1
|
Pravdivtsev AN, Tickner BJ, Glöggler S, Hövener JB, Buntkowsky G, Duckett SB, Bowers CR, Zhivonitko VV. Unconventional Parahydrogen-Induced Hyperpolarization Effects in Chemistry and Catalysis: From Photoreactions to Enzymes. ACS Catal 2025; 15:6386-6409. [PMID: 40270879 PMCID: PMC12013695 DOI: 10.1021/acscatal.4c07870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 04/25/2025]
Abstract
Nuclear spin hyperpolarization utilizing parahydrogen has the potential for broad applications in chemistry, catalysis, biochemistry, and medicine. This review examines recent chemical and biochemical insights gained using parahydrogen-induced polarization (PHIP). We begin with photoinduced PHIP, which allows the investigation of short-lived and photoactivated catalysis. Next, we review the partially negative line effect, in which distinctive line shape helps to reveal information about rapid exchange with parahydrogen and the role of short-lived catalytic species. The NMR signal enhancement of a single proton in oneH-PHIP is discussed, challenging the underpinning concept of the necessity of pairwise hydrogenation. Furthermore, we examine metal-free PHIP facilitated by frustrated Lewis pair molecular tweezers and radicaloids, demonstrating alternative routes to hydrogenation. Although symmetric molecules incorporating parahydrogen are NMR silent, we showcase methods that reveal hyperpolarized states through post-hydrogenation reactions. We discuss chemical exchange processes that mediate polarization transfer between parahydrogen and a molecular target, expanding the reach of PHIP without synthesizing specialized precursors. We conclude this review by highlighting the role of PHIP in uncovering the H2 activation mechanisms of hydrogenases. By providing a detailed review of these diverse phenomena, we aim to familiarize the reader with the versatility of PHIP and its potential applications for mechanistic studies and chemical analysis.
Collapse
Affiliation(s)
- Andrey N. Pravdivtsev
- Department
Section Biomedical Imaging, Molecular Imaging North Competence Center
(MOIN CC), Department of Radiology and Neuroradiology University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Ben J. Tickner
- Centre
for Hyperpolarization in Magnetic Resonance (CHyM), Department of
Chemistry University of York, Heslington, YO10 5NY, United Kingdom
| | - Stefan Glöggler
- Max-Planck-Institute
for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
- Center
for Biostructural Imaging of Neurodegeneration (BIN), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Advanced
Imaging Research Center, The University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jan-Bernd Hövener
- Department
Section Biomedical Imaging, Molecular Imaging North Competence Center
(MOIN CC), Department of Radiology and Neuroradiology University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Gerd Buntkowsky
- Eduard-Zintl-Institut
für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 8, D-64287 Darmstadt, Germany
| | - Simon B. Duckett
- Centre
for Hyperpolarization in Magnetic Resonance (CHyM), Department of
Chemistry University of York, Heslington, YO10 5NY, United Kingdom
| | - Clifford R. Bowers
- Department
of Chemistry and National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32611, United States
| | | |
Collapse
|
2
|
Wodtke P, Grashei M, Schilling F. Quo Vadis Hyperpolarized 13C MRI? Z Med Phys 2025; 35:8-32. [PMID: 38160135 PMCID: PMC11910262 DOI: 10.1016/j.zemedi.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 01/03/2024]
Abstract
Over the last two decades, hyperpolarized 13C MRI has gained significance in both preclinical and clinical studies, hereby relying on technologies like PHIP-SAH (ParaHydrogen-Induced Polarization-Side Arm Hydrogenation), SABRE (Signal Amplification by Reversible Exchange), and dDNP (dissolution Dynamic Nuclear Polarization), with dDNP being applied in humans. A clinical dDNP polarizer has enabled studies across 24 sites, despite challenges like high cost and slow polarization. Parahydrogen-based techniques like SABRE and PHIP offer faster, more cost-efficient alternatives but require molecule-specific optimization. The focus has been on imaging metabolism of hyperpolarized probes, which requires long T1, high polarization and rapid contrast generation. Efforts to establish novel probes, improve acquisition techniques and enhance data analysis methods including artificial intelligence are ongoing. Potential clinical value of hyperpolarized 13C MRI was demonstrated primarily for treatment response assessment in oncology, but also in cardiology, nephrology, hepatology and CNS characterization. In this review on biomedical hyperpolarized 13C MRI, we summarize important and recent advances in polarization techniques, probe development, acquisition and analysis methods as well as clinical trials. Starting from those we try to sketch a trajectory where the field of biomedical hyperpolarized 13C MRI might go.
Collapse
Affiliation(s)
- Pascal Wodtke
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany; Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge UK
| | - Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany; Munich Institute of Biomedical Engineering, Technical University of Munich, 85748 Garching, Germany; German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| |
Collapse
|
3
|
Barker S, Dagys L, Levitt MH, Utz M. Efficient Parahydrogen-Induced 13C Hyperpolarization on a Microfluidic Device. J Am Chem Soc 2024; 146:18379-18386. [PMID: 38916928 PMCID: PMC11240250 DOI: 10.1021/jacs.4c03271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024]
Abstract
We show the direct production and detection of 13C-hyperpolarized fumarate by parahydrogen-induced polarization (PHIP) in a microfluidic lab-on-a-chip (LoC) device and achieve 8.5% 13C polarization. This is the first demonstration of 13C-hyperpolarization of a metabolite by PHIP in a microfluidic device. LoC technology allows the culture of mammalian cells in a highly controlled environment, providing an important tool for the life sciences. In-situ preparation of hyperpolarized metabolites greatly enhances the ability to quantify metabolic processes in such systems by microfluidic NMR. PHIP of 1H nuclei has been successfully implemented in microfluidic systems, with mass sensitivities in the range of pmol/s. However, metabolic NMR requires high-yield production of hyperpolarized metabolites with longer spin life times than is possible with 1H. This can be achieved by transfer of the polarization onto 13C nuclei, which exhibit much longer T1 relaxation times. We report an improved microfluidic PHIP device, optimized using a finite element model, that enables the direct and efficient production of 13C-hyperpolarized fumarate.
Collapse
Affiliation(s)
- Sylwia
J. Barker
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology, Karlsruhe 76131, Germany
| | - Laurynas Dagys
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute
of Chemical Physics, Vilnius University, Vilnius 01513, Lithuania
| | - Malcolm H. Levitt
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Marcel Utz
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology, Karlsruhe 76131, Germany
| |
Collapse
|
4
|
Theiss F, Lins J, Kergassner J, Wienands L, Döller S, Buntkowsky G. Two fields are better than one - A multifunctional (semi)automated setup for quantitative measurements of parahydrogen-induced signal enhancement at low and high fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107673. [PMID: 38598990 DOI: 10.1016/j.jmr.2024.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
The rapid advancement of parahydrogen-induced hyperpolarization (PHIP) and its diverse array of applications highlights the critical need for enhanced signals in both 1H NMR and heteronuclear NMR spectroscopy. Simultaneously, there is an increasing interest in utilizing benchtop NMR analysis across various laboratory settings. However, due to their lower magnetic fields, benchtop NMR spectrometers inherently produce weaker signal intensities. Here, PHIP is a well-established solution to this challenge. Consequently, we are expanding our cost-effective PHIP setup from a high-field NMR spectrometer (11.7 T) to include an additional benchtop NMR spectrometer (1.4 T), thereby enabling concurrent execution of PHIP experiments and measurements. Through the implementation of automated experimental protocols, we aim to minimize experiment time while increasing reproducibility. In this work, a non-isotope labelled propargyl alcohol sample is used at low concentrations to demonstrate our setup's capabilities. It could be shown that single-scan PASADENA experiments can be run with comparable signal enhancements at the benchtop as well as the high-field spectrometer. At 1.4 T, fully automated PHIP pseudo-2D measurements will also be demonstrated. Additionally, two different field profiles for the spin-order transfer of p-H2 to 13C at zero- to ultralow fields are elaborated upon. The setup facilitates the measurement of carbon signal enhancement of more than 2000 on the benchtop NMR spectrometer, employing a straightforward one-pulse, one-scan experiment.
Collapse
Affiliation(s)
- Franziska Theiss
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Peter-Grünberg-Straße 8, D-64287 Darmstadt, Germany
| | - Jonas Lins
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Peter-Grünberg-Straße 8, D-64287 Darmstadt, Germany
| | - Jan Kergassner
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Peter-Grünberg-Straße 8, D-64287 Darmstadt, Germany
| | - Laura Wienands
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Peter-Grünberg-Straße 8, D-64287 Darmstadt, Germany
| | - Sonja Döller
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Peter-Grünberg-Straße 8, D-64287 Darmstadt, Germany
| | - Gerd Buntkowsky
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Peter-Grünberg-Straße 8, D-64287 Darmstadt, Germany.
| |
Collapse
|
5
|
Chaumeil MM, Bankson JA, Brindle KM, Epstein S, Gallagher FA, Grashei M, Guglielmetti C, Kaggie JD, Keshari KR, Knecht S, Laustsen C, Schmidt AB, Vigneron D, Yen YF, Schilling F. New Horizons in Hyperpolarized 13C MRI. Mol Imaging Biol 2024; 26:222-232. [PMID: 38147265 PMCID: PMC10972948 DOI: 10.1007/s11307-023-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023]
Abstract
Hyperpolarization techniques significantly enhance the sensitivity of magnetic resonance (MR) and thus present fascinating new directions for research and applications with in vivo MR imaging and spectroscopy (MRI/S). Hyperpolarized 13C MRI/S, in particular, enables real-time non-invasive assessment of metabolic processes and holds great promise for a diverse range of clinical applications spanning fields like oncology, neurology, and cardiology, with a potential for improving early diagnosis of disease, patient stratification, and therapy response assessment. Despite its potential, technical challenges remain for achieving clinical translation. This paper provides an overview of the discussions that took place at the international workshop "New Horizons in Hyperpolarized 13C MRI," in March 2023 at the Bavarian Academy of Sciences and Humanities, Munich, Germany. The workshop covered new developments, as well as future directions, in topics including polarization techniques (particularly focusing on parahydrogen-based methods), novel probes, considerations related to data acquisition and analysis, and emerging clinical applications in oncology and other fields.
Collapse
Affiliation(s)
- Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - James A Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Ferdia A Gallagher
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Joshua D Kaggie
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Weill Cornell Graduate School, New York City, NY, USA
| | | | - Christoffer Laustsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
| | - Andreas B Schmidt
- Partner Site Freiburg and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
| | - Daniel Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Yi-Fen Yen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
- Partner Site Freiburg and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
6
|
Theiss F, Wienands L, Lins J, Alcaraz-Janßen M, Thiele CM, Buntkowsky G. Parahydrogen-induced polarization enables the single-scan NMR detection of a 236 kDa biopolymer at nanomolar concentrations. Sci Rep 2023; 13:10117. [PMID: 37344547 DOI: 10.1038/s41598-023-37202-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023] Open
Abstract
Nuclear magnetic resonance (NMR) experiments utilizing parahydrogen-induced polarization (PHIP) were performed to elucidate the PHIP activity of the synthetic 236 kDa biopolymer poly-γ-(4-propargyloxy)-benzyl-L-glutamate) (PPOBLG). The homopolypeptide was successfully hyperpolarized and the enhanced signals were detected in 11.7 T solution NMR as a function of the PPOBLG concentration. The hydrogenation with parahydrogen caused signal enhancements of 800 and more for the vinyl protons of the side chain at low substrate concentration. As a result of this high enhancement factor, even at 13 nM of PPOBLG, a single scan 1H-NMR detection of the hyperpolarized protons was possible, owing to the combination of hyperpolarization and density of PHIP active sites.
Collapse
Affiliation(s)
- Franziska Theiss
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287, Darmstadt, Germany
| | - Laura Wienands
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287, Darmstadt, Germany
| | - Jonas Lins
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287, Darmstadt, Germany
| | - Marcel Alcaraz-Janßen
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 16, 64287, Darmstadt, Germany
| | - Christina M Thiele
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 16, 64287, Darmstadt, Germany
| | - Gerd Buntkowsky
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287, Darmstadt, Germany.
| |
Collapse
|
7
|
Gierse M, Nagel L, Keim M, Lucas S, Speidel T, Lobmeyer T, Winter G, Josten F, Karaali S, Fellermann M, Scheuer J, Müller C, van Heijster F, Skinner J, Löffler J, Parker A, Handwerker J, Marshall A, Salhov A, El-Kassem B, Vassiliou C, Blanchard JW, Picazo-Frutos R, Eills J, Barth H, Jelezko F, Rasche V, Schilling F, Schwartz I, Knecht S. Parahydrogen-Polarized Fumarate for Preclinical in Vivo Metabolic Magnetic Resonance Imaging. J Am Chem Soc 2023; 145:5960-5969. [PMID: 36857421 DOI: 10.1021/jacs.2c13830] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
We present a versatile method for the preparation of hyperpolarized [1-13C]fumarate as a contrast agent for preclinical in vivo MRI, using parahydrogen-induced polarization (PHIP). To benchmark this process, we compared a prototype PHIP polarizer to a state-of-the-art dissolution dynamic nuclear polarization (d-DNP) system. We found comparable polarization, volume, and concentration levels of the prepared solutions, while the preparation effort is significantly lower for the PHIP process, which can provide a preclinical dose every 10 min, opposed to around 90 min for d-DNP systems. With our approach, a 100 mM [1-13C]-fumarate solution of volumes up to 3 mL with 13-20% 13C-hyperpolarization after purification can be produced. The purified solution has a physiological pH, while the catalyst, the reaction side products, and the precursor material concentrations are reduced to nontoxic levels, as confirmed in a panel of cytotoxicity studies. The in vivo usage of the hyperpolarized fumarate as a perfusion agent in healthy mice and the metabolic conversion of fumarate to malate in tumor-bearing mice developing regions with necrotic cell death is demonstrated. Furthermore, we present a one-step synthesis to produce the 13C-labeled precursor for the hydrogenation reaction with high yield, starting from 13CO2 as a cost-effective source for 13C-labeled compounds.
Collapse
Affiliation(s)
- Martin Gierse
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Institute for Quantum Optics (IQO) and Center for Integrated Quantum Science and Technology (IQST), Ulm University, 89081 Ulm, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Michael Keim
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | | - Tobias Speidel
- Core Facility Small Animal MRI, Medical Faculty, Ulm University, 89081 Ulm, Germany
| | - Tobias Lobmeyer
- Core Facility Small Animal MRI, Medical Faculty, Ulm University, 89081 Ulm, Germany
| | - Gordon Winter
- Department of Nuclear Medicine, Ulm University, 89081 Ulm, Germany
| | - Felix Josten
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | - Senay Karaali
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | - Maximilian Fellermann
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, 89081 Ulm, Germany
| | | | | | - Frits van Heijster
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Jason Skinner
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Jessica Löffler
- Department of Nuclear Medicine, Ulm University, 89081 Ulm, Germany
| | - Anna Parker
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | | - Alastair Marshall
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Institute for Quantum Optics (IQO) and Center for Integrated Quantum Science and Technology (IQST), Ulm University, 89081 Ulm, Germany
| | - Alon Salhov
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, 91904, Givat Ram, Israel
| | | | | | | | - Román Picazo-Frutos
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Mainz 55128, Germany.,Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
| | - James Eills
- Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, 89081 Ulm, Germany
| | - Fedor Jelezko
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Institute for Quantum Optics (IQO) and Center for Integrated Quantum Science and Technology (IQST), Ulm University, 89081 Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal MRI, Medical Faculty, Ulm University, 89081 Ulm, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Ilai Schwartz
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | |
Collapse
|
8
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
9
|
Ferrer MJ, Kuker EL, Semenova E, Gangano AJ, Lapak MP, Grenning AJ, Dong VM, Bowers CR. Adiabatic Passage through Level Anticrossings in Systems of Chemically Inequivalent Protons Incorporating Parahydrogen: Theory, Experiment, and Prospective Applications. J Am Chem Soc 2022; 144:20847-20853. [PMID: 36331927 PMCID: PMC10102863 DOI: 10.1021/jacs.2c09000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Level anticrossings (LACs) are ubiquitous in quantum systems and have been exploited for spin-order transfer in hyperpolarized nuclear magnetic resonance spectroscopy. This paper examines the manifestations of adiabatic passage through a specific type of LAC found in homonuclear systems of chemically inequivalent coupled protons incorporating parahydrogen (pH2). Adiabatic passage through such a LAC is shown to elicit translation of the pH2 spin order. As an example, with prospective applications in biomedicine, proton spin polarizations of at least 19.8 ± 2.6% on the methylene protons and 68.7 ± 0.5% on the vinylic protons of selectively deuterated allyl pyruvate ester are demonstrated experimentally. After ultrasonic spray injection of a precursor solution containing propargyl pyruvate and a dissolved Rh catalyst into a chamber pressurized with 99% para-enriched H2, the products are collected and transported to a high magnetic field for NMR detection. The LAC-mediated hyperpolarization of the methylene protons is significant because of the stronger spin coupling to the pyruvate carbonyl 13C, setting up an ideal initial condition for subsequent coherence transfer by selective INEPT. Furthermore, the selective deuteration of the propargyl side arm increases the efficiency and polarization level. LAC-mediated translation of parahydrogen spin order completes the first step toward a new and highly efficient route for the 13C NMR signal enhancement of pyruvate via side-arm hydrogenation with parahydrogen.
Collapse
Affiliation(s)
- Maria-Jose Ferrer
- Department of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
| | - Erin L. Kuker
- Department of Chemistry, University of California, Irvine, California92697-2025, United States
| | - Evgeniya Semenova
- Department of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
| | - Anghelo Josh Gangano
- Department of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
| | - Michelle P. Lapak
- Department of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
| | - Alexander J. Grenning
- Department of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
| | - Vy M. Dong
- Department of Chemistry, University of California, Irvine, California92697-2025, United States
| | - Clifford R. Bowers
- Department of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
- National High Magnetic Field Lab, Tallahassee, Florida32310, United States
| |
Collapse
|
10
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
11
|
Tickner BJ, Svensson SKM, Vaara J, Duckett SB. Toward Optimizing and Understanding Reversible Hyperpolarization of Lactate Esters Relayed from para-Hydrogen. J Phys Chem Lett 2022; 13:6859-6866. [PMID: 35861312 PMCID: PMC9340809 DOI: 10.1021/acs.jpclett.2c01442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The SABRE-Relay hyperpolarization method is used to enhance the 1H and 13C NMR signals of lactate esters, which find use in a wide range of medical, pharmaceutical, and food science applications. This is achieved by the indirect relay of magnetization from para-hydrogen, a spin isomer of dihydrogen, to OH-containing lactate esters via a SABRE-hyperpolarized NH intermediary. This delivers 1H and 13C NMR signal enhancements as high as 245- and 985-fold, respectively, which makes the lactate esters far more detectable using NMR. DFT-calculated J-couplings and spin dynamics simulations indicate that, while polarization can be transferred from the lactate OH to other 1H nuclei via the J-coupling network, incoherent mechanisms are needed to polarize the 13C nuclei at the 6.5 mT transfer field used. The resulting sensitivity boost is predicted to be of great benefit for the NMR detection and quantification of low concentrations (<mM) of lactate esters and could provide a useful precursor for the production of hyperpolarized lactate, a key metabolite.
Collapse
Affiliation(s)
- Ben J. Tickner
- Centre
for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, United Kingdom, YO10 5NY
- NMR
Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland
| | | | - Juha Vaara
- NMR
Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland
| | - Simon B. Duckett
- Centre
for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, United Kingdom, YO10 5NY
| |
Collapse
|
12
|
Tickner BJ, Zhivonitko VV. Advancing homogeneous catalysis for parahydrogen-derived hyperpolarisation and its NMR applications. Chem Sci 2022; 13:4670-4696. [PMID: 35655870 PMCID: PMC9067625 DOI: 10.1039/d2sc00737a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
Parahydrogen-induced polarisation (PHIP) is a nuclear spin hyperpolarisation technique employed to enhance NMR signals for a wide range of molecules. This is achieved by exploiting the chemical reactions of parahydrogen (para-H2), the spin-0 isomer of H2. These reactions break the molecular symmetry of para-H2 in a way that can produce dramatically enhanced NMR signals for reaction products, and are usually catalysed by a transition metal complex. In this review, we discuss recent advances in novel homogeneous catalysts that can produce hyperpolarised products upon reaction with para-H2. We also discuss hyperpolarisation attained in reversible reactions (termed signal amplification by reversible exchange, SABRE) and focus on catalyst developments in recent years that have allowed hyperpolarisation of a wider range of target molecules. In particular, recent examples of novel ruthenium catalysts for trans and geminal hydrogenation, metal-free catalysts, iridium sulfoxide-containing SABRE systems, and cobalt complexes for PHIP and SABRE are reviewed. Advances in this catalysis have expanded the types of molecules amenable to hyperpolarisation using PHIP and SABRE, and their applications in NMR reaction monitoring, mechanistic elucidation, biomedical imaging, and many other areas, are increasing.
Collapse
Affiliation(s)
- Ben J Tickner
- NMR Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 Oulu 90014 Finland
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Vladimir V Zhivonitko
- NMR Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 Oulu 90014 Finland
| |
Collapse
|
13
|
Buntkowsky G, Theiss F, Lins J, Miloslavina YA, Wienands L, Kiryutin A, Yurkovskaya A. Recent advances in the application of parahydrogen in catalysis and biochemistry. RSC Adv 2022; 12:12477-12506. [PMID: 35480380 PMCID: PMC9039419 DOI: 10.1039/d2ra01346k] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy and Magnetic Resonance Imaging (MRI) are analytical and diagnostic tools that are essential for a very broad field of applications, ranging from chemical analytics, to non-destructive testing of materials and the investigation of molecular dynamics, to in vivo medical diagnostics and drug research. One of the major challenges in their application to many problems is the inherent low sensitivity of magnetic resonance, which results from the small energy-differences of the nuclear spin-states. At thermal equilibrium at room temperature the normalized population difference of the spin-states, called the Boltzmann polarization, is only on the order of 10-5. Parahydrogen induced polarization (PHIP) is an efficient and cost-effective hyperpolarization method, which has widespread applications in Chemistry, Physics, Biochemistry, Biophysics, and Medical Imaging. PHIP creates its signal-enhancements by means of a reversible (SABRE) or irreversible (classic PHIP) chemical reaction between the parahydrogen, a catalyst, and a substrate. Here, we first give a short overview about parahydrogen-based hyperpolarization techniques and then review the current literature on method developments and applications of various flavors of the PHIP experiment.
Collapse
Affiliation(s)
- Gerd Buntkowsky
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Franziska Theiss
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Jonas Lins
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Yuliya A Miloslavina
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Laura Wienands
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Alexey Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Science Novosibirsk 630090 Russia
| | - Alexandra Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science Novosibirsk 630090 Russia
| |
Collapse
|
14
|
Barker S, Dagys L, Hale W, Ripka B, Eills J, Sharma M, Levitt MH, Utz M. Direct Production of a Hyperpolarized Metabolite on a Microfluidic Chip. Anal Chem 2022; 94:3260-3267. [PMID: 35147413 PMCID: PMC9096798 DOI: 10.1021/acs.analchem.1c05030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 12/28/2022]
Abstract
Microfluidic systems hold great potential for the study of live microscopic cultures of cells, tissue samples, and small organisms. Integration of hyperpolarization would enable quantitative studies of metabolism in such volume limited systems by high-resolution NMR spectroscopy. We demonstrate, for the first time, the integrated generation and detection of a hyperpolarized metabolite on a microfluidic chip. The metabolite [1-13C]fumarate is produced in a nuclear hyperpolarized form by (i) introducing para-enriched hydrogen into the solution by diffusion through a polymer membrane, (ii) reaction with a substrate in the presence of a ruthenium-based catalyst, and (iii) conversion of the singlet-polarized reaction product into a magnetized form by the application of a radiofrequency pulse sequence, all on the same microfluidic chip. The microfluidic device delivers a continuous flow of hyperpolarized material at the 2.5 μL/min scale, with a polarization level of 4%. We demonstrate two methods for mitigating singlet-triplet mixing effects which otherwise reduce the achieved polarization level.
Collapse
Affiliation(s)
- Sylwia
J. Barker
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Laurynas Dagys
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - William Hale
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Department
of Chemistry, University of Florida, Gainesville 32611, United States
| | - Barbara Ripka
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - James Eills
- Institute
for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany
- GSI
Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany
| | - Manvendra Sharma
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Malcolm H. Levitt
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Marcel Utz
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
15
|
Schmidt AB, Zimmermann M, Berner S, de Maissin H, Müller CA, Ivantaev V, Hennig J, Elverfeldt DV, Hövener JB. Quasi-continuous production of highly hyperpolarized carbon-13 contrast agents every 15 seconds within an MRI system. Commun Chem 2022; 5:21. [PMID: 36697573 PMCID: PMC9814607 DOI: 10.1038/s42004-022-00634-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/25/2022] [Indexed: 01/28/2023] Open
Abstract
Hyperpolarized contrast agents (HyCAs) have enabled unprecedented magnetic resonance imaging (MRI) of metabolism and pH in vivo. Producing HyCAs with currently available methods, however, is typically time and cost intensive. Here, we show virtually-continuous production of HyCAs using parahydrogen-induced polarization (PHIP), without stand-alone polarizer, but using a system integrated in an MRI instead. Polarization of ≈2% for [1-13C]succinate-d2 or ≈19% for hydroxyethyl-[1-13C]propionate-d3 was created every 15 s, for which fast, effective, and well-synchronized cycling of chemicals and reactions in conjunction with efficient spin-order transfer was key. We addressed these challenges using a dedicated, high-pressure, high-temperature reactor with integrated water-based heating and a setup operated via the MRI pulse program. As PHIP of several biologically relevant HyCAs has recently been described, this Rapid-PHIP technique promises fast preclinical studies, repeated administration or continuous infusion within a single lifetime of the agent, as well as a prolonged window for observation with signal averaging and dynamic monitoring of metabolic alterations.
Collapse
Affiliation(s)
- Andreas B Schmidt
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany.
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| | - Mirko Zimmermann
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Stephan Berner
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Henri de Maissin
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Christoph A Müller
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Vladislav Ivantaev
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Dominik V Elverfeldt
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| |
Collapse
|
16
|
Schmidt AB, Bowers CR, Buckenmaier K, Chekmenev EY, de Maissin H, Eills J, Ellermann F, Glöggler S, Gordon JW, Knecht S, Koptyug IV, Kuhn J, Pravdivtsev AN, Reineri F, Theis T, Them K, Hövener JB. Instrumentation for Hydrogenative Parahydrogen-Based Hyperpolarization Techniques. Anal Chem 2022; 94:479-502. [PMID: 34974698 PMCID: PMC8784962 DOI: 10.1021/acs.analchem.1c04863] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Andreas B. Schmidt
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - C. Russell Bowers
- Department of Chemistry, University of Florida, 2001 Museum Road, Gainesville, Florida 32611, USA
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Kai Buckenmaier
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076, Tübingen, Germany
| | - Eduard Y. Chekmenev
- Intergrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
- Russian Academy of Sciences (RAS), Leninskiy Prospect, 14, 119991 Moscow, Russia
| | - Henri de Maissin
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max Planck Institutefor Biophysical Chemistry Am Fassberg 11, 37077 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A, 37075 Göttingen, Germany
| | - Jeremy W. Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry St., San Francisco, CA, 94158, USA
| | | | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Jule Kuhn
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Francesca Reineri
- Dept. Molecular Biotechnology and Health Sciences, Via Nizza 52, University of Torino, Italy
| | - Thomas Theis
- Departments of Chemistry, Physics and Biomedical Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kolja Them
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| |
Collapse
|
17
|
Dagys L, Bengs C, Levitt MH. Low-frequency excitation of singlet-triplet transitions. Application to nuclear hyperpolarization. J Chem Phys 2021; 155:154201. [PMID: 34686060 DOI: 10.1063/5.0065863] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Coupled pairs of nuclear spin-1/2 support one singlet state and three triplet states. Transitions between the singlet state and one of the triplet states may be driven by an oscillating low-frequency magnetic field, in the presence of couplings to a third nuclear spin, and a weak bias magnetic field. The oscillating field is in the same direction as the bias field and is called a WOLF (Weak Oscillating Low Field) pulse. Application of a WOLF pulse allows for the generation of strong nuclear hyperpolarization of 13C nuclei, starting from the nuclear singlet polarization of a 1H spin pair, associated with the enriched para-spin isomer of hydrogen gas. Hyperpolarization is demonstrated for two molecular systems.
Collapse
Affiliation(s)
- Laurynas Dagys
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Christian Bengs
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Malcolm H Levitt
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
18
|
Ostrowska SJ, Rana A, Utz M. Spatially Resolved Kinetic Model of Parahydrogen Induced Polarisation (PHIP) in a Microfluidic Chip. Chemphyschem 2021; 22:2004-2013. [PMID: 33929791 PMCID: PMC8518753 DOI: 10.1002/cphc.202100135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/23/2021] [Indexed: 01/19/2023]
Abstract
We report a spatially resolved kinetic finite element model of parahydrogen-induced polarisation (PHIP) in a microfluidic chip that was calibrated using on-chip and off-chip NMR data. NMR spectroscopy has great potential as a read-out technique for lab-on-a-chip (LoC) devices, but is often limited by sensitivity. By integrating PHIP with a LoC device, a continuous stream of hyperpolarised material can be produced, and mass sensitivities of pmol s have been achieved. However, the yield and polarisation levels have so far been quite low, and can still be optimised. To facilitate this, a kinetic model of the reaction has been developed, and its rate constants have been calibrated using macroscopic kinetic measurements. The kinetic model was then coupled with a finite element model of the microfluidic chip. The model predicts the concentration of species involved in the reaction as a function of flow rate and position in the device. The results are in quantitative agreement with published experimental data.
Collapse
Affiliation(s)
| | - Aabidah Rana
- School of ChemistryUniversity of SouthamptonSouthamptonUK
| | - Marcel Utz
- School of ChemistryUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
19
|
Bengs C, Dagys L, Moustafa GAI, Whipham JW, Sabba M, Kiryutin AS, Ivanov KL, Levitt MH. Nuclear singlet relaxation by chemical exchange. J Chem Phys 2021; 155:124311. [PMID: 34598559 DOI: 10.1063/5.0066182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The population imbalance between nuclear singlet states and triplet states of strongly coupled spin-1/2 pairs, also known as nuclear singlet order, is well protected against several common relaxation mechanisms. We study the nuclear singlet relaxation of 13C pairs in aqueous solutions of 1,2-13C2 squarate over a range of pH values. The 13C singlet order is accessed by introducing 18O nuclei in order to break the chemical equivalence. The squarate dianion is in chemical equilibrium with hydrogen-squarate (SqH-) and squaric acid (SqH2) characterized by the dissociation constants pK1 = 1.5 and pK2 = 3.4. Surprisingly, we observe a striking increase in the singlet decay time constants TS when the pH of the solution exceeds ∼10, which is far above the acid-base equilibrium points. We derive general rate expressions for chemical-exchange-induced nuclear singlet relaxation and provide a qualitative explanation of the TS behavior of the squarate dianion. We identify a kinetic contribution to the singlet relaxation rate constant, which explicitly depends on kinetic rate constants. Qualitative agreement is achieved between the theory and the experimental data. This study shows that infrequent chemical events may have a strong effect on the relaxation of nuclear singlet order.
Collapse
Affiliation(s)
- Christian Bengs
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Laurynas Dagys
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Gamal A I Moustafa
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - James W Whipham
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Mohamed Sabba
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | | | | | - Malcolm H Levitt
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
20
|
Salnikov OG, Chukanov NV, Kovtunova LM, Bukhtiyarov VI, Kovtunov KV, Shchepin RV, Koptyug IV, Chekmenev EY. Heterogeneous 1 H and 13 C Parahydrogen-Induced Polarization of Acetate and Pyruvate Esters. Chemphyschem 2021; 22:1389-1396. [PMID: 33929077 PMCID: PMC8249325 DOI: 10.1002/cphc.202100156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Magnetic resonance imaging of [1-13 C]hyperpolarized carboxylates (most notably, [1-13 C]pyruvate) allows one to visualize abnormal metabolism in tumors and other pathologies. Herein, we investigate the efficiency of 1 H and 13 C hyperpolarization of acetate and pyruvate esters with ethyl, propyl and allyl alcoholic moieties using heterogeneous hydrogenation of corresponding vinyl, allyl and propargyl precursors in isotopically unlabeled and 1-13 C-enriched forms with parahydrogen over Rh/TiO2 catalysts in methanol-d4 and in D2 O. The maximum obtained 1 H polarization was 0.6±0.2 % (for propyl acetate in CD3 OD), while the highest 13 C polarization was 0.10±0.03 % (for ethyl acetate in CD3 OD). Hyperpolarization of acetate esters surpassed that of pyruvates, while esters with a triple carbon-carbon bond in unsaturated alcoholic moiety were less efficient as parahydrogen-induced polarization precursors than esters with a double bond. Among the compounds studied, the maximum 1 H and 13 C NMR signal intensities were observed for propyl acetate. Ethyl acetate yielded slightly less intense NMR signals which were dramatically greater than those of other esters under study.
Collapse
Affiliation(s)
- Oleg G Salnikov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Nikita V Chukanov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Larisa M Kovtunova
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Roman V Shchepin
- Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines & Technology, 57701, Rapid City, South Dakota, United States
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, 48202, Detroit, Michigan, United States
- Russian Academy of Sciences, 14 Leninskiy Prospekt, 119991, Moscow, Russia
| |
Collapse
|
21
|
Pokochueva EV, Burueva DB, Salnikov OG, Koptyug IV. Heterogeneous Catalysis and Parahydrogen-Induced Polarization. Chemphyschem 2021; 22:1421-1440. [PMID: 33969590 DOI: 10.1002/cphc.202100153] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/05/2021] [Indexed: 01/11/2023]
Abstract
Parahydrogen-induced polarization with heterogeneous catalysts (HET-PHIP) has been a subject of extensive research in the last decade since its first observation in 2007. While NMR signal enhancements obtained with such catalysts are currently below those achieved with transition metal complexes in homogeneous hydrogenations in solution, this relatively new field demonstrates major prospects for a broad range of advanced fundamental and practical applications, from providing catalyst-free hyperpolarized fluids for biomedical magnetic resonance imaging (MRI) to exploring mechanisms of industrially important heterogeneous catalytic processes. This review covers the evolution of the heterogeneous catalysts used for PHIP observation, from metal complexes immobilized on solid supports to bulk metals and single-atom catalysts and discusses the general visions for maximizing the obtained NMR signal enhancements using HET-PHIP. Various practical applications of HET-PHIP, both for catalytic studies and for potential production of hyperpolarized contrast agents for MRI, are described.
Collapse
Affiliation(s)
- Ekaterina V Pokochueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Dudari B Burueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia.,Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia
| |
Collapse
|
22
|
Kondo Y, Nonaka H, Takakusagi Y, Sando S. Entwicklung molekularer Sonden für die hyperpolarisierte NMR‐Bildgebung im biologischen Bereich. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201915718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yohei Kondo
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoichi Takakusagi
- Institute of Quantum Life Science National Institutes for Quantum and Radiological Science and Technology 4-9-1 Anagawa, Inage Chiba-city 263-8555 Japan
- National Institute of Radiological Sciences National Institutes for Quantum and Radiological Science and Technology 4-9-1 Anagawa, Inage Chiba-city 263-8555 Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Department of Bioengineering Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
23
|
Rodin BA, Kozinenko VP, Kiryutin AS, Yurkovskaya AV, Eills J, Ivanov KL. Constant-adiabaticity pulse schemes for manipulating singlet order in 3-spin systems with weak magnetic non-equivalence. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 327:106978. [PMID: 33957556 DOI: 10.1016/j.jmr.2021.106978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Parahydrogen-induced polarization (PHIP) is a source of nuclear spin hyperpolarization, and this technique allows for the preparation of biomolecules for in vivo metabolic imaging. PHIP delivers hyperpolarization in the form of proton singlet order to a molecule, but most applications require that a heteronuclear (e.g. 13C or 15N) spin in the molecule is hyperpolarized. Here we present high field pulse methods to manipulate proton singlet order in the [1-13C]fumarate, and in particular to transfer the proton singlet order into 13C magnetization. We exploit adiabatic pulses, i.e., pulses with slowly ramped amplitude, and use constant-adiabaticity variants: the spin Hamiltonian is varied in such a way that the generalized adiabaticity parameter is time-independent. This allows for faster polarization transfer, and we achieve 96.2% transfer efficiency in thermal equilibrium experiments. We demonstrate this in experiments using hyperpolarization, and obtain 6.8% 13C polarization. This work paves the way for efficient hyperpolarization of nuclear spins in a variety of biomolecules, since the high-field pulse sequences allow individual spins to be addressed.
Collapse
Affiliation(s)
- Bogdan A Rodin
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Vitaly P Kozinenko
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Alexey S Kiryutin
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia
| | - James Eills
- Helmholtz Institute Mainz, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Konstantin L Ivanov
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
24
|
Stewart NJ, Nakano H, Sugai S, Tomohiro M, Kase Y, Uchio Y, Yamaguchi T, Matsuo Y, Naganuma T, Takeda N, Nishimura I, Hirata H, Hashimoto T, Matsumoto S. Hyperpolarized 13 C Magnetic Resonance Imaging of Fumarate Metabolism by Parahydrogen-induced Polarization: A Proof-of-Concept in vivo Study. Chemphyschem 2021; 22:915-923. [PMID: 33590933 PMCID: PMC8251594 DOI: 10.1002/cphc.202001038] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/11/2021] [Indexed: 01/18/2023]
Abstract
Hyperpolarized [1-13 C]fumarate is a promising magnetic resonance imaging (MRI) biomarker for cellular necrosis, which plays an important role in various disease and cancerous pathological processes. To demonstrate the feasibility of MRI of [1-13 C]fumarate metabolism using parahydrogen-induced polarization (PHIP), a low-cost alternative to dissolution dynamic nuclear polarization (dDNP), a cost-effective and high-yield synthetic pathway of hydrogenation precursor [1-13 C]acetylenedicarboxylate (ADC) was developed. The trans-selectivity of the hydrogenation reaction of ADC using a ruthenium-based catalyst was elucidated employing density functional theory (DFT) simulations. A simple PHIP set-up was used to generate hyperpolarized [1-13 C]fumarate at sufficient 13 C polarization for ex vivo detection of hyperpolarized 13 C malate metabolized from fumarate in murine liver tissue homogenates, and in vivo 13 C MR spectroscopy and imaging in a murine model of acetaminophen-induced hepatitis.
Collapse
Affiliation(s)
- Neil J. Stewart
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Hitomi Nakano
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Shuto Sugai
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Mitsushi Tomohiro
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Yuki Kase
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Yoshiki Uchio
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Toru Yamaguchi
- Division of Computational ChemistryTransition State Technology Co. Ltd.2-16-1 Tokiwadai, UbeYamaguchi755-8611Japan
| | - Yujirou Matsuo
- Division of Computational ChemistryTransition State Technology Co. Ltd.2-16-1 Tokiwadai, UbeYamaguchi755-8611Japan
| | - Tatsuya Naganuma
- R&D DepartmentJapan REDOX Ltd.4-29-49-805 Chiyo, Hakata-kuFukuoka812-0044Japan
| | - Norihiko Takeda
- Division of Cardiology and MetabolismCenter for Molecular MedicineJichi Medical University3311-1 Yakushiji, Shimotsuke-shiTochigi329-0498Japan
| | - Ikuya Nishimura
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Hiroshi Hirata
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Takuya Hashimoto
- Chiba Iodine Resource Innovation Center and Department of ChemistryGraduate School of ScienceChiba University1-33 Yayoi-cho, Inage-kuChiba263-8522Japan
| | - Shingo Matsumoto
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| |
Collapse
|
25
|
Rodin BA, Eills J, Picazo-Frutos R, Sheberstov KF, Budker D, Ivanov KL. Constant-adiabaticity ultralow magnetic field manipulations of parahydrogen-induced polarization: application to an AA'X spin system. Phys Chem Chem Phys 2021; 23:7125-7134. [PMID: 33876078 DOI: 10.1039/d0cp06581a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of magnetic resonance imaging with hyperpolarized contrast agents is rapidly expanding, and parahydrogen-induced polarization (PHIP) is emerging as an inexpensive and easy-to-implement method for generating the required hyperpolarized biomolecules. Hydrogenative PHIP delivers hyperpolarized proton spin order to a substrate via chemical addition of H2 in the spin-singlet state, but it is typically necessary to transfer the proton polarization to a heteronucleus (usually 13C) which has a longer spin lifetime. Adiabatic ultralow magnetic field manipulations can be used to induce the polarization transfer, but this is necessarily a slow process, which is undesirable since the spins continually relax back to thermal equilibrium. Here we demonstrate two constant-adiabaticity field sweep methods, one in which the field passes through zero, and one in which the field is swept from zero, for optimal polarization transfer on a model AA'X spin system, [1-13C]fumarate. We introduce a method for calculating the constant-adiabaticity magnetic field sweeps, and demonstrate that they enable approximately one order of magnitude faster spin-order conversion compared to linear sweeps. The present method can thus be utilized to manipulate nonthermal order in heteronuclear spin systems.
Collapse
Affiliation(s)
- Bogdan A Rodin
- International Tomography Center SB RAS, Novosibirsk, Russia
| | | | | | | | | | | |
Collapse
|
26
|
Rapid hyperpolarization and purification of the metabolite fumarate in aqueous solution. Proc Natl Acad Sci U S A 2021; 118:2025383118. [PMID: 33753510 PMCID: PMC8020773 DOI: 10.1073/pnas.2025383118] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Magnetic resonance imaging is hindered by inherently low sensitivity, which limits the method for the most part to observing water molecules in the body. Hyperpolarized molecules exhibit strongly enhanced MRI signals which opens the door for imaging low-concentration species in vivo. Biomolecules can be hyperpolarized and injected into a patient allowing for metabolism to be tracked in real time, greatly expanding the information available to the radiologist. Parahydrogen-induced polarization (PHIP) is a hyperpolarization method renowned for its low cost and accessibility, but is generally limited by low polarization levels, modest molecular concentrations, and contamination by polarization reagents. In this work we overcome these drawbacks in the production of PHIP-polarized [1-13C]fumarate, a biomarker of cell necrosis in metabolic 13C MRI. Hyperpolarized fumarate is a promising biosensor for carbon-13 magnetic resonance metabolic imaging. Such molecular imaging applications require nuclear hyperpolarization to attain sufficient signal strength. Dissolution dynamic nuclear polarization is the current state-of-the-art methodology for hyperpolarizing fumarate, but this is expensive and relatively slow. Alternatively, this important biomolecule can be hyperpolarized in a cheap and convenient manner using parahydrogen-induced polarization. However, this process requires a chemical reaction, and the resulting solutions are contaminated with the catalyst, unreacted reagents, and reaction side-product molecules, and are hence unsuitable for use in vivo. In this work we show that the hyperpolarized fumarate can be purified from these contaminants by acid precipitation as a pure solid, and later redissolved to a desired concentration in a clean aqueous solvent. Significant advances in the reaction conditions and reactor equipment allow for formation of hyperpolarized fumarate at 13C polarization levels of 30–45%.
Collapse
|
27
|
Eills J, Cavallari E, Kircher R, Di Matteo G, Carrera C, Dagys L, Levitt MH, Ivanov KL, Aime S, Reineri F, Münnemann K, Budker D, Buntkowsky G, Knecht S. Singlet-Contrast Magnetic Resonance Imaging: Unlocking Hyperpolarization with Metabolism*. Angew Chem Int Ed Engl 2021; 60:6791-6798. [PMID: 33340439 PMCID: PMC7986935 DOI: 10.1002/anie.202014933] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Indexed: 11/21/2022]
Abstract
Hyperpolarization-enhanced magnetic resonance imaging can be used to study biomolecular processes in the body, but typically requires nuclei such as 13 C, 15 N, or 129 Xe due to their long spin-polarization lifetimes and the absence of a proton-background signal from water and fat in the images. Here we present a novel type of 1 H imaging, in which hyperpolarized spin order is locked in a nonmagnetic long-lived correlated (singlet) state, and is only liberated for imaging by a specific biochemical reaction. In this work we produce hyperpolarized fumarate via chemical reaction of a precursor molecule with para-enriched hydrogen gas, and the proton singlet order in fumarate is released as antiphase NMR signals by enzymatic conversion to malate in D2 O. Using this model system we show two pulse sequences to rephase the NMR signals for imaging and suppress the background signals from water. The hyperpolarization-enhanced 1 H-imaging modality presented here can allow for hyperpolarized imaging without the need for low-abundance, low-sensitivity heteronuclei.
Collapse
Affiliation(s)
- J. Eills
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung64291DarmstadtGermany
- Johannes Gutenberg University55090MainzGermany
| | - E. Cavallari
- Dept. of Molecular Biotechnology and Health SciencesUniversity of TorinoTorino10126Italy
| | - R. Kircher
- Technical University of Kaiserslautern67663KaiserslauternGermany
| | - G. Di Matteo
- Dept. of Molecular Biotechnology and Health SciencesUniversity of TorinoTorino10126Italy
| | - C. Carrera
- Institute of Biostructures and BioimagingNational Research Council of ItalyTorino10126Italy
| | - L. Dagys
- School of ChemistryUniversity of SouthamptonSouthamptonSO17 1BJVereinigtes Königreich
| | - M. H. Levitt
- School of ChemistryUniversity of SouthamptonSouthamptonSO17 1BJVereinigtes Königreich
| | - K. L. Ivanov
- International Tomography CenterSiberian Branch of the Russian Academy of ScienceNovosibirsk630090Russia
- Novosibirsk State UniversityNovosibirsk630090Russia
| | - S. Aime
- Dept. of Molecular Biotechnology and Health SciencesUniversity of TorinoTorino10126Italy
| | - F. Reineri
- Dept. of Molecular Biotechnology and Health SciencesUniversity of TorinoTorino10126Italy
| | - K. Münnemann
- Technical University of Kaiserslautern67663KaiserslauternGermany
| | - D. Budker
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung64291DarmstadtGermany
- Johannes Gutenberg University55090MainzGermany
| | - G. Buntkowsky
- Eduard-Zintl-Institute for Inorganic Chemistry and Physical, ChemistryTechnical University Darmstadt64287DarmstadtGermany
| | - S. Knecht
- Eduard-Zintl-Institute for Inorganic Chemistry and Physical, ChemistryTechnical University Darmstadt64287DarmstadtGermany
| |
Collapse
|
28
|
Eills J, Cavallari E, Kircher R, Di Matteo G, Carrera C, Dagys L, Levitt MH, Ivanov KL, Aime S, Reineri F, Münnemann K, Budker D, Buntkowsky G, Knecht S. Singulett‐Kontrast‐Magnetresonanztomographie: Freisetzung der Hyperpolarisation durch den Metabolismus**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- J. Eills
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung 64291 Darmstadt Deutschland
- Johannes Gutenberg University 55090 Mainz Deutschland
| | - E. Cavallari
- Dept. of Molecular Biotechnology and Health Sciences University of Torino Torino 10126 Italien
| | - R. Kircher
- Technical University of Kaiserslautern 67663 Kaiserslautern Deutschland
| | - G. Di Matteo
- Dept. of Molecular Biotechnology and Health Sciences University of Torino Torino 10126 Italien
| | - C. Carrera
- Institute of Biostructures and Bioimaging National Research Council of Italy Torino 10126 Italien
| | - L. Dagys
- School of Chemistry University of Southampton Southampton SO17 1BJ Vereinigtes Königreich
| | - M. H. Levitt
- School of Chemistry University of Southampton Southampton SO17 1BJ Vereinigtes Königreich
| | - K. L. Ivanov
- International Tomography Center Siberian Branch of the Russian Academy of Science Novosibirsk 630090 Russland
- Novosibirsk State University Novosibirsk 630090 Russland
| | - S. Aime
- Dept. of Molecular Biotechnology and Health Sciences University of Torino Torino 10126 Italien
| | - F. Reineri
- Dept. of Molecular Biotechnology and Health Sciences University of Torino Torino 10126 Italien
| | - K. Münnemann
- Technical University of Kaiserslautern 67663 Kaiserslautern Deutschland
| | - D. Budker
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung 64291 Darmstadt Deutschland
- Johannes Gutenberg University 55090 Mainz Deutschland
| | - G. Buntkowsky
- Eduard-Zintl-Institute for Inorganic Chemistry and Physical, Chemistry Technical University Darmstadt 64287 Darmstadt Deutschland
| | - S. Knecht
- Eduard-Zintl-Institute for Inorganic Chemistry and Physical, Chemistry Technical University Darmstadt 64287 Darmstadt Deutschland
| |
Collapse
|
29
|
Dagys L, Jagtap AP, Korchak S, Mamone S, Saul P, Levitt MH, Glöggler S. Nuclear hyperpolarization of (1- 13C)-pyruvate in aqueous solution by proton-relayed side-arm hydrogenation. Analyst 2021; 146:1772-1778. [PMID: 33475626 DOI: 10.1039/d0an02389b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We employ Parahydrogen Induced Polarization with Side-Arm Hydrogenation (PHIP-SAH) to polarize (1-13C)-pyruvate. We introduce a new method called proton-relayed side-arm hydrogenation (PR-SAH) in which an intermediate proton is used to transfer polarization from the side-arm to the 13C-labelled site of the pyruvate before hydrolysis. This significantly reduces the cost and effort needed to prepare the precursor for radio-frequency transfer experiments while still maintaining acceptable polarization transfer efficiency. Experimentally we have attained on average 4.33% 13C polarization in an aqueous solution of (1-13C)-pyruvate after about 10 seconds of cleavage and extraction. PR-SAH is a promising pulsed NMR method for hyperpolarizing 13C-labelled metabolites in solution, conducted entirely in high magnetic field.
Collapse
Affiliation(s)
- Laurynas Dagys
- School of chemistry, Highfield Campus, Southampton, SO171BJ, UK.
| | - Anil P Jagtap
- Max Planck Inst. Biophys. Chem., NMR Signal Enhancement Grp., Am Fassberg 11, D-37077 Göttingen, Germany. and Center for Biostructural Imaging of Neurodegeneration of UMG, Von-Siebold-Str. 3A, D-37075 Göttingen, Germany
| | - Sergey Korchak
- Max Planck Inst. Biophys. Chem., NMR Signal Enhancement Grp., Am Fassberg 11, D-37077 Göttingen, Germany. and Center for Biostructural Imaging of Neurodegeneration of UMG, Von-Siebold-Str. 3A, D-37075 Göttingen, Germany
| | - Salvatore Mamone
- Max Planck Inst. Biophys. Chem., NMR Signal Enhancement Grp., Am Fassberg 11, D-37077 Göttingen, Germany. and Center for Biostructural Imaging of Neurodegeneration of UMG, Von-Siebold-Str. 3A, D-37075 Göttingen, Germany
| | - Philip Saul
- Max Planck Inst. Biophys. Chem., NMR Signal Enhancement Grp., Am Fassberg 11, D-37077 Göttingen, Germany. and Center for Biostructural Imaging of Neurodegeneration of UMG, Von-Siebold-Str. 3A, D-37075 Göttingen, Germany
| | - Malcolm H Levitt
- School of chemistry, Highfield Campus, Southampton, SO171BJ, UK.
| | - Stefan Glöggler
- Max Planck Inst. Biophys. Chem., NMR Signal Enhancement Grp., Am Fassberg 11, D-37077 Göttingen, Germany. and Center for Biostructural Imaging of Neurodegeneration of UMG, Von-Siebold-Str. 3A, D-37075 Göttingen, Germany
| |
Collapse
|
30
|
Stewart NJ, Matsumoto S. Biomedical Applications of the Dynamic Nuclear Polarization and Parahydrogen Induced Polarization Techniques for Hyperpolarized 13C MR Imaging. Magn Reson Med Sci 2021; 20:1-17. [PMID: 31902907 PMCID: PMC7952198 DOI: 10.2463/mrms.rev.2019-0094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022] Open
Abstract
Since the first pioneering report of hyperpolarized [1-13C]pyruvate magnetic resonance imaging (MRI) of the Warburg effect in prostate cancer patients, clinical dissemination of the technique has been rapid; close to 10 sites worldwide now possess a polarizer fit for the clinic, and more than 30 clinical trials, predominantly for oncological applications, are already registered on the US and European clinical trials databases. Hyperpolarized 13C probes to study pathophysiological processes beyond the Warburg effect, including tricarboxylic acid cycle metabolism, intra-cellular pH and cellular necrosis have also been demonstrated in the preclinical arena and are pending clinical translation, and the simultaneous injection of multiple co-polarized agents is opening the door to high-sensitivity, multi-functional molecular MRI with a single dose. Here, we review the biomedical applications to date of the two polarization methods that have been used for in vivo hyperpolarized 13C molecular MRI; namely, dissolution dynamic nuclear polarization and parahydrogen-induced polarization. The basic concept of hyperpolarization and the fundamental theory underpinning these two key 13C hyperpolarization methods, along with recent technological advances that have facilitated biomedical realization, are also covered.
Collapse
Affiliation(s)
- Neil J. Stewart
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, Japan
| | - Shingo Matsumoto
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
31
|
Kondo Y, Nonaka H, Takakusagi Y, Sando S. Design of Nuclear Magnetic Resonance Molecular Probes for Hyperpolarized Bioimaging. Angew Chem Int Ed Engl 2021; 60:14779-14799. [PMID: 32372551 DOI: 10.1002/anie.201915718] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Nuclear hyperpolarization has emerged as a method to dramatically enhance the sensitivity of NMR spectroscopy. By application of this powerful tool, small molecules with stable isotopes have been used for highly sensitive biomedical molecular imaging. The recent development of molecular probes for hyperpolarized in vivo analysis has demonstrated the ability of this technique to provide unique metabolic and physiological information. This review presents a brief introduction of hyperpolarization technology, approaches to the rational design of molecular probes for hyperpolarized analysis, and examples of molecules that have met with success in vitro or in vivo.
Collapse
Affiliation(s)
- Yohei Kondo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoichi Takakusagi
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city, 263-8555, Japan.,National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city, 263-8555, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
32
|
Reineri F, Cavallari E, Carrera C, Aime S. Hydrogenative-PHIP polarized metabolites for biological studies. MAGMA (NEW YORK, N.Y.) 2021; 34:25-47. [PMID: 33527252 PMCID: PMC7910253 DOI: 10.1007/s10334-020-00904-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
ParaHydrogen induced polarization (PHIP) is an efficient and cost-effective hyperpolarization method, but its application to biological investigations has been hampered, so far, due to chemical challenges. PHIP is obtained by means of the addition of hydrogen, enriched in the para-spin isomer, to an unsaturated substrate. Both hydrogen atoms must be transferred to the same substrate, in a pairwise manner, by a suitable hydrogenation catalyst; therefore, a de-hydrogenated precursor of the target molecule is necessary. This has strongly limited the number of parahydrogen polarized substrates. The non-hydrogenative approach brilliantly circumvents this central issue, but has not been translated to in-vivo yet. Recent advancements in hydrogenative PHIP (h-PHIP) considerably widened the possibility to hyperpolarize metabolites and, in this review, we will focus on substrates that have been obtained by means of this method and used in vivo. Attention will also be paid to the requirements that must be met and on the issues that have still to be tackled to obtain further improvements and to push PHIP substrates in biological applications.
Collapse
Affiliation(s)
- Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy.
| | - Eleonora Cavallari
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy
| | - Carla Carrera
- Institute of Biostructures and Bioimaging, National Research Council, Via Nizza 52, Turin, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy
| |
Collapse
|
33
|
Dagys L, Ripka B, Leutzsch M, Moustafa G, Eills J, Colell J, Levitt M. Geminal parahydrogen-induced polarization: accumulating long-lived singlet order on methylene proton pairs. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:175-186. [PMID: 37904826 PMCID: PMC10500696 DOI: 10.5194/mr-1-175-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/27/2020] [Indexed: 11/01/2023]
Abstract
In the majority of hydrogenative parahydrogen-induced polarization (PHIP) experiments, the hydrogen molecule undergoes pairwise cis addition to an unsaturated precursor to occupy vicinal positions on the product molecule. However, some ruthenium-based hydrogenation catalysts induce geminal hydrogenation, leading to a reaction product in which the two hydrogen atoms are transferred to the same carbon centre, forming a methylene (CH 2 ) group. The singlet order of parahydrogen is substantially retained over the geminal hydrogenation reaction, giving rise to a singlet-hyperpolarized CH 2 group. Although the T 1 relaxation times of the methylene protons are often short, the singlet order has a long lifetime, provided that singlet-triplet mixing is suppressed, either by chemical equivalence of the protons or by applying a resonant radiofrequency field. The long lifetime of the singlet order enables the accumulation of hyperpolarization during the slow hydrogenation reaction. We introduce a kinetic model for the behaviour of the observed hyperpolarized signals, including both the chemical kinetics and the spin dynamics of the reacting molecules. Our work demonstrates the feasibility of producing singlet-hyperpolarized methylene moieties by parahydrogen-induced polarization. This potentially extends the range of molecular agents which may be generated in a hyperpolarized state by chemical reactions of parahydrogen.
Collapse
Affiliation(s)
- Laurynas Dagys
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Barbara Ripka
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | | | - James Eills
- Helmholtz Institute Mainz, Johannes Gutenberg University, 55099 Mainz, Germany
| | | | - Malcolm H. Levitt
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
34
|
Cavallari E, Carrera C, Di Matteo G, Bondar O, Aime S, Reineri F. In-vitro NMR Studies of Prostate Tumor Cell Metabolism by Means of Hyperpolarized [1- 13C]Pyruvate Obtained Using the PHIP-SAH Method. Front Oncol 2020; 10:497. [PMID: 32363160 PMCID: PMC7180174 DOI: 10.3389/fonc.2020.00497] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Nuclear Magnetic Resonance allows the non-invasive detection and quantitation of metabolites to be carried out in cells and tissues. This means that that metabolic changes can be revealed without the need for sample processing and the destruction of the biological matrix. The main limitation to the application of this method to biological studies is its intrinsic low sensitivity. The introduction of hyperpolarization techniques and, in particular, of dissolution-Dynamic Nuclear Polarization (d-DNP) and ParaHydrogen Induced Polarization (PHIP) is a significant breakthrough for the field as the MR signals of molecules and, most importantly, metabolites, can be increased by some orders of magnitude. Hyperpolarized pyruvate is the metabolite that has been most widely used for the investigation of metabolic alterations in cancer and other diseases. Although d-DNP is currently the gold-standard hyperpolarization method, its high costs and intrinsically slow hyperpolarization procedure are a hurdle to the application of this tool. However, PHIP is cost effective and fast and hyperpolarized pyruvate can be obtained using the so-called Side Arm Hydrogenation approach (PHIP-SAH). The potential toxicity of a solution of the hyperpolarized metabolite that is obtained in this way is presented herein. HP pyruvate has then been used for metabolic studies on different prostate cancer cells lines (DU145, PC3, and LnCap). The results obtained using the HP metabolite have been compared with those from conventional biochemical assays.
Collapse
Affiliation(s)
- Eleonora Cavallari
- Department of Molecular Biotechnology and Health Sciences, Center of Molecular Imaging, University of Turin, Turin, Italy
| | - Carla Carrera
- Institute of Biostructures and Bioimaging, National Research Council, Turin, Italy
| | - Ginevra Di Matteo
- Department of Molecular Biotechnology and Health Sciences, Center of Molecular Imaging, University of Turin, Turin, Italy
| | - Oksana Bondar
- Department of Molecular Biotechnology and Health Sciences, Center of Molecular Imaging, University of Turin, Turin, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, Center of Molecular Imaging, University of Turin, Turin, Italy
| | - Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences, Center of Molecular Imaging, University of Turin, Turin, Italy
| |
Collapse
|
35
|
Eills J, Cavallari E, Carrera C, Budker D, Aime S, Reineri F. Real-Time Nuclear Magnetic Resonance Detection of Fumarase Activity Using Parahydrogen-Hyperpolarized [1-13C]Fumarate. J Am Chem Soc 2019; 141:20209-20214. [DOI: 10.1021/jacs.9b10094] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- James Eills
- Helmholtz Institute, Johannes Gutenberg University of Mainz, Mainz 55099, Germany
| | - Eleonora Cavallari
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10124, Italy
| | - Carla Carrera
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Turin 10126, Italy
| | - Dmitry Budker
- Helmholtz Institute, Johannes Gutenberg University of Mainz, Mainz 55099, Germany
- Department of Physics, University of California, Berkeley, California 94720, United States
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10124, Italy
| | - Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10124, Italy
| |
Collapse
|
36
|
Levitt MH. Long live the singlet state! JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:69-74. [PMID: 31307892 DOI: 10.1016/j.jmr.2019.07.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 03/30/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
The field of long-lived states in NMR is reviewed. The relationship of long-lived-state phenomena to those associated with spin isomerism is discussed. A brief overview is given of key developments in the field of long-lived states, including chemical symmetry-switching, the role of magnetic equivalence and magnetic inequivalence, long-lived coherences, hyperpolarized NMR involving long-lived states, quantum-rotor-induced polarization, and parahydrogen-induced hyperpolarization. Current application areas of long-lived states are reviewed, and a peer into the crystal ball reveals future developments in the field.
Collapse
Affiliation(s)
- Malcolm H Levitt
- School of Chemistry, University of Southampton, University Road, SO17 1BJ Southampton, UK.
| |
Collapse
|
37
|
|
38
|
Papp G, Horváth H, Joó F. A Simple and Efficient Procedure for Rh(I)‐ and Ir(I)‐complex Catalyzed
Para
‐hydrogenation of Alkynes and Alkenes in Aqueous Media Resulting in Strong PHIP Effects. ChemCatChem 2019. [DOI: 10.1002/cctc.201900602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gábor Papp
- Department of Physical ChemistryUniversity of Debrecen Debrecen P.O. Box 400 4002 Hungary
| | - Henrietta Horváth
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research GroupUniversity of Debrecen Debrecen P.O. Box 400 4002 Hungary
| | - Ferenc Joó
- Department of Physical ChemistryUniversity of Debrecen Debrecen P.O. Box 400 4002 Hungary
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research GroupUniversity of Debrecen Debrecen P.O. Box 400 4002 Hungary
| |
Collapse
|
39
|
Eills J, Hale W, Sharma M, Rossetto M, Levitt MH, Utz M. High-Resolution Nuclear Magnetic Resonance Spectroscopy with Picomole Sensitivity by Hyperpolarization on a Chip. J Am Chem Soc 2019; 141:9955-9963. [DOI: 10.1021/jacs.9b03507] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- James Eills
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| | - William Hale
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| | - Manvendra Sharma
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| | - Matheus Rossetto
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| | - Malcolm H. Levitt
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| | - Marcel Utz
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| |
Collapse
|
40
|
Eills J, Blanchard JW, Wu T, Bengs C, Hollenbach J, Budker D, Levitt MH. Polarization transfer via field sweeping in parahydrogen-enhanced nuclear magnetic resonance. J Chem Phys 2019; 150:174202. [PMID: 31067882 DOI: 10.1063/1.5089486] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show that in a spin system of two magnetically inequivalent protons coupled to a heteronucleus such as 13C, an adiabatic magnetic field sweep, passing through zero field, transfers the proton singlet order into magnetization of the coupled heteronucleus. This effect is potentially useful in parahydrogen-enhanced nuclear magnetic resonance and is demonstrated on singlet-hyperpolarized [1-13C]maleic acid, which is prepared via the reaction between [1-13C]acetylene dicarboxylic acid and para-enriched hydrogen gas. The magnetic field sweeps are of microtesla amplitudes and have durations on the order of seconds. We show a polarization enhancement by a factor of 104 in the 13C spectra of [1-13C]maleic acid in a 1.4 T magnetic field.
Collapse
Affiliation(s)
- James Eills
- University of Southampton, Southampton, United Kingdom
| | - John W Blanchard
- Helmholtz Institute, Johannes-Gutenberg University, Mainz, Germany
| | - Teng Wu
- Helmholtz Institute, Johannes-Gutenberg University, Mainz, Germany
| | | | | | - Dmitry Budker
- Helmholtz Institute, Johannes-Gutenberg University, Mainz, Germany
| | | |
Collapse
|
41
|
Fürstner A. trans-Hydrogenation, gem-Hydrogenation, and trans-Hydrometalation of Alkynes: An Interim Report on an Unorthodox Reactivity Paradigm. J Am Chem Soc 2018; 141:11-24. [DOI: 10.1021/jacs.8b09782] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| |
Collapse
|