1
|
Xu L, EL-ATY AABD, Li P, Li J, Zhao J, Lei X, Gao S, Zhao Y, She Y, Jin F, Wang J, Wang S, Zheng L, Hammock BD, Jin M. Smartphone-integrated visual inspection for enhancing agricultural product quality and safety: a review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39230393 PMCID: PMC11876467 DOI: 10.1080/10408398.2024.2398630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The increasing emphasis on the quality and safety of agricultural products, which are vital to global trade and consumer health, has driven the innovation of cost-effective, convenient, and rapid smart detection technologies. Smartphones, with their interdisciplinary functionalities, have become valuable tools in quantification and analysis research. Acting as portable, affordable, and user-friendly analytical devices, smartphones are equipped with high-resolution cameras, displays, memory, communication modules, sensors, and operating systems (Android or IOS), making them powerful, palm-sized remote computers. This review delves into how visual inspection technology and smartphones have enhanced the quality and safety of agricultural products over the past decade. It also evaluates the key features and limitations of existing smart rapid inspection methods for agricultural products and anticipates future advancements, offering insights into the application of smart rapid inspection technology in agriculture.
Collapse
Affiliation(s)
- Lingyuan Xu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - A.M. ABD EL-ATY
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Peipei Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Li
- Jinhua Miaozhidizhi Agricultural Technology Co., Ltd., Jinhua 321000, China
| | - Jing Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingmei Lei
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Song Gao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yun Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fen Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuting Wang
- Hangzhou Municipal Center for Disease Control and Prevention, Zhejiang Hangzhou 310021, China
| | - Lufei Zheng
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bruce D. Hammock
- Department of Entomology & Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Jiao T, Sun P, Tian S, Tan Y, Wang C, He G, Shi L, Zhang Y, Li J, Gu Y. In Situ Colorimetric LAMP Based on One-Step Modified Filter Paper to Screen Human Papillomavirus (HPV)16/18 from Clinical Samples. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16722-16730. [PMID: 39093056 PMCID: PMC11325640 DOI: 10.1021/acs.langmuir.4c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Cervical cancer is among the most common malignant tumors in women. The development of rapid screening techniques plays an important role in early screening for cancer treatment. We have developed an HPV screening method, which effectively combines the high-efficiency nucleic acid enrichment of chitosan-modified filter paper and the rapid visual detectability of colorimetric LAMP, along with the enhancement of the tolerance ability of the pH-sensitive LAMP reagent to acidic original samples, making the detection of HPV 16/18 easy to carry out and reliable, which is helpful for the epidemiological prevention and control strategies of HPV-induced cancer. This technique can simultaneously exhibit the "in situ amplification" capability of chitosan-modified filter paper and the nontemperature cycle dependence of visual LAMP detection. Therefore, DNA extraction and amplification can be performed efficiently and quickly within a single reaction where all DNA is concentrated in the QF paper disc. By embedding amino-modified filter paper into the plastic chip, a simple and reliable disposable chip was prepared for rapid HPV16 and HPV18 detection from clinical endometrial samples, and the results were 100% consistent with clinical diagnosis. More importantly, even after the sample was diluted 100-fold, HPV16/18-infected cells could be accurately identified, showing the advantages of the system in early cancer screening. Moreover, for endometrial samples containing plenty of cells, the filter paper could be used to enrich cells by filtration, preventing the acidic fluid from impacting pH-induced colorimetric LAMP detection and realizing direct amplification for HPV identification without nucleic acid extraction. This easy-to-operate system that can analyze a wide range of samples will be suitable for routine on-site HPV screening, dramatically extending the applications and utility for rapid, near-patient nucleic acid testing.
Collapse
Affiliation(s)
- Tingting Jiao
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Seventh Medical Center of PLA General Hospital, Beijing 100700, China
| | - Peng Sun
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China
| | - Shuang Tian
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Seventh Medical Center of PLA General Hospital, Beijing 100700, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China
| | - Chunyan Wang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China
| | - Guangjun He
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China
| | - Liujia Shi
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China
| | - Yang Zhang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China
| | - Jianhua Li
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Seventh Medical Center of PLA General Hospital, Beijing 100700, China
| | - Yin Gu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China
| |
Collapse
|
3
|
Gradisteanu Pircalabioru G, Raileanu M, Dionisie MV, Lixandru-Petre IO, Iliescu C. Fast detection of bacterial gut pathogens on miniaturized devices: an overview. Expert Rev Mol Diagn 2024; 24:201-218. [PMID: 38347807 DOI: 10.1080/14737159.2024.2316756] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Gut microbes pose challenges like colon inflammation, deadly diarrhea, antimicrobial resistance dissemination, and chronic disease onset. Development of early, rapid and specific diagnosis tools is essential for improving infection control. Point-of-care testing (POCT) systems offer rapid, sensitive, low-cost and sample-to-answer methods for microbe detection from various clinical and environmental samples, bringing the advantages of portability, automation, and simple operation. AREAS COVERED Rapid detection of gut microbes can be done using a wide array of techniques including biosensors, immunological assays, electrochemical impedance spectroscopy, mass spectrometry and molecular biology. Inclusion of Internet of Things, machine learning, and smartphone-based point-of-care applications is an important aspect of POCT. In this review, the authors discuss various fast diagnostic platforms for gut pathogens and their main challenges. EXPERT OPINION Developing effective assays for microbe detection can be complex. Assay design must consider factors like target selection, real-time and multiplex detection, sample type, reagent stability and storage, primer/probe design, and optimizing reaction conditions for accuracy and sensitivity. Mitigating these challenges requires interdisciplinary collaboration among scientists, clinicians, engineers, and industry partners. Future efforts are essential to enhance sensitivity, specificity, and versatility of POCT systems for gut microbe detection and quantification, advancing infectious disease diagnostics and management.
Collapse
Affiliation(s)
- Gratiela Gradisteanu Pircalabioru
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
- Division of Earth, Environmental and Life Sciences, The Research Institute of University of Bucharest (ICUB), Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Mina Raileanu
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Magurele, Romania
| | - Mihai Viorel Dionisie
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
| | - Irina-Oana Lixandru-Petre
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
| | - Ciprian Iliescu
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Microsystems in Biomedical and Environmental Applications, National Research and Development Institute for Microtechnology, Bucharest, Romania
| |
Collapse
|
4
|
Chauke SH, Nzuza S, Ombinda-Lemboumba S, Abrahamse H, Dube FS, Mthunzi-Kufa P. Advances in the detection and diagnosis of tuberculosis using optical-based devices. Photodiagnosis Photodyn Ther 2024; 45:103906. [PMID: 38042235 DOI: 10.1016/j.pdpdt.2023.103906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
Tuberculosis (TB), a bacterial infection caused by Mycobacterium tuberculosis, is highly contagious and can lead to severe health complications if left untreated. This review article discusses the importance of early detection and treatment and its global incidence and epidemiology, emphasizing its impact on vulnerable populations and its role as a major cause of death worldwide. Furthermore, it highlights the challenges faced with diagnosing TB. To overcome these challenges, point-of-care devices have emerged as promising tools for rapid and accurate TB detection. These include devices such as nucleic acid amplification tests (NAATs), lateral flow assays (LFAs), and microfluidic-based assays, which offer advantages such as rapid results, portability, and the ability to detect drug-resistant strains. Optical-based devices, such as photonic micro-ring sensors, silicon platform-based sensors, plasmonic-based platforms, microfluidics, and smartphone imaging, are some of the highlighted optical-based devices with the potential to detect TB. These devices can detect TB in sputum samples with high sensitivity and specificity. Optical-based diagnostic devices have the potential to offer the advantages of detecting low concentrations of target molecules and being adaptable to detect multiple targets simultaneously. Using these devices in a clinical setting makes them suitable for their application in improving access to diagnostic testing that enables earlier detection and treatment of TB. Furthermore, these devices would improve TB's global health issue, which requires comprehensive research, prevention, and treatment efforts.
Collapse
Affiliation(s)
- Sipho H Chauke
- Biophotonics, Photonic Centre, Manufacturing Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa; Molecular and Cell Biology Department, University of Cape Town, Cape Town 7701, South Africa.
| | - Sinegugu Nzuza
- Biophotonics, Photonic Centre, Manufacturing Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa; Laser Research Centre Department, University of Johannesburg, Johannesburg 2028, South Africa
| | - Saturnin Ombinda-Lemboumba
- Biophotonics, Photonic Centre, Manufacturing Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa
| | - Heidi Abrahamse
- Laser Research Centre Department, University of Johannesburg, Johannesburg 2028, South Africa
| | - Felix S Dube
- Molecular and Cell Biology Department, University of Cape Town, Cape Town 7701, South Africa
| | - Patience Mthunzi-Kufa
- Biophotonics, Photonic Centre, Manufacturing Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa; Molecular and Cell Biology Department, University of Cape Town, Cape Town 7701, South Africa; School of Interdisciplinary Research and Graduate Studies (UNESCO), University of South Africa, GroenKloof Campus, Pretoria, South Africa
| |
Collapse
|
5
|
Yang K, Pan J, Deng G, Hua C, Zhu C, Liu Y, Zhu L. Mkit: A mobile nucleic acid assay based on a chitosan-modified minimalistic microfluidic chip (CM 3-chip) and smartphone. Anal Chim Acta 2023; 1253:341030. [PMID: 36965987 DOI: 10.1016/j.aca.2023.341030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/14/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023]
Abstract
Mobile sensing enabled by MS2 technology, which integrates microfluidic and smartphone components, has seen many applications in recent years. In this direction, we developed an MS2 platform (an integrated kit) for nucleic acid assay, which included a chitosan-modified minimalistic microfluidic chip (CM3-chip), a smartphone-based fluorescence detector (SF-detector), an APP for imaging and analysis, reagents, and accessories. Once the lysed sample was loaded into the CM3-chip modified by 1% concentration and 200-260 kDa molecular weight of chitosan, the following assay can be completed in approximately 1 h. The Mkit can detect 3 × 10° copies μL-1 of plasmid DNA and its polymerase chain reaction (PCR) efficiency was 96.8%. The CM3-chip equipped for the Mkit can enrich nucleic acid from the pH = 5 of lysis buffer, instead of using conventional adsorption mediums such as the magnetic beads and silica gel membranes, which could result in unexpected impurity residuals and tedious cleaning operations. In addition, the performance of the Mkit equipped with the pristine chip was demonstrated to perform poorer than that coupled with the CM3-chip in which the enriched nucleic acid can be all used for "in-situ PCR". The universality, selectivity, and user-friendliness of the Mkit were also validated. We finally demonstrated the feasibility of the Mkit for testing artificially prepared infected samples. H5N6 and IAV-infected saliva samples provided the limits of detection of 5 × 102 copies mL-1 and 3.24 × 102 copies mL-1 per chamber, respectively. The streamlined assay and compact device should enable the great potential of the Mkit in research and potential diagnostic uses.
Collapse
Affiliation(s)
- Ke Yang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.
| | - Jingyu Pan
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China; Hefei Zhongke Yikangda Biomedical Co., LTD, Hefei, Anhui, China
| | - Guoqing Deng
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Changyi Hua
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Cancan Zhu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Yong Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Ling Zhu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.
| |
Collapse
|
6
|
Song J, Song Y, Jang H, Moon J, Kang H, Huh YM, Son HY, Rho HW, Park M, Lim EK, Jung J, Jung Y, Park HG, Lee KG, Im SG, Kang T. Elution-free DNA detection using CRISPR/Cas9-mediated light-up aptamer transcription: Toward all-in-one DNA purification and detection tube. Biosens Bioelectron 2023; 225:115085. [PMID: 36696850 DOI: 10.1016/j.bios.2023.115085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/31/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Accurate and efficient detection of DNA is crucial for disease diagnosis and health monitoring. The traditional methods for DNA analysis involve multiple steps, including sample preparation, lysis, extraction, amplification, and detection. In this study, we present a one-step elution-free DNA analysis method based on the combination of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated light-up aptamer transcription (CLAT) assay and a DNA-capturing poly(2-dimethylaminomethyl styrene) (pDMAMS)-coated tube. The sample solution and lysis buffer are added to the pDMAMS-coated tube, and the DNA is efficiently captured on the surface via electrostatic interaction and directly detected by CLAT assay. The ability of the CRISPR/Cas9 system to specifically recognize DNA enables direct detection of DNA captured on the pDMAMS-coated tube. The combination of CLAT assay and pDMAMS-coated tube simplifies DNA detection in a single tube without the need for complicated extraction steps, improving sensitivity. Our platform demonstrated attomolar sensitivity in the detection of target DNA in cell lysate (0.92 aM), urine (7.7 aM), and plasma (94.6 aM) samples within 1 h. The practical applicability of this method was further demonstrated in experiments with tumor-bearing mice. We believe that this approach brings us closer to an all-in-one DNA purification and detection tube system and has potential applications in tissue and liquid biopsies, as well as various other DNA sensing applications.
Collapse
Affiliation(s)
- Jayeon Song
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Younseong Song
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyowon Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jeong Moon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyunju Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Department of Biochemistry & Molecular Biology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Severance Biomedical Science Institute, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; YUHS-KRIBB Medical Convergence Research Institute, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hye Young Son
- Department of Radiology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Severance Biomedical Science Institute, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun Wook Rho
- Department of Radiology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Mirae Park
- Department of Radiology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yongwon Jung
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyoung G Lee
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
7
|
Guo W, Tao Y, Mao K, Liu W, Xue R, Ge Z, Ren Y. Portable general microfluidic device with complex electric field regulation functions for electrokinetic experiments. LAB ON A CHIP 2022; 23:157-167. [PMID: 36484422 DOI: 10.1039/d2lc01053d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrokinetic sample manipulation is a key step for many kinds of microfluidic chips to achieve various functions, such as particle focusing and separation, fluid pumping and material synthesis. But these microfluidic experiments usually rely on large-scale signal generators for power supply, microscopes for imaging and other instruments for analysis, which hampers the portable process of microfluidic technology. Inspired by this situation, we herein designed a portable general microfluidic device (PGMD) with complex electric field regulation functions, which can accurately regulate static or continuous fluid samples. Through the graphical user interface (GUI) and modular design, the PGMD can generate multiple different electrical signals, and the micro-flow of fluid can be pumped through the built-in micropump, which can meet the requirements of most microfluidic experiments. Photos or videos of the microfluidic chip captured by the built-in microscope are received and displayed by a smartphone. We carried out a variety of microfluidic experiments such as induced-charge electroosmosis (ICEO), particle beam exit switching, thermal buoyancy flow and dielectrophoresis (DEP) on the PGMD. In addition, the PGMD can perform rapid microalgae concentration estimation in an outdoor environment, which can be used to guide microalgae cultivation, further demonstrating the development potential of this device in the field of microbial applications. Numerous results show that the PGMD has a high degree of integration and strong reliability, which expands the application of microfluidic electrokinetic experiments and provides technical support for the integration and portability of microfluidic experimental devices.
Collapse
Affiliation(s)
- Wenshang Guo
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Ye Tao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Kaihao Mao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Weiyu Liu
- School of Electronics and Control Engineering, Chang'an University, Middle-Section of Nan'er Huan Road, Xi'an 710000, China
| | - Rui Xue
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Zhenyou Ge
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Yukun Ren
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| |
Collapse
|
8
|
Zai Y, Min C, Wang Z, Ding Y, Zhao H, Su E, He N. A sample-to-answer, quantitative real-time PCR system with low-cost, gravity-driven microfluidic cartridge for rapid detection of SARS-CoV-2, influenza A/B, and human papillomavirus 16/18. LAB ON A CHIP 2022; 22:3436-3452. [PMID: 35972195 DOI: 10.1039/d2lc00434h] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The pandemic of coronavirus disease 2019 (COVID-19), due to the novel coronavirus (SARS-CoV-2), has created an unprecedented threat to the global health system, especially in resource-limited areas. This challenge shines a spotlight on the urgent need for a point-of-care (POC) quantitative real-time PCR (qPCR) test for sensitive and rapid diagnosis of viral infections. In a POC system, a closed, single-use, microfluidic cartridge is commonly utilized for integration of nucleic acid preparation, PCR amplification and florescence detection. But, most current cartridge systems often involve complicated nucleic acid extraction via active pumping that relies on cumbersome external hardware, causing increases in system complexity and cost. In this work, we demonstrate a gravity-driven cartridge design for an integrated viral RNA/DNA diagnostic test that does not require auxiliary hardware for fluid pumping due to adopted extraction-free amplification. This microfluidic cartridge only contains two reaction chambers for nucleic acid lysis and amplification respectively, enabling a fast qPCR test in less than 30 min. This gravity-driven pumping strategy can help simplify and minimize the microfluidic cartridge, thus enabling high-throughput (up to 12 test cartridges per test) molecular detection via a small cartridge readout system. Thus, this work addresses the scalability limitation of POC molecular testing and can be run in any settings. We verified the analytical sensitivity and specificity of the cartridge testing for respiratory pathogens and sexually transmitted diseases using SARS-CoV-2, influenza A/B RNA samples, and human papillomavirus 16/18 DNA samples. Our cartridge system exhibited a comparable detection performance to the current gold standard qPCR instrument ABI 7500. Moreover, our system showed very high diagnostic accuracy for viral RNA/DNA detection that was well validated by ROC curve analysis. The sample-to-answer molecular testing system reported in this work has the advantages of simplicity, rapidity, and low cost, making it highly promising for prevention and control of infectious diseases in poor-resource areas.
Collapse
Affiliation(s)
- Yunfeng Zai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China.
- Getein Biotechnology Co., Ltd., Nanjing 210000, China.
| | - Chao Min
- Getein Biotechnology Co., Ltd., Nanjing 210000, China.
| | - Zunliang Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China.
| | - Yongjun Ding
- Getein Biotechnology Co., Ltd., Nanjing 210000, China.
| | - Huan Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China.
- Getein Biotechnology Co., Ltd., Nanjing 210000, China.
| | - Enben Su
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China.
- Getein Biotechnology Co., Ltd., Nanjing 210000, China.
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China.
| |
Collapse
|
9
|
Nnachi RC, Sui N, Ke B, Luo Z, Bhalla N, He D, Yang Z. Biosensors for rapid detection of bacterial pathogens in water, food and environment. ENVIRONMENT INTERNATIONAL 2022; 166:107357. [PMID: 35777116 DOI: 10.1016/j.envint.2022.107357] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Conventional techniques (e.g., culture-based method) for bacterial detection typically require a central laboratory and well-trained technicians, which may take several hours or days. However, recent developments within various disciplines of science and engineering have led to a major paradigm shift in how microorganisms can be detected. The analytical sensors which are widely used for medical applications in the literature are being extended for rapid and on-site monitoring of the bacterial pathogens in food, water and the environment. Especially, within the low-resource settings such as low and middle-income countries, due to the advantages of low cost, rapidness and potential for field-testing, their use is indispensable for sustainable development of the regions. Within this context, this paper discusses analytical methods and biosensors which can be used to ensure food safety, water quality and environmental monitoring. In brief, most of our discussion is focused on various rapid sensors including biosensors and microfluidic chips. The analytical performances such as the sensitivity, specificity and usability of these sensors, as well as a brief comparison with the conventional techniques for bacteria detection, form the core part of the discussion. Furthermore, we provide a holistic viewpoint on how future research should focus on exploring the synergy of different sensing technologies by developing an integrated multiplexed, sensitive and accurate sensors that will enable rapid detection for food safety, water and environmental monitoring.
Collapse
Affiliation(s)
- Raphael Chukwuka Nnachi
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bowen Ke
- Laboratory of Anesthesiology & Critical Care Medicine, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 61004, PR China
| | - Zhenhua Luo
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom
| | - Nikhil Bhalla
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, BT37 0QB Jordanstown, Northern Ireland, United Kingdom; Healthcare Technology Hub, Ulster University, Jordanstown Shore Road, BT37 0QB, Northern Ireland, United Kingdom
| | - Daping He
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom.
| |
Collapse
|
10
|
Beduk T, Beduk D, Hasan MR, Guler Celik E, Kosel J, Narang J, Salama KN, Timur S. Smartphone-Based Multiplexed Biosensing Tools for Health Monitoring. BIOSENSORS 2022; 12:583. [PMID: 36004979 PMCID: PMC9406027 DOI: 10.3390/bios12080583] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 05/24/2023]
Abstract
Many emerging technologies have the potential to improve health care by providing more personalized approaches or early diagnostic methods. In this review, we cover smartphone-based multiplexed sensors as affordable and portable sensing platforms for point-of-care devices. Multiplexing has been gaining attention recently for clinical diagnosis considering certain diseases require analysis of complex biological networks instead of single-marker analysis. Smartphones offer tremendous possibilities for on-site detection analysis due to their portability, high accessibility, fast sample processing, and robust imaging capabilities. Straightforward digital analysis and convenient user interfaces support networked health care systems and individualized health monitoring. Detailed biomarker profiling provides fast and accurate analysis for disease diagnosis for limited sample volume collection. Here, multiplexed smartphone-based assays with optical and electrochemical components are covered. Possible wireless or wired communication actuators and portable and wearable sensing integration for various sensing applications are discussed. The crucial features and the weaknesses of these devices are critically evaluated.
Collapse
Affiliation(s)
- Tutku Beduk
- Silicon Austria Labs GmbH: Sensor Systems, 9524 Villach, Austria;
| | - Duygu Beduk
- Central Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100 Izmir, Turkey;
| | - Mohd Rahil Hasan
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (J.N.)
| | - Emine Guler Celik
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey;
| | - Jurgen Kosel
- Silicon Austria Labs GmbH: Sensor Systems, 9524 Villach, Austria;
| | - Jagriti Narang
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (J.N.)
| | - Khaled Nabil Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Suna Timur
- Central Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100 Izmir, Turkey;
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Izmir, Turkey
| |
Collapse
|
11
|
Nguyen PQM, Wang M, Ann Maria N, Li AY, Tan HY, Xiong GM, Tan MKM, Bhagat AAS, Ong CWM, Lim CT. Modular micro-PCR system for the onsite rapid diagnosis of COVID-19. MICROSYSTEMS & NANOENGINEERING 2022; 8:82. [PMID: 35860034 PMCID: PMC9294789 DOI: 10.1038/s41378-022-00400-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/17/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Effective containment of the COVID-19 pandemic requires rapid and accurate detection of the pathogen. Polymerase chain reaction (PCR) remains the gold standard for COVID-19 confirmation. In this article, we report the performance of a cost-effective modular microfluidic reverse transcription (RT)-PCR and RT-loop mediated isothermal amplification (RT-LAMP) platform, Epidax®, for the point-of-care testing and confirmation of SARS-CoV-2. This platform is versatile and can be reconfigured either for screening using endpoint RT-PCR or RT-LAMP tests or for confirmatory tests using real-time RT-PCR. Epidax® is highly sensitive and detects as little as 1 RNA copy per µL for real-time and endpoint RT-PCR, while using only half of the reagents. We achieved comparable results with those of a commercial platform when detecting SARS-CoV-2 viruses from 81 clinical RNA extracts. Epidax® can also detect SARS-CoV-2 from 44 nasopharyngeal samples without RNA extraction by using a direct RT-PCR assay, which shortens the sample-to-answer time to an hour with minimal user steps. Furthermore, we validated the technology using an RT-LAMP assay on 54 clinical RNA extracts. Overall, our platform provides a sensitive, cost-effective, and accurate diagnostic solution for low-resource settings.
Collapse
Affiliation(s)
- Phuong Quoc Mai Nguyen
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, MD6, 14 Medical Drive #14-01, Singapore, 117599 Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Block 4, #04-08, Singapore, 117583 Singapore
| | - Ming Wang
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, MD6, 14 Medical Drive #14-01, Singapore, 117599 Singapore
| | - Nelisha Ann Maria
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, MD6, 14 Medical Drive #14-01, Singapore, 117599 Singapore
| | - Adelicia Yongling Li
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, MD6, 14 Medical Drive #14-01, Singapore, 117599 Singapore
| | - Hsih Yin Tan
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, MD6, 14 Medical Drive #14-01, Singapore, 117599 Singapore
| | - Gordon Minru Xiong
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, MD6, 14 Medical Drive #14-01, Singapore, 117599 Singapore
| | - Meng-Kwang Marcus Tan
- Advanced MedTech, 2 Venture Drive, #23-18 Vision Exchange, Singapore, 608526 Singapore
| | - Ali Asgar S. Bhagat
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, MD6, 14 Medical Drive #14-01, Singapore, 117599 Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Block 4, #04-08, Singapore, 117583 Singapore
| | - Catherine W. M. Ong
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, MD6, 14 Medical Drive #14-01, Singapore, 117599 Singapore
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, 1E Kent Ridge Road Level 11, Singapore, 119228 Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, MD6, 14 Medical Drive #14-01, Singapore, 117599 Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Block 4, #04-08, Singapore, 117583 Singapore
| |
Collapse
|
12
|
Guo W, Tao Y, Liu W, Song C, Zhou J, Jiang H, Ren Y. A visual portable microfluidic experimental device with multiple electric field regulation functions. LAB ON A CHIP 2022; 22:1556-1564. [PMID: 35352749 DOI: 10.1039/d2lc00152g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High portability and miniaturization are two of the most important objectives pursued by microfluidic methods. However, there remain many challenges for the design of portable and visual microfluidic devices (e.g., electrokinetic experiments) due to the use of a microscope and power supply. To this end, we report a visual portable microfluidic experimental device (PMED) with multiple electric field regulation functions, which can realize the electric field regulation functions of various basic microfluidic experiments through modular design. The internal reaction process of the microfluidic chip is displayed by a smartphone, and the experimental results are analyzed using a mobile phone application (APP). Taking the induced-charge electroosmosis (ICEO) particle focusing phenomenon as an example, we carried out detailed experiments on PMED and obtained conclusions consistent with numerical simulations. In addition to ICEO experiments, other functions such as alternating electroosmosis (ACEO), thermal buoyancy convection, and dielectrophoresis (DEP) can be realized by replacing module-specific covers. The device expands the application of microfluidic experiments and provides a certain reference for the further integration and portability of subsequent microfluidic experiment devices.
Collapse
Affiliation(s)
- Wenshang Guo
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Ye Tao
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
- School of Engineering and Applied Sciences and Department of Physics Harvard University, 9 Oxford Street, Cambridge, MA 02138, USA
| | - Weiyu Liu
- Chang'an University, Middle-Section of Nan'er Huan Road, Xi'an 710000, China
| | - Chunlei Song
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Jian Zhou
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin 150001, People's Republic of China
| | - Yukun Ren
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| |
Collapse
|
13
|
Cao Y, Ye C, Zhang C, Zhang G, Hu H, Zhang Z, Fang H, Zheng J, Liu H. Simultaneous detection of multiple foodborne bacteria by loop-mediated isothermal amplification on a microfluidic chip through colorimetric and fluorescent assay. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108694] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Zhang Z, Zhao S, Jiang L, Wu J, Zhao W, Guo X, Peng N, Hu F. A sample-to-answer DNA detection microfluidic system integrating sample pretreatment and smartphone-readable gradient plasmonic photothermal continuous-flow PCR. Analyst 2022; 147:4876-4887. [DOI: 10.1039/d2an00908k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a microfluidic system integrating sample pretreatment and smartphone-readable gradient plasmonic photothermal continuous-flow PCR, paving the way for low-cost and rapid implementation of PCR diagnostics.
Collapse
Affiliation(s)
- Zengming Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University No. 99, Yanxiang Road, Xi'an, 710054, P. R. China
| | - Shuhao Zhao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University No. 99, Yanxiang Road, Xi'an, 710054, P. R. China
| | - Lei Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University No. 99, Yanxiang Road, Xi'an, 710054, P. R. China
| | - Junjun Wu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University No. 99, Yanxiang Road, Xi'an, 710054, P. R. China
| | - Wenhan Zhao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University No. 99, Yanxiang Road, Xi'an, 710054, P. R. China
| | - Xiaoniu Guo
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University No. 99, Yanxiang Road, Xi'an, 710054, P. R. China
| | - Niancai Peng
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University No. 99, Yanxiang Road, Xi'an, 710054, P. R. China
| | - Fei Hu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University No. 99, Yanxiang Road, Xi'an, 710054, P. R. China
| |
Collapse
|
15
|
Li J, Wu X, Li Y, Wang X, Huang H, Jian D, Shan Y, Zhang Y, Wu C, Tan G, Wang S, Liu F. Amplification-free smartphone-based attomolar HBV detection. Biosens Bioelectron 2021; 194:113622. [PMID: 34543826 DOI: 10.1016/j.bios.2021.113622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 01/17/2023]
Abstract
Classical gold standard HBV detection relies on expensive devices and complicated procedures, thus is always restricted in large-scale hospitals and centers for disease control and prevention. To extend HBV detection to primary clinics especially in underdeveloped areas, we design amplification-free smartphone-based attomolar HBV detecting technique based on single molecule sensing. Verified by synthesized HBV target DNA, this technique reaches a detection limit at attomolar concentration (100 aM); and verified by 110 clinical samples, it also reaches a rather high sensitivity of 104 copy/mL (≈2000 IU/mL) with a high accuracy of 93.64% certificated by gold standard HBV detecting devices. Besides, this technique can quantify HBV viral load in 70 min only using portable and inexpensive devices as well as simple operations. Because of its cost-effective, field-portable and operable design, highly sensitive and selective detecting capability and wireless data connectivity, this technique can be potentially used in mobile HBV diagnoses and share HBV epidemic information especially in resource limited situations.
Collapse
Affiliation(s)
- Jiahao Li
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xuping Wu
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Yue Li
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xin Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Huachuan Huang
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Dan Jian
- OptiX+ Laboratory, Wuxi, Jiangsu, 214000, China
| | - Yanke Shan
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yue Zhang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Chengcheng Wu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Guolei Tan
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Shouyu Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; OptiX+ Laboratory, Wuxi, Jiangsu, 214000, China.
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
16
|
Cunha ML, da Silva SS, Stracke MC, Zanette DL, Aoki MN, Blanes L. Sample Preparation for Lab-on-a-Chip Systems in Molecular Diagnosis: A Review. Anal Chem 2021; 94:41-58. [PMID: 34870427 DOI: 10.1021/acs.analchem.1c04460] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rapid and low-cost molecular analysis is especially required for early and specific diagnostics, quick decision-making, and sparing patients from unnecessary tests and hospitals from extra costs. One way to achieve this objective is through automated molecular diagnostic devices. Thus, sample-to-answer microfluidic devices are emerging with the promise of delivering a complete molecular diagnosis system that includes nucleic acid extraction, amplification, and detection steps in a single device. The biggest issue in such equipment is the extraction process, which is normally laborious and time-consuming but extremely important for sensitive and specific detection. Therefore, this Review focuses on automated or semiautomated extraction methodologies used in lab-on-a-chip devices. More than 15 different extraction methods developed over the past 10 years have been analyzed in terms of their advantages and disadvantages to improve extraction procedures in future studies. Herein, we are able to explain the high applicability of the extraction methodologies due to the large variety of samples in which different techniques were employed, showing that their applications are not limited to medical diagnosis. Moreover, we are able to conclude that further research in the field would be beneficial because the methodologies presented can be affordable, portable, time efficient, and easily manipulated, all of which are strong qualities for point-of-care technologies.
Collapse
Affiliation(s)
- Mylena Lemes Cunha
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Stella Schuster da Silva
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Mateus Cassaboni Stracke
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010.,Paraná Institute of Molecular Biology, Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Lucas Blanes
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010.,Paraná Institute of Molecular Biology, Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| |
Collapse
|
17
|
A portable centrifugal genetic analyzer for multiplex detection of feline upper respiratory tract disease pathogens. Biosens Bioelectron 2021; 193:113546. [PMID: 34391176 DOI: 10.1016/j.bios.2021.113546] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/23/2022]
Abstract
We present a portable genetic analyzer with an integrated centrifugal disc which is equipped with a glass-filter extraction column for purifying nucleic acid (NA) and multiple reaction chambers for analyzing major feline upper respiratory tract disease (FURTD) pathogens. We targeted four kinds of FURTD including Feline herpesvirus 1 (FHV), Mycoplasma felis (MPF), Bordetella bronchiseptica (BDB), and Chlamydophila felis (CDF). The portable genetic analyzer consists of a spinning motor, two pairs of Peltier heaters, two Minco heater, fluorescent optics, a touchscreen, and software for data analysis, so loop-mediated isothermal amplification (LAMP) or polymerase chain reaction (PCR) can be performed. The overall size of the genetic analyzer was 28 cm × 28 cm × 26 cm and the weight was 10 kg, which was deliverable for point-of-care testing (POCT). Owing to the sophisticated microchannel design and spinning program, the serial injection of the sample solution, the washing solution, and the elution solution was executed through a glass filter membrane for nucleic acid (NA) extraction, and then the cocktail with the purified genome was aliquoted into 9 reaction chambers for LAMP or PCR. The whole process for the LAMP reaction or the PCR was completed within 1.5 h. The fluorescence profiles by a scanning mode showed the matched results between the LAMP and the PCR.
Collapse
|
18
|
Soares RRG, Akhtar AS, Pinto IF, Lapins N, Barrett D, Sandh G, Yin X, Pelechano V, Russom A. Sample-to-answer COVID-19 nucleic acid testing using a low-cost centrifugal microfluidic platform with bead-based signal enhancement and smartphone read-out. LAB ON A CHIP 2021; 21:2932-2944. [PMID: 34114589 DOI: 10.1039/d1lc00266j] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
With its origin estimated around December 2019 in Wuhan, China, the ongoing SARS-CoV-2 pandemic is a major global health challenge. The demand for scalable, rapid and sensitive viral diagnostics is thus particularly pressing at present to help contain the rapid spread of infection and prevent overwhelming the capacity of health systems. While high-income countries have managed to rapidly expand diagnostic capacities, such is not the case in resource-limited settings of low- to medium-income countries. Aiming at developing cost-effective viral load detection systems for point-of-care COVID-19 diagnostics in resource-limited and resource-rich settings alike, we report the development of an integrated modular centrifugal microfluidic platform to perform loop-mediated isothermal amplification (LAMP) of viral RNA directly from heat-inactivated nasopharyngeal swab samples. The discs were pre-packed with dried n-benzyl-n-methylethanolamine modified agarose beads used to selectively remove primer dimers, inactivate the reaction post-amplification and allowing enhanced fluorescence detection via a smartphone camera. Sample-to-answer analysis within 1 hour from sample collection and a detection limit of approximately 100 RNA copies in 10 μL reaction volume were achieved. The platform was validated with a panel of 162 nasopharyngeal swab samples collected from patients with COVID-19 symptoms, providing a sensitivity of 96.6% (82.2-99.9%, 95% CI) for samples with Ct values below 26 and a specificity of 100% (90-100%, 95% CI), thus being fit-for-purpose to diagnose patients with a high risk of viral transmission. These results show significant promise towards bringing routine point-of-care COVID-19 diagnostics to resource-limited settings.
Collapse
Affiliation(s)
- Ruben R G Soares
- KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, Solna, Sweden.
| | - Ahmad S Akhtar
- KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, Solna, Sweden.
| | - Inês F Pinto
- KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, Solna, Sweden.
| | - Noa Lapins
- KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, Solna, Sweden.
| | - Donal Barrett
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Gustaf Sandh
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Xiushan Yin
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden and Applied Biology Laboratory, Shenyang University of Chemical Technology, Shenyang, China and Biotech and Biomedicine Science Co. Ltd, Shenyang, China
| | - Vicent Pelechano
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Aman Russom
- KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, Solna, Sweden. and AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
19
|
Sivakumar R, Lee NY. Recent progress in smartphone-based techniques for food safety and the detection of heavy metal ions in environmental water. CHEMOSPHERE 2021; 275:130096. [PMID: 33677270 DOI: 10.1016/j.chemosphere.2021.130096] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 05/14/2023]
Abstract
Emerging smartphone-based point-of-care tests (POCTs) are cost-effective, precise, and easy to implement in resource-limited areas. Thus, they are considered a potential alternative to conventional diagnostic testing. This review explores food safety and the detection of metal ions in environmental water based on unprecedented smartphone technology. Specifically, we provide an overview of various methods used for target analyte detection (antibiotics, enzymes, mycotoxins, pathogens, pesticides, small molecules, and metal ions), such as colorimetric, fluorescence, microscopic imaging, and electrochemical methods. This paper performs a comprehensive review of smartphone-based POCTs developed in the last three years (2018-2020) and evaluates their relative advantages and limitations. Moreover, we discuss the imperative role of new technology in the progress of POCTs. Sensor materials (metal nanoparticles, carbon dots, quantum dots, organic substrates, etc.) and detection techniques (paper-based, later flow assay, microfluidic platform, etc.) involved in POCTs based on smartphones, and the challenges faced by these techniques, are addressed.
Collapse
Affiliation(s)
- Rajamanickam Sivakumar
- Department of Industrial Environmental Engineering, College of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
20
|
Wu X, Pan J, Zhu X, Hong C, Hu A, Zhu C, Liu Y, Yang K, Zhu L. MS 2 device: smartphone-facilitated mobile nucleic acid analysis on microfluidic device. Analyst 2021; 146:3823-3833. [PMID: 34121097 DOI: 10.1039/d1an00367d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mobile sensing based on the integration of microfluidic devices and smartphones, so-called MS2 technology, has enabled many applications over recent years and continues to stimulate growing interest in both research communities and industries. In particular, MS2 technology has been proven to be able to be applied to molecular diagnostic analysis and can be implemented for basic research and clinical testing. However, the currently reported MS2-based nucleic acid analysis system has limited use in practical applications, because it is not integrated with quantitative PCR, multiplex PCR, and isothermal amplification functions, and lacks temperature control, image acquisition and real-time processing units with excellent performance. To provide a more universal and powerful platform, we here developed a novel MS2 device by integrating a thermocycler, a multi fluorescence detection unit, a PCR chip, an isothermal chip, and a smartphone. The MS2 device was approximately 325 mm (L) × 200 mm (W) × 200 mm (H) in volume and only 5 kg in weight, and showed an average power consumption of about 38.4 W. The entire nucleic acid amplification and analysis could be controlled through a self-made smartphone App. The maximum heating and cooling rates were 5 °C s-1 and 4 °C s-1, respectively. The entire PCR could be completed within 65 min. The temperature uniformity was less than 0.1 °C. Besides, the temperature stability over time (30 min) was within ±0.04 °C. Four optical channels were integrated (FAM, HEX, TAMRA, and ROX) on the MS2 device. In particular, the PCR-based detection sensitivity reached 1 copy per μL, and the amplification efficiency was calculated to be 106.8%. Besides, the MS2 device also was compatible with multiplex PCR and isothermal amplification. In short, the MS2 device showed performance consistent with that of traditional commercial equipment. Thus, the MS2 device provides an easy and integrated experimental platform for molecular diagnostic-related research and potential medical diagnostic applications.
Collapse
Affiliation(s)
- Xiaosong Wu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China. and University of Science and Technology of China, No. 96, JinZhai Road Baohe District, Hefei 230026, PR China
| | - Jingyu Pan
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China.
| | - Xinchao Zhu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China. and University of Science and Technology of China, No. 96, JinZhai Road Baohe District, Hefei 230026, PR China
| | - Chenggang Hong
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China.
| | - Anzhong Hu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China.
| | - Cancan Zhu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China.
| | - Yong Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China.
| | - Ke Yang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China.
| | - Ling Zhu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China.
| |
Collapse
|
21
|
Van Nguyen H, Seo TS. High-throughput human DNA purification on a centrifugal microfluidic device for rapid forensic sex-typing. Biosens Bioelectron 2021; 181:113161. [PMID: 33765658 DOI: 10.1016/j.bios.2021.113161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
We introduce a novel centrifugal disc for purifying nucleic acid (NA) in a high-throughput manner to perform the human sex-typing of forensic samples. The centrifugal disc was designed with double-sided etched channels to fabricate 30 extraction units, which was capable of purifying 30 forensic samples in a single run. In order to introduce the washing solution (70% ethanol) and the elution buffer for the 30 extraction units in an automatic manner, we designed the aliquoting chambers that were connected with a zigzag delivery channel. The super-hydrophobic zigzag-shaped aliquot structure plays a crucial role in automatically dividing the washing solution and the elution buffer into 30 aliquots with one injection shot. The Whatman glass filter paper was used as an NA extraction matrix and sophisticated passive valves were equipped to avoid the overflowing of these buffers to the neighboring chamber during the injection. To operate the disc, we developed a portable workstation that consists of a buffer storage system, a buffer injection system, and a spinning unit. The entire process was automatically operated by the in-house portable workstation. Genomic DNA extraction using thirty forensic samples was completed in 10 min. Using the purified genomic DNA, we performed a loop-mediated isothermal amplification (LAMP) reaction for sex-typing by targeting the human alphoid repeat sequence of the Y-chromosome and the human 18S rRNA. The combination of the high-throughput centrifugal disc for NA extraction and the LAMP reaction enables us to complete the genetic sex-typing in 30 min.
Collapse
Affiliation(s)
- Hau Van Nguyen
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin, 17104, South Korea
| | - Tae Seok Seo
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin, 17104, South Korea.
| |
Collapse
|
22
|
Hoang TX, Phan LMT, Vo TAT, Cho S. Advanced Signal-Amplification Strategies for Paper-Based Analytical Devices: A Comprehensive Review. Biomedicines 2021; 9:540. [PMID: 34066112 PMCID: PMC8150371 DOI: 10.3390/biomedicines9050540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022] Open
Abstract
Paper-based analytical devices (PADs) have emerged as a promising approach to point-of-care (POC) detection applications in biomedical and clinical diagnosis owing to their advantages, including cost-effectiveness, ease of use, and rapid responses as well as for being equipment-free, disposable, and user-friendly. However, the overall sensitivity of PADs still remains weak, posing a challenge for biosensing scientists exploiting them in clinical applications. This review comprehensively summarizes the current applicable potential of PADs, focusing on total signal-amplification strategies that have been applied widely in PADs involving colorimetry, luminescence, surface-enhanced Raman scattering, photoacoustic, photothermal, and photoelectrochemical methods as well as nucleic acid-mediated PAD modifications. The advances in signal-amplification strategies in terms of signal-enhancing principles, sensitivity, and time reactions are discussed in detail to provide an overview of these approaches to using PADs in biosensing applications. Furthermore, a comparison of these methods summarizes the potential for scientists to develop superior PADs. This review serves as a useful inside look at the current progress and prospective directions in using PADs for clinical diagnostics and provides a better source of reference for further investigations, as well as innovations, in the POC diagnostics field.
Collapse
Affiliation(s)
- Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-do, Korea; (T.X.H.); (T.A.T.V.)
| | - Le Minh Tu Phan
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- School of Medicine and Pharmacy, The University of Danang, Danang 550000, Vietnam
| | - Thuy Anh Thu Vo
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-do, Korea; (T.X.H.); (T.A.T.V.)
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| |
Collapse
|
23
|
Paul R, Ostermann E, Wei Q. Advances in point-of-care nucleic acid extraction technologies for rapid diagnosis of human and plant diseases. Biosens Bioelectron 2020; 169:112592. [PMID: 32942143 PMCID: PMC7476893 DOI: 10.1016/j.bios.2020.112592] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022]
Abstract
Global health and food security constantly face the challenge of emerging human and plant diseases caused by bacteria, viruses, fungi, and other pathogens. Disease outbreaks such as SARS, MERS, Swine Flu, Ebola, and COVID-19 (on-going) have caused suffering, death, and economic losses worldwide. To prevent the spread of disease and protect human populations, rapid point-of-care (POC) molecular diagnosis of human and plant diseases play an increasingly crucial role. Nucleic acid-based molecular diagnosis reveals valuable information at the genomic level about the identity of the disease-causing pathogens and their pathogenesis, which help researchers, healthcare professionals, and patients to detect the presence of pathogens, track the spread of disease, and guide treatment more efficiently. A typical nucleic acid-based diagnostic test consists of three major steps: nucleic acid extraction, amplification, and amplicon detection. Among these steps, nucleic acid extraction is the first step of sample preparation, which remains one of the main challenges when converting laboratory molecular assays into POC tests. Sample preparation from human and plant specimens is a time-consuming and multi-step process, which requires well-equipped laboratories and skilled lab personnel. To perform rapid molecular diagnosis in resource-limited settings, simpler and instrument-free nucleic acid extraction techniques are required to improve the speed of field detection with minimal human intervention. This review summarizes the recent advances in POC nucleic acid extraction technologies. In particular, this review focuses on novel devices or methods that have demonstrated applicability and robustness for the isolation of high-quality nucleic acid from complex raw samples, such as human blood, saliva, sputum, nasal swabs, urine, and plant tissues. The integration of these rapid nucleic acid preparation methods with miniaturized assay and sensor technologies would pave the road for the "sample-in-result-out" diagnosis of human and plant diseases, especially in remote or resource-limited settings.
Collapse
Affiliation(s)
- Rajesh Paul
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Emily Ostermann
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA; Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
24
|
Nath P, Kabir A, Khoubafarin Doust S, Kreais ZJ, Ray A. Detection of Bacterial and Viral Pathogens Using Photonic Point-of-Care Devices. Diagnostics (Basel) 2020; 10:diagnostics10100841. [PMID: 33086578 PMCID: PMC7603237 DOI: 10.3390/diagnostics10100841] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases caused by bacteria and viruses are highly contagious and can easily be transmitted via air, water, body fluids, etc. Throughout human civilization, there have been several pandemic outbreaks, such as the Plague, Spanish Flu, Swine-Flu, and, recently, COVID-19, amongst many others. Early diagnosis not only increases the chance of quick recovery but also helps prevent the spread of infections. Conventional diagnostic techniques can provide reliable results but have several drawbacks, including costly devices, lengthy wait time, and requirement of trained professionals to operate the devices, making them inaccessible in low-resource settings. Thus, a significant effort has been directed towards point-of-care (POC) devices that enable rapid diagnosis of bacterial and viral infections. A majority of the POC devices are based on plasmonics and/or microfluidics-based platforms integrated with mobile readers and imaging systems. These techniques have been shown to provide rapid, sensitive detection of pathogens. The advantages of POC devices include low-cost, rapid results, and portability, which enables on-site testing anywhere across the globe. Here we aim to review the recent advances in novel POC technologies in detecting bacteria and viruses that led to a breakthrough in the modern healthcare industry.
Collapse
|
25
|
Zhu YS, Shao N, Chen JW, Qi WB, Li Y, Liu P, Chen YJ, Bian SY, Zhang Y, Tao SC. Multiplex and visual detection of African Swine Fever Virus (ASFV) based on Hive-Chip and direct loop-mediated isothermal amplification. Anal Chim Acta 2020; 1140:30-40. [PMID: 33218487 PMCID: PMC7542229 DOI: 10.1016/j.aca.2020.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
African swine fever is caused by African swine fever virus (ASFV), and has a mortality rate approaching 100%. It has already caused tremendous economy lost around the world. Without effective vaccine, rapid and accurate on-site detection plays an indispensable role in controlling outbreaks. Herein, by combining Hive-Chip and direct loop-mediated isothermal amplification (LAMP), we establish a multiplex and visual detection platform. LAMP primers targeting five ASFV genes (B646L, B962L, C717R, D1133L, and G1340L) were designed and pre-fixed in Hive-Chip. On-chip LAMP showed the limits of detection (LOD) of ASFV synthetic DNAs and mock samples are 30 and 50 copies per microliter, respectively, and there is no cross-reaction among the target genes. The overall performance of our platform is comparable to that of the commercial kits. From sample preparation to results readout, the entire process takes less than 70 min. Multiplex detection of real samples of ASFV and other swine viruses further demonstrates the high sensitivity and specificity of Hive-Chip. Overall, our platform provides a promising option for on-site, fast and accurate detection of ASFV. Hive-Chip firstly realized simultaneous detection of multiple genes of ASFV, largely avoiding false-negative results. Without nucleic acid extraction, direct LAMP was firstly incorporated into the Hive-Chip for visual detection. Because very little operation and no complicate instrument is required, on-site detection is possible for this platform.
Collapse
Affiliation(s)
- Yuan-Shou Zhu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ning Shao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian-Wei Chen
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen-Bao Qi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yang Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | - Yan Zhang
- CapitalBio Corporation, Beijing 102206, China.
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; Perfect Diagnosis Biotechnolgoy (ZhenCe) Co., Ltd., Shanghai 200240, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
26
|
Lin B, Guo Z, Geng Z, Jakaratanopas S, Han B, Liu P. A scalable microfluidic chamber array for sample-loss-free and bubble-proof sample compartmentalization by simple pipetting. LAB ON A CHIP 2020; 20:2981-2989. [PMID: 32696770 DOI: 10.1039/d0lc00348d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sample compartmentalization is a pivotal technique in many bioanalytical applications, such as multiplex polymerase chain reaction (PCR) and digital PCR (dPCR). In this study, we successfully developed a novel self-compartmentalization device containing an array of microchambers, each of which is connected to a main microchannel with three capillary burst valves (CBVs) for fluid switching and partitioning. As these CBVs can be automatically opened in a predefined sequence, an incoming solution can be spontaneously directed into the chamber and held in place without further mixing. After that, either air or oil can be loaded into the main channel to isolate each chamber completely. By optimizing the relative burst pressures of the CBVs, a 100% sample utilization rate can be achieved even using a manual pipette and air bubbles in the sample cannot interfere with the loading. In addition, the number of the microchambers in an array can be easily scaled from a few to tens of thousands. To verify the feasibility of this self-compartmentalization method, we successfully conducted mock multiplex loop-mediated isothermal amplifications (LAMP) in an array that contains 144 microchambers, proving that our design method will provide a robust and versatile platform for various sample discretization purposes in the future.
Collapse
Affiliation(s)
- Baobao Lin
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China.
| | | | | | | | | | | |
Collapse
|
27
|
Petrusha OA, Faizuloev EB. [Detection methods for results of a loop-mediated isothermal amplification of DNA.]. Klin Lab Diagn 2020; 65:67-72. [PMID: 32155010 DOI: 10.18821/0869-2084-2020-65-1-67-72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 11/17/2022]
Abstract
The loop mediated isothermal amplification (LAMP) was developed by T. Notomi et al. in 2000. It has become one of the most promising methods for point-of-care diagnostics due to its accuracy, sensitivity and ease of execution. In this review, various methods for detecting the results of the LAMP reaction are considered; their advantages and disadvantages are revealed. Methods for detecting LAMP results can be divided into indirect and direct. Indirect methods aimed at detecting changes in the chemical composition of the reaction mixture include real-time turbidimetry, fluorescence detection with calcein, colorimetric detection with hydroxynaphthol blue, and detection using modified gold nanoparticles. Direct methods based on the detection of accumulation amplicons during the reaction include fluorimetric detection with intercalating dyes, resonance fluorescence energy transfer, enzyme immunoassay, immunochromatography, using cationic polymers and gold nanoparticles. The development in the field of point-of-care diagnostics is characterized by a pronounced tendency to miniaturization, the LAMP reaction on microchips and microfluidic devices with an electrochemical or optical detection method. The most promising for the diagnosis of infectious diseases are turbidimetry methods and the use of intercalating dyes. The development of portable domestic instruments for detecting of LAMP results based on real-time fluorescence detection or turbidimetry will contribute to the widespread introduction of the method into clinical laboratory diagnostic practice. A literature research was conducted in the Pubmed ncbi based on keywords.
Collapse
Affiliation(s)
- O A Petrusha
- Mechnikov Research Institute of Vaccines and Sera, 105064, Moscow, Russia
| | - E B Faizuloev
- Mechnikov Research Institute of Vaccines and Sera, 105064, Moscow, Russia
| |
Collapse
|
28
|
Xu H, Xia A, Wang D, Zhang Y, Deng S, Lu W, Luo J, Zhong Q, Zhang F, Zhou L, Zhang W, Wang Y, Yang C, Chang K, Fu W, Cui J, Gan M, Luo D, Chen M. An ultraportable and versatile point-of-care DNA testing platform. SCIENCE ADVANCES 2020; 6:eaaz7445. [PMID: 32426466 PMCID: PMC7176422 DOI: 10.1126/sciadv.aaz7445] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/06/2020] [Indexed: 05/07/2023]
Abstract
Point-of-care testing (POCT) has broad applications in resource-limited settings. Here, a POCT platform termed POCKET (point-of-care kit for the entire test) is demonstrated that is ultraportable and versatile for analyzing multiple types of DNA in different fields in a sample-to-answer manner. The POCKET is less than 100 g and smaller than 25 cm in length. The kit consists of an integrated chip (i-chip) and a foldable box (f-box). The i-chip integrates the sample preparation with a previously unidentified, triple signal amplification. The f-box uses a smartphone as a heater, a signal detector, and a result readout. We detected different types of DNA from clinics to environment to food to agriculture. The detection is sensitive (<103 copies/ml), specific (single-base differentiation), speedy (<2 hours), and stable (>10 weeks shelf life). This inexpensive, ultraportable POCKET platform may become a versatile sample-to-answer platform for clinical diagnostics, food safety, agricultural protection, and environmental monitoring.
Collapse
Affiliation(s)
- Huan Xu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Anyue Xia
- First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - Dandan Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yiheng Zhang
- Central Laboratory, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shaoli Deng
- Department of Clinical Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Weiping Lu
- Department of Clinical Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Jie Luo
- Department of Clinical Laboratory, The 954th Hospital of Chinese People's Liberation Army, Xizang 856000, China
| | - Qiu Zhong
- Department of Clinical Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Fengling Zhang
- Department of Clinical Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Lin Zhou
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wenqing Zhang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yang Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Cheng Yang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Weiling Fu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jinhui Cui
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Corresponding author. (M.C.); (D.L.); (M.G.); (J.C.)
| | - Mingzhe Gan
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Suzhou 215123, China
- Corresponding author. (M.C.); (D.L.); (M.G.); (J.C.)
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
- Corresponding author. (M.C.); (D.L.); (M.G.); (J.C.)
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- College of Pharmacy and Laboratory Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Corresponding author. (M.C.); (D.L.); (M.G.); (J.C.)
| |
Collapse
|
29
|
Mao K, Min X, Zhang H, Zhang K, Cao H, Guo Y, Yang Z. Paper-based microfluidics for rapid diagnostics and drug delivery. J Control Release 2020; 322:187-199. [PMID: 32169536 DOI: 10.1016/j.jconrel.2020.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/13/2020] [Accepted: 03/07/2020] [Indexed: 02/07/2023]
Abstract
Paper is a common material that is promising for constructing microfluidic chips (lab-on-a-paper) for diagnostics and drug delivery for biomedical applications. In the past decade, extensive research on paper-based microfluidics has accumulated a large number of scientific publications in the fields of biomedical diagnosis, food safety, environmental health, drug screening and delivery. This review focuses on the recent progress on paper-based microfluidic technology with an emphasis on the design, optimization and application of the technology platform, in particular for medical diagnostics and drug delivery. Novel advances have concentrated on engineering paper devices for point-of-care (POC) diagnostics, which could be integrated with nucleic acid-based tests and isothermal amplification experiments, enabling rapid sample-to-answer assays for field testing. Among the isothermal amplification experiments, loop-mediated isothermal amplification (LAMP), an extremely sensitive nucleic acid test, specifically identifies ultralow concentrations of DNA/RNA from practical samples for diagnosing diseases. We thus mainly focus on the paper device-based LAMP assay for the rapid infectious disease diagnosis, foodborne pathogen analysis, veterinary diagnosis, plant diagnosis, and environmental public health evaluation. We also outlined progress on paper microfluidic devices for drug delivery. The paper concludes with a discussion on the challenges of this technology and our insights into how to advance science and technology towards the development of fully functional paper devices in diagnostics and drug delivery.
Collapse
Affiliation(s)
- Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Xiaocui Min
- Guangzhou Huali Science and Technology Vocational College, Guangzhou 511325, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China.
| | - Kuankuan Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Yongkun Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom.
| |
Collapse
|
30
|
A Novel Microfluidic Device Integrated with Chitosan-Modified Capillaries for Rapid ZIKV Detection. MICROMACHINES 2020; 11:mi11020186. [PMID: 32054007 PMCID: PMC7074674 DOI: 10.3390/mi11020186] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 02/08/2023]
Abstract
The outbreak of Zika virus (ZIKV) has posed a great challenge to public health in recent years. To address the urgent need of ZIKV RNA assays, we integrate the microfluidic chip embedded with chitosan-modified silicon dioxide capillaries, smartphone-based detection unit to be a C3-system for the rapid extraction and detection of ZIKV RNA. The C3-system is characterized by: (1) four chitosan-modified silicon dioxide capillaries integrated in the microfluidic chip for target ZIKV RNA enrichment and “in situ PCR” (polymerase chain reaction) amplification; (2) smartphone-based point of care (POC) device consisting of a pneumatic subsystem for controlling the nucleic acid extraction processes in the microfluidic chip, a heating subsystem for sample lysis and PCR amplification, and an optical subsystem for signal acquisition. The entire detection processes including sample lysis, ZIKV RNA enrichment, and reverse-transcription polymerase chain reaction (RT-PCR) is achieved in the microfluidic chip. Moreover, PCR buffers can be directly loaded into the chitosan-modified silicon dioxide capillaries for “in situ PCR”, in which the captured ZIKV RNA is directly used for downstream PCR without any loss. ZIKV RNA extracted by the C3-system can be successfully recovered at very low concentrations of 50 transducing units (TU)/mL from crude human saliva. This means that our method of detecting viremia in patients infected with ZIKV is reliable.
Collapse
|
31
|
Geng Z, Gu Y, Li S, Lin B, Liu P. A Fully Integrated In Vitro Diagnostic Microsystem for Pathogen Detection Developed Using a "3D Extensible" Microfluidic Design Paradigm. MICROMACHINES 2019; 10:E873. [PMID: 31842384 PMCID: PMC6953088 DOI: 10.3390/mi10120873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 01/09/2023]
Abstract
Microfluidics is facing critical challenges in the quest of miniaturizing, integrating, and automating in vitro diagnostics, including the increasing complexity of assays, the gap between the macroscale world and the microscale devices, and the diverse throughput demands in various clinical settings. Here, a "3D extensible" microfluidic design paradigm that consists of a set of basic structures and unit operations was developed for constructing any application-specific assay. Four basic structures-check valve (in), check valve (out), double-check valve (in and out), and on-off valve-were designed to mimic basic acts in biochemical assays. By combining these structures linearly, a series of unit operations can be readily formed. We then proposed a "3D extensible" architecture to fulfill the needs of the function integration, the adaptive "world-to-chip" interface, and the adjustable throughput in the X, Y, and Z directions, respectively. To verify this design paradigm, we developed a fully integrated loop-mediated isothermal amplification microsystem that can directly accept swab samples and detect Chlamydia trachomatis automatically with a sensitivity one order higher than that of the conventional kit. This demonstration validated the feasibility of using this paradigm to develop integrated and automated microsystems in a less risky and more consistent manner.
Collapse
Affiliation(s)
- Zhi Geng
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Z.G.); (Y.G.); (S.L.); (B.L.)
| | - Yin Gu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Z.G.); (Y.G.); (S.L.); (B.L.)
- FengteBio Corporation, Beijing 100079, China
| | - Shanglin Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Z.G.); (Y.G.); (S.L.); (B.L.)
- FengteBio Corporation, Beijing 100079, China
| | - Baobao Lin
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Z.G.); (Y.G.); (S.L.); (B.L.)
| | - Peng Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Z.G.); (Y.G.); (S.L.); (B.L.)
| |
Collapse
|
32
|
Ding X, Mauk MG, Yin K, Kadimisetty K, Liu C. Interfacing Pathogen Detection with Smartphones for Point-of-Care Applications. Anal Chem 2019; 91:655-672. [PMID: 30428666 PMCID: PMC6867037 DOI: 10.1021/acs.analchem.8b04973] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiong Ding
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Michael G. Mauk
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kun Yin
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Karteek Kadimisetty
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Changchun Liu
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| |
Collapse
|
33
|
Li J, Sun Y, Chen C, Sheng T, Liu P, Zhang G. A smartphone-assisted microfluidic chemistry analyzer using image-based colorimetric assays for multi-index monitoring of diabetes and hyperlipidemia. Anal Chim Acta 2018; 1052:105-112. [PMID: 30685028 DOI: 10.1016/j.aca.2018.11.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 11/30/2022]
Abstract
A smartphone-assisted microfluidic chemistry analyzer using an image-based colorimetric detection method was successfully developed for the simultaneous analysis of three diabetes- and hyperlipidemia-related indexes, glucose (GLU), triglyceride (TG), and total cholesterol (TC). A fan-shaped microfluidic chip was designed and optimized to reliably allocate a premixed serum sample into four reaction chambers by a simple pipetting. The color changes of the peroxidase-H2O2 enzymatic reactions in the chambers were captured and analyzed using a smartphone-controlled analyzer with a LED light source and a CCD camera. The highly quantitative relationships between the analyte concentrations and the color characteristic values of the green channel of the captured images were successfully established, enabling accurate and reproducible detections of GLU, TG, and TC simultaneously at a low cost. The parallel analyses of 111 serum samples using our system and a conventional chemistry analyzer were conducted, yielding an excellent correlation and consistency between these two systems. This study proved the feasibility of performing the multi-index monitoring of diabetes, hyperlipidemia, and other chronic diseases on a point-of-care platform at a high fidelity, but a low cost.
Collapse
Affiliation(s)
- Jie Li
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Yujia Sun
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Cheng Chen
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China; National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Tao Sheng
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Peng Liu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China.
| | - Guanbin Zhang
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China; National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China.
| |
Collapse
|