing Liao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China.
| | - Yuhang Zhou
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xingyue Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Bo Hou
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China.
| | - Huihua Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
9
|
Zhou W, Hu W, Zhan Q, Zhang M, Liu X, Hussain W, Yu H, Wang S, Zhou L. Novel hemoperfusion adsorbents based on collagen for efficient bilirubin removal - A thought from yellow skin of patients with hyperbilirubinemia. Int J Biol Macromol 2023; 253:127321. [PMID: 37820900 DOI: 10.1016/j.ijbiomac.2023.127321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Hemoperfusion is a well-developed method for removing bilirubin from patients with hyperbilirubinemia. The performance of adsorbents is crucial during the process. However, most adsorbents used for bilirubin removal are not suitable for clinical applications, because they either have poor adsorption performance or limited biocompatibility. Patients with hyperbilirubinemia usually have distinctive yellow skin, indicating that collagen, a primary component of the skin, may be an effective material for absorbing bilirubin from the blood. Based on this idea, we designed and synthesized collagen (Col) and collagen-polyethyleneimine (Col-PEI) microspheres and employed them as hemoperfusion adsorbents for bilirubin removal. The microspheres have an efficient adsorption rate, higher bilirubin adsorption capacity, and competitive adsorption of bilirubin in the bilirubin/bovine serum albumin (BSA) solution. The maximum adsorption capacities of Col and Col-PEI microspheres for bilirubin are 150.2 mg/g and 258.4 mg/g, respectively, which are higher than those of most traditional polymer microspheres. Additionally, the microspheres exhibit excellent blood compatibility originating from collagen. Our study provides a new collagen-based strategy for the hemoperfusion treatment of hyperbilirubinemia.
Collapse
Affiliation(s)
- Wan Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenbin Hu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiancheng Zhan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Minjun Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinjie Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wajid Hussain
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huibin Yu
- Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan 442099, China
| | - Shenqi Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Lei Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
10
|
Li Q, Zhu Y, Li Y, Yang J, Bao Z, Tian S, Wang X, Zhang L. Reusable Zwitterionic Porous Organic Polymers for Bilirubin Removal in Serum. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38048490 DOI: 10.1021/acsami.3c11824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Herein, we report a straightforward strategy to construct reusable, hemocompatible, and highly efficient bilirubin adsorbents by installing zwitterionic modules into a porous organic polymer (POP) for hemoperfusion application. Three types of zwitterions with different amounts are used to evaluate their impacts on the characteristics of POPs, including carboxybetaine methacrylate (CB), sulfobetaine methacrylate (SB), and 2-methacryloyloxyethyl phosphorylcholine (MPC). Results show that zwitterions can improve hemocompatibility, hydrophilicity, and bilirubin uptake of the POP. Among all zwitterionic POPs, POP-CB-40% exhibits the best bilirubin uptake, ∼46.5 times enhancement compared with the non-zwitterionic POP in 100% serum. This enhancement can be attributed to the improved hydrophilicity and protein resistance ability in biological solutions. More importantly, the reusability test shows that POP-CB-40% maintains ∼99% of bilirubin uptake capacity at fifth recycling in 100% serum. Findings in this work provide a guideline for the design of biocompatible and efficient POP-based bilirubin adsorbents for hemoperfusion therapy.
Collapse
Affiliation(s)
- Qingsi Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Yingnan Zhu
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjian Li
- Cardiovascular Department, Tianjin Nankai Hospital, No. 122, Sanwei Road, Nankai District, Tianjin 300102, China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Zhun Bao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Shu Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Xiaodong Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| |
Collapse
|
11
|
Wei F, Qi F, Li Y, Dou W, Zeng T, Wang J, Yao Z, Zhang L, Tang Z. Amino-rich nanofiber membrane with favorable hemocompatibility for highly efficient removal of bilirubin from plasma. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
12
|
Zou Y, Yue P, Cao H, Wu L, Xu L, Liu Z, Wu S, Ye Q. Biocompatible and biodegradable chitin-based hydrogels crosslinked by BDDE with excellent mechanical properties for effective prevention of postoperative peritoneal adhesion. Carbohydr Polym 2023; 305:120543. [PMID: 36737194 DOI: 10.1016/j.carbpol.2023.120543] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
Postoperative peritoneal adhesions are common complications caused by abdominal and pelvic surgery, which seriously impact the quality of life of patients and impose additional financial burdens. Using of biomedical materials as physical barriers to completely isolate the traumatic organ and injured tissue is an optimal strategy for preventing postoperative adhesions. However, the limited efficacy and difficulties in the complete degradation or integration of biomedical materials with living tissues restrict the application of these materials. In this study, novel chitin-based crosslinked hydrogels with appropriate mechanical properties and flexibilities were developed using a facile and green strategy. The developed hydrogels simultaneously exhibited excellent biocompatibilities and resistance to nonspecific protein adsorption and NIH/3T3 fibroblast adhesion. Furthermore, these hydrogels were biodegradable and could be completely integrated into the native extracellular matrix. The chitin-based crosslinked hydrogels also effectively inhibited postoperative peritoneal adhesions in rat models of adhesion and recurrence. Therefore, these novel chitin-based crosslinked hydrogels are excellent candidate physical barriers for the efficient prevention of postoperative peritoneal adhesions and provide a new anti-adhesion strategy for biomedical applications.
Collapse
Affiliation(s)
- Yongkang Zou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Pengpeng Yue
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Hankun Cao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Liqin Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Li Xu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Zhongzhong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China.
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China; The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha 410013, China.
| |
Collapse
|
13
|
Gao X, Liu K, Liu P, Bai X, Li A, Lyu Z, Li Q. Preparation and properties of cellulose acetate graft copolymer‐coated adsorbent resin for hemoperfusion device. J Appl Polym Sci 2023. [DOI: 10.1002/app.53895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
14
|
Gan N, Sun Q, Peng X, Ai P, Wu D, Yi B, Xia H, Wang X, Li H. MOFs-alginate/polyacrylic acid/poly (ethylene imine) heparin-mimicking beads as a novel hemoadsorbent for bilirubin removal in vitro and vivo models. Int J Biol Macromol 2023; 235:123868. [PMID: 36870639 DOI: 10.1016/j.ijbiomac.2023.123868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Metal-organic frameworks (MOFs) have a potential application in blood purification, but their microcrystalline nature has hampered their industrial application. Here, novel MOFs-polymer beads based on UiO, sodium alginate, polyacrylic acid, and poly (ethylene imine) were prepared and applied as a whole blood hemoadsorbent for the first time. The amidation among polymers immobilized UiO66-NH2 into the network of the optimal product (SAP-3), and the NH2 of UiO66-NH2 significantly increased the removal rate (70 % within 5 min) of SAP-3 on bilirubin. The adsorption of SAP-3 on bilirubin mainly obeyed the pseudo-second-order kinetic, Langmuir isotherm and Thomas models with a maximum adsorption capacity (qm) of 63.97 mg·g-1. Experimental and density functional theory simulation results show that bilirubin was mainly adsorbed by UiO66-NH2via electrostatic force, hydrogen bonding, and π-π interactions. Notably, the adsorption in vivo show that the total bilirubin removal rate in the whole blood of the rabbit model was up to 42 % after 1 h of adsorption. Given its excellent stability, cytotoxicity, and hemocompatibility, SAP-3 has a great potential in hemoperfusion therapy. This study proposes an effective strategy for settling the powder property of MOFs and could provide experimental and theoretical references for application of MOFs in blood purification.
Collapse
Affiliation(s)
- Na Gan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Qiaomei Sun
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xu Peng
- Laboratory Animal Center, Sichuan University, Chengdu 610065, China
| | - Pu Ai
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Bin Yi
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd., No.367, Hongjin Road, Kunming 650231, China
| | - Haobin Xia
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xinlong Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
15
|
Hazarika S, Ahmed S, Chamkha AJ. Heat Transfer of Casson Fluid in Poiseuille Flow of Carbon Nanotubes: A Power Series Approach. JOURNAL OF NANOFLUIDS 2023. [DOI: 10.1166/jon.2023.1995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Combination of Carbon Nanotubes (CNTs) with Human blood as base fluid indicates the enhancement of heat transport in Poiseuille flow and this physical phenomenon could not possible in normal liquids. Usually, when blood cells get touch with external surfaces, the platelets of blood
become activated and form blood clots. Therefore, we have considered blood compatible CNT, so that chosen base fluid (blood) can easily pass through it. Due to the higher thermal conductivity, CNTs play an important role to enhance the heat transport in blood flow. These features lead to the
novelty of this investigation to study the heat transport of Casson fluid through CNTs in unsteady MHD free convective Poiseuille flow with thermal radiation. Such study consigns practical applications in manufacturing of drugs, biomedical and Tissue engineering, biosensor and other applications
in myocardial therapy, neuronal and muscle regeneration. The non-dimensional governing equations are formulated and solved analytically through classical Perturbation Technique and the analysis of results are drawn in smooth curves via MATLAB code. Significant results for different implanted
parameters are compared between SWCNT and MWCNT and their significant behaviours are plotted graphically. The obtained results indicate that Casson parameter accelerates the flow velocity for MWCNT and SWCNT. Furthermore, interesting behavior on the outlines of velocity for SWCNT and MWCNT
due to the presence of Schmidt number, Peclet number and Reynolds number are detected. Comparison with previously published work has been inspected and originated excellent agreement.
Collapse
Affiliation(s)
- Silpi Hazarika
- Heat Transfer and Fluid Mechanics Research, Department of Mathematics, Rajiv Gandhi University, Rono Hills, Itanagar, Arunachal Pradesh 791112, India
| | - Sahin Ahmed
- Heat Transfer and Fluid Mechanics Research, Department of Mathematics, Rajiv Gandhi University, Rono Hills, Itanagar, Arunachal Pradesh 791112, India
| | - Ali J. Chamkha
- Faculty of Engineering, Kuwait College of Science and Technology, Doha District, 35004, Kuwait
| |
Collapse
|
16
|
Liu J, Lu X, Shu G, Li K, Kong X, Zheng S, Li T, Yang J. Heparin/polyethyleneimine dual-sided functional polyvinylidene fluoride plasma separation membrane for bilirubin removal. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Bao C, Zhang X, Shen J, Li C, Zhang J, Feng X. Freezing-triggered gelation of quaternized chitosan reinforced with microfibrillated cellulose for highly efficient removal of bilirubin. J Mater Chem B 2022; 10:8650-8663. [PMID: 36218039 DOI: 10.1039/d2tb01407f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The highly efficient removal of bilirubin from blood by hemoperfusion for liver failure therapy remains a challenge in the clinical field due to the low adsorption capacity and poor hemocompatibility of currently used carbon-based adsorbents. Polysaccharide-based cryogels seem to be promising candidates for hemoperfusion adsorbents owing to their inherited excellent hemocompatibility. However, the weak mechanical strength and relatively low adsorption capacity of polysaccharide-based cryogels limited their application in bilirubin adsorption. In this work, we presented a freezing-triggered strategy to fabricate QCS/MFC cryogels, which were formed by quaternized chitosan (QCS) crosslinked with divinylsulfonyl methane (BVSM) and reinforced with microfibrillated cellulose (MFC). Ice crystal exclusions triggered the chemical crosslinking to generate the cryogels with dense pore walls. The obtained QCS/MFC cryogels were characterized by FTIR, SEM, stress-strain test, and hemocompatibility assay, which exhibited interconnected macroporous structures, excellent shape-recovery and mechanical performance, and outstanding blood compatibility. Due to the quaternary ammonium functionalization of chitosan, the QCS/MFC showed a high adsorption capacity of 250 mg g-1 and a short adsorption equilibrium time of 3 h. More importantly, the QCS/MFC still exhibited high adsorption efficiency (over 49.7%) in the presence of 40 g L-1 albumin. Furthermore, the QCS/MFC could also maintain high dynamic adsorption efficiency in self-made hemoperfusion devices. This facile approach provides a new avenue to develop high-performance hemoperfusion adsorbents for bilirubin removal, showing great promise for the translational therapy of hyperbilirubinemia.
Collapse
Affiliation(s)
- Chunxiu Bao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| | - Xufeng Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| | - Jing Shen
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| | - Changjing Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| | - Jinmeng Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| | - Xiyun Feng
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| |
Collapse
|
18
|
Freezing-induced chemical crosslinking to fabricate nanocellulose-based cryogels for efficient bilirubin removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Qamar SA, Riasat A, Jahangeer M, Fatima R, Bilal M, Iqbal HMN, Mu BZ. Prospects of microbial polysaccharides-based hybrid constructs for biomimicking applications. J Basic Microbiol 2022; 62:1319-1336. [PMID: 35048396 DOI: 10.1002/jobm.202100596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/20/2021] [Accepted: 01/08/2022] [Indexed: 02/05/2023]
Abstract
Polysaccharides are biobased polymers obtained from renewable sources. They exhibit various interesting features including biocompatibility, biodegradability, and nontoxicity. Microbial polysaccharides are produced by several microorganisms including yeast, fungi, algae, and bacteria. Microbial polysaccharides have gained high importance in biotechnology due to their novel physiochemical characteristics and composition. Among microbial polysaccharides, xanthan, alginate, gellan, and dextran are the most commonly reported polysaccharides for the development of biomimetic materials for biomedical applications including targeted drug delivery, wound healing, and tissue engineering. Several chemical and physical cross-linking reactions are performed to increase their technological and functional properties. Owning to the broad-scale applications of microbial polysaccharides, this review aims to summarize the characteristics with different ways of physical/chemical crosslinking for polysaccharide regulation. Recently, several biopolymers have gained high importance due to their biologically active properties. This will help in the formation of bioactive nutraceuticals and functional foods. This review provides a perspective on microbial polysaccharides, with special emphasis given to applications in promising biosectors and the subsequent advancement on the discovery and development of new polysaccharides for adding new products.
Collapse
Affiliation(s)
- Sarmad Ahmad Qamar
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Areej Riasat
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Jahangeer
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Rameen Fatima
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
20
|
Liu Y, Wang ZK, Liu CZ, Liu YY, Li Q, Wang H, Cui F, Zhang DW, Li ZT. Supramolecular Organic Frameworks as Adsorbents for Efficient Removal of Excess Bilirubin in Hemoperfusion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47397-47408. [PMID: 36223402 DOI: 10.1021/acsami.2c11458] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Excess bilirubin accumulates in the bodies of patients suffering from acute liver failure (ALF) to cause much irreversible damage and bring about serious clinical symptoms such as kernicterus, hepatic coma, or even death. Hemoperfusion is a widely used method for removing bilirubin from the blood, but clinically used adsorbents have unsatisfactory adsorption capacity and kinetics. In this study, we prepared four supramolecular organic framework microcrystals SOF-1-4 via slow evaporation of their aqueous solutions under infrared light. SOF-1-4 possess good regularity and excellent stability. We demonstrate that all the four SOFs could serve as adsorbents for bilirubin with fast adsorption kinetics within 20 min and ultrahigh adsorption capacity of 609.1 mg g-1, driven by electrostatic interaction and hydrophobicity. The superior adsorption performance of the SOFs outperformed most of the reported bilirubin adsorbents. Remarkably, SOF-3 could remove about 90% of bilirubin in the presence of 40 g L-1 BSA with a minimal loss of albumin and was thus further processed to a bead-shaped composite with a diameter of 2 mm with poly(ether sulfone) (PES). This PES-loaded SOF could efficiently adsorb bilirubin to the normal level from human plasma with an adsorption equilibrium concentration of 7.8 mg L-1 in 6 h through a dynamic hemoperfusion process. This work provides a new vitality for the development of novel bilirubin adsorbents for hemoperfusion therapy.
Collapse
Affiliation(s)
- Yamin Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Ze-Kun Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Chuan-Zhi Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Yue-Yang Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Qian Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Fengchao Cui
- Department of Chemistry, Northeast Normal University, Changchun130024, China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| |
Collapse
|
21
|
Yan S, Wang L, Fan H, Li X, You H, You R, Zhang Q, Xu W, Zhang Y. Biomimetic Natural Silk Nanofibrous Microspheres for Multifunctional Biomedical Applications. ACS NANO 2022; 16:15115-15123. [PMID: 36001029 DOI: 10.1021/acsnano.2c06331] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Silk nanofibrils (SNFs) extracted from natural silkworm silk represent a class of high-potential protein nanofiber material with unexplored biomedical applications. In this study, a SNF-assembled microsphere with extracellular matrix (ECM)-mimicking architecture and high specific surface area was developed. The SNFs were exfoliated from silkworm silks through an all-aqueous process and used as the building blocks for constructing the microspheres. Inspired by the structure and bioactive composition of ECM, hyaluronic acid (HA) was used as a bio-glue to regulate SNF assembly. With the assistance of HA, the SNF microspheres with stable fluffy nanofibrous structures were synthesized through electrospray. The biomimetic structure and nature derived composition endow the microspheres with excellent biocompatibility and enhanced osteogenic differentiation-inducing ability to mesenchymal stem cells. As proof of versatility, the SNF microspheres were further functionalized with other molecules and nanomaterials. Taking the advantages of the excellent blood compatibility and modifiability from the molecular level to the nanoscale of SNF microspheres, we demonstrated their versatile applications in protease detection and blood purification. On the basis of these results, we foresee that this natural silk-based nanofibrous microsphere may serve as a superior biomedical material for tissue engineering, early disease diagnosis, and therapeutic devices.
Collapse
Affiliation(s)
- Shuqin Yan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
| | - Hongdou Fan
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xiufang Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Haining You
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Renchuan You
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qiang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Heidarian P, Gharaie S, Yousefi H, Paulino M, Kaynak A, Varley R, Kouzani AZ. A 3D printable dynamic nanocellulose/nanochitin self-healing hydrogel and soft strain sensor. Carbohydr Polym 2022; 291:119545. [DOI: 10.1016/j.carbpol.2022.119545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
|
23
|
Contributions of Women in Recent Research on Biopolymer Science. Polymers (Basel) 2022; 14:polym14071420. [PMID: 35406293 PMCID: PMC9003506 DOI: 10.3390/polym14071420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
Abstract
Nowadays, biopolymers are playing a fundamental role in our society because of the environmental issues and concerns associated with synthetic polymers. The aim of this Special Issue entitled ‘Women in Polymer Science and Technology: Biopolymers’ is highlighting the work designed and developed by women on biopolymer science and technology. In this context, this short review aims to provide an introduction to this Special Issue by highlighting some recent contributions of women around the world on the particular topic of biopolymer science and technology during the last 20 years. In the first place, it highlights a selection of important works performed on a number of well-studied natural polymers, namely, agar, chitin, chitosan, cellulose, and collagen. Secondly, it gives an insight into the discovery of new polysaccharides and enzymes that have a role in their synthesis and in their degradation. These contributions will be paving the way for the next generation of female and male scientists on this topic.
Collapse
|
24
|
Sang S, Cheng R, Cao Y, Yan Y, Shen Z, Zhao Y, Han Y. Biocompatible chitosan/polyethylene glycol/multi-walled carbon nanotube composite scaffolds for neural tissue engineering. J Zhejiang Univ Sci B 2022; 23:58-73. [PMID: 35029088 PMCID: PMC8758934 DOI: 10.1631/jzus.b2100155] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/03/2021] [Indexed: 12/26/2022]
Abstract
Carbon nanotube (CNT) composite materials are very attractive for use in neural tissue engineering and biosensor coatings. CNT scaffolds are excellent mimics of extracellular matrix due to their hydrophilicity, viscosity, and biocompatibility. CNTs can also impart conductivity to other insulating materials, improve mechanical stability, guide neuronal cell behavior, and trigger axon regeneration. The performance of chitosan (CS)/polyethylene glycol (PEG) composite scaffolds could be optimized by introducing multi-walled CNTs (MWCNTs). CS/PEG/CNT composite scaffolds with CNT content of 1%, 3%, and 5% (1%=0.01 g/mL) were prepared by freeze-drying. Their physical and chemical properties and biocompatibility were evaluated. Scanning electron microscopy (SEM) showed that the composite scaffolds had a highly connected porous structure. Transmission electron microscope (TEM) and Raman spectroscopy proved that the CNTs were well dispersed in the CS/PEG matrix and combined with the CS/PEG nanofiber bundles. MWCNTs enhanced the elastic modulus of the scaffold. The porosity of the scaffolds ranged from 83% to 96%. They reached a stable water swelling state within 24 h, and swelling decreased with increasing MWCNT concentration. The electrical conductivity and cell adhesion rate of the scaffolds increased with increasing MWCNT content. Immunofluorescence showed that rat pheochromocytoma (PC12) cells grown in the scaffolds had characteristics similar to nerve cells. We measured changes in the expression of nerve cell markers by quantitative real-time polymerase chain reaction (qRT-PCR), and found that PC12 cells cultured in the scaffolds expressed growth-associated protein 43 (GAP43), nerve growth factor receptor (NGFR), and class III β-tubulin (TUBB3) proteins. Preliminary research showed that the prepared CS/PEG/CNT scaffold has good biocompatibility and can be further applied to neural tissue engineering research.
Collapse
Affiliation(s)
- Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China.
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Rong Cheng
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanyan Cao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- College of Information Science and Engineering, Hebei North University, Zhangjiakou 075000, China
| | - Yayun Yan
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Six-Dimensional Artificial Intelligence Biomedical Research Institute, Taiyuan 030031, China
| | - Yajing Zhao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanqing Han
- Department of Neurology, Shanxi Provincial Cardiovascular Hospital, Taiyuan 030024, China
| |
Collapse
|
25
|
Yue P, Chen B, Lv X, Zou Y, Cao H, Ma Y, Wang L, Liu Z, Zheng Y, Duan B, Wu S, Ye Q. Biocompatible Composite Microspheres of Chitin/Ordered Mesoporous Carbon CMK3 for Bilirubin Adsorption and Cell Microcarrier Culture. Macromol Biosci 2022; 22:e2100412. [PMID: 35007390 DOI: 10.1002/mabi.202100412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/12/2021] [Indexed: 11/12/2022]
Abstract
Extra bilirubin in the blood can provoke serious illness in patients with severe liver disease. Hemoperfusion is an effective method to remove the extra bilirubin, but its application is limited by the low adsorption efficiency and poor biocompatibility of available adsorbent materials. In this study, chitin/ordered mesoporous carbon CMK3 (Ch/CMK3) microspheres were successfully prepared. Results of characterization experiments indicated that these composite microspheres possess a multilayered porous nanofibrous structure with an extremely large specific surface area (300.19 m2 g-1 ) and large pore size. Notably, the Ch/CMK3 microspheres demonstrated a high bilirubin adsorption capacity (228.19 mg g-1 ) in phosphate buffer solution, and an outstanding bilirubin removal ratio (76.78%±4.40%) in the plasma of rabbits with hyperbilirubinemia without affecting the protein components. More importantly, the Ch/CMK3 microspheres showed no effect on other blood components, no cytotoxicity, and no systemic toxicity to mice. Cell coculture experiments revealed that the microspheres could provide a three-dimensional (3D) space to promote cell adhesion, proliferation, and nutrient exchange. These Ch/CMK3 microspheres featuring a strong ability for bilirubin adsorption and good biocompatibility could be a promising candidate in biomedical applications such as hemoperfusion, cell microcarrier, and 3D tissue engineering. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Pengpeng Yue
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China
| | - Biao Chen
- Department of Transplant surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiaoyan Lv
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yongkang Zou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China
| | - Hankun Cao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China
| | - Yongsheng Ma
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China
| | - Lizhe Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China
| | - Zhongzhong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China
| | - Yiran Zheng
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Bo Duan
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China.,The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, 410013, China
| |
Collapse
|
26
|
Structure design and performance study on filtration-adsorption bifunctional blood purification membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Li Z, Yan X, Wu K, Jiao Y, Zhou C, Yang J. Surface Modification of Reduced Graphene Oxide Beads: Integrating Efficient Endotoxin Adsorption and Improved Blood Compatibility. ACS APPLIED BIO MATERIALS 2021; 4:4896-4906. [PMID: 35007038 DOI: 10.1021/acsabm.0c01666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As a pathogenic toxin, endotoxins are the culprit for endotoxemia and can be generally removed from the blood by hemoperfusion. Reduced graphene oxide (rGO) is a promising endotoxin sorbent for hemoperfusion owing to its excellent adsorption capacity, but it has the side effect of nonspecific adsorption and low blood compatibility. Polymyxin B (PMB) acts as an organic affinity ligand that can specifically bind endotoxins. As a natural anticoagulant, heparin (Hep) can reduce the risk of coagulation and improve the blood compatibility of materials. Herein, an rGO bead adsorbent was prepared by coupling with PMB and Hep and used for endotoxin adsorption; in this, polydopamine (pDA) served as an active coating for immobilization of PMB and further coupling with Hep. The physicochemical characteristics indicated that PMB and Hep were successfully immobilized on rGO beads with a hierarchical pore structure. PMB endowed rGO beads with higher adsorption capacity (143.84 ± 3.28 EU/mg) and good adsorption selectivity for endotoxins. Hep significantly improved the blood compatibility of rGO beads. These modified rGO beads also achieved good adsorption capacity and adsorption selectivity for endotoxins in plasma, serum, or blood. Therefore, rGO/pDA/PMB/Hep beads are potential adsorbents for endotoxins in hemoperfusion.
Collapse
Affiliation(s)
- Zhentao Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xin Yan
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Keke Wu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yanpeng Jiao
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jingxin Yang
- College of Robotics, Beijing Union University, Beijing 100027, China
| |
Collapse
|
28
|
Chen W, Han Q, Liu Y, Wang Y, Liu F. Targeted perfusion adsorption for hyperphosphatemia using mixed matrix microspheres (MMMs) encapsulated NH 2-MIL-101(Fe). J Mater Chem B 2021; 9:4555-4566. [PMID: 34047320 DOI: 10.1039/d1tb00329a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hyperphosphatemia, a common complication of chronic renal failure patients, is described as an excess amount of serum phosphate >4.5 mg dL-1. Current therapy for hyperphosphatemia is limited by low removal efficiency, secondary hyperparathyroidism, uremic bone disease, and the promotion of vascular and visceral calcifications. Metal organic frameworks (MOFs) have aroused great interest in the field of blood purification because of their strong specific adsorption. Herein, we prepared mixed matrix microspheres (MMMs) encapsulated NH2-MIL-101(Fe) with specific adsorption to blood phosphate. Simultaneously, a heparinoid copolymer poly (acrylic acid-sodium 4-vinylbenzenssulfonate) (P(AA-SSNa)) was incorporated to improve the hemocompatibility. The proposed MMMs exhibited excellent phosphate adsorption capacity both in aqueous and human plasma environments. They also showed comprehensive hemocompatibility e.g. low tendency of protein adsorption, low hemolysis rate and extended blood coagulation time. In general, we envision that the MMMs are potentially suitable as highly efficient hemoperfusion adsorbents for hyperphosphatemia treatment.
Collapse
Affiliation(s)
- Wenhui Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo 315201, China. and Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215000, China
| | - Qiu Han
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo 315201, China.
| | - Yang Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo 315201, China. and University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Yiwen Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo 315201, China. and University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Fu Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo 315201, China. and University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| |
Collapse
|
29
|
Ding F, Ren P, Wang G, Wu S, Du Y, Zou X. Hollow cellulose-carbon nanotubes composite beads with aligned porous structure for fast methylene blue adsorption. Int J Biol Macromol 2021; 182:750-759. [PMID: 33836190 DOI: 10.1016/j.ijbiomac.2021.03.194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
Polysaccharide based beads with unique porous structure have gained considerable interests due to their specific adsorption behaviors and biodegradability. The purpose of this paper was to develop hollow cellulose/carbon nanotubes composite beads with aligned porous structure which have potential applications in fast adsorption field. The composite beads were fabricated by ice template and freeze-drying technology. Different characterizations have proved that the carbon nanotubes and magnetic nanoparticles have been incorporated into the cellulose beads. Higher concentration of carbon nanotubes and cellulose would result in a larger diameter of the composite beads. The composite beads can effectively adsorb the methylene blue (MB). The pseudo-second-order model and Langmuir isotherm were best fitted to the adsorption. The composite beads showed a fast adsorption behavior towards MB with a t1/2 of 1.07 min obtained from pseudo-second-order model. The maximum adsorption capacity was 285.71 mg g-1 at pH 7.0. The composite beads also showed good reusability and biodegradability. We anticipate that different polysaccharides based composite beads with aligned porous structure can be obtained through the similar methods and applied in adsorption fields.
Collapse
Affiliation(s)
- Fuyuan Ding
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Ping Ren
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Guannan Wang
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Shuping Wu
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yumin Du
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
30
|
Yang K, Peng Y, Wang L, Ren L. Polymyxin B engineered polystyrene-divinylbenzene microspheres for the adsorption of bilirubin and endotoxin. RSC Adv 2021; 11:39978-39984. [PMID: 35494100 PMCID: PMC9044794 DOI: 10.1039/d1ra06684f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/30/2021] [Indexed: 11/21/2022] Open
Abstract
Hemoperfusion is an important strategy for liver disease treatment. Polystyrene-divinylbenzene (PS-DVB) microspheres are widely applied as absorbents in hemoperfusion to efficiently remove the important toxin bilirubin. However, as another common toxin, endotoxin will remain during this process and cause endotoxemia. Therefore, simultaneous removal of both bilirubin and endotoxin is highly desirable. In the present study, we engineered PS-DVB microspheres with polymyxin B sulfate (PMB) to meet this goal. After modification, the novel PMB-engineered (P-PMB) microspheres displayed excellent biocompatibility and hemocompatibility. Notably, compared to PS-DVB microspheres, P-PMB microspheres exhibited markedly stronger detoxification of both bilirubin and endotoxin, increasing by 17.03% and 42.57%, respectively. Overall, we believe that the novel P-PMB microspheres have considerable potential for liver disease treatment in clinical practice. A new adsorbent for hemoperfusion was successfully prepared by grafting polymyxin B (PMB) on the surface of polystyrene divinylbenzene (PS-DVB) microspheres. It showed good biocompatibility and could adsorb both bilirubin and endotoxin.![]()
Collapse
Affiliation(s)
- Kangle Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yaotian Peng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Lin Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
31
|
Pei X, Jiao H, Fu H, Yin X, Luo D, Long S, Gong W, Zhang L. Facile Construction of a Highly Dispersed Pt Nanocatalyst Anchored on Biomass-Derived N/O-Doped Carbon Nanofibrous Microspheres and Its Catalytic Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51459-51467. [PMID: 33147002 DOI: 10.1021/acsami.0c14581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With the depletion of nonrenewable resources and the increasingly serious "white pollution" caused by nondegradable plastics, using renewable biomass resources such as chitin to fabricate materials is a green and sustainable pathway. Herein, for the first time, we used N/O-doped carbon nanofibrous microspheres (CNMs) derived from renewable chitin as carriers to successfully construct a highly dispersed platinum nanocatalyst via a facile way. Various physicochemical characterizations provided reliable evidence for the ultrafine and well-dispersed platinum nanoparticles with an average diameter of 2.3 nm. As the supporting framework, the CNM with interconnected nanofibrous networks and a large surface area facilitated the adhesion and dispersion of Pt particles. Meanwhile, the inherent N/O-containing functional groups and the defects in carbonized chitin could anchor the platinum tightly. The CNM/Pt catalyst was further examined for hydrogenation, and it exhibited promising catalytic activity and stability (∼5 runs, 91%) and a broad applicability. This utilization of biomass resources to build catalyst materials would be important for the green and sustainable chemistry.
Collapse
Affiliation(s)
- Xianglin Pei
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Huibin Jiao
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Hai Fu
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Xiaogang Yin
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Dan Luo
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Siyu Long
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Wei Gong
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
32
|
Song C, Li Y, Wang B, Hong Y, Xue C, Li Q, Shen E, Cui D. A novel anticoagulant affinity membrane for enhanced hemocompatibility and bilirubin removal. Colloids Surf B Biointerfaces 2020; 197:111430. [PMID: 33125976 DOI: 10.1016/j.colsurfb.2020.111430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 01/20/2023]
Abstract
Affinity membrane is widely employed to promote specific adsorption of toxins and reduce the blood purification therapeutic time. However, it suffers from insufficient toxin binding and low hemocompatibility. Herein, a novel anticoagulant affinity membrane (AAM) was developed to clear bilirubin from human blood in a pore-flow-through way. Firstly, a nylon net membrane with a regularly arranged pore as the matrix was coated with poly(pyrrole-3-carboxylic acid) via chemical vapor deposition (CVD) method. Then, poly(L-arginine) (PLA) as a highly specific ligand of bilirubin, was immobilized onto the surface of the composited membrane after the modification of heparin. Owing to the 3-dimensional molecular architecture of PLA, up to 86.1 % of bilirubin was efficiently cleared. Besides, the AAM exhibited effective anticoagulant activity in the measurement of clotting time, with suppressed thrombus formation, low hemolysis ratio, minimized platelet and leukocyte adhesion, and excellent biosafety. Therefore, the AAM has enormous potential in blood purification therapy for enhancing hemocompatibility and bilirubin removal.
Collapse
Affiliation(s)
- Cunfeng Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yugang Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Baocan Wang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Yuping Hong
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Cuili Xue
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qichao Li
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - E Shen
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, 600 Xishan Road, Shanghai 200233, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
33
|
A Review of Chitin Solvents and Their Dissolution Mechanisms. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2459-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Li Q, Zhao W, Guo H, Yang J, Zhang J, Liu M, Xu T, Chen Y, Zhang L. Metal-Organic Framework Traps with Record-High Bilirubin Removal Capacity for Hemoperfusion Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25546-25556. [PMID: 32393019 DOI: 10.1021/acsami.0c03859] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adsorption-based hemoperfusion has been widely used to remove toxins from the blood of patients suffering acute liver failure (ALF). However, its detoxification effect has been severely hampered by the unsatisfactory adsorption performance of clinically used porous adsorbents, such as activated carbon (AC) and adsorption resin. Herein, two cage-based metal-organic frameworks (MOFs), PCN-333 (constructed from 4,4,4-s-triazine-2,4,6-triyl-tribenzoic acid (H3TATB) ligands and Al3 metal clusters) and MOF-808 (constructed from 1,3,5-benzenetricarboxylic acid (H3BTC) ligands and Zr6 metal clusters), are introduced for highly efficient hemoperfusion. They possess negligible hemolytic activity and can act as "bilirubin traps" to achieve outstanding adsorption performance toward bilirubin, a typical toxin related to ALF. Notably, PCN-333 shows a record-high adsorption capacity (∼1003.8 mg g-1) among various bilirubin adsorbents previously reported. More importantly, they can efficiently adsorb bilirubin in bovine serum albumin (BSA) solution or even in 100% fetal bovine serum (FBS) due to their high selectivity. Strikingly, the adsorption rate and capacity of PCN-333 in biological solutions are approximately four times faster and 69 times higher than those of clinical AC, respectively. Findings in this work pave a new avenue to overcome the challenge of low adsorption efficiency and capacity in hemoperfusion therapy.
Collapse
Affiliation(s)
- Qingsi Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Weiqiang Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Hongshuang Guo
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Jiamin Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Min Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Tong Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Yisheng Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| |
Collapse
|
35
|
Yang Y, Yin S, He C, Wu X, Yin J, Zhang J, Ma L, Zhao W, Cheng C, Zhao C. Construction of Kevlar nanofiber/graphene oxide composite beads as safe, self-anticoagulant, and highly efficient hemoperfusion adsorbents. J Mater Chem B 2020; 8:1960-1970. [PMID: 32067017 DOI: 10.1039/c9tb02789k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently emerged hemoperfusion absorbents, e.g. ion-exchange resin, activated carbon, and other porous materials, provide numerous novel possibilities to cure chronic liver failure (CLF) and renal failure (CRF). However, the limited adsorption performance and unsatisfactory blood compatibility significantly impede the development of the absorbents. Hence, designing safe and self-anticoagulant hemoperfusion absorbents with robust toxin clearance remains a considerable challenge. Here, brand new Kevlar-based composite gel beads for hemoperfusion are prepared by interface assembly based on π-π interaction. First, Kevlar nanofiber-graphene oxide (K-GO) beads are produced by liquid-liquid phase separation. Then, sodium p-styrenesulfonate (SS) is adsorbed onto the K-GO interface by π-π interaction and initiated to achieve the composite gel (K-GO/PSS) beads with an interfacial crosslinked structure. Such composite gel beads possess superior mechanical strength and self-anticoagulation capability, owing to the dual-network structure and heparin-mimicking gel structure, respectively. Furthermore, the K-GO/PSS beads show robust adsorption capacities for different kinds of toxins due to their strong charge and π-π interactions. A simulated hemoperfusion experiment in vitro demonstrates that the concentrations of the toxins in the blood can be restored to normal values within 30 minutes. In general, we envision that such composite gel beads will provide new strategies for future clinical CLF and CRF treatments.
Collapse
Affiliation(s)
- Ye Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Shiqi Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jiarui Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Lang Ma
- Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
36
|
Sun T, Guo X, Zhong R, Wang C, Liu H, Li H, Ma L, Guan J, You C, Tian M. Interactions of Alginate-Deferoxamine Conjugates With Blood Components and Their Antioxidation in the Hemoglobin Oxidation Model. Front Bioeng Biotechnol 2020; 8:53. [PMID: 32117933 PMCID: PMC7026261 DOI: 10.3389/fbioe.2020.00053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/22/2020] [Indexed: 02/05/2023] Open
Abstract
While deferoxamine (DFO) has long been used as an FDA-approved iron chelator, its proangiogenesis ability attracts increasing number of research interests. To address its drawbacks such as short plasma half-life and toxicity, polymeric conjugated strategy has been proposed and shown superiority. Owing to intravenous injection and application in blood-related conditions, however, the blood interactions and antioxidation of the DFO-conjugates and the mechanisms underlying these outcomes remain to be elucidated. In this regard, incubating with three different molecular-weight (MW) alginate-DFO conjugates (ADs) red blood cells (RBCs), coagulation system, complement and platelet were investigated. To prove the antioxidant activity of ADs, we used hemoglobin oxidation model in vitro. ADs did not cause RBCs hemolysis while reversible aggregation and normal deformability ability were observed. However, the coagulation time, particularly APTT and TT, were significantly prolonged in a dose-dependent manner, and fibrinogen was dramatically decreased, suggesting ADs could dominantly inhibit the intrinsic pathways in the process of coagulation. The dose-dependent anticoagulation might be related with the functional groups along the alginate chains. The complements, C3a and C5a, were activated by ADs in a dose-dependent manner through alternative pathway. For platelet, ADs slightly suppressed the activation and aggregation at low concentration. Based on above results, the cross-talking among coagulation, complement and platelet induced by ADs was proposed. The antioxidation of ADs through iron chelation was proved and the antioxidant activity was shown in a MW-dependent manner.
Collapse
Affiliation(s)
- Tong Sun
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Guo
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Zhong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Chengwei Wang
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Liu
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Junwen Guan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chao You
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Tian
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Single and competitive dye adsorption onto chitosan–based hybrid hydrogels using artificial neural network modeling. J Colloid Interface Sci 2020; 560:722-729. [DOI: 10.1016/j.jcis.2019.10.106] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 01/03/2023]
|
38
|
Song X, Xu T, Yang L, Li Y, Yang Y, Jin L, Zhang J, Zhong R, Sun S, Zhao W, Zhao C. Self-Anticoagulant Nanocomposite Spheres for the Removal of Bilirubin from Whole Blood: A Step toward a Wearable Artificial Liver. Biomacromolecules 2020; 21:1762-1775. [DOI: 10.1021/acs.biomac.9b01686] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xin Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Tao Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Li Yang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yupei Li
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610225, People’s Republic of China
| | - Ye Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Lunqiang Jin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Jue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Rui Zhong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, People’s Republic of China
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, People’s Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| |
Collapse
|
39
|
Yi R, Song Y, Wu C, Wei G, Yuan R, Chen Y, Ye G, Kowalewski T, Matyjaszewski K. Preparation of Nitrogen-Doped Mesoporous Carbon for the Efficient Removal of Bilirubin in Hemoperfusion. ACS APPLIED BIO MATERIALS 2020; 3:1036-1043. [DOI: 10.1021/acsabm.9b01029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rong Yi
- School of Material Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yang Song
- Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Beijing 100084, China
| | - Chengling Wu
- City College, Kunming University of Science and Technology, Kunming 650051, China
| | - Guoyu Wei
- Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Beijing 100084, China
| | - Rui Yuan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yongming Chen
- School of Material Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Gang Ye
- Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Beijing 100084, China
| | - Tomasz Kowalewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
40
|
Wu K, Liu X, Li Z, Jiao Y, Zhou C. Fabrication of chitosan/graphene oxide composite aerogel microspheres with high bilirubin removal performance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110162. [DOI: 10.1016/j.msec.2019.110162] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/08/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
|
41
|
Chitosan hydrogel scaffold modified with carbon nanotubes and its application for food dyes removal in single and binary aqueous systems. Int J Biol Macromol 2020; 142:85-93. [DOI: 10.1016/j.ijbiomac.2019.09.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/30/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022]
|
42
|
Huang S, Zheng J, Zhang Y, Zheng J, Zhuang Z, Yang Q, Wang F, Chen G, Huang S, Ouyang G. Polydopamine decorated ordered mesoporous carbon for efficient removal of bilirubin under albumin-rich conditions. J Mater Chem B 2019; 8:290-297. [PMID: 31803882 DOI: 10.1039/c9tb02147g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Excess bilirubin in the body will lead to serious health problems; however, its efficient removal remains a challenge in the clinical field because the available sorbent materials still suffer from serious performance issues, performance declining in a high-content albumin environment. Herein, we prepared a novel polydopamine (PDA) decorated ordered mesoporous carbon (OMC) material for the efficient removal of bilirubin in albumin-rich conditions. OMC was used as the supporting material due to its high specific surface area and its good affinity to hydrophobic analytes. PDA was then decorated on the OMC material through a facile self-assembly process to form a surface-imprinted layer. The obtained PDA-coated OMC material (OMC@PDA) exhibited excellent adsorption performance towards bilirubin in albumin-free conditions, in which its theoretical maximum adsorption amount was calculated to be 513.54 mg g-1. The imprinted PDA layer, for which the association constant towards bilirubin reached 4.51 × 104 M-1, endowed OMC@PDA with a competitive affinity compared to albumin. Therefore the materials showed good adsorption capacity and efficiency even in an albumin-rich environment (the adsorption equilibrated at 122.7 mg g-1 in 30 min). In addition, the good biocompatibility of OMC@PDA was demonstrated by hemolysis assay and protein fouling evaluation, which indicated the feasibility of applying this material in clinical situations.
Collapse
Affiliation(s)
- Shuyao Huang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Jiating Zheng
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Yimin Zhang
- Nephrology Department, Sun Yat-sen University Sixth Affiliated Hospital, Guangzhou, Guangdong 510000, China
| | - Juan Zheng
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Zena Zhuang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Qian Yang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Fuxin Wang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Guosheng Chen
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Siming Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong 510120, China
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China. and Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangzhou 510070, China
| |
Collapse
|
43
|
Li Q, Yang J, Cai N, Zhang J, Xu T, Zhao W, Guo H, Zhu Y, Zhang L. Hemocompatible hemoadsorbent for effective removal of protein-bound toxin in serum. J Colloid Interface Sci 2019; 555:145-156. [PMID: 31377640 DOI: 10.1016/j.jcis.2019.07.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022]
Abstract
Resin hemoperfusion is a life-saving treatment for drug intoxication or hepatic failure of patients. However, current resin adsorbents exhibit a limited hemocompatibility or low adsorption efficiency, representing a major roadblock to successful clinical applications. In this work, we developed a hemocompatible and effective hemoadsorbent based on polystyrene resin (H103) microparticles encapsulated in anti-biofouling zwitterionic poly(carboxybetaine) (PCB) hydrogels. Apart from a strong mechanical stability, this PCB-based adsorbent (PCB-H103) exhibited excellent hemocompatibility (hemolysis ratio was ∼0.64%), which was attributed to the anti-biofouling property of PCB hydrogel. In addition, it can efficiently adsorb both small and middle molecular weight molecules in phosphate-buffered saline, and the efficiencies were significantly higher than poly(ethylene glycol) methacrylate-based and poly(2-hydroxyethyl methacrylate)-based adsorbent counterparts, indicating the favorable permeability of PCB hydrogel coating. More importantly, PCB-H103 could effectively remove protein-bound toxins including phenol red and bilirubin in bovine serum albumin solution or even in 100% fetal bovine serum (FBS). In 100% FBS, the adsorption capacity of PCB-H103 towards bilirubin was 8.3 times higher than that of pristine clinical-scale resin beads. Findings in this work may provide a new strategy for the development of modern resin hemoperfusion technology.
Collapse
Affiliation(s)
- Qingsi Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Nana Cai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Jiamin Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Tong Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Weiqiang Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Hongshuang Guo
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Yingnan Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
44
|
Ju J, Liang F, Zhang X, Sun R, Pan X, Guan X, Cui G, He X, Li M. Advancement in separation materials for blood purification therapy. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Chen K, Cai H, Zhang H, Zhu H, Gu Z, Gong Q, Luo K. Stimuli-responsive polymer-doxorubicin conjugate: Antitumor mechanism and potential as nano-prodrug. Acta Biomater 2019; 84:339-355. [PMID: 30503561 DOI: 10.1016/j.actbio.2018.11.050] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 01/17/2023]
Abstract
Polymer-drug conjugates has significantly improved the anti-tumor efficacy of chemotherapeutic drugs and alleviated their side effects. N-(1,3-dihydroxypropan-2-yl) methacrylamide (DHPMA) copolymer was synthesized via RAFT polymerization and polymer-doxorubicin (DOX) (diblock pDHPMA-DOX) were formed by conjugation, resulting in a self-aggregation-induced nanoprodrug with a favorable size of 21 nm and great stability. The nanoprodrug with a molecular weight (MW) of 95 kDa released drugs in response to tumor microenvironmental pH variations and they were enzymatically hydrolyzed into low MW segments (45 kDa). The nanoprodrug was transported through the endolysosomal pathway, released the drug into the cytoplasm and some was localized in the mitochondria, resulting in disruption of the cellular actin cytoskeleton. Cellular apoptosis was also associated with reduction in the mitochondrial potential caused by the nanoprodrug. Notably, the nanoprodrug had a significantly prolonged blood circulation time with an elimination half time of 9.8 h, displayed high accumulation within tumors, and improved the in vivo therapeutic efficacy against 4T1 xenograft tumors compared to free DOX. The tumor xenograft immunohistochemistry study clearly indicated tumor inhibition was through the inhibition of cell proliferation and antiangiogenic effects. Our studies demonstrated that the diblock pDHPMA-DOX nanoprodrug with a controlled molecular structure is promising to alleviate adverse effects of free DOX and have a great potential as an efficient anticancer agent. STATEMENT OF SIGNIFICANCE: In this work, we prepared a biodegradable diblock DHPMA polymer-doxorubicin conjugate via one-pot of RAFT polymerization and conjugate chemistry. The conjugate-based nanoprodrug was internalized by endocytosis to intracellularly release DOX and further induce disruption of mitochondrial functions, actin cytoskeleton alterations and cellular apoptosis. The nanoprodrug with a high molecular weight (MW) (95 kDa) showed a long blood circulation time and achieved high accumulation into tumors. The nanoprodrug was degraded into low MW (∼45 kDa) products below the renal threshold, which ensured its biosafety. Additionally, the multi-stimuli-responsive nanoprodrug demonstrated an enhanced antitumor efficacy against 4T1 breast tumors and alleviated side effects, showing a great potential as an efficient and safe anticancer agent.
Collapse
Affiliation(s)
- Kai Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Cai
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Hu Zhang
- Amgen Bioprocess Centre, Keck Graduate Institute, CA 91711, USA
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
46
|
Construction of blood compatible chitin/graphene oxide composite aerogel beads for the adsorption of bilirubin. Carbohydr Polym 2018; 207:704-712. [PMID: 30600056 DOI: 10.1016/j.carbpol.2018.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 11/23/2022]
Abstract
Excess bilirubin in blood can provoke hepatic damage and related malfunctions. Hereby we designed and constructed a novel bilirubin adsorbent, called chitin/graphene oxide (Ch/GO) composite aerogel beads, for efficient, fast and safe removal for bilirubin. The Ch/GO aerogel beads were prepared from chitin and GO in a NaOH/urea aqueous solution, followed dried by supercritical carbon dioxide. The morphology, structure and properties of the Ch/GO composite aerogel beads were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and compressive strength measurement. The results indicated that GO was successfully bound to chitin matrix with enhanced surface area, thermal stability and mechanical strength. The adsorption capacity of Ch/GO composite aerogel beads for bilirubin was examined by UV-vis spectrophotometry. Moreover, batch adsorption results revealed that the Ch/GO composite aerogel beads showed excellent bilirubin adsorption capacity (484.1 ± 16.9 mg/g) and short adsorption equilibrium time (0.5 h) under optimized condition. Furthermore, the Ch/GO aerogel beads exhibited a lower hemolysis property and improved anticoagulant property. Hence, this work provided a new strategy to develop a novel blood compatible bilirubin adsorbent, which presented good application potential for bilirubin adsorption.
Collapse
|
47
|
Dang Q, Li CG, Jin XX, Zhao YJ, Wang X. Heparin as a molecular spacer immobilized on microspheres to improve blood compatibility in hemoperfusion. Carbohydr Polym 2018; 205:89-97. [PMID: 30446153 DOI: 10.1016/j.carbpol.2018.08.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/05/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
Abstract
Heparin, a highly sulfated linear polysaccharide, with anticoagulation function and blood compatibility is widely used as a biomaterials in medical application, but the most importance of heparin is its structure function as the macromolecular space arm. In this study, heparin as a spacer was covalently immobilized on the chloromethylated polystyrene microspheres (Ps) and then connected with l-phenylalanine forming the Ps-Hep-Phe structure, which was developed for endotoxin adsorption in hemoperfusion. The grafting density of heparin reach the maximum when the initial concentration of heparin solution was 5 mg/mL. The adsorbents with the heparin as a spacer showed the prolonged clotting times, low protein adsorption, and reduced the hemolysis rate, indicating that heparin-modified adsorbents have great blood compatibility. The adsorption capacity of Ps-Hep-Phe for endotoxin was 25.15 EU/g in dynamic adsorption, higher than that of Ps. Therefore, this study imply that heparin would be promising for modification of adsorbents in hemoperfusion.
Collapse
Affiliation(s)
- Qi Dang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Chun-Gong Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Xin-Xin Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Ya-Jin Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Xiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
48
|
Song X, Cui S, Li Z, Jiao Y, Zhou C. Fabrication of chitin/graphene oxide composite sponges with higher bilirubin adsorption capacity. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:108. [PMID: 29980863 DOI: 10.1007/s10856-018-6107-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Chitin/graphene oxide (Ch/GO) composite sponges had been synthesized in 11 wt% NaOH/4 wt% urea aqueous solution by a simple method. The structure, thermal stability and mechanical properties of the composite sponges were investigated by scanning electron microscopy, Fourier-transform infrared spectroscopy, wide-angle X-ray diffraction, thermogravimetric analysis, and compressive strength measurements. The results revealed that chitin and GO were mixed homogeneously. Interestingly, the composite sponges showed meso-macroporous structure, which played an important role in improving their adsorption properties. Besides, thermal stability and mechanical properties were significantly improved compared with pure chitin sponges. Taking advantages of these fantastic characteristics, the maximum adsorption capacity of composite sponges for bilirubin was up to 422.9 mg/g under the optimized condition, which was not only significantly higher than the adsorption capacities of pure chitin sponges, but also superior to those of many reported adsorbents for removal of bilirubin. Furthermore, blood compatibility evaluations confirmed that this blended sponges had negligible hemolysis and coagulation. Therefore, this work provided a potential possibility to offer Ch/GO composite sponges for removal of bilirubin.
Collapse
Affiliation(s)
- Xi Song
- Department of Materials Science and Engineering, Jinan University, 510632, Guangzhou, China
| | - Siyuan Cui
- Department of Materials Science and Engineering, Jinan University, 510632, Guangzhou, China
| | - Zhentao Li
- Department of Materials Science and Engineering, Jinan University, 510632, Guangzhou, China
| | - Yanpeng Jiao
- Department of Materials Science and Engineering, Jinan University, 510632, Guangzhou, China.
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University, 510632, Guangzhou, China
| |
Collapse
|
49
|
|
50
|
Wang J, Huang X, Zhao P, Wang X, Tian Y, Chen C, Wang J, Li Y, Wan W, Tian H, Xu M, Wang C, Wang L. On-Chip Facile Preparation of Monodisperse Resorcinol Formaldehyde (RF) Resin Microspheres. MICROMACHINES 2018; 9:E24. [PMID: 30393300 PMCID: PMC6187545 DOI: 10.3390/mi9010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/26/2017] [Accepted: 01/08/2018] [Indexed: 11/25/2022]
Abstract
Monodisperse resorcinol formaldehyde resin (RF) microspheres are an important polymeric material because of their rich surface functional group and uniform structural characteristics and have been increasingly applied as an electrode material, catalyst support, absorbent, and carbon microsphere precursor. The polymerization conditions, such as the gelation/solidification temperature and the residence time, can largely influence the physical properties and the formation of the 3D polymeric network of the RF microspheres as well as the carbon microspheres. However, few studies have reported on the complexity of the gelation and solidification processes of resol. In this work, we developed a new RF microsphere preparation device that contains three units: a droplet generation unit, a curing unit, and a collection unit. In this system, we controlled the gelation and solidification processes of the resol and observed its curing behavior, which helped us to uncover the curing mechanism of resol. Finally, we obtained the optimized polymerization parameters, obtaining uniform RF microspheres with a variation coefficient of 4.94%. The prepared porous RF microspheres presented a high absorption ability, reaching ~90% at 10 min. Thus, our method demonstrated the practicality of on-chip monodisperse microspheres synthesis. The product was useful in drug delivery and adsorbing large poisonous molecules.
Collapse
Affiliation(s)
- Jianmei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Xiaowen Huang
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Pei Zhao
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Xueying Wang
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Ye Tian
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Chengmin Chen
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Jianchun Wang
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Yan Li
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Wei Wan
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Hanmei Tian
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Min Xu
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Chengyang Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Liqiu Wang
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|