1
|
Kostevšek N. Erythrocyte membrane vesicles as drug delivery systems: A systematic review of preclinical studies on biodistribution and pharmacokinetics. BIOMATERIALS ADVANCES 2025; 170:214234. [PMID: 39961269 DOI: 10.1016/j.bioadv.2025.214234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025]
Abstract
This systematic review aims to summarize the development of erythrocyte membrane vesicles (EMVs) as drug delivery carriers, with a focus on elucidating their fate in terms of biodistribution and pharmacokinetics in preclinical studies. The PubMed database was systematically reviewed to search for original peer-reviewed published studies on the use of EMVs for drug delivery to summarize the preclinical findings, following the PRISMA guidelines. A total of 142 articles matched the selection criteria and were included in the review. For each study, the following parameters were extracted: type of active pharmaceutical ingredient (API) encapsulated into EMVs, EMVs-API formulation method and final particle size, EMVs surface modifications for active targeting, cell lines and animal models used in the study, crucial treatment data, biodistribution data and finally, where applicable, data about the EMVs circulation time and blood half-life. EMVs size did not vary significantly among the different formulation methods. A complete list of cell lines and animal models used is provided. Circulation times and data for blood half-life were grouped per animal type. For the most commonly used animal type, BALB/c mice, the average half-life of EMV-API was calculated to be 10.4 h, and in all cases, up to a 10-fold increase was observed compared with that of free API. Surface modifications did not drastically change the circulation time but did improve target tissue accumulation. The most critical weaknesses in the analysed studies were identified. Key points for future studies are provided to fill the current knowledge gaps and improve the quality of publications.
Collapse
Affiliation(s)
- Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Luu QQ, Kim T, Cao TBT, Choi I, Yang SY, An BS, Hwang DY, Choi Y, Park HS. Therapeutic Potential of Arginine-Loaded Red Blood Cell Nanovesicles Targeting Obese Asthma. Mediators Inflamm 2025; 2025:8248722. [PMID: 40134943 PMCID: PMC11936518 DOI: 10.1155/mi/8248722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
Purpose: The role of the gut microbiomes has been emphasized in the pathogenesis of obese asthma (OA). However, the molecular mechanism of airway dysfunction underlying OA has not yet been fully elucidated. The effects of microbiomes on arginine metabolism in relation to lung functions and a novel method for delivering arginine to lung tissue based on arginine-loaded red blood cell (RBC)-derived nanovesicles (NVs) (NVArg) will be investigated. Materials and Methods: Inflammatory status, amino acid profiles, and microbial diversity were evaluated in 20 adult patients with OA compared to 30 adult patients with non-OA (NOA) and 10 healthy control (HC) groups. Changes in gut or lung microbial composition that altered arginine metabolism in relation to airway inflammation were investigated in an OA mouse model in vivo. Additionally, this study evaluated the delivery of arginine to lung tissue utilizing NVArg in vivo and in vitro. Results: Significantly increased Bacteroides abundance but decreased serum arginine concentration with lower forced exhaled volume at 1 s (FEV1) (%) was noted in the OA group compared to the NOA and HC groups. In mouse experiments, when OA mice were given living bacteria from normal control (NC) mice, lung arginine concentration and airway resistance were restored. However, the administration of arginine or its metabolite (citrulline) did not increase the arginine levels in the lung tissues. We therefore created NVArg, which successfully delivered arginine into the cytoplasm of the airway epithelial cell line in vitro. Oral administration of NVArg for OA mice significantly induced the AMP-activated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS) pathways in airway epithelial cells, which reduced airway resistance and inflammation. Conclusion: These findings suggest that microbiomes contribute to airway dysfunction by regulating arginine metabolism, whereas NVArg treatment may be a potential option for managing OA.
Collapse
Affiliation(s)
- Quoc Quang Luu
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, California, USA
| | - Taejune Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Injung Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Youngwoo Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
3
|
Bal T, Anjrini N, Zeroual M. Recent Advances and Challenges in Targeted Drug Delivery Using Biofunctional Coatings. MEDICAL APPLICATIONS FOR BIOCOMPATIBLE SURFACES AND COATINGS 2024:41-75. [DOI: 10.1039/9781837675555-00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Globally, clinics are overwhelmed by drugs targeting undesired cells and organs, causing adverse systemic effects on the body. This shortfall in targeting specificity, safety, and efficiency has noticeably contributed to the failure of the bench-to-bedside transition. Activation or impairment of immune activity due to a misdirected drug and its carrier fuels complications, extending the range of destruction which can convert the course of disease into a life-threatening route. To address these great challenges, advanced coatings as indispensable components of future medicine have been investigated over the last few decades for precisely targeted drug delivery to achieve favorable prognoses in the treatment of a broad spectrum of diseases. Complemented by advancements in the pharmacological parameters, these systems hold great promise for the field. This chapter aims to discuss recent progress on new coatings for targeted drug delivery and the parameters for manufacturing these platforms for their cargo based on major determinants such as biocompatibility and bioactivity. A brief overview of the various applications of targeted drug delivery with functional coatings is also provided to offer a new perspective on the field.
Collapse
Affiliation(s)
- Tugba Bal
- aDepartment of Bioengineering, Graduate School of Sciences, Uskudar University, 34662, Istanbul, Turkiye
- bDepartment of Bioengineering, Faculty of Engineering and Natural Sciences, Uskudar University, 34662, Istanbul, Turkiye
| | - Nasma Anjrini
- aDepartment of Bioengineering, Graduate School of Sciences, Uskudar University, 34662, Istanbul, Turkiye
| | - Meryem Zeroual
- aDepartment of Bioengineering, Graduate School of Sciences, Uskudar University, 34662, Istanbul, Turkiye
| |
Collapse
|
4
|
Patel D, Solanki J, Kher MM, Azagury A. A Review: Surface Engineering of Lipid-Based Drug Delivery Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401990. [PMID: 39004869 DOI: 10.1002/smll.202401990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/19/2024] [Indexed: 07/16/2024]
Abstract
This review explores the evolution of lipid-based nanoparticles (LBNPs) for drug delivery (DD). Herein, LBNPs are classified into liposomes and cell membrane-based nanoparticles (CMNPs), each with unique advantages and challenges. Conventional LBNPs possess drawbacks such as poor targeting, quick clearance, and limited biocompatibility. One of the possible alternatives to overcome these challenges is surface modification of nanoparticles (NPs) with materials such as polyethylene glycol (PEG), aptamers, antibody fragments, peptides, CD44, hyaluronic acid, folic acid, palmitic acid, and lactoferrin. Thus, the main focus of this review will be on the different surface modifications that enable LBNPs to have beneficial properties for DD, such as enhancing mass transport properties, immune evasion, improved stability, and targeting. Moreover, various CMNPs are explored used for DD derived from cells such as red blood cells (RBCs), platelets, leukocytes, cancer cells, and stem cells, highlighting their unique natural properties (e.g., biocompatibility and ability to evade the immune system). This discussion extends to the biomimicking of hybrid NPs accomplished through the surface coating of synthetic (mainly polymeric) NPs with different cell membranes. This review aims to provide a comprehensive resource for researchers on recent advances in the field of surface modification of LBNPs and CMNPs. Overall, this review provides valuable insights into the dynamic field of lipid-based DD systems.
Collapse
Affiliation(s)
- Dhaval Patel
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| | - Jyoti Solanki
- Post Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388120, India
| | - Mafatlal M Kher
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| | - Aharon Azagury
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| |
Collapse
|
5
|
Prasad R, Mendes BB, Gorain M, Chandra Kundu G, Gupta N, Peng B, Aung Win EH, Qing H, Conde J. Bioinspired and biomimetic cancer-cell-derived membrane nanovesicles for preclinical tumor-targeted nanotheranostics. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101648. [PMID: 38021344 PMCID: PMC10665589 DOI: 10.1016/j.xcrp.2023.101648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023]
Abstract
Bioinspired cell-membrane-camouflaged nanohybrids have been proposed to enhance tumor targeting by harnessing their immune escape and self-recognition abilities. In this study, we introduce cancer-cell-derived membrane nanovesicles (CCMVs) integrated with gold nanorods (AuVNRs) in addition to therapeutic and imaging cargos such as doxorubicin and indocyanine green. This approach enhances targeted tumor imaging and enables synergistic chemo-phototherapeutics for solid tumors. CCMVs demonstrate significant tumor penetration and retention, serving as nanotheranostics with accessible surface biomarkers, biomimicking properties, and homologous targeting abilities. By evading uptake by the mononuclear phagocytic system, CCMVs can diffuse into the deep tumor core, leading to precise tumor reduction while preserving the surrounding healthy tissues. Notably, intravenous administration of these theranostic agents ensures biocompatibility, as evidenced by a survival period of approximately two months (up to 63 days) without any observed side effects. Our findings underscore the diagnostic and therapeutic potential of this biomimetic nanotheranostics platform.
Collapse
Affiliation(s)
- Rajendra Prasad
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Bárbara B. Mendes
- ToxOmics, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | | | - Gopal Chandra Kundu
- National Centre for Cell Science, Pune 411007, India
- School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT, Institute of Eminence, Bhubaneswar 751024, India
| | | | - Berney Peng
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eaint Honey Aung Win
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - He Qing
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA
| | - João Conde
- ToxOmics, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
6
|
Fu L, Zhang Y, Farokhzad RA, Mendes BB, Conde J, Shi J. 'Passive' nanoparticles for organ-selective systemic delivery: design, mechanism and perspective. Chem Soc Rev 2023; 52:7579-7601. [PMID: 37817741 PMCID: PMC10623545 DOI: 10.1039/d2cs00998f] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Nanotechnology has shown tremendous success in the drug delivery field for more effective and safer therapy, and has recently enabled the clinical approval of RNA medicine, a new class of therapeutics. Various nanoparticle strategies have been developed to improve the systemic delivery of therapeutics, among which surface modification of targeting ligands on nanoparticles has been widely explored for 'active' delivery to a specific organ or diseased tissue. Meanwhile, compelling evidence has recently been reported that organ-selective targeting may also be achievable by systemic administration of nanoparticles without surface ligand modification. In this Review, we highlight this unique set of 'passive' nanoparticles and their compositions and mechanisms for organ-selective delivery. In particular, the lipid-based, polymer-based, and biomimetic nanoparticles with tropism to different specific organs after intravenous administration are summarized. The underlying mechanisms (e.g., protein corona and size effect) of these nanosystems for organ selectivity are also extensively discussed. We further provide perspectives on the opportunities and challenges in this exciting area of organ-selective systemic nanoparticle delivery.
Collapse
Affiliation(s)
- Liyi Fu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yang Zhang
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ryan A Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bárbara B Mendes
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
7
|
Wang X, Meng X, Mao K, Chen H, Cong X, Liu F, Wang J, Liu S, Xin Y, Zhu G, Tan H, Yang YG, Sun T. Maleimide as the PEG end-group promotes macrophage-targeted drug delivery of PEGylated nanoparticles in vivo by enhancing interaction with circulating erythrocytes. Biomaterials 2023; 300:122187. [PMID: 37302279 DOI: 10.1016/j.biomaterials.2023.122187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
Radiotherapy (IR) is capable of enhancing antitumor immune responses. However, IR treatment also aggravates the infiltration of peripheral macrophages into the tumor, resulting in reversing the therapeutic effects of antitumor immunity. Thus, a strategy to effectively prevent tumor infiltration by macrophages may further improved the therapeutic efficacy of radiotherapy. Herein, we found that PEGylated solid lipid nanoparticles with maleimide as PEG end-group (SLN-PEG-Mal) show significantly enhanced adsorption onto RBCs through reacting with reactive sulfhydryl groups on RBCs' surface both in vitro and in vivo, and caused significant changes in the surface properties and morphology of RBCs. These RBCs adsorbed by SLN-PEG-Mal were rapidly removed from circulation due to efficient engulfment by reticuloendothelial macrophages, supporting the usefulness of SLN-PEG-Mal for macrophage-targeted drug delivery. While lacking the use of radioisotope tracing (considered the gold standard for PK/BD studies), our data align with the expected pathway of host defense activation through surface-loaded RBCs. Importantly, injection of paclitaxel-loaded SLN-PEG-Mal effectively inhibited the tumor-infiltration by macrophages, and significantly improved the antitumor immune responses in tumor-bearing mice treated with low-dose irradiation. This study provides insights into the effects of maleimide as PEG end-group on enhancing the interaction between PEGylated nanoparticles and RBCs and offers an effective strategy to inhibit tumor infiltration by circulating macrophages.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China; Medical Laboratory Center, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Xiandi Meng
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Hongmei Chen
- Department of Oncology Chemotherapy, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Xiuxiu Cong
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Feiqi Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Shuhan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yanbao Xin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Ge Zhu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Huizhu Tan
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
8
|
Zheng J, Jiang J, Pu Y, Xu T, Sun J, Zhang Q, He L, Liang X. Tumor-associated macrophages in nanomaterial-based anti-tumor therapy: as target spots or delivery platforms. Front Bioeng Biotechnol 2023; 11:1248421. [PMID: 37654704 PMCID: PMC10466823 DOI: 10.3389/fbioe.2023.1248421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Targeting tumor-associated macrophages (TAMs) has emerged as a promising approach in cancer therapy. This article provides a comprehensive review of recent advancements in the field of nanomedicines targeting TAMs. According to the crucial role of TAMs in tumor progression, strategies to inhibit macrophage recruitment, suppress TAM survival, and transform TAM phenotypes are discussed as potential therapeutic avenues. To enhance the targeting capacity of nanomedicines, various approaches such as the use of ligands, immunoglobulins, and short peptides are explored. The utilization of live programmed macrophages, macrophage cell membrane-coated nanoparticles and macrophage-derived extracellular vesicles as drug delivery platforms is also highlighted, offering improved biocompatibility and prolonged circulation time. However, challenges remain in achieving precise targeting and controlled drug release. The heterogeneity of TAMs and the variability of surface markers pose hurdles in achieving specific recognition. Furthermore, the safety and clinical applicability of these nanomedicines requires further investigation. In conclusion, nanomedicines targeting TAMs hold great promise in cancer therapy, offering enhanced specificity and reduced side effects. Addressing the existing limitations and expanding our understanding of TAM biology will pave the way for the successful translation of these nano-therapies into clinical practice.
Collapse
Affiliation(s)
- Jixuan Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jinting Jiang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yicheng Pu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Tingrui Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jiantong Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Qiang Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling He
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Liang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Azizi M, Jahanban-Esfahlan R, Samadian H, Hamidi M, Seidi K, Dolatshahi-Pirouz A, Yazdi AA, Shavandi A, Laurent S, Be Omide Hagh M, Kasaiyan N, Santos HA, Shahbazi MA. Multifunctional nanostructures: Intelligent design to overcome biological barriers. Mater Today Bio 2023; 20:100672. [PMID: 37273793 PMCID: PMC10232915 DOI: 10.1016/j.mtbio.2023.100672] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Over the past three decades, nanoscience has offered a unique solution for reducing the systemic toxicity of chemotherapy drugs and for increasing drug therapeutic efficiency. However, the poor accumulation and pharmacokinetics of nanoparticles are some of the key reasons for their slow translation into the clinic. The is intimately linked to the non-biological nature of nanoparticles and the aberrant features of solid cancer, which together significantly compromise nanoparticle delivery. New findings on the unique properties of tumors and their interactions with nanoparticles and the human body suggest that, contrary to what was long-believed, tumor features may be more mirage than miracle, as the enhanced permeability and retention based efficacy is estimated to be as low as 1%. In this review, we highlight the current barriers and available solutions to pave the way for approved nanoformulations. Furthermore, we aim to discuss the main solutions to solve inefficient drug delivery with the use of nanobioengineering of nanocarriers and the tumor environment. Finally, we will discuss the suggested strategies to overcome two or more biological barriers with one nanocarrier. The variety of design formats, applications and implications of each of these methods will also be evaluated.
Collapse
Affiliation(s)
- Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Samadian
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Hamidi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles-BioMatter Unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Khaled Seidi
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amirhossein Ahmadieh Yazdi
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles-BioMatter Unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons – UMONS, Mons, Belgium
| | - Mahsa Be Omide Hagh
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Kasaiyan
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA, Utrecht, Netherlands
| | - Hélder A. Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
| |
Collapse
|
10
|
Xu J, Zhang J, Lin H, Zhang J, Zhou R, Wu X, Niu Y, Zhang J. Preparation of oral nanoparticles of Perillae Fructus oil and prevention application of cold stress in mice. Food Sci Nutr 2023; 11:1728-1735. [PMID: 37051352 PMCID: PMC10084961 DOI: 10.1002/fsn3.3202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Perillae Fructus oil has an important function in relieving cold stress. However, its application in this aspect has still been restricted because of instability and low bioavailability. In this study, Perillae Fructus oil was extracted through Soxhlet extraction, analyzed through gas chromatography-mass spectrometry (GC-MS), and nanopackaged into a yeast shell for the preparation of nanoparticles for oral administration. The characteristics of the nanoparticles were investigated using a Malvern zeta-size nanoinstrument, scanning electron microscopy (SEM), and high-performance liquid chromatography (HPLC). Then, the roles of orally administered nanoparticles in relieving cold stress were evaluated by investigating blood physiological and biochemical indexes in mice. The results showed that the oil yield from Perillae Fructus and shell yield from yeast cells were ~48.37% and ~16.87%, respectively. Approximately 89.21% of the added oil was packaged into the yeast shell to form nanoparticles with an average diameter of 316.74 nm and a surface charge of +2.9 mV. The nanoparticles were stable in simulated gastric acid and could be effectively released in simulated intestinal fluid with an efficiency of ~91.34%. After oral administration of nanoparticles, the mouse blood indexes of white blood cells (WBCs), superoxide dismutase (SOD) activity, and malonaldehyde (MDA) content were recovered compared to those in model mice, with a more remarkable effect than oral administration of free Perillae Fructus oil. Overall, the stability and bioavailability were improved by packaging Perillae Fructus oil into a yeast shell. These nanoparticles are a new agent for the prevention of cold stress.
Collapse
Affiliation(s)
- Junfei Xu
- College of Biological and Food EngineeringHuaihua UniversityHuaihuaChina
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan ProvinceHuaihuaChina
- "Double First‐Class" Applied Characteristic Discipline of Bioengineering in Hunan High Educational InstitutionHuaihuaChina
| | - Jianxi Zhang
- College of Biological and Food EngineeringHuaihua UniversityHuaihuaChina
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan ProvinceHuaihuaChina
- "Double First‐Class" Applied Characteristic Discipline of Bioengineering in Hunan High Educational InstitutionHuaihuaChina
| | - Huiying Lin
- College of Biological and Food EngineeringHuaihua UniversityHuaihuaChina
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan ProvinceHuaihuaChina
- "Double First‐Class" Applied Characteristic Discipline of Bioengineering in Hunan High Educational InstitutionHuaihuaChina
| | - Jiayu Zhang
- College of Biological and Food EngineeringHuaihua UniversityHuaihuaChina
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan ProvinceHuaihuaChina
- "Double First‐Class" Applied Characteristic Discipline of Bioengineering in Hunan High Educational InstitutionHuaihuaChina
| | - Rong Zhou
- College of Biological and Food EngineeringHuaihua UniversityHuaihuaChina
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan ProvinceHuaihuaChina
- "Double First‐Class" Applied Characteristic Discipline of Bioengineering in Hunan High Educational InstitutionHuaihuaChina
| | - Xianjin Wu
- College of Biological and Food EngineeringHuaihua UniversityHuaihuaChina
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan ProvinceHuaihuaChina
- "Double First‐Class" Applied Characteristic Discipline of Bioengineering in Hunan High Educational InstitutionHuaihuaChina
| | - Youya Niu
- School of Basic Medical SciencesHunan University of MedicineHuaihuaChina
| | - Juzuo Zhang
- College of Biological and Food EngineeringHuaihua UniversityHuaihuaChina
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan ProvinceHuaihuaChina
- "Double First‐Class" Applied Characteristic Discipline of Bioengineering in Hunan High Educational InstitutionHuaihuaChina
| |
Collapse
|
11
|
Reconstructed membrane vesicles from the microalga Dunaliella as a potential drug delivery system. Bioelectrochemistry 2023; 150:108360. [PMID: 36621049 DOI: 10.1016/j.bioelechem.2022.108360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/03/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
The aim of this biophysical study is to characterize reconstructed membrane vesicles obtained from microalgae in terms of their morphology, properties, composition, and ability to transport a model drug. The reconstructed vesicles were either emptied or non-emptied and exhibited a non-uniform distribution of spherical surface structures that could be associated with surface coat proteins, while in between there were pore-like structures of up to 10 nm that could contribute to permeability. The reconstructed vesicles were very soft and hydrophilic, which could be attributed to their composition. The vesicles were rich in proteins and were mostly derived from the cytoplasm and chloroplasts. We demonstrated that all lipid classes of D. tertiolecta are involved in the formation of the reconstructed membrane vesicles, where they play fundamental role to maintain the vesicle structure. The vesicles appeared to be permeable to calcein, impermeable to FITC-ovalbumin, and semipermeable to FITC-concanavalin A, which may be due to a specific surface interaction with glucose/mannose units that could serve as a basis for the development of drug carriers. Finally, the reconstructed membrane vesicles could pave a new way as sustainable and environmentally friendly marine bioinspired carriers and serve for studies on microtransport of materials and membrane-related processes contributing to advances in life sciences and biotechnology.
Collapse
|
12
|
Lai WF, Zhang D, Wong WT. Design of erythrocyte-derived carriers for bioimaging applications. Trends Biotechnol 2023; 41:228-241. [PMID: 36031485 DOI: 10.1016/j.tibtech.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/01/2022] [Accepted: 07/25/2022] [Indexed: 01/24/2023]
Abstract
Erythrocytes are physiological entities that have been exploited in both preclinical and clinical trials for the delivery of exogenous agents. Over the years, diverse erythrocyte-derived carriers (ECs) have been developed with related patents granted for industrial and commercial purposes. However, most ECs have only been exploited for drug delivery. Serious discussions regarding their applications in imaging are scarce. This article reviews the role of ECs in enhancing imaging efficiency and subsequently delineates strategies for engineering and optimising their preclinical and clinical performance. With a snapshot of the latest developments and use of ECs in imaging, directions to streamline the clinical translation of related technologies can be attained for future research.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang 310012, China.
| | - Dahong Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang 310012, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| |
Collapse
|
13
|
Zhang L, Huang P, Huang S, Wang T, Chen S, Chen Z, Zhou Y, Qin L. Development of ligand modified erythrocyte coated polydopamine nanomedicine to codeliver chemotherapeutic agent and oxygen for chemo-photothermal synergistic cancer therapy. Int J Pharm 2022; 626:122156. [PMID: 36058410 DOI: 10.1016/j.ijpharm.2022.122156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/27/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Abstract
The use of conventional chemotherapy often faces limitations such as severe side effects, weak tumor tissue specificity, and the development of multidrug resistance. To conquer these challenges, numerous novel drug carriers have been designed in recent years. However, due to the complex processes of tumor development, metastasis and recurrence, single chemotherapy cannot fulfill the goals of clinical diverse treatment. In this work, by utilizing the inherent characteristics of surface-modified erythrocyte and the outstanding photothermal conversion capability of polydopamine (PDA), we designed and constructed a biomimetic multifunctional nanomedicine DPPR NPs to codeliver chemotherapeutic agent doxorubicin (DOX) and oxygen. The results showed that DPPR NPs exhibited inspiring features including nanoscale droplet size, good physicochemical stability, and sustained, pH-, and NIR triggered drug release behavior. It can dramatically prolong the systematic circulation time and elevated the drug accumulated level in the tumor site. Moreover, DPPR NPs could be effectively internalized into tumor cells and destroyed the intracellular redox balance to mediate cell apoptosis. It exerted excellent in vivo tumor targeting effect, photothermal conversion efficiency, ultrasound imaging responses, antitumor efficacy, and good compatibility. In summary, DPPR NPs provide a biomimetic drug delivery platform to organically combine chemotherapy and photothermal therapy for precise cancer treatment.
Collapse
Affiliation(s)
- Liyao Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Peijie Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shubin Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Tao Wang
- Department of Pharmacy, Changzhi Medical College, Changzhi 046000, PR China
| | - Shufeng Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhihao Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi Zhou
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Linghao Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
14
|
Jiang Z, Chu Y, Zhan C. Protein corona: challenges and opportunities for targeted delivery of nanomedicines. Expert Opin Drug Deliv 2022; 19:833-846. [PMID: 35738018 DOI: 10.1080/17425247.2022.2093854] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Targeted drug delivery has been widely explored as a promising way to improve the performance of nanomedicines. However, protein corona formed on the nano-surface represents a major issue that has great impacts on the in vivo fate of targeting nanomedicines, which has been overlooked in the past. With the increasing understanding of protein corona in the recent decade, many efforts have been made to improve targeting efficacy. AREAS COVERED In this review, we briefly summarize insights of targeted delivery systems inspired by protein corona, and discuss the promising strategies to regulate protein corona for better targeting. EXPERT OPINION The interaction between nanomedicines and endogenous proteins brings great uncertainty and challenges, but it also provides great opportunities for the development of targeting nanomedicines at the same time. With increasing understanding of protein corona, the strategies to regulate protein corona pave new avenues for the development of targeting nanomedicines.
Collapse
Affiliation(s)
- Zhuxuan Jiang
- Center of Medical Research and Innovation, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, P.R. China
| | - Yuxiu Chu
- Center of Medical Research and Innovation, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, P.R. China
| | - Changyou Zhan
- Center of Medical Research and Innovation, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, P.R. China.,Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, P.R. China.,Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, P.R. China
| |
Collapse
|
15
|
Sato W, Zajkowski T, Moser F, Adamala KP. Synthetic cells in biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1761. [PMID: 34725945 PMCID: PMC8918002 DOI: 10.1002/wnan.1761] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Synthetic cells are engineered vesicles that can mimic one or more salient features of life. These features include directed localization, sense-and-respond behavior, gene expression, metabolism, and high stability. In nanomedicine, many of these features are desirable capabilities of drug delivery vehicles but are difficult to engineer. In this focus article, we discuss where synthetic cells offer unique advantages over nanoparticle and living cell therapies. We review progress in the engineering of the above life-like behaviors and how they are deployed in nanomedicine. Finally, we assess key challenges synthetic cells face before being deployed as drugs and suggest ways to overcome these challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Wakana Sato
- 1 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN US
| | - Tomasz Zajkowski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
- USRA at NASA Ames Research Center, Mountain View, CA 94035
- Blue Marble Space Institute of Science, 600 1st Avenue, Seattle WA 98104
| | - Felix Moser
- Synlife, Inc., One Kendall Square Suite B4401, Cambridge, MA 20139
| | - Katarzyna P. Adamala
- 1 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN US
| |
Collapse
|
16
|
Design and Optimization of the Circulatory Cell-Driven Drug Delivery Platform. Stem Cells Int 2021; 2021:8502021. [PMID: 34603454 PMCID: PMC8481068 DOI: 10.1155/2021/8502021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023] Open
Abstract
Achievement of high targeting efficiency for a drug delivery system remains a challenge of tumor diagnoses and nonsurgery therapies. Although nanoparticle-based drug delivery systems have made great progress in extending circulation time, improving durability, and controlling drug release, the targeting efficiency remains low. And the development is limited to reducing side effects since overall survival rates are mostly unchanged. Therefore, great efforts have been made to explore cell-driven drug delivery systems in the tumor area. Cells, particularly those in the blood circulatory system, meet most of the demands that the nanoparticle-based delivery systems do not. These cells possess extended circulation times and innate chemomigration ability and can activate an immune response that exerts therapeutic effects. However, new challenges have emerged, such as payloads, cell function change, cargo leakage, and in situ release. Generally, employing cells from the blood circulatory system as cargo carriers has achieved great benefits and paved the way for tumor diagnosis and therapy. This review specifically covers (a) the properties of red blood cells, monocytes, macrophages, neutrophils, natural killer cells, T lymphocytes, and mesenchymal stem cells; (b) the loading strategies to balance cargo amounts and cell function balance; (c) the cascade strategies to improve cell-driven targeting delivery efficiency; and (d) the features and applications of cell membranes, artificial cells, and extracellular vesicles in cancer treatment.
Collapse
|
17
|
Zhou P, Ouchari M, Xue Y, Yin Q. In Vitro Generation of Red Blood Cells from Stem Cell and Targeted Therapy. Cell Transplant 2021; 29:963689720946658. [PMID: 32830529 PMCID: PMC7563022 DOI: 10.1177/0963689720946658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Red blood cell (RBC) transfusion is a common therapeutic intervention,
which is necessary for patients with emergency or hematological
disorders to reduce morbidity and mortality. However, to date, blood
available for transfusion is a limited resource, and the transfusion
coverage system still depends on the volunteer-based collection
system. The scarcity of blood supplies commonly develops because of
local conditions that transiently affect collection. Moreover,
donor-derived infectious disease transmission events also remain a
risk. Thus, there is a huge demand for artificial blood. The
production of cultured RBCs from stem cells is slowly emerging as a
potential alternative to donor-derived red cell transfusion products.
In this concise review, we summarize the recent in vitro expansion of
RBCs from various stem cell sources, targeted therapy, prospects, and
remaining challenges.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Laboratory Medicine, the First Affiliated Hospital of Hainan Medical College, Hainan, China
| | - Mouna Ouchari
- Department of Immunology, Columbia University, New York, NY, USA
| | - Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Qinan Yin
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, China.,Clinical Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Red Blood Cell Membrane-Camouflaged Tedizolid Phosphate-Loaded PLGA Nanoparticles for Bacterial-Infection Therapy. Pharmaceutics 2021; 13:pharmaceutics13010099. [PMID: 33466655 PMCID: PMC7828826 DOI: 10.3390/pharmaceutics13010099] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Multiple drug resistance (MDR) in bacterial infections is developed with the abuse of antibiotics, posing a severe threat to global health. Tedizolid phosphate (TR-701) is an efficient prodrug of tedizolid (TR-700) against gram-positive bacteria, including methicillin-sensitive staphylococcus aureus (MSSA) and methicillin-resistant staphylococcus aureus (MRSA). Herein, a novel drug delivery system: Red blood cell membrane (RBCM) coated TR-701-loaded polylactic acid-glycolic acid copolymer (PLGA) nanoparticles (RBCM-PLGA-TR-701NPs, RPTR-701Ns) was proposed. The RPTR-701Ns possessed a double-layer core-shell structure with 192.50 ± 5.85 nm in size, an average encapsulation efficiency of 36.63% and a 48 h-sustained release in vitro. Superior bio-compatibility was confirmed with red blood cells (RBCs) and HEK 293 cells. Due to the RBCM coating, RPTR-701Ns on one hand significantly reduced phagocytosis by RAW 264.7 cells as compared to PTR-701Ns, showing an immune escape effect. On the other hand, RPTR-701Ns had an advanced exotoxins neutralization ability, which helped reduce the damage of MRSA exotoxins to RBCs by 17.13%. Furthermore, excellent in vivo bacteria elimination and promoted wound healing were observed of RPTR-701Ns with a MRSA-infected mice model without causing toxicity. In summary, the novel delivery system provides a synergistic antibacterial treatment of both sustained release and bacterial toxins absorption, facilitating the incorporation of TR-701 into modern nanotechnology.
Collapse
|
19
|
Yuan Y, Long L, Liu J, Lin Y, Peng C, Tang Y, Zhou X, Li S, Zhang C, Li X, Zhou X. The double-edged sword effect of macrophage targeting delivery system in different macrophage subsets related diseases. J Nanobiotechnology 2020; 18:168. [PMID: 33198758 PMCID: PMC7667812 DOI: 10.1186/s12951-020-00721-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/24/2020] [Indexed: 01/01/2023] Open
Abstract
Background Monocyte/macrophage-targeting delivery systems (MTDSs) have been focused upon as an emerging routine for delivering drugs to treat various macrophage-related diseases. However, the ability of MTDSs to distinguish different macrophage-related diseases and their impact on macrophage function and disease progression have not been systematically revealed, which is important for actively targeted therapeutic or diagnostic strategies. Results Herein, we used dextran-modified polystyrene nanoparticles (DEX-PS) to demonstrate that modification of nanoparticles by dextran can specifically enhance their recognition by M2 macrophages in vitro, but it is obstructed by monocytes in peripheral blood according to in vivo assays. DEX-PS not only targeted and became distributed in tumors, an M2 macrophage-related disease, but was also highly distributed in an M1 macrophage-related disease, namely acute peritonitis. Thus, DEX-PS acts as a double-edged sword in these two different diseases by reeducating macrophages to a pro-inflammatory phenotype. Conclusions Our results suggest that MTDSs, even those designed based on differential expression of receptors on specific macrophage subtypes, lack the ability to distinguish different macrophage subtype-related diseases in vivo. In addition to the potential impact of these carrier materials on macrophage function, studies of MTDSs should pay greater attention to the distribution of nanoparticles in non-target macrophage-infiltrated disease sites and their impact on disease processes.![]()
Collapse
Affiliation(s)
- Yuchuan Yuan
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Ling Long
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400042, China
| | - Jiaxing Liu
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Yongyao Lin
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Cuiping Peng
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Yue Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xuemei Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Shuhui Li
- Department of Clinical Biochemistry, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Chengyuan Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Xiaohui Li
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China.
| | - Xing Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| |
Collapse
|
20
|
Tang Y, Wang X, Li J, Nie Y, Liao G, Yu Y, Li C. Overcoming the Reticuloendothelial System Barrier to Drug Delivery with a "Don't-Eat-Us" Strategy. ACS NANO 2019; 13:13015-13026. [PMID: 31689086 DOI: 10.1021/acsnano.9b05679] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Overcoming the reticuloendothelial system (RES) has long been a vital challenge to nanoparticles as drug carriers. Modification of nanoparticles with polyethylene glycol helps them avoid clearance by macrophages but also suppresses their internalization by target cells. To overcome this paradox, we developed an RES-specific blocking system utilizing a "don't-eat-us" strategy. First, a CD47-derived, enzyme-resistant peptide ligand was designed and placed on liposomes (d-self-peptide-labeled liposome, DSL). After mainline administration, DSL was quickly adsorbed onto hepatic phagocyte membranes (including those of Kupffer cells and liver sinusoidal endothelial cells), forming a long-lasting mask that enclosed the cell membranes and thus reducing interactions between phagocytes and subsequently injected nanoparticles. Compared with blank conventional liposomes (CL), DSL blocked the RES at a much lower dose, and the effect was sustained for a much longer time, highly prolonging the elimination half-life of the subsequently injected nanoparticles. This "don't-eat-us" strategy by DSL was further verified on the brain-targeted delivery against a cryptococcal meningitis model, providing dramatically enhanced brain accumulation of the targeted delivery system and superior therapeutic outcome of model drug Amphotericin B compared with CL. Our study demonstrates a strategy that blocks the RES by masking phagocyte surfaces to prolong nanoparticle circulation time without excess modification and illustrates its utility in enhancing nanoparticle delivery.
Collapse
Affiliation(s)
- Yixuan Tang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , P.R. China
| | - Xiaoyou Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , P.R. China
| | - Jie Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , P.R. China
| | - Yu Nie
- National Engineering Research Center for Biomaterials , Sichuan University , Sichuan 610065 , P.R. China
| | - Guojian Liao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , P.R. China
| | - Yang Yu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , P.R. China
| | - Chong Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , P.R. China
| |
Collapse
|
21
|
Lutz H, Hu S, Dinh PU, Cheng K. Cells and cell derivatives as drug carriers for targeted delivery. MEDICINE IN DRUG DISCOVERY 2019; 3:100014. [PMID: 38596257 PMCID: PMC11003759 DOI: 10.1016/j.medidd.2020.100014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
For over a century, researchers have focused on how to optimize drug delivery. Systemic administration means that the drug becomes dilute and has the potential to diffuse to all tissues, which is only until the immune system steps in and rapidly clears it from blood circulation. Drug carriers are the solution for amplifying the intended effect and diminishing side effects. With drug carriers, tissue-specific drug delivery and controlled drug release is possible. Thus far, both synthetic and non-synthetic carriers exist. However, due to the numerous limitations of synthetic carriers, science has begun to concentrate on using live cells and cell-derivatives as drug carriers. The most problematic shortcomings of synthetic carriers are their limited biocompatibility and biodegradability. Most synthetic carriers are cytotoxic or induce immune responses. Moreover, synthetic carriers typically depend on passive diffusion and risk phagocytosis, further reducing their impact. On the other hand, live-cell carriers and their derivatives usually have a targeting mechanism and drug release is controlled, increasing the efficiency with which a drug accumulates and acts on a tissue. Still, both types of carriers face similar problems, including achieving high loading capacity, maintaining drug quality, efficiently accumulating in the target tissue, and minimizing side effects. This review aims to elucidate the advantages and disadvantages of each popular cell or cell-derived carrier and to spotlight novel solutions.
Collapse
Affiliation(s)
- Halle Lutz
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Phuong-Uyen Dinh
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, United States
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, United States
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27607, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
22
|
Hanley T, Yin R, Mac JT, Tan W, Anvari B. Functionalized erythrocyte-derived optical nanoparticles to target ephrin-B2 ligands. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-9. [PMID: 31429216 PMCID: PMC6983482 DOI: 10.1117/1.jbo.24.8.085002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Over- or under-expression of erythropoietin-production human hepatocellular receptors (Eph) and their ligands are associated with various diseases. Therefore, these molecular biomarkers can potentially be used as binding targets for the delivery of therapeutic and/or imaging agents to cells characterized by such irregular expressions. We have engineered nanoparticles derived from erythrocytes and doped with the near-infrared (NIR) FDA-approved dye, indocyanine green. We refer to these nanoparticles as NIR erythrocyte-derived transducers (NETs). We functionalized the NETs with the ligand-binding domain of a particular Eph receptor, EphB1, to target the genetically modified human dermal microvascular endothelial cells (hDMVECs) with coexpression of EphB1 receptor and its ligand ephrin-B2. This cell model mimics the pathological phenotypes of lesional endothelial cells (ECs) in port wine stains (PWSs). Our quantitative fluorescence imaging results demonstrate that such functionalized NETs bind to the ephrin-B2 ligands on these hDMVECs in a dose-dependent manner that varies sigmoidally with the number density of the particles. These nanoparticles may potentially serve as agents to target PWS lesional ECs and other diseases characterized with over-expression of Eph receptors or their associated ligands to mediate phototherapy.
Collapse
Affiliation(s)
- Taylor Hanley
- University of California, Riverside, Department of Bioengineering, Riverside, California, United States
| | - Rong Yin
- University of South Carolina School of Medicine, Department of Cell Biology and Anatomy, Columbia, South Carolina, United States
| | - Jenny T. Mac
- University of California, Riverside, Department of Biochemistry, Riverside, California, United States
| | - Wenbin Tan
- University of South Carolina School of Medicine, Department of Cell Biology and Anatomy, Columbia, South Carolina, United States
| | - Bahman Anvari
- University of California, Riverside, Department of Bioengineering, Riverside, California, United States
| |
Collapse
|
23
|
Li T, Li L, Bai Y, Cao Y, Lu Q, Li Y, Xu G, Zhang T. A multiscale flexible pressure sensor based on nanovesicle-like hollow microspheres for micro-vibration detection in non-contact mode. NANOSCALE 2019; 11:5737-5745. [PMID: 30865743 DOI: 10.1039/c8nr09506j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To detect micro-vibration, flexible pressure sensors require that the sensing materials possess superior sensitivity in non-contact sensing mode. One type of matter, nanovesicles, has the characteristics of hollow spheres and crack junctions in a single body, and provides an exciting bionic idea to explore high-sensitivity sensing materials. Hence, in this study, novel hollow microspheres with a hierarchical nanovesicle-like architecture are designed, prepared via a controlled strategy of adjusting the surface energy, and employed to fabricate multiscale flexible pressure sensors that display a high response sensitivity of 11.3 kPa-1 and a low detection limit of 5.5 Pa with good stability for 2500 cycles. The working mechanism can be deduced as the synergistic effects from the stress concentration of microstructural patterns and the successive deformation of the nanovesicle-like structure, which is revealed by controlled experiments and finite element method simulations. The as-assembled flexible pressure sensor is used to detect the dynamic micro-vibration signals caused by fluid motion (water flow and airflow) and inelastic/elastic collision in non-contact mode, revealing good sensitivity, repeatability and stability. This work provides theoretical and experimental evidence for the development of hierarchical structure-based highly sensitive flexible sensors in the future.
Collapse
Affiliation(s)
- Tie Li
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, 215123, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|